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Abstract 
 

Digital IoT (Internet of Things) solutions for equipment condition monitoring and new advanced 

algorithms to process big data, enable the application of predictive maintenance. 

Consequently, actual implementations of such a system in industrial installations triggers the 

verification of its potential benefits. Thus, this project attempts to quantify the impact of a 

predictive maintenance system in the failure rate and the maintenance cost of industrial 

installations. 

 

The lack of time depended data lead to a static approach that utilizes average failure rate and 

mean time to repair values coming from IEEE standards and other sources. Next, a 

methodology that links the equipment causes of failure with a predictive maintenance system 

functions, is proposed. Consequently, new reduced failure rates for the assets under 

monitoring are defined. 

 

To perform the reliability calculations the spreadsheet methodology is presented and utilized. 

Additionally, the revenue requirement methodology is described and is used for the cost benefit 

analysis. 

 

Finally, the approach is applied in two theoretical and two actual industrial installations. 

Sensitivity analyses regarding different parameters of a predictive maintenance system are 

conducted in the first two cases, to evaluate the impact on different reliability indices. Moreover, 

cost benefit analysis is performed in the actual industrial networks and according to the results 

predictive maintenance should be preferred. Lastly, regarding the failure rate, a small or high 

reduction is observed depending on the type of failures, the utility sources, the system 

configuration, the number of monitored equipment and other parameters. 

 

Keywords: 

 

Asset management, predictive maintenance, reliability, failure rate, maintenance cost, revenue 

requirement method, spreadsheet methodology, industrial installations maintenance. 
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A Availability 

Ai Inherent availability 
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Analysis 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics 

Engineers 

IoT Internet of Things 
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LV Low Voltage 

Mdt Mean downtime 
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MTBF Mean Time Between Failure 

MTTR Mean Time to Repair 

MV Medium Voltage 

O&M Operations and Maintenance 

OPEX Operating Expenditure 

PdM Predictive Maintenance 

PM Preventive Maintenance 

RBD Reliability Block Diagrams 

RCM Reliability Centered Maintenance 

Rdt Repair downtime 

RR Revenue Requirement 

TCO Total Cost of Ownership 

Tf Total failures 

Tp Total period 
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1. Introduction  
 

In this small chapter the background, the motivation, the objectives and the outline of the 

project are summarized.  

1.1. Background 

 

Nowadays, due to different business drivers and global economic factors, the capital 

investment and the maintenance cost of the assets should be optimized and financially be 

justified. At the same time, the demand for asset reliability and availability continuous to 

increase, changing in that way the concept of asset management and requiring efficient 

maintenance strategies. 

 

Maintenance of electrical infrastructure in an industrial environment is crucial to ensure safety, 

service continuation, energy efficiency of the equipment and total cost of ownership 

optimization. A forced outage can have detrimental financial impact on the business and can 

generate a series of unpredictable events. Nevertheless, there are different maintenance 

approaches that can be followed to prevent that from happening. Except from reactive, when 

actions are taken after a failure occurs, preventive, predictive and reliability centered 

maintenance attempt to reduce the number of failures. 

 

The industry today applies, in the best case, an on-site condition-based approach under a 

preventive maintenance concept. Although, advances in digital IoT solutions for equipment 

condition monitoring, along with new advanced algorithms to process big data, enable a new 

potential of maintenance strategies. Thus, predictive maintenance becomes possible providing 

condition-based maintenance and fault prediction based on real time and historical data. That 

is an important step towards reliability centered maintenance, a strategy that combines all the 

maintenance approaches in a cost-effective way considering higher safety and reliability. 

 

The motivation of this project comes from the actual implementations of a predictive 

maintenance system in industrial installations and attempts to quantify its impact on the failure 

rate and the maintenance cost. No such attempt has been found in the bibliography while the 

topic can be considered a quite complex process. Although, based on a static approach, a 

simple tool and a proposed methodology a preliminary assessment of predictive maintenance 

impact is presented. That analysis could potentially assist different stakeholders to take 

investment decisions in their installations. 
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1.2. Objectives of the project 

The objectives of the project are the following: 

 

• Based on the available data and resources, identify and understand the tool that 

enables a reliability analysis with sufficient result accuracy. 

• Identify a methodology that enables cost benefit analysis considering reliability indices. 

• Identify the causes of failure of equipment under monitoring. 

• Link the causes of failure with the functions of a predictive maintenance system. 

• Define an approach to measure the impact of predictive maintenance on the failure 

rate of assets under monitoring. 

• Apply the proposed methodologies in theoretical and real case systems and quantify 

the impact of predictive maintenance on the failure rate and the maintenance cost of 

industrial installations. 

1.3. Thesis outline 

The report consists of six chapters followed by conclusions and some proposals for future 

work. In summary the outline of the thesis report is the following: 

 

• Chapter 1, which is the current chapter, presents briefly the background, the motivation 

and the objectives of the project. 

• Chapter 2 provides briefly the different maintenance practices with their advantages 

and disadvantages along with the basic reliability concept required for the 

understanding of the project. At the end, the different methodologies to perform 

reliability analysis are summarized. 

• Chapter 3 explains the motivation for choosing the spreadsheet methodology to 

perform the reliability analysis. Additionally, the background of the method is presented 

along with the description of the utilized tool. 

• Chapter 4 presents the revenue requirement method which is the identified 

methodology to perform cost benefit analysis based on reliability indices. 

• Chapter 5 describes the applied approach to evaluate the impact of predictive 

maintenance on the failure rate. Furthermore, the causes of failure are presented along 

with their link with the predictive maintenance system functions.  

• Chapter 6 presents the results of the application of the proposed approach in two 

theoretical systems and in two real cases. Cost benefit and different sensitivity 

analyses are also described.  
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2. Maintenance Types and Reliability Basics 

Maintenance is defined as the series of actions that need to be taken to maintain equipment 

in a proper condition. Additionally, maintenance includes all the steps that are necessary to 

prevent a component from failing or to control equipment degradation due to its operation. The 

purpose of it is to keep systems and equipment in operation at an efficient level for at least 

design life. At an electrical distribution (ED) level, maintenance can have the following benefits 

[2]: 

 
• Ensures equipment protection and safety 

• Minimizes service interruptions 

• Ensures the energy efficiency of the equipment 

• Enables efficient management of spare parts 

• Optimizes the total cost of ownership (TCO) which includes the capital 

expenditures (CAPEX) and the operating expenses (OPEX) 

Maintenance and equipment failure are interconnected since maintenance practices or the 

absence of them (reactive approach), have an impact on the failure rate of a component or a 

system. 

 

 

Figure 1 Equipment failure rate over time [3] 

 
The failure rate of equipment, as a function of time can be represented with the so-called 

bathtub curve shown in figure 1 [3] [4]. The curve is divided in three regions based on the 

characteristics of the failure rate. The first one, called infant mortality, is presenting a high 
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component failure that can be attributed to poor installation or misapplication and poor design. 

Next, the useful life period follows, characterized by an almost constant failure rate for a long 

period of time. Failures during that region are caused due to poor O&M practices and it is 

generally agreed that preventive and predictive maintenance strategies can have a beneficial 

impact and extend that period [5]. Finally, a rapid increase of failure rate is taking place during 

the ware out period due to the impact of deterioration. 

Based on the bathtub curve, the useful life period can be modeled using the exponential 

distribution, whereas the wear out period can be represented by the Weibull distribution [3]. 

More details regarding the exponential distribution and its use, will be presented in the following 

sections.  

Maintenance can be performed in different ways in an industrial environment, thus a brief 

description of each one of them is presented in the following sections, along with their 

advantages and disadvantages. The focus should be on the predictive maintenance approach 

which is under the scope of this project. 

2.1. Reactive Maintenance 

This type of maintenance is referred to the repair actions after a failure and is based on the 

concept of taking no actions till a failure appears. Based on studies, this is the predominant 

maintenance strategy applied in the industry [5]. The results of reactive maintenance can be 

temporary or curative [2]. The first allow a faulty item to perform its function till repair actions 

take place, while the latter resumes the component to its initial healthy state. The advantages 

and the disadvantages of a reactive maintenance strategy are the following [5] [6]: 

 

• Advantages 

o Low cost during the time between failures since no maintenance actions are 

taking place. 

o Less staff requirements since no maintenance personnel is needed during 

periods without a failure. 

o It is the right approach for equipment that is not repairable (like small 

electronics) and doesn’t interrupt the business processes. 

 

• Disadvantages 

o During unplanned downtimes the cost increases rapidly 

o The labor cost also increases 

o Inefficient use of staff resources is taking place 

o Additional cost is involved with repair or replacement of components 

o There is a possible secondary equipment or process damage from equipment 

failure 
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2.2. Preventive Maintenance 

This type of maintenance strategy is based on time or machine run time schedule to perform 

actions that can mitigate deterioration and failure of a component or a system [4] [7]. It consists 

of regular inspections, part replacement and work on mechanisms and can be categorized in 

three levels based on the complexity of the inspections [2]. Preventive maintenance (PM) is 

conducted during scheduled downtimes in order to have a low impact on business operations. 

 

An alternative concept of preventive maintenance is based on onsite condition instead of 

time/use base [2]. This type of maintenance is applied on critical assets of the installation 

where a failure can have significant impact on safety, uptime and business aspects and it 

involves onsite diagnosis interventions. This approach is the latest applied on industrial 

installations. Finally, onsite condition-based maintenance can be considered the entry level of 

condition-based maintenance (CBM) and predictive maintenance (PdM). 

