

Automation of the Continuous Integration (CI) – Continuous

Delivery/Deployment (CD) Software Development

A Degree Thesis
Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by
Jordi Martí Janda

In partial fulfilment
of the requirements for the degree in

TECHNOLOGIES AND TELECOMUNICATION SERVICES
ENGINEERING

Advisor: Jordi Perelló Muntan

Barcelona, October 2019

 1

Abstract

In traditional software development, where teams of developers worked on the same
project in isolation, often led to problems integrating the resulting code.
Due to this isolation, the project was not deliverable until the integration of all its parts,
which was tedious and generated errors. The Continuous Integration (CI) emerged as a
practice to solve the problems of traditional methodology, with the aim of improving the
quality of the code. This thesis sets out what is it and how Continuous Integration is
achieved, the principles that makes it as effective as possible and the processes that follow
as a consequence, to thus introduce the context of its objective: the creation of a system
that automates the start-up and set-up of an environment to be able to apply the
methodology of continuous integration.

 2

Resum

El desenvolupament de software tradicional, on els equips de desenvolupadors treballaven
sobre el mateix projecte de forma aïllada, sovint comportava problemes a l’hora
d’integrar el codi. Degut a aquest aïllament, el projecte no era presentable fins al moment
de la integració de totes les parts, la qual era costosa i generava errors. La integració
contínua (CI) va sorgir com una pràctica per a resoldre els problemes de la metodologia
tradicional amb l’objectiu de millorar la qualitat del codi. Aquest treball de final de grau
exposa que és i com s’aconsegueix la integració contínua, els principis que fan que aquesta
sigui el més efectiva possible i els processos que se’n desprenen com a conseqüència, per a
introduir així el context del seu objectiu: la creació d’un sistema que automatitzi la
posada en marxa i configuració d’un entorn per a poder aplicar la metodologia
d’integració contínua.

 3

Resumen

El desarrollo de software tradicional, donde los equipos de desarrolladores trabajaban
sobre el mismo proyecto de forma aislada, comportaba a menudo problemas al integrar el
código resultante. Debido a este aislamiento, el proyecto no era presentable hasta la
integración de todas sus partes, que era costosa y generaba errores. La integración
continua (CI) surgió como una práctica para resolver los problemas de la metodología
tradicional, con el objetivo de mejorar la calidad del código. Este proyecto de final de
grado expone qué es y cómo se consigue la integración continua, los principios que la
hacen lo más efectiva posible y los procesos que se desprenden como consecuencia, para
introducir así el contexto de su objetivo: la creación de un sistema que automatice la
puesta en marcha y configuración de un entorno para poder aplicar la metodología de
integración continua.

 4

Acknowledgements

I would like to express my honest gratitude to Jordi Perelló Muntán to accept the
tutoring of my thesis being always willing to help and advice to achieve the best result for
the project.

I am also gratefully to the people of Apiumhub for introducing me the subject of this
thesis and being always disposed to give feedback about it.

 5

Revision history and approval record
Revision Date Purpose

0 27/09/2019 Document creation
1 02/10/2019 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail
 Jordi Martí Janda jordimartijanda@gmail.com
 Jordi Perelló Muntan perello@ac.upc.edu

Written by: Jordi Martí Janda Reviewed and approved by: Jordi Perelló Muntan

Date 20/09/2019 Date 02/10/2019

Name Jordi Martí Janda Name Jordi Perelló Muntan

Position Project Author Position Project Supervisor

 6

Table of contents

Abstract .. 1
Resum ... 2
Resumen ... 3
Acknowledgements ... 4
Revision history and approval record ... 5
Table of contents .. 6
List of Figures .. 7
1. Introduction ... 9

1.1. Continuous Integration / Continuous Delivery (CI/CD) 9
1.2. Aim of this work .. 13
1.3. Projects requirements and specifications .. 14
1.4. Projects Background .. 15
1.5. Workplan ... 16

2. State of the art of the technology used or applied in this thesis 19
2.1. Source control manager .. 19
2.2. CI server ... 20
2.3. Virtualization tool .. 22
2.4. Artefacts storage .. 24
2.5. Cloud Services handler ... 24
2.6. Server type ... 24

3. Methodology / project development .. 25
3.1. System Blocks .. 25

3.1.1. Infrastructure Block .. 25
3.1.2. Pipelines Block .. 33

4. Results ... 37
5. Budget ... 43
6. Conclusions and future development: .. 44
Bibliography: .. 47
Appendices (optional): .. 48
Glossary .. 52

 7

List of Figures

Figure 1: Milestones Table ... 16
Figure 2: Information research, design and development work package displayed. 17
Figure 3: Entire Gannt diagram, only work package of documentation displayed. 17
Figure 4: Documentation work package displayed. Part 2/2 .. 17
Figure 5: Documentation work package displayed. Part 1/2 .. 17
Figure 6: Integration work package displayed .. 17
Figure 7: Interoperability of the most used CI servers with the most used source control
managers [3] .. 21
Figure 8: Jenkins integration with other tools or services [3] ... 21
Figure 9: Jenkinsfile that define a pipeline with 3 stages. The step executed in each stage
only prints in the console output of the web interface a message telling which stage in the
pipeline is being executed. .. 21
Figure 10: Virtual machine architecture vs. container architecture [4] 22
Figure 11: Single Docker Container Workflow [5] ... 23
Figure 12: Terraform project tree ... 26
Figure 13: Configuration.tf file content .. 27
Figure 14: Linux shell instruction to start the terraform actions 27
Figure 15: Content of start.sh script .. 27
Figure 16: Integration machine main.tf provider block .. 28
Figure 17: Integration machine main.tf resource block ... 28
Figure 18: Docker registry start-up script .. 29
Figure 19: Docker installation script .. 29
Figure 20: Jenkins start-up script ... 29
Figure 21: Provider and part of the resource blocks of the Jenkins slave module
declaration .. 30
Figure 22: Jenkins slave module provisioning ... 30
Figure 23: Java installation bash script .. 31
Figure 24: Bash script to add insecure docker registry ... 31
Figure 25: Systemd service file registration .. 31
Figure 26: Systemd service file to manage the connection with the jenkins CI server 31
Figure 27: Bash script that initializes the communication with the Jenkins CI server. ... 32
Figure 28: Bash script for the project pipeline creation and first execution. 33
Figure 29: Jenkins shared libraries structure .. 33
Figure 30: Project developed shared libraries project structure 34
Figure 31: Java Pipeline class ... 35
Figure 32: SetUpWorkspaceStage class .. 35
Figure 33: JavaBuildStage class ... 36
Figure 34: DockerDeployStage class ... 36
Figure 35: Secret.tfvars seed file ... 37
Figure 36: Project.tfvars seed file ... 37

