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Abstract Analysis of spectra of families of sets of matrices verifying certain
properties is not simple because phenomena as singularities and bifurcations
appear. An excellent tool for the analysis can be making use of versal defor-
mations because of the spectrum of the family coincides with the spectrum of
its versal deformation. Disposing of a versal deformation is advantageous since
any perturbation of an element can be described up to equivalence by its versal
deformation, and it gives the possibility to calculate bifurcation diagrams of
families of elements in general position. V.I. Arnold constructed versal defor-
mations, of a differentiable family of square matrices under conjugation and
his techniques have been generalised to different cases as to matrix pencils
under the strict equivalence, for example.

In this paper, we present versal deformations of elements of the Lie algebra
consisting of triples of traceless matrices to coefficients on F = C or R, which
are simultaneously diagonalizable.

Study families of traceless matrix triples have great interest because the
Lie algebra is related to gauge fields because they appear in the Lagrangian
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Universitat Politècnica de Catalunya
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Avda. Diagonal, 647,
08028 Barcelona, SPAIN
E-mail: tetiana.klymchuk@upc.edu
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describing the dynamics of the field, then they are associated to 1-forms that
take values on a certain Lie algebra. It is also of interest to note that triples
of traceless matrices have some relevance for supergravity theories. Another
application is found when we must give the instanton solution of Yang-Mills
field can be presented in an octonion form, and it can be represented by triples
of traceless matrices.

Keywords Traceless matrix · Versal deformation · Families of sets of
matrices
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1 Introduction

Analysis of versal families of elements of a variety under some equivalence re-
lation is a significant challenge both from the theoretical and practical point of
view. Disposing of a versal deformation is advantageous since any perturbation
of an element can be described up to equivalence by its versal deformation, and
it gives the possibility to calculate bifurcation diagrams of families of elements
in general position.

V.I. Arnold constructed versal deformations, of a differentiable family of
square matrices under conjugation [1] and his techniques have been generalised
by several authors to matrix pencils under the strict equivalence [9], pairs or
triples of matrices under the action of the general linear group [12], pairs of
matrices under the feedback similarity [6], for example.

In this paper, we are interested in versal deformations of elements of the
Lie algebra of triples of traceless matrices to coefficients on F = C or R

M = {(A,B,C) ∈ ×3Mn(F) | trA = trB = trC = 0} ≈ ×3sl(n,F)

of the Lie group G = {(A,B,C) ∈ ×Mn(F) | detA = detB = detC = 1} ≈
×3Sl(n,F). And particularly, we are interested for the case where the matrices
in the triple are simultaneously diagonalizable. Remember that a m-triple of
matrices (A,B,C) is simultaneously diagonalizable if and only if there exist an
invertible matrix P such that (D1, D2, D3) = (PAP−1, PBP−1, PCP−1) with
each Di diagonal; and a necessary and sufficient condition for simultaneous di-
agonalization of the triple (X1, X2, X3) is there exist a basis {v1, . . . , vn} of v ∈
Fn such that vj ∈ ∩3i=1Ker (Xi − λji )I, where λij ∈ SpecXi = {λi1, . . . , λin}.
Conditions for simultaneous diagonalizable triples can be found in [8].

Study families of traceless matrices have great interest because the Lie alge-
bra is related to gauge fields because they appear in the Lagrangian describing
the dynamics of the field, then they are associated to 1-forms, (Chern-Simons
terms (CS), that take values on a certain Lie algebra, [2], [7].

On a related side, it seems that a direct relevance for supergravity theories
is provided by the cases n = 2 and F = R respectively F = C of the treatment.
The case F = R is relevant for the so-called STU model [5], [11], of n = 2
Maxwell-Einstein supergravity in four space-time dimensions coupled to three
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vector multiplets, in which the continuous limit of the U-duality Lie algebra
is ×3sl(2,R) (one would better use the symbol +3 for Lie algebras). The case
F = C is relevant to quantum information theory, and in particular to the
entanglement of three qubits [3]; this extends, for generic n ≥ 2, to the en-
tanglement of three quantum n-dits. As another application, we mention the
case where the instanton solution of a Yang-Mills field can be presented in an
octonion form, and it can be represented by triples of traceless matrices ([10]).