 

The advantages and the disadvantages of preventive maintenance are the following [5] [7]: 

 

• Advantages 

o Reduced process or equipment failure 

o Possible energy savings 

o Component life cycle increase 

o Periodicity of maintenance can be adjusted 

o Cost effective in many capital-intensive processes 

o Compare to reactive maintenance an estimate between 12% to 18% in cost 

savings is achieved 

 

• Disadvantages 

o Labor intensive strategy 

o May include unneeded maintenance 

o Crucial failures are still likely to occur 

o Unneeded maintenance can cause incidental damage to components 

2.3. Predictive Maintenance 

Predictive maintenance approach utilizes digital IoT solutions with big data and advanced IT 

platforms that allow condition monitoring of the equipment [2] [4] [8]. The purpose of this 

maintenance strategy is to control deterioration of components by measuring its different 

parameters and by triggering alarms when thresholds are reached. Additionally, fault 

prediction is performed. That way, maintenance actions are conducted according to 

equipment’s actual condition and not in a predefined time schedule or times of equipment use 
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[5]. Based on the number of utilized sensors and the analysis of parameters different levels of 

predictive maintenance can be applied. The advantages and the disadvantages of this 

maintenance approach are the following [2] [5]: 

 

• Advantages: 

o Safety is improved 

o Product quality is ensured 

o Energy savings are achieved 

o The cost for parts and labor is decreased 

o Downtime of process or equipment is reduced 

o Allows for proactive corrective actions 

o Equipment operational life and availability is increased 

o Compare to preventive maintenance an estimate between 12% to 18% in cost 

savings is achieved 

 

• Disadvantages 

o Investment cost is increased due to the installation of monitoring infrastructure 

o Investment required for staff training 

o The cost avoidance by mitigation of risk of failure is not readily seen by 

management 

 

A summary of the different maintenance approaches, that have been described so far, is 

presented in figure 2 [2].  

 

 

Figure 2 Maintenance Maturity Curve [2] 
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The maintenance maturity curve presents the capabilities of each approach against the 

criticality of the equipment that should be applied. Every maintenance strategy is related to its 

application cost, with the lower being the cost of reactive and the higher of predictive 

maintenance. Thus, each strategy should be applied considering the criticality of the 

equipment and the maintenance application cost. In other words, equipment that its failure can 

have an important impact on safety and business aspects, is classified as critical thus, 

predictive and preventive maintenance should be applied. On the other hand, equipment with 

low criticality can go through preventive or reactive maintenance. That idea, of combining the 

different maintenance approaches, is the introduction of the reliability centered maintenance 

concept, more details of which are described in the following subsection. 

 

Based on [9], some metrics against industry benchmarks are presented in table 1, as a guide. 

 

Table 1 O&M Industry Metrics and Benchmarks [9] 

Metric Equation Benchmark 

Emergency Maintenance  𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑 𝑜𝑛 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 𝑗𝑜𝑏𝑠

𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑
 

< 10% 

Maintenance Overtime 

Period 

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 ℎ𝑜𝑢𝑟 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑
 
< 5% 

Preventive Maintenance 

Completion  

𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑
 

> 90% 

Preventive Maintenance 

Budget/Cost 

𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡
 

15% - 18% 

Predictive Maintenance 

Budget/Cost 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡
 

10% - 12% 

 

2.4. Reliability Centered Maintenance 

 

Reliability centered maintenance (RCM) utilizes all the previous maintenance approaches with 

the goal to increase the reliability of the installation and perform maintenance in a cost-effective 

way [7]. This methodology distinguishes the equipment of the facility based on its importance 

to the production process and the safety of the installation. Consequently, different 

maintenance strategies are utilized to each component in a concept focused on cost-

effectiveness and reliability. Examples of maintenance strategies applied on the equipment of 

the installation under an RCM program are presented in table 2. 
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Table 2 RCM component applications [5] 

Hierarchy of Reliability Centered Maintenance 

Components under reactive 

maintenance 

Components under 

preventive maintenance 

Components under 

predictive maintenance 

Small parts and equipment Equipment subject to wear Equipment with random 

failure patterns 

Non-critical equipment Consumable equipment Critical equipment 

Equipment unlikely to fail Equipment with known 

failure patterns 

Equipment non subject to 

wear 

Redundant system Manufacturer 

recommendations 

Systems which failure may 

be included by incorrect 

preventive maintenance 

 

The predominant maintenance approach during RCM is predictive thus the following 

advantages and disadvantages are closely related to the ones previously mentioned [5] [7]: 

 

• Advantages: 

o Is considered the most efficient maintenance program 

o Reduces frequency of detailed inspections 

o Reduces the overall maintenance cost by mitigating unnecessary maintenance 

actions 

o Minimizes the probability of unexpected failures 

o Maintenance is focused on critical equipment 

o Component reliability increased 

o Root cause analysis is incorporated 

• Disadvantages 

o The initial cost for the installation and training is high 

o The potential savings in a long term are not readily seen by management 

2.5. Maintenance Past, Present and Future 

In this section and after the description of the different maintenance approaches, a short 

overview of the previous, current and future maintenance practices is presented [10] [11]. 

 

During the past decades, maintenance was conducted based on guidelines of equipment 

manufacturers or industry standards. A small portion of the maintenance frequency was 
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dictated by the number of equipment operations, but in most cases a time-based schedule had 

to be adhered. For instance, transformers and circuit breakers were tested annually, then every 

three years and then every five or in the case of a failure occurrence. Although, this type of 

maintenance practice was not followed by the end-users for various reasons, like cost or 

limited skilled resources and instead reactive maintenance was applied. 

 

Nowadays, maintenance practice has been transformed from a non-followed time-based 

maintenance to an approach focused on the equipment operating conditions. Of course, some 

features of the time-based maintenance are still included. Based on that approach, the 

equipment is classified and rated by reviewing past maintenance records. According to the 

data, the components that present high deterioration indications will go through a full 

maintenance process. On the other hand, components that present a better condition will go 

through an operational maintenance that is less detailed and requires fewer man-hours. 

Consequently, this type of maintenance approach can lead to cost savings, since between 

30% to 50% of the equipment is not going though detail maintenance procedures [12]. 

 

 In the upcoming future, it is expected for maintenance to be more focused on the components 

operating conditions and in a way abolish any time-based scheduled actions. End users would 

like to perform maintenance based on indications of a monitoring system that, at the same 

time, could deliver recommendations on what kind of actions should be taken. Additionally, 

real time warnings about symptoms of failure of the installation and suggestions on how to 

handle them is another feature of this expected maintenance approach.  

2.6. Reliability Basics 

At this section, basic information related to the reliability principles are provided. The definitions 

of different terms are presented along with their equations. The following information is 

required to understand the methodologies that are utilized in this project. 

 

2.6.1. Definitions 

 

The definitions described above are used during this report and they are provided at [3] [13] 

and [14]. 

 

Availability: (A) (general) The ability of an item—under combined aspects of its reliability, 

maintainability, and maintenance support—to perform its required function at a stated instant 

of time or over a stated period of time. (B) (as a performance metric for individual components 

or a system) The long-term average fraction of time that a component or system is in service 

and satisfactorily performing its intended function. (C) (as a future prediction) The 

instantaneous probability that a component or system will be in operation at time t. 
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Common Cause Failure: Common cause failures are dependent events in which a single 

failure or condition affects the operation of two or more devices that would otherwise be 

considered independent. 

 

Failure: The termination of the ability of a component or system to perform a required function. 

 

Failure Mode: The manner of failure. Failure mode is a description of how we can observe a 

fault. 

 

Failure Rate (λ): The mean (arithmetic average) number of failures of a component and/or 

system per unit exposure time. The most common unit in reliability analyses is hours (h) or 

years (y). Therefore, the failure rate is expressed in failures per hour (f/h) or failures per year 

(f/y). The term is synonymous with the forced outage rate. Failure rate is calculated by the 

following formula: 

𝜆 =
𝑇𝑓

𝑇𝑝
 [

𝑓

ℎ
]  𝑜𝑟 𝜆 =

𝑇𝑓

(
𝑇𝑝

8760⁄ )
 [

𝑓

𝑦
] (2.1) 

 

Inherent Availability (Ai): Long-term average fraction of time that a component or system is 

in service and satisfactorily performing its intended function. Ai considers only downtime for 

repair of failures. No logistics time, preventive maintenance, etc., is included. Inherent 

availability is described by the following formula: 

𝐴𝑖 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
 (2.2) 

 

Maintenance Downtime (Mdt): The total downtime for scheduled maintenance (including 

logistics time, spare parts availability, crew availability, etc.) for a given time period (Tp) (hours). 

 

Mean Time Between Failures (MTBF): MTBF is the arithmetic mean of the times (observed 

or calculated) between random failures of a component or system. The formula describing 

MTBF is: 

𝑀𝑇𝐵𝐹 =
𝑇𝑝

𝑇𝑓
 [ℎ] (2.3) 

 

Repair Downtime (Rdt): The total downtime for unscheduled maintenance (excluding 

logistics time) for a given total period (hours). 

 

Mean Time To Repair (MTTR): The mean time to replace or repair a failed component. 

Logistics time associated with the repair, such as parts acquisitions, crew mobilization, are not 

included. It can be estimated by dividing the summation of repair times by the number of repairs 
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and, therefore, is practically the average repair time. The most common unit in reliability 

analyses is hours (h/f). MTTR is described by the following formula. 

𝑀𝑇𝑇𝑅 =
𝑅𝑑𝑡

𝑇𝑓
 [

ℎ

𝑓
] (2.4) 

 

Reliability: The probability that a component or system will perform required functions under 

stated conditions for a stated period of time t, or (for discreet missions) a stated number of 

demands. Considering the exponential distribution, reliability is given by the following formula: 

𝑅(𝑡) = 𝑒−𝜆𝑡 (2.5) 

 

Total Failures (Tf): The total number failures during the total period. 

 

Total Period (Tp): The calendar time over which data for the item was collected (hours). 