 8

Figure 37: Jenkinsfile for Java projects .. 38
Figure 38: Terraform dialog after first execution ... 39
Figure 39: Terraform execution output .. 40
Figure 40: Pipelines in the Jenkins server .. 40
Figure 41: First pipeline execution ... 41
Figure 42: Build fail information .. 41
Figure 43; Success pipeline ... 41
Figure 44: Demonstration project endpoint .. 42

 9

1. Introduction

In Traditional software development, it was common for developers to work isolated for a
long time, merging the resulting code after that. This practice had a bad consequence: it
could take days or even weeks for software developers to integrate their code and also
merge changes from the different version of each developer. These isolated developments
produced, in addition to merge conflicts, code strategy divergence and duplicated effort.
As a result, it was difficult to provide code updates quickly. The feedback about the
developed changes was not immediate but after the code merge, being more likely to find
bugs due to the code isolation. It is worth to mention that isolated code bugs combined
together, could create more code problems.

1.1. Continuous Integration / Continuous Delivery (CI/CD)

According to Wikipedia [1], Continuous Integration (CI) in software engineering is the
practice of merging all developer’s working copies to a shared mainline several times a
day. With this definition it can be seen that CI entails a cultural component, as
developers have to learn to integrate code periodically. The main goal of CI is to reduce
the time to feedback over the software integration process, allowing to locating and fixing
bugs more easily and quickly, thus enhancing its quality while reducing the time to
validate and publish new software updates. This means that, by following the CI culture,
a team of developers can avoid the traditional problems of the merge and integration of
the isolated parts of the code, getting a stable version of the developing software always
ready. CI, on the other hand, entails an automation component. From the culture of CI,
as a consequence, principles, practices and processes that automate and carry out the
methodology are born.

Martin Fowler, a British software developer, author and international public speaker on
software development, specialised in object-oriented analysis and design, patterns and
agile software development methodologies including extreme programming, wrote in his
blog [2] an article about the key principles that make CI effective. Those principles are:

• Maintain a Single Source Repository: when multiple people work on the same
project, they should work on a shared single repository. It is important to keep
track of all the files that involve the projects and the changes done by all the
developers working on, so a source control manager1 is indispensable. All artefacts
required to build the project should be placed in the repository, due to the

1 Source control manager: A component of software configuration management. Also named as version control.

 10

convention that the system should be buildable from a local copy from the
repository, without requiring additional dependencies. The mainline, i.e. the
current state of the system, should be the place of the working version of the
system.

• Automate the build: getting the sources turned into a running system can often be
a complicated process involving compilation, moving files around, loading schemas
into the databases, and so on. However, like most tasks in this part of software
development, it can be automated, and as a result should be so. A single
command should have the capability of building the system.

• Make your build self-testing: traditionally, a build means compiling2, dependency
download and all related stuff depending on the programming language. A
program may run, but that does not mean that it does the right thing.
A good way to catch bugs more quickly and efficiently is to include automated
tests in the build process. The automated build, therefore, should also run tests to
verify the code.

• Everyone commits to the mainline everyday: by committing regularly, every
committer can reduce the number of conflicting changes. Checking in a week's
worth of work runs the risk of conflicting with other features and can be very
difficult to resolve. Early, small conflicts in an area of the system cause team
members to communicate about the change they are making. Committing all
changes at least once a day (once per feature built) is generally considered part of
the definition of CI. In addition, performing a nightly build is generally
recommended. These are lower bounds; the typical frequency is expected to be
much higher. Frequent commits encourage developers to break down their work
into small chunks of a few hours each. This helps track progress and provides a
sense of progress.

• Every commit should build the mainline on the integration machine: using daily
commits, a team gets frequent tested builds. This practice should ensure that
there exists a healthy stable version of the mainline. In practice, however, things
still go wrong. One reason is discipline, that is, people not doing an update and
build before they commit. Another is environmental differences between
developers' machines. To ensure the mainline healthy state, regular builds should
happen on an integration machine, and only when this build succeeds, the commit

2 To compile: In computer programming, the translation of source code into object code by a compiler

 11

can be considered as successful. One of the important benefits of CI is to find bugs
as soon as possible, and this rapid feedback is accomplished when every commit is
built. The developers, responsible of the commits, need to monitor the mainline so
they can fix it if it breaks. Here come into play the continuous integration
servers.
These servers are used in the integration machine to build commits automatically.
It is a way to automate this practice and they are widely extended in CI. Though
the build can be done manually by the developer that commits the last changes to
the mainline, it is a great option to accelerate the feedback related to the last
build.

• Fix broken builds immediately: applying the best practices, CI converges to do
continuous builds. If the build fails, it needs to be fixed immediately. The key
point is to get a healthy and stable mainline.

• Keep the build fast: The rapid feedback about changes in the code is the point CI

focuses the most on. Since CI demands frequent commits, this adds up to a lot of
time. Keeping the build fast will reduce the time spent for each developer when
they commit.

• Test in a clone of the production environment: The point of testing is to flush out,

under controlled conditions, any problem that the system will have in production.
A significant part of this is the environment within which the production system
will run. If you test in a different environment, every difference results in a risk
that what happens under test will not happen in production. As a result, the most
convenient is to set up the test environment to be as exact a mimic of your
production environment as possible

• Make it easy for anyone to get the latest executable: Anyone involved with a

software project should be able to get the latest executable and be able to run it:
for demonstrations, exploratory testing, or just to see what changed this week.
This is strongly related with agile software development.

• Everyone can see what is happening: CI is all about communication, so it is the

best practice to ensure that everyone can easily see the state of the system and
the changes that have been made to it.

 12

So far, the need for adopting CI in a project has been explained. The basic CI definition,
that entails a cultural component, triggers, as a consequence, a set of principles that
involve some practices and automation processes and tooling. This process does not
explicitly include the deployment to the production-like environment.

Traditional software deployment involved IT operation teams in charge of the
deployment process. This resulted as a wall between development and operations. IT
teams responsible of the deployment often had other things they were working on in
parallel. So, the deployment schedule was determined by when they were available,
preventing them to meet the business needs. Adopting CI means getting a healthy
mainline, with all the benefits from getting rapid feedback about the code to improve its
quality, becoming ready to be deployed when the business needs it. This is strongly
related with agile methodologies of releasing small pieces of useful functionalities.