Finally, we want to point out that if we restrict from triples to pairs and
working on the complex numbers field F = C, the results may be relevant to
a further characterization of the generalization of the Bloch-Messiah Theorem
provided in [4].

The paper is organised as follows, general concepts of Lie groups actions
and the versal deformation theory are given in Section 2 and 3. In section 4,
the explicit miniversal deformation for triples of traceless matrices that are
simultaneously diagonalizable is presented.

2 Lie group action

The set M of triples of traceless matrices is a differentiable manifold and the
classical Lie group G = {P ∈Mn(F) | detP 6= 0} acts over M in the following
manner

α : G ×M −→M
(P, (A,B,C)) −→ α(P, (A,B,C)) = (P−1AP,P−1BP,P−1CP )

(1)

Clearly α is differentiable and surjective.

Remark 1 G1 = Sl(n,F) = {P ∈ Gl(n,C) | detP = 1} acts over M in the
same manner.

Fixing X0 = (A0, B0, C0) we have the differentiable map

αX0
: G −→M
P −→ α(P, (A0, B0, C0)) = (P−1A0P, P

−1B0P, P
−1C0P )

(2)

and

ImαX0
= O(X0) called the orbit of X0

Stab(X0) = {P ∈ G | αX0
(P ) = X0} called the stabilizer of X0

The map α0 defines an equivalence relation over M which equivalent classes
are the orbits of the elements.

Let dαX0
: TIG −→M be the differential of αX0

at the unit element I. It
is easy to compute dαX0(P ):

dαX0
(P ) = ([A0, P ], [B0, P ], [C0, P ]) ∈M, P ∈ TIG. (3)
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If we define scalar products in M and TIG, we can consider the adjoint
application of dαX0 . The Euclidean scalar products considered in this paper
are defined as follows:

For all Xi = (Ai, Bi, Ci) ∈M and for all Pi ∈ TIG

〈X1, X2〉1 = trace(A1A
∗
2) + trace(B1B

∗
2) + trace(C1C

∗
2 ),

〈P1, P2〉2 = trace(P1P
∗
2 ),

(4)

where A∗ denotes the conjugate transpose of a matrix A.

The adjoint linear mapping dα∗X0
: M −→ TIG is defined by the relation

〈dαX0
(P ), Z〉1 = 〈P, dα∗x0

(Z)〉2, P ∈ TIG, Z ∈M. (5)

It is straightforward to find

dα∗X0
(W ) = ([X∗, A0]+[Y ∗, B0]+[Z∗, C0]) ∈ TIG, W = (X,Y, Z) ∈M. (6)

The mappings dαX0
and dα∗X0

provide a simple description of the tangent

spaces TX0O(X0), TIStab(X0) and their normal complements (TX0O(X0))⊥,
(TIS(X0))⊥.

Theorem 1 The tangent spaces to the orbit and stabilizer of the matrix pencil
X0 and the corresponding normal complementary subspaces with respect to M
and TIG can be found in the following form

1. TX0O(X0) = Im dαX0 ⊂M.
2. (TX0

O(X0))⊥ = Ker dα∗x0
⊂M,

3. TIStab(X0) = Ker dαX0
⊂ TIG,

4. (TIStab(X0))⊥ = Im dα∗X0
⊂ TIG.

After this theorem, it is easy to compute these spaces.

Corollary 1 1. TX0O(X0) = {([P,A0], [P,B0], [P,C0]) | P ∈ TIG}
2. (TX0(O(X0))⊥ = {(X,Y, Z) ∈M | [X∗, A0] + [Y ∗, B0] + [Z∗, C0] = 0}
3. TIStab(X0) = {P ∈Mn(F) | [A0, P ] = 0, [B0, P ] = 0, [C0, P ] = 0}
4. (TIStab(X0))⊥ = {[X∗, A0] + [Y ∗, A0] + [Z∗, A0] | ∀(X,Y, Z) ∈M}