 

2.6.2. Exponential Distribution 

 

Given the data available for power components the most suitable distribution function is the 

exponential [13]. That implies a constant failure rate for the equipment whereas the failures 

are random in nature [3]. The probability density function of the exponential distribution is given 

by: 

 

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 (2.6) 

 

And the reliability function, as it was previously mentioned, is described as: 

 

𝑅(𝑡) = 𝑒−𝜆𝑡 (2.7) 

 

The hazard function is defined as the instantaneous failure rate for the remaining population 

of time t and it can be calculated using the following equation: 

 

𝐻(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
 (2.8) 

 

In the case of the exponential distribution the hazard function is equal to the constant failure 

rate: 

 

𝐻(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
= 𝜆 (2.9) 

 

The characteristic of a constant failure rate indicates that a component has equal probabilities 



Pág. 20  Memoria 

 

of failure during the first years as the last ones of its useful life. Most of the component do not 

exhibit such characteristic although, it is widely used due to the available data, since it requires 

only the MTBF to be defined [13]. 

 

2.6.3. Weibull Distribution 

 

Weibull is a widely used distribution function due to its versatile nature and is given by the 

following formula [3]: 

𝑓(𝑡, 𝛽, 𝜂) =
𝛽

𝜂
(

𝑡

𝜂
)𝛽−1𝑒

−(
𝑡
𝜂

)𝛽

(2.10) 

 

Where β is the shape parameter and η is the location parameter. Beta is giving information on 

how a component is going to fail whereas eta is providing information about the time of that 

will happen [14]. The cumulative distribution function 𝐹(𝑡), the reliability 𝑅(𝑡), the failure rate 

𝜆(𝑡) and the mean time to fail (MTTF can be assumed equal to MTBF) are given by the 

following equations [15]: 

𝐹(𝑡) = 1 − 𝑒
−(

𝑡
𝜂

)𝛽

(2.11) 

 

𝑅(𝑡) = 1 − 𝐹(𝑡) = 𝑒
−(

𝑡
𝜂

)𝛽

(2.12) 

 

𝜆(𝑡) =
𝑓(𝑡, 𝛽, 𝜂)

𝑅(𝑡)
=

𝛽

𝜂
(

𝑡

𝜂
)𝛽−1 (2.13) 

 

𝑀𝑇𝐵𝐹 = 𝜂 ∙ 𝛤 [1 +
1

𝛽
] (2.14) 

 

Where 𝛤 [1 +
1

𝛽
] is the gamma function evaluated at the value of (1 +

1

𝛽
). 

 

If the shape parameter beta is assumed equal to one, then the Weibull distribution is equal to 

the exponential. 

 

A plot of the reliability over time for the different parameters of beta of the Weibull distribution, 

is presented in figure 3 [16]. 
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Figure 3 Reliability function of Weibull distribution [16] 

 

The hazard function of the Weibull distribution is given by: 

 

𝐻(𝑡, 𝛽, 𝜂) = 𝛽𝑡𝛽−1 (2.15) 

 

Based on the value of β, Weibull can have the characteristics of other distributions. For 

instance, if β>1 the wear out mode is present and Weibull distribution, as it was previously 

mentioned can be utilized to model the wear out period of a component. In the case of β<1, 

Weibull distribution can be used to model the infant mortality region of the bathtub curve. 

Finally, as it was mentioned previously, when β=1 the Weibull distribution is equal to the 

exponential. A plot of the different failure rate functions based on the parameter beta is 

presented in figure 5 [16]. 

 

 

Figure 4 Failure rate function of Weibull distribution [16] 
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2.7. Methods of reliability and availability analysis 

In this last part of the chapter, some of the possible methods to perform reliability and 

availability analysis, are presented shortly. These methods can be classified in two categories 

the analytical and the numerical [14] [16] [17] [18]. 

 

2.7.1. Analytical Methodologies 

 

In the case of analytical methods, algebraic formulas are used to arrive at a closed-form, exact 

solution to a model of a system. Some of the methodologies are the following: 

 

Event Tree Analysis 

 

Starting from an initial event, event tree analysis identifies all the possible outcomes when such 

event occurs. Starting from left to right a tree is structured consisting of different nodes and 

different paths based on the occurrence or not of the next possible event. In the case of 

available data, probabilities can be assigned to every event and a quantitative analysis can be 

performed. 

 

Failure Mode, Effect and Criticality Analysis (FMECA) 

 

FMECA is used to identify all the potential failure modes of different parts of a system. That 

information can be utilized to identify the effects of those failures in the system and how to 

avoid them or mitigate their impact. 

 

Cause and Effect Diagrams 

 

Cause and effect diagrams are a qualitative and graphical method used mostly from quality 

engineers to identify, sort and display possible causes of a problem or quality characteristic. 

 

GO Algorithm 

 

GO is a system analysis technique in a success-oriented structure, that exhibits characteristics 

such as model modifications and model capabilities that fault trees don’t possess. The 

methodology utilizes a inductive logic and enables the GO models to be constructed directly 

from engineering drawings in an easy way. GO procedure is using 17 standard logical 

operators to represent the logical operation, combination and interaction of human actions and 

physical equipment. 
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Bayesian Belief Networks 

 

This a graphical modeling methodology that utilizes graphical structures that represent 

knowledge about the system combined with a set of probabilities tables. 

 

 

Fault Tree Analysis 

 

This method is a top down deductive failure analysis approach. The first step is to define the 

so-called TOP event which it can be considered as a potential accident. Then, possible causes 

that can contribute to the TOP event should be identified. After the qualitative part of the 

approach a quantitative can follow by assigning the probabilities and calculating the chances 

of the TOP event to occur. The construction of the fault tree starts from the TOP event and 

goes down to the basic events by utilizing different symbols that are showing the connection 

among the events. 

As a part of the methodology is the identification of the cut sets, which defined as “a set of 

components whose failure alone will cause system failure”. 

 

Reliability Block Diagrams (RBD) 

 

This is another graphical tool that enables modelling of simple and complex systems. By 

utilizing blocks in series or in parallel connection and by providing the relevant data, different 

indexes of the systems such as the failure rate, the reliability, the MTBF and the availability 

can be calculated. 

The difference between RBDs and fault trees is that the first ones are success oriented while 

the latter are focused on the failure paths. A fault tree might be generated from a RBD although, 

the opposite is not always possible. Finally, one last point between these two methodologies, 

is that RBDs utilize time varying distributions whereas fault trees typically use fixed 

probabilities.  

 

Network Reduction 

 

The network reduction methodology is suitable for systems that utilize series and parallel 

connections since it is reduces the size of the system by equivalent components. That 

technique can be combined with RBDs. 

 

2.7.2. Numerical Methodologies 

 

Probability density functions can be used in their greatest potential by utilizing numerical 

methodologies such as state space or Monte Carlo simulation. A short description of both is 
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presented below. 

 

State Space 

 

State space has its foundation in the mathematical concept of Markov chains, which is a 

modeling technique that describes the system’s possible states. In the case of reliability and 

availability analysis there are two possible conditions, the up or down. The probabilities 

between the transition between the stages should be known whereas, the solution to the model 

derives from the time spent in the down vs, up states.  

 

Monte Carlo Simulation 

 

This methodology is considered the most versatile and it can be used from simple to complex 

models. The simulation is based on iterative process and each iteration is a description of what 

the system could experience through a set mission life. Different possible future scenarios are 

considered along with their probabilities during the simulation process. In each repetition the 

repair attributes and the failures are defined for every component of the system. Then, the 

availability of each iteration is calculated. Finally, for all the iteration the average uptime vs. 

downtime is defined including the average durations of downtime.  
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3. Spreadsheet Methodology 
 

Knowledge of reliability performance for different components that are included in a system 

and the utilization of quantitative methodologies, enable the calculation of various reliability 

indexes. Consequently, alternative system designs can be compared and the impact on the 

reliability and cost can be evaluated. Those systems can be different in terms of their 

configuration, component reliability, operating policy including maintenance practices and 

protection schemes. 

 

The purpose of this chapter is to provide the theoretical background of the utilized methodology 

and describe the tool that was used in this project in order to define the impact of predictive 

maintenance in the reliability. 

3.1. Choosing the methodology 

Among the different methodologies that were described in the previous chapter, the 

spreadsheet methodology, which is similar to the zone branch methodology [3] [19], was 

chosen to conduct the analysis. The reasons for this choice are that the spreadsheet 

methodology is available in an Excel environment, it doesn’t not require any paid license it is 

relatively simple to use while its generated results are similar to the other methodologies [13] 

[20] [21] [22]. 

 

Figure 5 The Gold Book Standard Network [13] 

 

The tool was built by the people involved in the development of the IEEE 493-2007 Std and it 
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was compared with the GO and the cut-set reliability methodologies applied on the IEEE Gold 

Book Standard Network [13], which is introduced in figure 5. The results of the comparison on 

the availability between the methodologies, are presented in table 3. 

Table 3 Availability at the output locations of the network by utilizing different methodologies [20] 

Output Location Spreadsheet 

Methodology 

GO Algorithm Minimal Cut-Set 

Method 

Main switchgear 

bus B1 

0.999991241 0.999991230 0.999990613 

Main switchgear 

bus B2 

0.999991241 0.999991230 0.999990613 

Generation Bus A 0.999996377 0.999996300 0.999996377 

Mechanical 

switchgear bus E1 

0.999974337 0.999988600 0.999974186 

Mechanical 

switchgear bus E2 

0.999974337 0.999988600 0.999974186 

Lighting bus C 0.999987699 0.999987690 0.999988792 

Noncritical bus D 0.999986036 0.999987680 0.999989614 

 

As it can be observed, the results are in close agreement and any differences can be attributed 

in the characteristics of each model such as the handling of redundant paths and other internal 

model assumptions [20]. An important advantage of the spreadsheet methodology is the fact 

that can evaluate the impact of protection schemes on load point reliability indexes. Finally, it 

should be mentioned that, the method can be applied to very large industrial systems with 

several branches without any restrictions. 