In that context, Continuous Delivery and Continuous Deployment are two software
slightly different approaches that automate the software deployment and let the team
focus on building the product, being agnostic of the deployment process stage in the
software development. The incremental and continuous builds offered by adopting CI are
translated as continuous deployments with the CD approaches.

These two approaches are often interchanged, but they are not the same. Continuous
Delivery automates the deployment of the software on a regular basis to a production-like
environment. This mean that the latest stable version is deployed automatically to all
test environments that the enterprise has available, replicating or mimicking the
production environment as much as possible. The final objective is to ensure that the
software can be deployed at any time, simply by clicking the deploy button. It is worth to
mention that the deployment process is tested in the test environments each time a
deployment is performed, so there is a strong confidence about the process. The
continuous Deployment is almost the same but with one significant difference: the
production environment deployment is also automatic when the tests in all production-
like environments pass successfully. That is, no human interaction exists after the code
commit that triggers the deployment process.

Continuous Deployment is an option to keep in mind in systems completely controlled by
the business, such as web-based applications. However, it is not that attractive in systems
that requires end-user installations, like mobiles or desktop applications. In my opinion,
the continuous delivery is a more secure option that implies more flexibility in the

 13

deployment process so from now on, in this thesis the CD3 acronym will refer to as
Continuous Delivery, and the development carried in this work will be based on this
practice too.

The CD approach is modelled by the delivery Pipeline, where automated builds, tests and
deployments are orchestrated as one release workflow. The delivery pipeline is a set of
steps that code changes will go through until ready to be deployed to production. The
steps that are grouped in pipeline stages are defined by the software constraints and the
business needs.

1.2. Aim of this work

The main goal to accomplish is the design, modelling and implementation of an open
source service that sets up a whole infrastructure allowing end-users to adopt the CI
culture, following the key principles previously reviewed, also taking advantage of the CD
approach minimising the human interaction in the set up and usage of the whole system.

The service will be divided in two main blocks; the first one is the environment creator,
in charge of creating the necessary infrastructure that will make it possible to apply the
CI principles:

1. Initialization of the integration machine, including all necessary tools and
configurations: automation server to orchestrate all the steps involved in the
delivery pipeline and necessary software to accomplish the processes.

2. Initialization of the test deployment machine, where the continuous deployments
will be done with all necessary tools and configurations.

3. Linkage of the integration machine and the test deployment machine between
them and with other services.

This infrastructure set up will be specified with the project seed file, including user
predefined parameters such as project name, source control manager project link, and
others such as credentials to access the servers where these configurations will apply.

The second service block is the implementation of a solution that will allow creating
pipelines, thus reducing the effort when creating different ones.

3 CD: Continuous Delivery

 14

The final flow of the service will be as follows: from an existing project, located in the
predefined source control manager by the user, the platform will prepare the deployment
environments and stages to be executed every time a change is published in that project
mainline. When a change is submitted, the state of the pipeline will be accessible in the
CI server web interface, since every commit will trigger the automated build, tests and if
succeed automated deployments.

In summary, this work can be specified as follows:

Goal: to allow developers experiencing the benefits from the CI culture with minimum
configuration effort, automating processes as much as possible.

Project Blocks:

• Automation of the environment set-up and start-up
• Implementation of an easy way of pipeline creation with one practice case

Final Flow:

• Creation of the seed file with predefined values
• Execution of the developed platform
• Result of the first pipeline execution

1.3. Projects requirements and specifications

Project requirements:

• The service has to be designed to allow end-users adopting the CI culture with the
Martin Fowler’s CI principles. Some principles live under the user action, but the
technical implementation must allow:

1. Maintain a single source repository
2. Automate the build
3. Make the build self-testing
4. Every commit should build the mainline on the integration machine
5. Test in a clone of the production environment
6. Make it easy for anyone to get the latest executable
7. Allow everyone see what is happening

• The developed solution has to be adaptable to other technologies, different from

those considered in this project.

 15

• The platform must be designed allowing, as much as possible, its usage without
the knowledge of the involved tools.

Project specifications:

• The initialization of the whole infrastructure has to be done in 2 steps:
1. Creation of the configuration file: in this step the end-user has to generate

the configuration file with the needed predefined variables as project name,
source control manager link and secret cloud credentials.

2. Execution of the service: the user interacts with the service to trigger the
creation of the infrastructure and the first project deployment if the
pipeline stages pass with success.

1.4. Projects Background

The project started from scratch. The origin is an idea about developing an open source
tool based on existing custom solutions in big enterprises. When I was on an internship, I
used a custom solution of this platform and I experienced the advantages of adopting
these practices in order to increase the speed and quality of delivering an application to
its final environment.

There are custom solutions in and for big companies. Some big companies create its own
custom systems, and there are some paid subscription solutions. However, no open source
tool exists to date capable of generating the whole platform in a simple where the user
can choose the platforms to work with.

Likewise, this could be a great solution for a small team that do not have time and
resources to automate the CI/CD processes. But, nevertheless, there are some private
solutions that are free for small teams. It is worth to mention that these solutions are not
self-hosted, so you do not have total control over them.

It is worth mentioning that this project has not been originated in the DAC of the UPC,
namely, the context where it has been carried out. Conversely, its initial ideas have been
proposed by the TFG candidate to the project supervisor (Jordi Perelló), who kindly
accepted to supervise it.

 16

1.5. Workplan

Tasks:

The main work packages to accomplish in this project are:

• Information Research
• Design
• Development
• Integration
• Documentation

A more detailed description of those work packages with their tasks can be found in
Annex 1 of this document.

Milestones:
The principal milestones of the project are shown in Figure 1.

Figure 1: Milestones Table

 17

Figure 2: Information research, design and development work package displayed. Figure 3: Entire Gannt diagram, only
work package of documentation
displayed.

Figure 6: Integration work package displayed

Figure 4: Documentation work package displayed. Part 2/2

Figure 5: Documentation work package displayed. Part 1/2

Gantt Diagram:

.

 18

Deviations and incidences:

As mentioned in the Critical Review document, “Ready design” and “CD service
implemented” milestones were accomplished with some delay.

This workplan update was done before starting the development of the Jenkins shared
library. When I started this development, I realized that it was not trivial at all to
accomplish a universal solution, as most agnostic as possible to the user, allowing him/her
to only care about code. The time I spend modelling and implementing the library was
larger than I initially expected. For this reason, I decided to extend the project delivery
from June to October 2019.

The other thing worth to mention is the fact that the Development and Integration work
packages ended being a single one. Each time I developed a new task or functionality in
the platform I integrated and tested it on the platform.