Remark 2 Note that, the tangent space to the stabilizer of a triple TIStab(X0)
coincides with the centralizer of this element CX0

defined as CX0
= {Z ∈

Mn(F) | A0Z − ZA0 = 0, B0Z − ZB0 = 0, C0Z − ZC0 = 0}.
Moreover, CX0

= CA0
∩ CB0

∩ CC0
where CA0

, CB0
and CC0

are the
centralizers of A0, B0, C0 under similarity that also correspond to the tangent
spaces of the stabilizers of A0, B0, C0 respectively, with respect the similarity
action of G over the space of square matrices. So,

TIStab(X0) = TIStab(A0) ∩ TIStab(B0) ∩ TIStab(C0)



Families of traceless matrix triples 5

3 Versal deformations

Definition 1 A deformation of an element X0 ∈ M is a family of elements
of M indexed by λ ∈ Λ ϕ : Λ −→ M where Λ ⊂ Fm is a neighborhood of
0, and where ϕ(0) = X0 and ϕ depends holomorphically (smoothly) on the
parameters.

Definition 2 A deformation ϕ(λ) = ϕ(λ1, . . . , λm) of X0 is versal if and
only if for any deformation ϕ′(µ1, . . . , ϕk) ∈ M of X0, ϕ′(µ) is induced by
ϕ(λ), i.e., there exists a neighborhood V of 0 in Fk, a map ψ : V −→ Fm
with ψ(0) = 0, and a map g : V −→ G with g(0) = I such that ∀µ ∈ V ,
ϕ′(µ) = g(µ)ϕ(ψ(µ))g−1(µ) with ψ and g holomorphic (smooth).

It is obvious that if we have a versal deformation of an element automat-
ically we have a versal deformation of any element that is equivalent to it,
since if X = α(g,X0) is an equivalent element of X0 and ϕ(λ) is a versal
deformation of X ′ then α(g−1, X(λ)) is a versal deformation of X0.

A versal deformation having minimal number of parameters is called miniver-
sal.

The following result was proved by Arnold [1], in the case where Gl(n;C)
acts on Mn(C), and was generalized by Tannenbaum [12], in the case where a
Lie group acts on a complex manifold. It provides the relationship between a
versal deformation of X0 and the local structure of the orbit.

Theorem 2 ([12])

1. A deformation ϕ(λ) of (X0) is versal if and only if it is transversal to the
orbit O(X0) at (X0).

2. Minimal number of parameters of a versal deformation is equal to the codi-
mension of the orbit of X0 in M, ` = codimO(X0).

Corollary 2 Then ϕ(λ) = X0 + (TX0
O(X0))⊥ for some scalar product is a

miniversal deformation.

Let {v1, . . . , v`} be a basis of any arbitrary complementary subspace
(TX0

O(X0)c to TX0
O(X0).

Corollary 3 The deformation

ϕ : Λ ⊂ C` −→M, ϕ(λ) = x0 +
∑̀
i=1

λivi

is a miniversal deformation.

The following proposition relates the orthogonal space to the orbit of a
given matrix triple at this element, with the orthogonal space to the orbit of
an equivalent matrix triple at this equivalent element.
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Proposition 1 Let (A0, B0, C0) and (A1, B1, C1) be two equivalent matrix
triples. Then,

(X0, Y0, Z0) ∈ T(A0,B0,C0)O(A0, B0, C0)⊥

if and only if

(X1, Y1, Z1) ∈ T(A1,B1,C1)O(A1, B1, C1)⊥

with X1 = P ∗X0P
−∗, Y1 = P ∗Y0P

−∗, and Z1 = P ∗Z0P
−∗ in which P−∗ :=

(P−1)∗ and P such that A0 = PA1P
−1, B0 = PB1P

−1 and C0 = PC1P
−1.

Proof (A0, B0, C0) and (A1, B1, C1)) are two elements in the same orbit that
means that A0 = PA1P

−1, B0 = PB1P
−1 and C0 = PC1P

−1. Moreover,
(X0, Y0, Z0) ∈ T(A0,B0,C0)O(A0, B0, C0)⊥ if and only if

X∗0PA1P
−1 − PA1P

−1X∗0 + Y ∗0 PB1P
−1 − PB1P

−1Y ∗0 + Z∗0PC1P
−1−

PC1P
−1Z∗0 = 0.

then:

P−1X∗0PA1 −A1P
−1X∗0P + P−1Y ∗0 PB1 −B1P

−1Y ∗0 P + P−1Z∗0PC1−
C1P

−1Z∗0P
−1 = 0.