 

3.2. Background of the method 

The first step is to identify the parameters that are important to perform a reliability evaluation. 

Consequently, based on the IEEE 493-2007 Std [13], the most useful indexes to assess the 

reliability of a system are the frequency and the expected duration of the load point 

interruptions events. Those indexes are also known as failure rate (λ) and average downtime 

per failure (r), respectively. Failure rate can be considered as a measure of unreliability 

whereas, average downtime can be called as restorability. The product of the failure rate and 

the average downtime (λ∙r) indicates the forced hours downtime per year and is a measure of 

unavailability. Those are the indexes that were utilized during the cost benefit analysis of this 

project. 

 

The fundamental components of the approach are the protective zones. Industrial power 
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systems consist of different protective equipment such as, breakers, relays, fuses, 

sectionalizes, reclosers and automatic or manual switches. The operation or the nonoperation 

of those devices has a direct impact on the reliability of the installation thus, the first step of the 

spreadsheet methodology is to define the protective zones of the system based on that 

protective equipment. A protective zone is defined as a part of the power system, in which a 

fault within the segment will cause the first upstream protective device to isolate the system. 

 

The utilized spreadsheet methodology is providing a snapshot in time of the system. It is based 

on a constant failure rate of the components and the exponential distribution is assumed with 

the related equations described in section 2.6.2. It is a static approach and to be valuable for 

an installation the information of the equipment should be kept updated frequently based on 

site real data. 

 

The difference between the zone branch and the spreadsheet method is the fact that the failure 

mode of the switching equipment is not considered. For instance, a failed to trip or failed to 

interrupt failure mode on the low voltage circuit breakers could cause the upper breakers to 

trip. That recognition of fault factor that is utilized in the zone branch method is not applied in 

the spreadsheet although, the results of both methods on the Gold Book Standard Network 

are in close agreement [23] [24]. Despite that, in one of the next chapters, where the applied 

methodology is described, a parameter linked with the fault recognition of the system in total 

(system efficiency) is included in the calculations. 

 

The following assumptions are considered in the methodology and the utilization of the tool: 

 

• A fault is defined as complete loss of power for more than 5 seconds 

• All faults are permanent 

• The protective equipment perfectly isolates all permanent faults instantaneously 

• The protective equipment is perfectly coordinated i.e. the device closest to the fault 

operates first 

 

In the last part of this section, the equations in which the method and the analysis is based are 

presented, depending on the connection of the components. 

 

Series Connected Components 

 

Assuming that two components are connected in series, as shown in figure 6, with their related 

failure rate and time to repair indicated with λ and r, respectively the calculations of the 

methodology are based on the following equations [25]. 
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Figure 6 Repairable components in series 

 

In accordance with section 2.6, the MTBF the availability 𝐴𝑖 (inherited) and the reliability 𝑅𝑖 of 

each component 𝑖 are described by the formulas: 

 

𝑀𝑇𝐵𝐹𝑖 =
1

𝜆𝑖

(3.1) 

 

𝐴𝑖 =
1

𝜆𝑖 ∙ 𝑀𝑇𝑇𝑅𝑖 + 1
 (3.2) 

 

𝑅𝑖 = 𝑒−𝜆𝑖𝑡 𝑜𝑟 𝑅𝑖 = 𝑒−𝜆𝑖8760 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑦𝑒𝑎𝑟 (3.3) 

 

The Mean Time To Repair of two components in series is given by: 

 

𝑀𝑇𝑇𝑅 =
𝜆1𝑟1 + 𝜆2𝑟2

𝜆1 + 𝜆2
 (3.4) 

 

And the combined failure rate will be: 

 

𝜆𝑠 = ∑ 𝜆𝑖

𝑁

𝑖=1

 𝑜𝑟 𝜆𝑠 = ∏ 𝑅𝑖

𝑁

𝑖=1

(3.5) 

 

Where N is total number of components in series. The reliability for one year is given by: 

 

𝑅𝑠 = 𝑒−𝜆𝑠8760 (3.6) 

 

The availability of the series connection is: 

 

𝐴𝑠 = ∏ 𝐴𝑖

𝑁

𝑖=1

(3.7) 

 

Finally, the probability of failure during a year 𝑃𝑠 and the forced downtime 𝐹𝐷𝑇 are based on 

the following formulas: 
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𝑃𝑠 = (1 − 𝑅𝑠) ∙ 100 (3.8) 

 

𝐹𝐷𝑇 = (1 − 𝐴𝑠) (3.9) 

 

Parallel Connected Equipment 

 

In case of parallel repairable equipment, as it is presented in figure 7, the following equations 

are utilized [26]: 

 

Figure 7 Repairable parallel components 

The failure rate for two redundant components is calculated based on the following formula: 

 

𝜆𝑝 =
𝜆3𝜆4𝑟3𝑟4 + 𝜆𝑐𝑟𝑒𝑞

(1 + 𝜆3𝑟3 + 𝜆4𝑟4) ∙ 𝑟𝑝

(3.10) 

 

Where 𝜆3, 𝜆4 and 𝑟3, 𝑟4 are the failure rates and the repair times of each component, 

respectively. The total repair time (MTTR) of the parallel configuration is given by: 

 

𝑟𝑝 =
𝑟𝑒𝑞(1 + 𝑋)

1 +
𝑟𝑒𝑞 ∙ 𝑋

𝑚𝑎𝑥(𝑟3, 𝑟4)

(3.11)
 

 

Where, 

𝑟𝑒𝑞 =
𝑟3 ∙ 𝑟4

𝑟3 + 𝑟4

(3.12) 

 

And  

𝑋 =
𝜆𝑐

 

𝜆3𝜆4𝑟4

(3.13) 

 

Where 𝜆𝑐
  is the common cause failure rate, which is defined as follows: 

 

𝜆𝑐
 = 𝐶𝐶𝐹 ∙ 𝑚𝑎𝑥(𝜆3

 , 𝜆4
 ) (3.14) 

 

The CCF is called common cause factor and is referred to the likelihood of both parallel 
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components failing in common cause mode. The range of CCF is between one and zero, 

where one indicates a high probability of common failure and zero the opposite. In the case of 

zero CCF 𝑟𝑝 is equal to 𝑟𝑒𝑞. The remaining reliability indexes can be calculated based on the 

total repair time (𝑟𝑝) and the failure rate (𝜆𝑝) of the parallel configuration. 

3.3. Tool Description 

 

The original model was presented in 1994 in the IEEE Petroleum and Chemical Industry 

Committee (PCIC) Conference [27] and since its final version in 2007 many modifications and 

addition of new features took place. The purpose of this section is to present briefly the basics 

of the tool in which the analysis was conducted. 

 

The tool, as its name suggest, was developed in a spreadsheet environment and consists of 

five worksheets [21]. The first one, called “History and Restrictions” describes the background 

and the copyrights of the tool. The second worksheet with the title “MODEL280pd3” represents 

the third version of the model and is the place where all the calculations take place. “RAM 

Table” is the name of the third worksheet, in which the user can find a database containing 

information regarding the MTTR and the lambda of 140 different components. The fourth sheet 

with the title “Utility” is linked with the “RAM Table” and introduces manually the MTTR and the 

lambda for the incoming utility supply. It is a simple utility simulator, where the user can define 

the effects of disturbances and the configuration of the supply. Finally, a complementary to the 

RAM table sheet, with the title “Chem Ram” includes failure rate and repair data that are 

commonly found in the chemical manufacturing industry. 

 

The calculations of the Utility worksheet are linked with the RAM Table and represent the 

failure rate and the repair time of the supply of the industrial installation. Next, the RAM Table 

is linked, and its values are pasted in the MODEL280pd3 sheet where the reliability and 

availability calculations are performed based on the zones. The RAM Table of the model is 

presented in figure 8 [21]. 
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Figure 8 RAM Table of Spreadsheet tool [21] 

Based on the operating manual of the tool [25] and the related publications [21] [28] [26], to 

perform the calculations, four steps are followed. Firstly, from the single line diagram of the 

installation the zones related to the protective devices are identified. That process can start 

from the top of the installation till the point of interest, which is normally a load point. Each zone 

includes the portion of the system that a failure will affect all its components. The latest version 

of the tool can deal with up to 280 zones thus, large complex installations can be simulated. 

The second step is the review of the RAM table of the equipment. The component that are 

included in the system should be identified while the MTTR and the failure rate should be 

verified. The most accurate results will be provided by utilizing data coming from the analysed 

installation. In case that is not possible, the default values, different sources such as the Gold 

Book, other equipment reliability studies or a combination of all with experience, can be used. 

One additional feature of the RAM Table is the MTTR and failure rate factors that provide the 

capability to perform what if scenarios and sensitivity analyses by modifying their values. That 

capability was used by the approach, that is described in one of the following chapters, to 

evaluate the impact of predictive maintenance. 

The “Failure in Service” parameter of the RAM Table enables the filtering of failures. For 

instance, the user can adjust that parameter if he/she intends to focus on the failures of the 

circuit breakers that caused failure in service and not all the failures of the circuit breaker. 

Based on that, the failure rate that will be considered in the calculations is reduced by the 

inserted percentage. Finally, different failure rate and MTTR can be considered for the analysis 

depending on the ageing of the equipment, since the RAM table includes data with different 

ranges based on years of usage. 
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The third step is taking place in the MODEL280pd3 sheet, where the user inserts the zones in 

the tool according to the single line diagram. As it was previously mentioned, up to 280 zones 

can be considered and with the combination of the 140-equipment data a wide range of 

industrial installations can be evaluated by utilizing the tool. 