 19

2. State of the art of the technology used or applied in this thesis

A set of tools follows from the project requirements and specifications. To be compliant
with the Martin Fowler’s principles, the main tools the project need were:

• A source control manager: to maintain a single source repository and get a
method to ensure that every commit build on the integration machine.

• A CI server: to build automatically (and pass the project tests) every commit on
the integration machine. The server will orchestrate the deployment in the
production-like environments. Its function extends to show the state of the project
pipelines, so that everyone can see what is happening.

• A virtualization tool to easily replicate the environment in the production-like
environments, as well as in the development machine.

• An artefact storage system to make it easy for anyone to get the latest executable.

The creation of the infrastructure must be all done by the project services: the user only
has to fill a configuration file and the system will generate all the necessary stuff. To
accomplish this specification, a tool that performs the creation and setup of a cloud
system instances is needed.

All these components will work on cloud service server instances. A server type and a
technology to setup all the configurations in the servers will also be needed to accomplish
in the best way the previous points.

With these specifications in mind, the tools used in this project will be presented in the
next sections.

2.1. Source control manager

The technology behind the source control manager is git. Git is a widely extended open
source version control manager. Its purpose is to track changes in any set of files,
designed for coordinating work among programmers.

The usage of git is very simple: the end-user can download the source code, placed in a
remote git repository (it is worth to mention that the tool can also be used locally, so
that the user can initialize a project in the computer and get the benefits of the tool).
Once downloaded, there is a broad range of different information that git can extract

 20

about the downloaded project, or actions to do on the project code. The most used of
these possibilities that can help in the good practice of the CI are:

• Showing the historic of the code changes. CI fosters a strong communication. So,
related to the communication with the developer team, one can see the changes
that the teammates have done. Each developer set of changes are submitted to
the code through git commits. These commits are accompanied with a message
that should summarize the changes, hence existing an explicit communication.

• One can revert the state of the project to the state of specific git commit. If some
pushed commit to the mainline breaks the build, the developers can rapidly revert
the last pushed commit to the state previous of the break and try to fix it before
pushing it to the mainline again.

• When merging the code state with the mainline, git alerts and shows any
integration conflict that may exist. When following the CI culture, the integration
with other developers is key. Git makes this easier by telling where the integration
conflicts exists thus making the integration more comfortable.

Git technology is a simple command line tool for Linux, Windows and MacOS systems. In
addition to the tracker, we need some repository to store the code to make it accessible
for all developers. Github is a hosting service for git repositories that will serve as a single
shared code repository. Its widely extended usage and popularity has driven the
integration of this hosting site with a lot of existing tools. For all these reasons, Github is
the hosting platform the project will accept projects for.

2.2. CI server

Currently there are many CI server solutions to consider when creating a CI/CD system
and a great part of them are open source projects. Its common usage is to define the
pipeline stages and its steps in a configuration file with its domain specific language,
whatever it is for that server. The CI server chosen for this project is Jenkins. Currently,
Jenkins is one of the most extended CI servers and it has a lot of plugins for the
interoperability with a broad range of technologies. The requirement to adapt to other
source control managers is easy to accomplish with Jenkins, due to its large support for
multiple of them. In Figure 7 a table is shown, comparing the most popular CI servers
and source control managers they support. As can be seen, Jenkins is the only one
supports all of them.

 21

Figure 7: Interoperability of the most used CI servers with the most used source control managers [3]

Another reason for choosing Jenkins is that it has native integration with external tools,
such as IDE’s4 or notification services. Not only the state of the build can be seen through
its web interface, but one can custom notifications to receive on a predefined basis. A
summary of services Jenkins support is shown in Figure 8.

Figure 8: Jenkins integration with other tools or services [3]

The way to create pipelines in Jenkins is through the Jenkinsfile. In this file, a pipeline is
modelled by the Jenkinsfile domain specific language, based in groovy. This domain
specific language has native support to call shell scripts in Linux and Windows systems,
source control manager tools or notification support via email among others, with the
advantage that one can program the flow as in a groovy script. Figure 9 shows an
example of a pipeline described by Jenkinsfile.

Figure 9: Jenkinsfile that define a pipeline with 3 stages. The step executed in each stage only prints in the console output of the web interface a
message telling which stage in the pipeline is being executed.

Its integration with github allows throwing web hooks from the hosting site that trigger
the start of the execution of the project pipeline. This will accomplish the principle of
building each commit on the mainline.

4 IDE: Integrated Development Environment

 22

2.3. Virtualization tool

Replicate the production environment is desired to execute the tests in the same
conditions as in which the software project will be executed on.

Docker is a tool that provides an abstraction layer of the Linux Containers 5 that
automates the virtualization of an application in multiple operating systems. In a
nutshell, this technology creates an isolated system into the host machine, sharing the
kernel resources. It looks like a virtual machine but faster, with a better portability and
more lightweight: it is a software virtualization instead of hardware virtualization. Figure
10 shows a comparison between applications running on a virtual machine vs. application
running on containers.

Figure 10: Virtual machine architecture vs. container architecture [4]

These isolated environments inside the host machine are called containers, and these
containers are modelled by the docker images. A container is an initialized instance of an
image. Each image contains the information about the system to create. The images are
created from Dockerfiles, whose description defines the final container ecosystem.

5 Linux Containers: virtualization technology in the operating system level for Linux.

 23

Figure 11: Single Docker Container Workflow [5]

The Dockerfile description allows a huge number of configurations, such as system type
(Windows or Linux), environment variables, commands to execute in the start-up of the
container, and a large etcetera. The last description in the Dockerfile is the command to
execute when the container starts, and the lifecycle of this container ends when the
command executed ends. To run our desired code inside a docker container, after
describing the environment, we have to copy the build code in the container. The way to
describe Dockerfiles is designed for this. At the end of the description, we must specify
the main entry point of the application.

The replication of the production environment now is only a simple copy of the
configuration file of the production environment (Dockerfile) with possible little changes.
The resulting image will become the artefact to deploy on the test and production
machines.

There exist multiple official images, because of its popularity. Imagine an example where
some team works on a Java6 project. They need the Java Development Kit (JDK)
installed in the deployment machines and they have to set multiple environment
variables, as a way of storing some information as credentials. There exists an official
Java image ready to use. With this official image, the team can generate a new one
creating a Dockerfile that uses this Java image: the description of the docker file must
specify the image is built above the Java image, the variable environments they need to
set, the build source code to copy and its location in the container filesystem, the start-up
steps on the final container and, at the end, the execution of the program. This is only a
high-level description. In practice, there are a lot of possible configurations to set-up.
From this Dockerfile, developers can generate a new image with these needs.