That is to say

(P ∗X0P
−∗, P ∗Y0P

−∗, P ∗Z0P
−∗) =

(X1, Y1, Z1) ∈ (T(A1,B1,C1)O(A1, B1, C1))⊥.

4 Explicit miniversal deformation

We are interested with miniversal deformation of the elements in S = {X ∈
M | ∃P ∈ G such that P−1AP = D1, P

−1BP = D2, P
−1CP = D3} ⊂ M.

Taking into account proposition 1, we can consider the element in a reduced
form (all matrices in its diagonal form)

D1 = diag(λ11, . . . , λ1n), D2 = diag(λ21, . . . , λ2n), D3 = diag(λ31, . . . , λ3n)

It is not a restriction because of
First case.
Suppose that λij 6= λik, for all i, j, k =, 1, 2, 3. Applying Corollary 3 of

section 3 and Corollary 1 item 2 of section 2 and solving the corresponding
system, we have that, a general element (X,Y, Z) of (TX0O(X0))⊥ is given by


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

...

xn1 xn2 . . . −
∑n−1
i=1 xii

 ,


y11 y12 . . . y1n
y21 y22 . . . y2n
...

...
...

yn1 yn2 . . . −
∑n−1
i=1 yii


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
z11 −λ11−λ12

λ31−λ32
x12 − λ21−λ22

λ31−λ32
y12 . . . −λ11−λ1n

λ31−λ3n
x1n − λ21−λ2n

λ31−λ3n
y1n

−λ11−λ12

λ31−λ32
x21 − λ21−λ22

λ31−λ32
y21 z22 . . . −λ12−λ1n

λ32−λ3n
x2n − λ22−λ2n

λ32−λ3n
y2n

...
...

...

−λ11−λ1n

λ31−λ3n
xn1 − λ21−λn2

λ31−λ3n
yn1 −λ12−λ1n

λ32−λ3n
xn2 − λ22−λ2n

λ32−λ3n
yn2 . . . −

∑n−1
i=1 zii




The number of parameters of a miniversal deformation is dim(TX0
O(X0))⊥ =

2n2 + n− 3
So,

ϕ : Λ ⊂ F2n2+n−3 −→M
λ −→ (D1, D2, D3) + {(X,Y, Z)},

is a miniversal deformation of (D1, D2, D3).
Notice that

ϕ1 : Λ1 ⊂ Fn2−1 −→Mn(C)
λ1 −→ D1 + {X}

ϕ2 : Λ2 ⊂ Fn2−1 −→Mn(C)
λ2 −→ D2 + {Y }

ϕ3 : Λ3 ⊂ Fn−1 −→Mn(C)
λ3 −→ D3 + {Z}

with Λ1×Λ2×Λ3 = Λ and (λ1, λ2Λ3) = λ, are versal deformations of D1, D2

and D3 respectively, but not miniversal deformations.

Example 1 i) A miniversal deformation of

(( 1 0
0 2 ) , ( 3 0

0 4 ) , ( 5 0
0 6 ))

is the following((
1+x11 x12
x21 2+x22

)
,
( 3+y11 y12

y21 4+y22

)
,
( 5+z11 −x12−y12
−x21−y21 6+z22

))
Restricted to the diagonal triples we have:((

1+x11
2+x22

)
,
( 3+y11

4+y22

)
,
(
5+z11

6+z22

))
ii) A miniversal deformation of((

1 0
0 −1

)
,
(
2 0
0 −2

)
,
(
3 0
0 −3

))
is the following((

1+x11 x12
x21 −1−x11

)
,
( 2+y11 y12

y21 −2−y11
)
,
(

3+z11 − 1
3x12− 2

3y12

− 1
3x21− 2

3y21 −3−z11

))
.

Restricted to the diagonal triples we have:((
1+x11

−1−x11

)
,
( 2+y11

−2−y11
)
,
(
3+z11

−3−z11
))
.
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Note that the triple of the second example, unlike the first, is traceless,
this has led to a reduction in the number of parameters and therefore of the
possibilities of being disturbed by maintaining the diagonal character and the
traceless of the matrices.
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