The final step of the process is to insert the configuration of the installation in the tool. To do 

so, the Zone Table included in the MODEL280pd3 sheet is utilized. In the table the connection 

of the zones in series or in parallel is defined based on the single line diagram. Additionally, 

the common cause factor (CCF) is inserted in the case of parallel connections. The CCF, as it 

was previously mentioned, range from zero to one and represents the likelihood of a fault 

affecting the parallel circuits. If CCF is close to zero, the parallel branches can be considered 

independent whereas, if is close to one, the probabilities of both branches failing due to the 

common cause mode are higher. 

The results of the tool are summarized in the Point table of the MODEL280pd3 sheet. 

Considering sections 2.6 and 3.2 and adjusting the values in a per year basis, for every point 

of the system the following information is available: 

• Failure rate (λ) per year. Calculated based on section 3.2. 

• Mean time to repair (MTTR) in hours per event. Calculated based on section 3.2. 

• Reliability at each point of the system as a percentage 

𝑅 = 𝑒−𝜆 (3.15) 

• Availability per year 

𝐴 =
8760

𝜆 ∙ 𝑀𝑇𝑇𝑅 + 8760
(3.16) 

• Probability of failure per year as a percentage 

𝑃 = 1 − 𝑒−𝜆 (3.17) 

• Mean time between failures (MTBF) in years 

𝑀𝑇𝐵𝐹 =
1

𝜆
(3.18) 

• Forced downtime (FDT) in hours per year 

𝐹𝐷𝑇 = 8760 − 8760 ∙ 𝐴 (3.19) 

 

A point in the Point Table is any point within a zone. The results related to it represent the 

reliability of the system and the other indexes from the top down to that point. Typically, a point 
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will be shown as the lowest point within a zone. 

The overview of the model, where all the previous information can be related, is presented in 

figure 9 [25]. The calculation steps from 1 to 10 and the table associated to them are shown 

while it should be mentioned that tables 8,9 and 10 (Unit Impact, Consequences and 

Component Summary) were not considered  since another cost benefit analysis method was 

assumed and will be described in the following chapter. 

 

Figure 9 Spreadsheet model layout [25] 
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4. Cost Benefit Analysis - Revenue Requirement 

Methodology 
 

In this chapter the cost benefit analysis that was implemented in different industrial installations 

is described. The revenue requirement (RR) method mentioned in the IEEE 493-2007 

standard [13] is utilized to evaluate different system designs. In Particular, a cost evaluation of 

a system before and after the implementation of a predictive maintenance system is attempted. 

This comparison is useful during cost-reliability trade-off decisions in the design of power 

distribution systems for industrial installations. 

4.1. Cost evaluation of reliability 

 

The process of the RR methodology defines the minimum revenue requirements (MRR) which 

describe the amount of necessary revenues to achieve the minimum acceptable earnings 

related to the investment plus all expenses associated with the investment. Among the different 

alternatives the one that demonstrates the lowest MRR is the economic choice since it leaves, 

out of any available revenues, the maximum amount of plant earnings [29]. 

 

The calculation of MRR is divided in two parts, one proportional and the other not proportional 

to the investment of the analysed system option. The formula to calculate the MRR is given by 

[29]: 

 

𝐺 = 𝑋 + 𝐶 ∙ 𝐹 (4.1) 

 

where G describes the MRR per year, X the variable operating expenses, C the capital 

investment and F the fixed investment charge factor. The product of C and F includes the 

minimum acceptable earnings, depreciation, income taxes and fixed operating expenses. 

The application of the RR method requires present worth analysis and levelizing. Present worth 

analysis determines the equivalent value of present and future sums, discounting or 

compounding at some specified rate. Levelizing uses a specified discount rate to uniform 

annual amounts which are equivalent to a series of nonuniform amounts. That way all 

investments in a plan are expressed in a uniform annual basis over the life of the investment. 

Considering the above, figure 10 is presenting graphically the revenue requirements for an 

investment made initially, where c is the years prior to start up that the investment is made and 

L is the lifetime of the project in years [29]. 
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Figure 10 Revenue requirement for investment made initially [29] 

4.1.1. Variable expenses (X) 

 

The focus of the variable expenses when cost-reliability studies are conducted is on the effects 

of a failure. That amount depends on the configuration of the installation and the criticality of 

the failed component. Furthermore, except from the failure cost itself the total variable 

expenses depend on the duration of downtime. 

 

In terms of failure, the cost is affected by the damaged plant equipment, the extra maintenance 

costs, the production process losses and the cost to repair a failed component. Considering 

the duration of total downtime due to a failure, it is influenced by the repair time, the plant 

restart time, and the time required to change the source of the affected circuits, if that is 

applicable [13] [30]. 

 

During downtime due to a failure, losses and savings are taking place at the same time. Firstly, 

production is reduced and consequently sales are affected, and revenues are lost. On the 

other hand, savings are achieved due to the production related expenses that during downtime 

are on hold. Depending on the duration of the interruption, labour, power, fuel and material 

costs are reduced. Although those expenses might vary in time, it is assumed that they present 

a fixed value per hour during downtime. 

 

Consequently, the total amount of variable expenses can be described with following formula 

[13]: 

 

𝑋 = 𝜆[𝑥𝑖 + (𝑔𝑝 − 𝑥𝑝)(𝑟 + 𝑠)] (4.2) 
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where X are the variable expenses expressed in $ per year, λ is the failure rate expressed in 

failures per year, 𝑥𝑖 represents the extra expenses incurred per failure in $ per failure, 𝑔𝑝 are 

the revenues lost per hour of plant downtime in $ per hour and 𝑥𝑝 is related to the variable 

expenses saved per hour of plant downtime in $ per hour. Finally, regarding time, 𝑟 expresses 

the replacement or repair time in hours after a failure or the time required to switch sources 

and 𝑠 is the start-up time of plant after a failure, in hours. 

 

4.1.2. Capital investment (C) 

 

The methodology defines the capital investment as the expenditure related to the installation 

of the power distribution system of the plant or a part of that system. It is associated to the 

equipment, its installation cost and the system configuration.  

 

During cost-reliability analysis the option with the least required capital investment is not in 

most cases the preferable choice. For instance, redundancies or monitoring systems, might 

increase the required cost of the installation but on the other hand improve the reliability of the 

system and reduce the variable expenses due to a failure. This is exactly the point of the use 

of the RR method. 

 

4.1.3. Investment charge factor (F) 

As it was previously mentioned the investment charge factor includes the fixed expenses, 

depreciation, income taxes and the minimum acceptable rate of return on investment, allowing 

for risk [29].  

The formula to calculate the investment charge factor is the following: 

𝐹 =
(𝑆𝑐

𝑎𝐿
𝑓𝑟

⁄ ) − 𝑡𝑑𝑡

1 − 𝑡
+ 𝑒 (4.3) 

where 𝑆𝑐 is the growth factor or the future value factor and it is given by: 

𝑆𝑐 = (1 + 𝑅)𝑐 (4.4) 

where c is the number of years prior to start-up that an investment is made, and R is the 

minimum acceptable return on investment.  

R can be defined by the average rate of return on investment which is based either on past 

history or anticipated results. A typical value of minimum acceptable rate of return in many 

industrial plants is considered to be around 15%, thus it can be assumed that R=0.15. 

𝑎𝐿 is the amortization factor or leveling factor and can be calculated based on the following 

equation: 
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𝑎𝐿 = 𝑅 + 𝑑𝐿 (4.5) 

where L is the lifetime of investment in years and 𝑑𝐿 is the sinking fund factor given by: 

𝑑𝐿 =
𝑅

𝑆𝐿 − 1
(4.6) 

and 

𝑆𝐿 = (1 + 𝑅)𝐿 (4.7) 

𝑓𝑟 is the risk adjustment factor or probability of success and its determination is a matter of 

judgement. A typical value can be around 1 while for plants that present a risk higher than the 

average this value is lower. 

t are the income taxes per $ of investment (C) and 𝑑𝑡 is the income tax depreciation, levelized 

per $ of investment (C) and it is equal to: 

𝑑𝑡 =
1

𝐿
(4.8) 

Finally, parameter 𝑒 represents the fixed expenses such as insurance, property taxes and fixed 

maintenance cost. 

Equation 4.3 can also be expressed as: 

𝐹 = 𝑟 + 𝑑 + 𝑡 + 𝑒 (4.9) 

where r is the levelized return on investment per $ of investment and it is given by: 

𝑟 =
𝑆𝑐𝑅

𝑓𝑟 
(4.10) 

d is the levelized depreciation on investment per $ of investment: 

𝑑 =
𝑆𝑐𝑑𝐿

𝑓𝑟 
(4.11) 

and t is the levelized income taxes on investment per $ of investment: 

𝑡 = (
𝑆𝑐𝑎𝐿

𝑓𝑟
− 𝑑𝑡) (

𝑡

1 − 𝑡
) (4.12) 

The steps to perform economic comparisons based on RR methodology are summarized in 

figure 11. 
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Figure 11 Revenue Requirement method flow chart 
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5. Approach to Investigate the Impact of Predictive 

Maintenance 
 

In this chapter the approach to quantify the impact of the implementation of a predictive 

maintenance system is described. A literature research was conducted, and a number of 

publications were reviewed and considered to draw conclusions and take the decision on the 

best possible methodology according to the resources and data available. 

 

At [31] and [32] a failure rate analysis of high voltage circuit breakers along with the impact of 

preventive actions are presented. Twenty years of recorded failure rate data are considered to 

analyze the causes of failure of the circuit breakers components. Next, the components are 

classified in three categories and by utilizing the Weibull distribution their probability of failure 

and the failure rate as functions of time are approximated. Based on that information, 

replacement preventing actions of the circuit breaker components are suggested in specific 

years and the impact of those actions are quantified. Similar approach, based on the authors, 

can be followed for different components. 