6 Java: statically typed programming language that runs on a virtual machine

 24

Further, there exists multiple container orchestrators that can orchestrate them. An
example of this is Kubernetes or Docker Swarm technologies, but these technologies are
out of the scope of this project.

2.4. Artefacts storage

The artefacts storage role is to provide access to everybody to get the latest build
completed successfully, which will be stored in that repository. In addition, the
development team gets a way to deploy the version they need. In the situation when
some bug is not detected by tests and the code gets deployed in production, the team
need to roll back to the last stable version. This procedure is easily accomplished getting
the last stable build and deploying it to the production. Once the virtualization
technology chosen is Docker, and the deploy artefacts are docker images, the artefacts
repository chosen for the project will be the Docker Registry. Docker registry is a hosting
repository to push and pull images from. It can be easily used only running the Docker
Registry image in the desired Docker Host. Each build will push the created image
referenced by a version to the registry, and the deployment machine will pull these
images from the registry to start the deployment.

2.5. Cloud Services handler

To start working with the CI/CD platform, there exists some initial automated
configuration: the system to develop in this project is in charge of starting and
configuring the integration machine and the deploy one and orchestrate its connection. In
addition, I wanted to design the project system adaptable to other cloud technologies.

Terraform is the tool that can handle these requirements. It allows provisioning and
managing any cloud, infrastructure or service. With this, the start-up and management of
the cloud instances can be done programmatically with the Terraform domain specific
language. To setup the machines, the main task is to create system scripts to configure all
instance requirements. To do so, we need to choose the system type of the integration
and test deploy instances. For the project purposes, the chosen cloud is AWS7.

2.6. Server type

The election behind the system type used in this project was determined by my
background. All these technologies are developed for both platforms, Linux and Windows.

7 AWS: Amazon Web Services

 25

The chosen server type is Linux because it is the system that I use daily and with whose
shell (the system commands and scripts interpreter) I am more used to work with.

3. Methodology / project development

3.1. System Blocks

3.1.1. Infrastructure Block

The necessary infrastructure for this project is generated with Terraform. This tool
manages the entire set-up process of the instances by reading its declarative configuration
files.

These configuration files use of the following declarative blocks that are interpreted by
the tool:

• provider: terraform declarative block to specify the cloud provider and the
credentials to access in.

• resource: terraform declarative block to specify the resource type and name. Inside
this block, the declaration of the OS8 image9 to boot, the instance type and the
connection type to the machine are placed, among others. The declaration of the
following connection and provider blocks is done inside this block as well.

• connection: the type of connection between the terraform host machine and the
instance that has started. This is necessary, because once terraform started the
machine, it must provision a set of files and execute some commands on it.

• provisioner: this block can declare files to copy to the target machine and
commands to execute on it.

Now is the time to see how the project uses terraform to start-up the entire
infrastructure. Remember that the needed one in this project is composed by:

• Integration machine, where the automated builds will be executed and
orchestrated by the CI server. It must contain the technology to store the
successful builds.

• Deployment test machine where the successful builds will be deployed.

8 OS: Operating System
9 OS image: An OS image is simply a file that contains the OS

 26

The Terraform project, which will be interpreted by the tool to manage the start-up and
configuration of the cloud instances, has the structure shown in Figure 12.

Figure 12: Terraform project tree

In the root of the project there are three Terraform declarative files (with .tf extension):
configuration.tf, variables.tf and outputs.tf.

As its name indicates, the variables.tf file is used to declare input variables that will be
used in the declaration blocks. The outputs.tf file variables will be displayed to the user
upon the instance creation, e.g. the assigned public URL address to the instance.

The other Terraform file in the root is the configuration.tf file. This one is the main entry
point of the project and its declaration blocks are read by the tool to create the entire
ecosystem.

To start up the integration and test deployment machines, there are two modules created
under the modules folder in the source root: integration_machine and jenkins_slave.
Each module has its own declaration blocks in their main.tf file. The outputs.tf and
variables.tf files there have a similar behaviour as the root ones. The variables.tf can be
hardcoded or injected by the declaration of the module in the configuration.tf of the root.
Figure 13 shows how some variables declared in the module variables.tf are injected when
declared in the module block. The outputs.tf of the module can be accessed in the
configuration.tf as well as in the output.tf of the root.

 27

Following this module architecture, the configuration.tf file only declares the usage of
these modules injecting some required variables.

Figure 13: Configuration.tf file content

The start.sh bash shell script is created to execute the Terraform tool. The execution of
the start.sh script in the Terraform host machine will start the Terraform actions to
trigger the infrastructure creation from the configuration.tf file.

Figure 14: Linux shell instruction to start the terraform actions

The start.sh script content is shown in Figure 15.

Figure 15: Content of start.sh script

This shell script invokes the Terraform apply command, passing as an argument the
secret.tfvars and project.tfvars files. In these files, the secret user credentials and the
project ones are placed and will be used as the seed files of the project. Once this
command is executed, the configuration from the integration_machine and jenkins_slave
modules are interpreted to create the two machine instances.

 28

3.1.1.1. Modules

In this section the two modules declared in the configuration.tf, and that therefore are
used to describe the infrastructure designed for the thesis purposes, are explained in
detail:

1. Integration machine

The main description of this module is done in the main.tf that is placed in the
integration machine module folder. The first block of the configuration file is the provider
one.

Figure 16: Integration machine main.tf provider block

The resource block includes the ami10, the instance type, and the private key that will be
used to access to the instance. The ami was chosen from the AWS web interface where
there are listed all available images for the instances. This one is the Ubuntu 18.04 image.
The private key is stored in a .pem11 file and is also generated and downloaded in the
AWS web interface.

Figure 17: Integration machine main.tf resource block

10 ami: amazon machine image
11 .pem: is a de facto file format for storing and sending cryptographic keys, certificates and other data

 29

The provisioning is done as in the following steps:

• Creation of the destination scripts and the Jenkins volume (later explained on in
this document) folders

• Provisioning of the scripts used in the setup of the machine and the Jenkins
volume

• Execution of the scripts to set-up the machine:

As the script names in Figure 16 show, the configuration done in the machine is the
following: installation of the Docker engine and start-up of Jenkins and Docker registry
on the machine. Figures 18, 19 and 20 shows these scripts:

With Docker and its multiple official images, the start-up of Jenkins and Docker registry
only requires the execution of the Docker run command with some parameters. One of
these parameters is the -v flag that maps some directory to the container file system.