 

A similar method as in the previous publication is followed in [33]. Based on an extensive study 

of SF6 circuit breakers the reliability of their parts is modeled and consequently modelling of 

maintenance actions is also achieved. The Weibull distribution and the condition failure 

intensity are utilized to quantify the effect of preventive maintenance. 

 

Paoletti et al. in [10] and [30] is focusing on condition based maintenance and the monitoring 

of electrical equipment. The approach quantifies the failure avoidance that can be achieved 

due to on-line predictive diagnostic technologies. A link between the most probable causes of 

failure and the available solutions is presented. 

 

Finally, Bertling et al. in [34], [35] and [36] proposes two approaches to quantify the preventive 

maintenance measures on reliability at electrical distribution systems. Both methods are based 

on RCM thus the critical components of the system are initially identified. The first approach 

considers that preventive maintenance actions lead to the reduction of causes of failure of the 

affected components and thus to a reduction of their failure rate. The exponential distribution 

is assumed, and the analyzed parameters are not considered time dependent. On the other 

hand, the second approach is based on functional relationship between failure rate and 

maintenance actions. Detailed knowledge of the mechanisms and the characteristics of failure 

rate are utilized in this case and consequently input data are required. Both methodologies 

were applied on a 11-kV cable at a distribution power system in Sweden. 



Pág. 40  Memoria 

 

5.1. Approach 

 

To be able to consider both the failure and the maintenance characteristics, time-dependent 

functions should be used. The probability density functions of the equipment should be known, 

thus failure data in a time period should be accessible. Although, historical failure data for 

industrial installations are not available due to the relatively new application of the advanced 

monitor systems. The data acquisition of equipment in industrial installations is a new process 

without many years applied in the field.  Additionally, even though some data might exist, 

access to them is not possible due to restrictions and property rights. Consequently, an 

approach utilizing average equipment failure data that are accessible (Gold Book Standard, 

RAM Table of Spreadsheet, IEEE 3006.8 Standard) is followed. 

 

The exponential distribution for the equipment is assumed implying a constant failure rate in 

time. The utilization of a Weibull or another distribution is not possible due to the 

aforementioned lack of data and instead a static approach is considered. 

 

The followed methodology considers references [30] and [34] to evaluate a new failure rate 

when a predictive maintenance system is implemented in an industrial installation. Approach 

1 in [34] is used as a base but with a different argument. Predictive maintenance with the 

frequent monitoring of the equipment enables the mitigation of the causes related to the 

monitored parameters whereas preventive maintenance based on a predefined schedule, is 

not. Additionally, is assumed that a predictive maintenance system provides warnings on the 

actual and predicted health condition of the equipment and triggers maintenance actions. 

 

The approach consists of the following basic five steps related to the spreadsheet methodology 

described in the previous chapter and then continuous with the definition of the failure rate 

depending on if a predictive maintenance system is implemented. The initial steps of the 

approach are presented in a flow chart format in figure 12. 

 

1. The first step of the approach is to define the components of the system in terms of 

voltage, type, length (for cables) and age. For instance, for a circuit breaker it is 

required to know the voltage level, if it is an indoor or outdoor, its type and if it is older 

than 15 years. The same information is required for transformers, cables, fuses, 

generators, motors and the rest of the equipment of the analyzed industrial installation. 

 

2. The next step is to define the Failure Rate and the MTTR of the equipment. The default 

values provided by the RAM table of the Spreadsheet tool can be used or be updated. 

Ideally, the source of the values should be the records of the analyzed installation 

otherwise, the default values could be utilized or be updated based on the IEEE 
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Standards [13] [37] or other databases. 

 

3. Next, the failure in service parameter, as it was described in the spreadsheet tool, 

should be defined for each component. The focus of the calculations is on the failures 

that lead to system downtime and not to every single failure, thus that factor should be 

adjusted on the RAM table of the tool. 

 

4. Based on the single line diagram of the installation, the protective zones are defined 

and are inserted in the tool.  

 

5. Lastly, the system configuration is applied according to the parallel or series connection 

of the protective zones of the system. Details for the aforementioned actions can be 

found in the previous chapter. 

 

 

Figure 12 Approach Flow Chart – Initial Steps 

 

The next steps of the approach are affected by the application or not of a predictive 

maintenance system. The flow chart diagram of the second part of the approach is presented 
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in figure 13. Both flow charts combined create the steps of the followed methodology. 

 

Predictive Maintenance Applied 

 

If a predictive maintenance system is applied the following series of steps should be performed 

to define the new reduced lambda factor: 

 

1. Firstly, only the monitored assets of the installation should be defined and be analyzed.  

 

2. Consequently, for each category (transformers, low and medium voltage circuit 

breakers), the causes of failure should be identified. This process will be furtherly 

analyzed in the following section. 

 

3. Next, the fault prediction efficiency should be set. This parameter is affected by the 

system’s implemented technology. 

 

4. Finally, for each cause of failure the impact of predictive maintenance should be 

calculated. The details of this process will be described in the following sections. 

 

5. The new reduced lambda factor (LF) for each category is calculated based on the 

following formula: 

𝐿𝐹𝑛𝑒𝑤 = 1 − 𝜂 ∙ ∑ 𝑥𝑖

𝑘

𝑖=1

(5.1) 

 

Where 𝜂 is the causes identification efficiency (predictive maintenance system 

efficiency), k is the total number of causes of failure for the equipment type and 𝑥𝑖 is 

the percentage of the cause of failure that can be addressed by the monitoring system. 

 

6. The calculated factors for each category can then be inserted in the RAM table of the 

tool. The new reduced failure rate is given by: 

 

𝜆𝑛𝑒𝑤 = 𝐹𝑖𝑆 ∙ 𝐿𝐹𝑛𝑒𝑤 ∙ 𝜆 (5.2) 

 

Where 𝐹𝑖𝑆 is the failure in service factor and 𝜆 is the failure rate provided by the 

databases or the user. In the base case scenario without the application of a predictive 

maintenance system the 𝐿𝐹𝑛𝑒𝑤 factor is equal to one. 
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Figure 13 Approach Flow Chart - Next Steps 

7. The results of the application of a predictive maintenance system based on the new  

reduced failure rate can be found in the Point Table of the tool. 

 

8. Based on the reliability calculations, cost benefit analysis by utilizing the Revenue 

Requirement Method can be performed. 
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Base Case 

 

1. If we consider the base case, then the lambda factor in the RAM table is equal to one 

for all the components.  

 

2. There is no change on the failure rate and its final value is only affected by the failure 

in service parameter (FiS): 

𝜆𝑛𝑒𝑤 = 𝐹𝑖𝑆 ∙ 𝜆 (5.3) 

 

3. The results of the calculations can be found in the Point Table of the tool. 

 

4. Finally, according to the reliability analysis of the base and the predictive maintenance 

case, comparisons can be performed along with cost benefit analyses of both cases.  

5.2. Causes of Failure 

The execution of the methodology requires the identification of the causes of failure for the 

assets under monitoring. Additionally, as it will be described in the following paragraph, a 

predictive maintenance system utilizes sensors and measures parameters for transformers 

and low and medium voltage circuit breakers. Consequently, in this paragraph the causes of 

failure for the aforementioned types of equipment are presented. 

 

The data are based on reports [38] and [39] where initiating and contributing causes are 

presented along with the suspected failure responsibility. Although, during the analysis only 

the initiating causes will be considered since they can effectively be related to the monitored 

parameters described in the next paragraph. Finally, it is assumed that the following data 

present the same values in a yearly basis. This is important since the calculations are based 

on failures per year. 

 

The initiating causes of failure in the case of low voltage electromechanical circuit breakers are 

summarized in table 4. It should be noted that in the results molded case circuit breakers are 

not included. As it can be observed, malfunction of protective relay or tripping device is 

dominating the failures by 93%. The remaining percentage is reported in other causes whereas 

all the rest of the categories indicate no failure. 
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Table 4 Low and Medium Voltage Circuit Breaker Initiating Causes [38] 

 LV CB MV CB 

Initiating Cause 
Percentage 

(%) 

Percentage 

(%) 

Transient overvoltage such as lighting, 

switching surges, or system faults 
- 25 

Insulation Breakdown - - 

Mechanical burnout, friction or sizing of 

moving parts 
- - 

Mechanical breakdown such as cracking, 

loosening abrading or deforming of static 

structural parts  

- 25 

Physical damage or shorting from outside 

source such as vehicular accident 
- - 

Electrical fault or malfunction - 25 

Malfunction of protective relay or tripping 

device 
93 - 

Other auxiliary device malfunction - - 

Low, or no, auxiliary voltage for circuits such 

as air compressors and SF6 heaters 
- - 

Other 7 25 

 

Additionally, in table 4 information regarding the medium voltage circuit breakers can be found. 

It should be noted that those percentages are derived from a small sample according to [38]. 

The results indicate an equal distribution of failure among four causes. Specifically, transient 

overvoltage, mechanical breakdowns, electrical fault or malfunctions and the other category 

demonstrate failures of 25% each. 

 

Finally, the information regarding the power transformers is summarized in table 5. All the 

categories in this case exhibit a failure occurrence with the dominating causes being the one 

related to winding insulation breakdowns, transient overvoltage disturbances and insulating 

bushing breakdown.  
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Table 5 Transformer Initiating Causes [38] 

Initiating Cause 
Percentage 

(%) 

Transient overvoltage disturbance 

(switching surges, arcing ground fault etc.) 

16.4 

Overheating 2.7 

Winding insulation breakdown 29.1 

Insulating bushing breakdown 13.6 

Other insulation breakdown 5.5 

Mechanical breaking, cracking, loosening, 

abrading or deforming of static or structural 

parts 

7.3 

Mechanical burnout, friction or seizing of 

moving parts 

2.7 

Mechanically caused damage from foreign 

source (digging, vehicular accident etc.) 