With the filesystem mapping, a new Jenkins container can be started and configured with
the purpose of copying the ‘jenkins_home’ folder that contains the entire information
about the installed plugins, the configuration, security, etc. By copying the
‘jenkins_home’ of this preconfigured system, one can start an exact copy of Jenkins only
by mounting the ‘jenkins_home’ folder to the ‘/var/jenkins_home’ directory of the
container with the -v flag. This is the reason because a jenkins volume folder is copied to
the integration machine in the provisioning block.

Figure 19: Docker installation script Figure 18: Docker registry start-up script

Figure 20: Jenkins start-up script

 30

2. Jenkins slave module
Once the integration machine module is created, the Jenkins slave one is interpreted to
start-up the test deployment machine. The approach is the same as in the integration
machine module:

Figure 21: Provider and part of the resource blocks of the Jenkins slave module declaration

This block declaration is practically identical as that of the integration machine but
changing the tag name of the instance.
The provisioning approach of this machine is the same as in the integration machine by
creating the folders to place the content in, the declaration of the necessary files to copy
to the machine and scripts execution.

Figure 22: Jenkins slave module provisioning

 31

The provisioning executes the copied set-up scripts that configure the deployment
machine. First, there is an installation of Java and Docker. The Java installation is
needed because the communication between the Jenkins CI server and this instance that
will act as an execution node is done by executing a java program in the slave instance.
The Docker installation is to deploy the Docker build images.

The Java installation script is shown in Figure 23. Docker installation is the same as in
the integration machine module showed in the Figure 18.

Figure 23: Java installation bash script

Docker by default does not accept connections to insecure registries. Since I wanted to
push and pull images from the registry hosted in the integration machine, the following
script adds this registry to Docker known insecure registries.

Figure 24: Bash script to add insecure docker registry

By using the Linux systemd software suite, I register the script that connects the instance
with Jenkins Master (hosted in the integration machine) as a daemon in the system.

Figure 25: Systemd service file registration

The service file, named agentNodeJenkinsd.service, that handles the daemon lifecycle is
shown in the figure 26:

Figure 26: Systemd service file to manage the connection with the jenkins CI server

 32

The key parts of this file that will be used by systemd to manage this service are the
After, Restart an ExecStart parameters. These parameters are interpreted by the systemd
suite and the constraints they declare are:

• this service must be started after the network service is up, After constraint
• the service must be always restarted (if the service fails or the system is

restarted), Restart constraint
• the script to execute in the start of the service is set in the ExecStart content

The script that starts the connection with the Jenkins CI server is shown in Figure 26.

Figure 27: Bash script that initializes the communication with the Jenkins CI server.

This connection between the Jenkins CI server (Jenkins Master) and the test machine can
be done in two ways:

• The Jenkins server adds the deployment machine. The connection is started by
the Jenkins server

• The instance connects themselves as a node executor in the Jenkins server. The
connection is started by the instance.

In this project, the developed approach is the second one, are the instances that starts the
communications. The reasons for this selection are as follows:

• The Jenkins server is agnostic of the connection and there is no need direct
interaction with the server.

• The deployment machine can be behind a firewall. If the deployment machine
would be behind a firewall, the Jenkins server could not start the communication
with it.

Finally, once the deployment machine is linked to the Jenkins CI server, the pipeline for
the project is created and executed for the first time.

 33

Figure 28: Bash script for the project pipeline creation and first execution.

3.1.2. Pipelines Block

As described in the section 2.2 the way to create pipelines in Jenkins is through
Jenkinsfiles. This Jenkinsfile must be placed in the root of the project and its content
describes them, i.e. the stages and its steps to execute with all its needed parameters. An
example of a pipeline is show in Figure 9.

To make the platform as user agnostic as possible, it comes with predefined pipelines to
execute Java projects. It means that such projects only by following the gradle12 structure
will be accepted in the Jenkins server by only adding a Jenkinsfile definition in the root
of them. The goal of this development block is a simple declaration of the pipeline type
and not the whole stages and other configurations.

To accomplish the previous goal and taking advantage of native way in Jenkins to create
shared libraries, in this project there has been developed a library that contains pipelines
for the previous technologies. This library will allow to define the pipeline by only
importing the library and then with the declaration the type of pipeline to adopt in the
project.

The Jenkins shared libraries have to be developed as a groovy project. According to the
shared libraries documentation [6] the project structure to create them is as follows:

Figure 29: Jenkins shared libraries structure

12 gradle: open-source build-automation system

 34

The src directory should look like standard Java source directory structure. This
directory is added to the classpath13 when executing Pipelines.

The vars directory hosts script files that are exposed as a variable in Pipelines. The
name of the file is the name of the variable in the Pipeline. So, a file
called vars/log.groovy with a function like def info(message), it will be accessible
like log.info "hello world" in the Pipeline.

This library developed in this project models the pipelines as OOP objects. These
pipelines declare stages, also modelled as objects, to accomplish stage steps on the
specified node, i.e. the instance where the stage will be executed.

The way to create a pipeline in the library is as follow: one has to create a new pipeline
class and add the desired stages. These stages could exist as a stage classes because are
used in some existing pipelines or, in the opposite case, must be created. The creation of a
new stage it was also designed to be as simple as possible: its implementation consist on
the creation of a new custom stage class extending an abstract BaseStage class and
implementing the stageSteps() abstract method.

The project structure is shows in the Figure 30.

Figure 30: Project developed shared libraries project structure

13 classpath: classpath is a parameter in the Java Virtual Machine or the Java compiler that specifies the location of user-
defined classes and packages.

 35

As it can be seen in the library structure, there is one ready pipeline to use: JavaPipeline.
The class that describes it is show in Figure 30.

Figure 31: Java Pipeline class

As seen, the pipeline is composed by three stages:

• Workspace set-up
• Build
• Deploy

These stage classes are shown in the Figures 31, 32 and 33:

Figure 32: SetUpWorkspaceStage class

 36

Figure 33: JavaBuildStage class

Figure 34: DockerDeployStage class

The previous images shows the process of pipeline creation: the stage classes extends the
BaseStage abstract class and overrides the stageSteps() method.

For the build class is quite different because there is another abstract class, the
DockerBuildBaseStage. This is an abstract class that extends the BaseStageClass and
implements the stageSteps() method in order to create a docker image for the code. Since
each technology must declare different Dockerfile for the image creation, an abstract
method dockerImage() must be implemented in the different stage classes to define the
image for a different technology. In the case of the JavaDockerBuildStage that extends
the DockerBuildBaseStage class, the dockerImage() define a Dockerfile for a java image.