2.7 

Shorting by tools or other metal objects 0.9 

Shorting by birds, snakes, rodents etc. 2.7 

Malfunction of protective relay control 

device or auxiliary device 

4.6 

Improper operating procedure 3.6 

Loose connection or termination 7.3 

Other 0.9 

 

5.3. Monitored Parameters and Causes of Failure 

A predictive maintenance system based on specialized sensors and controllers is assessing 

the aging, the wear and the stress level of the equipment, while based on specified rules fault 

detection is performed [40]. Additionally, model-based diagnosis, machine learning algorithms 

and advanced statistical treatment enable the prediction of faults. Based on those features, 

optimization of maintenance plans and advices on optimum usage of assets are achieved. 

 

The system enables the monitoring of low and medium voltage circuit breakers, dry and oil 

transformers and variable speed drivers. Its background is based on equipment manufacturer 

reports that indicate the mechanical endurance, the nominal lifetime and include test results 

[40]. Additionally, the system is taking into account international standards such as the IEC 

and IEEE, thermal and aging models of the equipment, field experience and laboratory bench 

testing. Finally, advanced statistics and machine learning enable the detection of any deviation 
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from normal conditions. 

 

In table 6 to 8 the functions of the system for low voltage circuit breakers, medium voltage 

circuit breakers and transformers are presented along with their descriptions and the required 

parameters [41]. 

 

Table 6 System functions for low voltage circuit breakers 

Function Parameters Required Description 

Electrical Wear Contact wear Measure degradation of circuit 

breaker contact based on 

cumulative breaking current by 

protection relay or computed 

cumulative breaking current 

history 

Mechanical Wear Number of operations Measure degradation of Circuit 

Breaker mechanism based on 

number of operations vs 

maximum operations (Failure 

of mechanical part (not 

opening or not closing)) 

Temperature Ageing Trip Unit Current 

Ambient temperature 

Provide Ageing of trip unit 

related to temperature 

Corrosion Ageing of Circuit 

Breaker 

Ambient temperature 

Air pollution level 

Salty environment 

Provide impact of corrosion 

due to environmental 

conditions (incl. Temperature) 

on asset Ageing 

Corrosion Ageing Trip Unit Air pollution level 

Salty environment 

Provide impact of corrosion (no 

temperature) on asset Ageing 

Identify settings modifications 

(several settings in amps and 

seconds) 

Settings Detect and identify settings 

change 
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Table 7 System functions for medium voltage circuit breakers 

Function Parameters Required Description 

Electrical Wear Total cumulative 

breaking current (kA²) 

Measure degradation of circuit 

breaker contact based on 

cumulative breaking current by 

protection relay or computed 

cumulative breaking current 

history 

Mechanical Wear Number of operations Measure degradation of Circuit 

Breaker mechanism based on 

number of operations vs 

maximum operations (Failure 

of mechanical part (not 

opening or not closing)) 

Auxiliary Voltage Status Auxiliary voltage Check voltage level 

compliance with specifications 

to ensure proper operation of 

the CB/protection relay 

Stress Level N/A Provides a synthetized vision 

of overall Ageing / wear / usage 

impact to define stress level 

PD sensors N/A Detect partial discharges 

 

Table 8 System functions for transformers 

Function Parameters Required Description 

Top Oil Temperature Ambient temperature 

3 phase currents 

Compute the oil temperature 

based on the current 

Hot spot temperature Top oil temperature Compute the hot spot 

temperature based on top oil 

temperature 

PD sensors N/A Detect partial discharges 

Connections monitoring N/A Thermal monitoring of 

connections 

Protection relay status N/A Alarm from protection relay 

fault status 

Health index All KPIs Indicators aggregation to 

define the health index 
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In tables 9 to 11 the predictive maintenance (PdM) system functions are related with the 

causes of equipment failure. To be able to perform that connection, deep understanding of the 

failure mode mechanisms and the utilized technology is required. The methodology at this step 

considered the approach described in [30]. Although an investigation took place, the following 

results are based mostly on use cases of actual predictive maintenance system 

implementation [42] and interviews with experts [43].  

 

Table 9 LV Circuit Breaker addressable causes of failure by PdM 

Initiating Cause 
Percentage 

(%) 
PdM System function 

Transient overvoltage such as lighting, 

switching surges, or system faults 
- NO 

Insulation Breakdown - NO 

Mechanical burnout, friction or sizing of 

moving parts 
- 

Electrical Wear 

Mechanical Wear 

Mechanical breakdown such as cracking, 

loosening abrading or deforming of static 

structural parts  

- NO 

Physical damage or shorting from outside 

source such as vehicular accident 
- NO 

Electrical fault or malfunction - NO 

Malfunction of protective relay or tripping 

device 
93 

Temperature Aging Trip Unit 

Corrosion Ageing of CB 

Corrosion Ageing of Trip Unit 

Identify settings modification 

Other auxiliary device malfunction - NO 

Low, or no, auxiliary voltage for circuits such 

as air compressors and SF6 heaters 
- NO 

Other 7 NO 

TOTAL % OF CAUSES ADDRESSED 93  
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Table 10 MV Circuit Breaker addressable causes of failure by PdM 

Initiating Cause 
Percentage 

(%) 
PdM System function 

Transient overvoltage such as lighting, 

switching surges, or system faults 
25 

NO 

Insulation Breakdown - PD Sensors 

Mechanical burnout, friction or sizing of 

moving parts 
- 

Electrical Wear 

Mechanical Wear 

Mechanical breakdown such as cracking, 

loosening abrading or deforming of static 

structural parts  

25 

NO 

Physical damage or shorting from outside 

source such as vehicular accident 
- 

NO 

Electrical fault or malfunction 25 Stress Level 

Malfunction of protective relay or tripping 

device 
- 

NO 

Other auxiliary device malfunction - NO 

Low, or no, auxiliary voltage for circuits such 

as air compressors and SF6 heaters 
- 

Auxiliary Voltage Status 

Other 25 NO 

TOTAL % OF CAUSES ADDRESSED 25  

 

Table 11 Oil Transformer addressable causes of failure by PdM 

Initiating Cause 
Percentage 

(%) 
PdM System function 

Transient overvoltage disturbance 

(switching surges, arcing ground fault etc.) 

16.4 NO 

Overheating 2.7 Top Oil Temperature 

Hotspot Temperature 

Winding insulation breakdown 29.1 NO 

Insulating bushing breakdown 13.6 PD Sensors 

Other insulation breakdown 5.5 Hotspot Temperature 

Mechanical breaking, cracking, loosening, 

abrading or deforming of static or structural 

parts 

7.3 NO 

Mechanical burnout, friction or seizing of 

moving parts 

2.7 Connections monitoring 

Mechanically caused damage from foreign 2.7 NO 
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Initiating Cause 
Percentage 

(%) 
PdM System function 

source (digging, vehicular accident etc.) 

Shorting by tools or other metal objects 0.9 NO 

Shorting by birds, snakes, rodents etc. 2.7 NO 

Malfunction of protective relay control 

device or auxiliary device 

4.6 Protection relay status 

Improper operating procedure 3.6 Health Index 

Loose connection or termination 7.3 Connections monitoring 

Other 0.9 NO 

TOTAL % OF CAUSES ADDRESSED 40  

 

The results of the analysis indicate that 93, 25 and 40 percent of causes of failure can be 

mitigated for the low and medium voltage circuit breakers and oil transformers, respectively. It 

was assumed that the detection is leading to a complete elimination of the cause. Based on 

the results steps 2 and 4 of the approach when a predictive maintenance system is 

implemented, are defined. 

5.4. Defining the impact of Predictive Maintenance in the failure 

rate 

 

The lack of time-based data dictates an approach that is built on average failure rate and mean 

time to repair values. Those data are utilized and along with the proposed methodology the 

impact of predictive maintenance on the failure rate due to the monitored parameters linked 

with some causes of failure, can be quantified. Although, the impact of additional maintenance 

actions that take place is not addressed in this approach. 

 

Predictive maintenance differs from preventive on the fact that the maintenance actions are 

performed according to the actual condition of the equipment and not on a predefined 

schedule. Consequently, it can be said, that predictive maintenance optimizes the time that 

preventive maintenance is performed. Additionally, predictive maintenance by monitoring the 

equipment enables the mitigation of the causes of failures that can be detected. Thus, a 

permanent reduction of the failure rate is achieved. 

 

In other words, with predictive maintenance a component is not replaced due to its high 

possibility to fail in the upcoming period, as in the case of preventive, but actions are taken by 

monitoring the conditions and the health status of the component. Additionally, by frequently 

monitoring different parameters the new reduced failure rate is kept constant in its decreased 
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value.  

 

In summary, the impact of predictive maintenance can be considered in two aspects: 

• Firstly, it mitigates the addressable by the system causes of failure, thus reduces the 

overall failure rate of the equipment. In other words, it provides warnings and triggers 

maintenance actions that are not allowing the failures related to those causes to 

happen. 

• Secondly, optimizes the time that preventive maintenance should be performed based 

on the actual conditions of the component and not on a schedule. 

 

The current approach considers and quantifies the impact of the first point. By applying 

predictive maintenance, the failure rate is reduced. The impact of other optimized preventive 

maintenance actions cannot be represented when a constant failure rate is assumed. When 

the component is replaced or fixed, it returns to its initial fixed failure rate, thus no impact is 

visible. That can only be observed when the failure rate increases in time. Although, as it was 

previously explained that would require time depended data. 

 

Figure 14 shows the impact of predictive maintenance (PdM) due to causes of failure mitigation 

from the initial red to the new green failure rate. The failure rate is assumed to be constant. 

This is the impact shown by the approach of this project. 