The entire project code can be found in the github repository
https://github.com/JandaTheMan/jenkins-shared-library.

 37

4. Results

All the development in this thesis have as a result two blocks: the infrastructure block
and the pipeline block. These two blocks work together to accomplish the goal of the
project: the start-up of the necessary infrastructure to work following the CI principles
and execution of the first pipeline execution based on the information of the seed file.

First of all, to start the usage, the user has to download the project in its computer. The
download link is as follows https://github.com/JandaTheMan/terraform-CICD. After
that, the installation of the terraform tool in the user computer it is also mandatory. The
installation page can be found in [7].

Once the computer have terraform installed and the project downloaded, there exist two
files in the root of the downloaded project where the user have to fill the necessary
information: secret.tfvars and project.tfvars. Figures 35 and 36 show them:

Figure 35: Secret.tfvars seed file

Figure 36: Project.tfvars seed file

The necessary variables the user has to provide are as follows:

• access_key and secret_key: AWS credentials created in the account to access the
cloud provider account resources. In the Annex 2 of this thesis there are explained
the steps to follow to create these keys.

• https_password: explained in the Annex 3 of the document.

 38

• git_repo_url: URL14 of the project where for which the pipeline will be created
• pem_key_name: the .pem file name of the one generated in the AWS web

interface
• pem_key_location: the location of the .pem in the machine where the project will

be executed
• jenkins_volume_souce: location of the jenkins volume in the machine where the

project will be executed
• project_root_path: location of the terraform project in the machine where the

project will be executed

The jenkins user and the jenkins password, since the jenkins volume folder is provided
by the author of the thesis, are set with predefined values that can be changed by the
final user. The predefined values as seen in Figures 35 and 36 are admin admin.

The project provided in the git_repo_url must contain a Jenkinsfile. For Java
projects the Jenkinsfile to include must have the content shown in the Figure 37.

Figure 37: Jenkinsfile for Java projects

The parameters to include are:

• $GIT_URL: the same as git_repo_url, the URL of the project where for
which the pipeline will be created.

• $GIT_BRANCH: the git branch that the project will pass the pipeline for.
• $GIT_CREDENTIALS. The name of the credentials to access the github repo

if the repo is private. If this case, the credentials must be created in the
Jenkins server.

14 URL: the address of a World Wide Web page

 39

• $DOCKER_REGISTRY: the integration machine public URL followed by the
5000 port, e.g. amazon_provided_public_url.com:5000. The registry
installation accept connections to the port 5000 as shown in Figure 18.

• $PROJECT_NAME_IN_LOWER_CASE: the name of the project in lower
case

• $DEPLOY_NODE: the project_name provide in the project.tfvars seed file
followed by ‘-test’.

Once these parameters are provided, the user can execute the main program.

The start of the program is done by the execution of the start.sh script located in the
root of the project. Once executed the command shown in the figure 38, there will be
displayed the next dialog in the terminal of the computer:

Figure 38: Terraform dialog after first execution

The complete dialog shows the properties of the instances terraform is about to start. The
summary of the actions to execute is shown in the Plan section. After the user entre yes,
terraform starts the provisioning.

 40

After the creation of the infrastructure, terraform will provide an output in the console
where the start.sh was executed: the URL of the instances that it has just created, the
integration machine and the jenkins slave where the ‘staging’ deployments will take place.
This output can be seen in the figure 39.

Figure 39: Terraform execution output

If this is the first execution done by the user and there still did no exists a Jenkins
Master, the first pipeline execution will fail. This is because the user can not set the
docker registry variable in the jenkins file because the URL of the integration machine is
not known yet.

After this first execution, the user just knows the integration machine URL, and adding it
to the Jenkinsfile followed by ‘:5000’ in the $DOCKER_REGISTRY field, he is able to
start the first execution manually.

The state of the builds can be accessing to integration_machine_url over https protocol.
Figure 40 shows all the pipelines in the Jenkins server.

Figure 40: Pipelines in the Jenkins server

The pipeline state of the created pipeline shows that the build failed.

 41

Figure 41: First pipeline execution

The log shown in Figure 42 of the build shows the reason of the fail: the docker registry is
no accessible.

Figure 42: Build fail information

After changing the docker registry host in the pipeline and executing a new build the
pipeline pass with success as shown in Figure 42.

Figure 43; Success pipeline

Then, when accessing to the project endpoint, we can see the following output:

 42

Figure 44: Demonstration project endpoint

The demonstration used in this example can be found in:
https://github.com/JandaTheMan/demo

To configure automatic commit for each build, the user has to set-up the github project
and add web hooks to the Jenkins server. The steps to follow are:

1. Sign in, then select the related repository you own.
2. Click on "Settings" on the right panel.
3. Then click on "Webhooks & Services" on the left panel.
4. Click on the "Add WebHook" Button.
5. Paste the copied URL in the URL form field.
6. Select "application/json" as the content type.
7. Select "Let me select individual events" and check "Issues".
8. Leave the "Active" checkbox checked.
9. Click on "Add webhook" to save the webhook.

From now, all the changes done in the project will be triggered and if the pipeline pass
the new deployed project will be accessible in the test deployment machine
(jenkins_slave) URL.

 43

5. Budget

The totally of hours dedicated to this thesis are 495, the corresponding one to 18 ECTS
credits with a time dedication of 27.5h for each one. The cost of the development of the
project is thus:

495	ℎ𝑜𝑢𝑟𝑠 ∗ 12
€

ℎ𝑜𝑢𝑟
= 5940	€			

The cloud service used to develop the solution in AWS, but the usage for the
development was with the free trial account that did not generate any cost.

The software for the development purposes was IntellIJ Idea that have an annual cost of
649 €	 but I used the university student licence provided by UPC.

 44

6. Conclusions and future development:

The system to implement in this thesis was designed and developed to follow the CI
principles listed in the introduction. Excepting these ones that entail the human
component and cannot be part of a CI ecosystem, the project complies with the principles
as follows:

• Maintain a single repository: one of the requirements of the developed solution is
to add the Github source control manager link to the project seed. This principle
has been now converted into a system’s constraint: its usage requires a source
control manager to work with.

• Automate the build: the developed solution starts a Jenkins CI server that is used
to automate the builds. These builds are modelled as a build stage in the Jenkins
project’s pipeline. These pipelines are expressed as Jenkins files and, in addition, a
library has been developed to model these pipelines, in a way to reduce the effort
when creating multiple pipelines for different projects with repeated stages.

• Make your build self-testing: the responsibility of writing test is of the developers
but the project, as with the builds, uses the Jenkins technology in order to create
pipelines. The developed pipelines for java projects in this thesis come with
coverage for unit tests.

• Every commit should build the mainline on the integration machine: every time a
commit is done to the mainline, a pipeline starts a new execution.

• Test in a clone of the production environment: the execution of the developed
solution triggers the start-up of an instance to deploy the ‘deploy staging’ stage
on, i.e. the test machine. The use of Docker ensures that the environment will be
the same in the test machine as in the production one.

• Make it easy for anyone to get the latest executable: every successful build stores
the resulting artefact (the Docker image) in a Docker registry, accessible for the
whole team by only pulling this image.

• Everyone can see what is happening: the Jenkins CI server chosen to develop the
solution comes with a web UI where the team can see the state of the pipelines.

The instances of AWS cloud used to start the Jenkins CI server and the test machine
are interchangeable for other possible solutions. Since the instance configuration is
done through the provisioning and execution of Linux shell scripts and some resources
on them, the modification of the provider, resource type and connection are enough to
change the infrastructure to work on.

 45

The infrastructure block provides an easy way to add projects: the user only has to
replicate the ‘jenkins_slave’ module with new parameters to start another project.

The Jenkins library developed for this project brings the next benefits:

• On the one hand, the developer is agnostic of the steps involved in the
execution of the pipeline: the project comes with predefined pipelines for Java
projects and the users are agnostic of the pipeline definition.

• It allows the creation of multiple projects without the need of copying the
content of the same pipeline definition file (the Jenkinsfile) among all the
projects, the use of the library allows use the pipeline by only declaring the
needed one with its input parameters.

• It allows modelling and developing pipelines as OOP objects with a more
ordered and reusable way of pipeline creation.

The final solution usage is quite simple, it consists of:

• Downloading of the project code hosted in Github.
• Some extra configuration
• Fill of the seed project file with the needed predefined parameters:

secret.tfvars and project.tfvars.
• The execution of the start.sh script of the tool.

After the execution, the whole infrastructure will start-up. The first execution of the
pipeline for the specified project will be triggered.

The CD approach is almost accomplished as well. The deployment is done in the test
environment: the pipelines for java projects created in this thesis only have the ‘staging’
environment.

The production could be done by only adding an extra stage in the pipeline replicating
the test stage but in the production machine after requiring an interaction from the user
to start. Since the environments are replicated with docker, the deployment is done by
the same instructions in all the environments (only changing the execution node).

In addition, the two blocks developed in this thesis can be used separately. The
infrastructure block can be used to set-up all the infrastructure but a different library o
Jenkinsfile definition can be used. On the opposite case, the library can be used by teams
that have a stable infrastructure to get a clearer and reusable ways to declare their
pipelines.

 46

The main idea of the project was the design and development of a system that generates
the necessary infrastructure to accomplish the principles of the CI getting the CD
approach benefits. The final solution provides the necessary stuff to accomplish it.

Objectives not met:

The principal unmet objective is the total automatization with a unique tool to handle
everything. If the tool users wanted to add another project, they had to copy manually
the ‘jenkins_slave’ module changing the input variables. This objective is not met by a
lack of time during the development.

Another objective not met is the total automatization of the user experience. The first
execution is not totally automatic: the integration server is not started before that. This
means that the first execution of the pipeline triggered in the start-up of the slave
instance will fail because in the Jenkinsfile of the project there will not be still set the
docker registry.

The principle of starting pipeline executions for each commit is another objective that to
be accomplished requires of user interaction. It needs to modify the configuration of the
github project to set web hooks to the Jenkins server.

All these additional steps makes the usage of the platform more complex than only fill
the seed file and execute the program.

The future development would be the implementation of the previous unmet objectives.

 47

Bibliography:

[1] “Continuous Integration”. Wikipedia [Online] Available
https://martinfowler.com/articles/continuousIntegration.html

[2] Martin Fowler. “Continuous Integration”. Martin Fowler blog [Online] Available:
https://martinfowler.com/articles/continuousIntegration.html

[3] “Comparison of Continuous Integration Software”. Wikipedia [Online] Available:
https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software

[4] “Docker Containers vs. Virtual Machines”. Aquasec. [Online] Available:
https://www.aquasec.com/wiki/display/containers/Docker+Containers+vs.+Virtual+Machines

[5] “Using docker containers to improve reproducibility in software and web engineering”. SlideShare.
[Online] Available: https://www.slideshare.net/vincenzoferme/using-docker-containers-to-improve-
reproducibility-in-software-and-web-engineering

[6] “Jenkins Shared Libraries”. Jenkins. [Online] Available: https://jenkins.io/doc/book/pipeline/shared-
libraries/

[7] “Terraform Downloads. Terraform. [Online] Available: https://www.terraform.io/downloads.html

 48

Appendices (optional):

Annex 1: Description of the Work Packages and its tasks:

 49

 50

Annex 2: Steps to follow to create access and secret key in AWS:

The Access Key and the Secret Access Key are not your standard username and password
but are special tokens that allow our services to communicate with your AWS account by
making secure REST or Query protocol requests to the AWS service API.

To find your Access Key and Secret Access Key:

1. Log in to your AWS Management Console.

2. Click on your username at the top right of the page.

3. Click on the Security Credentials link from the drop-down menu.

4. Find the Access Credentials section, and copy the latest Access Key ID.

5. Click on the Show link in the same row and copy the Secret Access Key.

 51

Annex 3: Steps to follow to create access and secret key in AWS:

In order to provide http over TLS15 the next actions must be performed on the jenkins
volume folder:

The next command must be executed on the machine:

keytool -genkey -keyalg RSA -alias selfsigned -keystore jenkins_keystore.jks -storepass
mypassword -keysize 2048

Then the generated jenkins_keystore.jks must be copied in the jenkins volume folder root.
After that, the password to set in https_password the ‘mypassword’ set in the previous
command.

15 TLS: Transport Layer Security

 52

Glossary

CI: Continuous Integration

To compile: In computer programming, the translation of source code into object code by

a compiler

CD: Continuous Delivery

Linux Containers: virtualization technology in the operating system level for Linux.

Java: statically typed programming language that runs on a virtual machine

AWS: Amazon Web Services

OS: Operating System

OS image: An OS image is simply a file that contains the OS

ami: amazon machine image

.pem: is a de facto file format for storing and sending cryptographic keys, certificates and

other data

gradle: open-source build-automation system

classpath: classpath is a parameter in the Java Virtual Machine or the Java compiler that

specifies the location of user-defined classes and packages.

URL: the address of a World Wide Web page

TLS: Transport Layer Security