 

 

 

Figure 14 Impact of PdM - Constant failure rate 
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Figure 15 shows the impact of predictive maintenance in total. The red line represents the 

initial failure rate of the system that is reduced to the green line due to the mitigation of causes 

of failure by predictive maintenance. In that case, based on the graph, the lifetime of the system 

is extended. Next, preventive maintenance actions are taking place according to the conditions 

of the equipment, and the failure rate is furtherly reduced by following the black line. 

Consequently, it is understandable that in reality predictive and preventive maintenance 

coexist. 

 

 

Figure 15 Impact of PdM - Increasing failure rate 

 

By implementing the approach and the analysis described in this chapter, figure 16 

summarizes the addressable causes of failure on the monitored equipment when a predictive 

maintenance (PdM) system is applied in an industrial installation. Additionally, the chart 

includes a reduced percentage of the addressable causes as a result of the system efficiency. 

The application of a PdM system is not considered ideal thus, a realistic 67% of causes 

identification efficiency is assumed. 

 

Causes identification efficiency refers to the effectiveness of predicting a potential failure by 

the online monitoring devices [44]. That parameter can be affected by the technical capability, 

the failure mode and the system sensitivity and availability. 
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Figure 16 Percentage of addressable causes of failure for the equipment under monitoring 

 

 

93%

25%

40%

62%

17%
27%

0%

20%

40%

60%

80%

100%

LV CBs MV CBs Oil Transformer

% of addresable causes by PdM

% of causes addresed considering 67% system efficiency



Impact of predictive maintenance in the reliability level and the maintenance cost of industrial installations  Pag. 55 

 

 

6. Results 
 

In this chapter the methodologies and the approach are combined and are applied in industrial 

installation in an attempt to investigate the impact of predictive maintenance. The spreadsheet 

methodology described in chapter 3 is utilized considering the approach of chapter 5. At the 

end a cost-benefit analysis is conducted according to the revenue requirement methodology 

presented in chapter 4. 

 

The focus will be on indexes such as the failure rate, the forced downtime and the meat time 

to repair (MTTR). Those indexes can be calculated based on the failure rate assuming an 

exponential distribution. Additionally, force downtime is used to derive the average downtime 

per failure at a specific point and then that parameter is utilized in the cost benefit analysis with 

the revenue requirement method. Alternatively, the MTTR can be used. 

 

The steps for the reliability analysis are the ones summarized in figure 12 and 13 whereas for 

the cost benefit evaluation the actions of figure 11 were followed. Those steps are applied in 

four different industrial installations. The first two are theoretical, are coming from the literature 

and are utilized for sensitivity analysis of reliability parameters. The last two configurations are 

real cases where the impact of predictive maintenance is under evaluation. 

6.1. Gold Book Standard Network 

The gold book standard network was firstly introduced in paragraph 3.1. The reason for its use 

is the fact that represents a system configuration found in industrial and commercial facilities, 

while at the same time it enables different reliability methodologies to be compared [13]. 

 

The Gold Book Standard Network is a dual utility source system with standby generation. The 

service transformers supply a double-ended 4000 A, 600 V bus, referred as main switchgear. 

Mechanical equipment is served from the 800 A, 600 V double-ended bus, supplied from the 

main switchgear. The network is supplied by two independent 15 kV primary distribution 

feeders. There are four diesel engine generators at the facility where two out of four generators 

are required to meet the network load demands at all times. The single line diagram of the 

network with the protective zones is presented in figure 17. 
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Figure 17 Gold Book Standard Network with protective zones added [13] 

 

Regarding the assumptions of the network, it is considered that manual switching operation 

require 15 min, and generators start automatically. Furthermore, as it was mentioned 

previously two out of four generators are necessary to carry the load, while the utility supply 

and the switchgear are design to carry the load from one single source. 

 

The equipment of the network is listed in table 12 with their related failure rate, MTTR and 

failure in service data (percentage of failures that cause downtime). The utilized values in this 

chapter are related to an average level of maintenance which means that in the facilities the 

manufacturer’s recommended maintenance policies was followed. 
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Table 12 Equipment of gold book standard network [13] 

Equipment Failure rate 

(f/yr) 

MTTR (h) Failure in 

Service 

(%) 

Single-circuit utility supply 1.956 1.32 100 

Cable Arial, <=15kV, per mile 0.04717000 1.82 98 

Diesel Eng Gen, Packaged, 

Standby, 1500kW 

0.12350000 18.28 20 

Manual Disconnect Switch 0.00174000 1.00 100 

Fuse, 15 kV 0.10154000 4.00 100 

Cable below Ground in conduit, 

<=600V 

0.00201000 11.22 98 

Transformer, Liquid, Non-Forced 

Air, 3000kVA 

0.00111000 5.00 90 

Ckt. Breaker, 600V, Draw out, 

NO, >600A 

0.00553000 2.00 5 

Ckt. Breaker, 600V, Draw out, 

NC, >600A 

0.00185000 0.50 5 

Switchgear, Bare bus, 600V 0.00949000 7.3 100 

Ckt. Breaker, 600V Draw out, 

NC, <600A 

0.00021000 6.00 5 

Ckt. Breaker, NC, >600A 0.00960000 9.60 5 

Ckt. Breaker, 3Ph Fixed, NC, 

<=600A 

0.00520000 5.80 5 

Ckt. Breaker, 3Ph Fixed, 

NO, >600A 

0.00343000 37.50 5 

Cable, Above Ground, No 

conduit, <=600V 

0.00012000 2.50 98 

Cable, Above Ground, Trays, 

<=600V 

0.00141000 10.50 98 

Switchgear, Insulated bus, 

<=600V 

0.00170000 2.40 100 

Bus Duct 0.00012500 12.90 100 

 

In the following subsection several sensitivity analyses are conducted to evaluate the impact 

of different parameters on the reliability indices when predictive maintenance is applied. 
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6.1.1. Number of monitored assets 

 

The analyzed configuration is theoretical and there are no assets under monitoring, thus an 

investigation of the impact on the reliability of the number of monitored equipment is conducted. 

Three different scenarios are considered. The first is the base case with no assets under 

monitor. The second assumes that all transformers, LV and MV circuit breakers are monitored. 

Finally, in a more realistic approach, during the last scenario, the critical equipment as 

indicated with a green dot in figure 17 is under condition monitoring. 

 

For the calculations the system efficiency was considered to be 67%. That parameter will be 

investigated further in paragraph 6.1.3. 

 

In table 13 the results between the different cases are summarized. The failure rate of each 

case along with the percentage difference from the base case are provided. The failure rate 

percentage reduction is equal to the MTBF percentage since the two parameters are linked 

with equation 3.18. 

 

As expected, the higher the number of monitored assets the bigger the impact of PdM. For 

instance, at point 16 with all equipment under monitoring (transformers, LV and MV circuit 

breakers) the failure rate is reduced by 3.7% whereas in the case of critical equipment 

monitoring the reduced percentage is just 0.5. Although, the cost between the implementation 

of these two cases will vary and probably will not justify the first choice when a cost benefit 

analysis is conducted. 

 

Regarding the second scenario, a 28.24% percent reduction in the failure rate per year of 

points 6 and 7 is observed. These points are the link between the diesel generators and the 

utilities supplies and thus they exhibit a low value of failure rate. Consequently, the impact on 

the reduction of the failure rate is more visible since it affects the low decimal points of the 

failure rate of the equipment. This point will be furtherly discussed in section 6.2.2. 
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Table 13 Number of monitored assets results comparison 

Point 

number 

Base Case 

Failure rate 

(f/yr) 

All 

transformers, 

LV and MV 

CBs under 

monitoring 

Failure rate 

(f/yr) 

Difference 

(%) 

Critical 

equipment 

under 

monitoring 

Failure rate 

(f/yr) 

Difference 

(%) 

Point 1 2.0039666 2.0039666 0.0000% 2.0039666 0.0000% 

Point 2 2.0039666 2.0039666 0.0000% 2.0039666 0.0000% 

Point 3 2.234132111 2.233862381 -0.0121% 2.233862381 -0.0121% 

Point 4 2.234132111 2.233862381 -0.0121% 2.233862381 -0.0121% 

Point 6 0.001829771 0.001312909 -28.2473% 0.001829771 0.0000% 

Point 7 0.001829771 0.001312909 -28.2473% 0.001829771 0.0000% 

Point 8 0.00992615 0.009677233 -2.5077% 0.009868513 -0.5807% 

Point 9 0.00992615 0.009677233 -2.5077% 0.009868513 -0.5807% 

Point 10 0.01104209 0.01078663 -2.3135% 0.010984453 -0.5220% 

Point 11 0.01278225 0.012475696 -2.3983% 0.012724613 -0.4509% 

Point 12 0.01013625 0.009829696 -3.0243% 0.010020976 -1.1372% 

Point 13 0.01013625 0.009829696 -3.0243% 0.010020976 -1.1372% 

Point 14 0.01278225 0.012475696 -2.3983% 0.012724613 -0.4509% 

Point 15 0.01131845 0.01106299 -2.2570% 0.011260813 -0.5092% 

Point 16 0.01130209 0.010884624 -3.6937% 0.011244453 -0.5100% 

Point 18 0.01061625 0.010010608 -5.7049% 0.010201888 -3.9031% 

Point 19 0.01061625 0.010010608 -5.7049% 0.010201888 -3.9031% 

Point 21 0.01157845 0.011160984 -3.6055% 0.011520813 -0.4978% 

 

 

6.1.2. Failures causing downtime and standard failures 

 

So far only the failures of the equipment that lead to system failure were analyzed. To be able 

to assess the impact of PdM to the standard failures the failure in service parameter in the 

spreadsheet tool has to be adjusted for all the equipment to 100%. 

 

Based on that, and assuming a system efficiency of 67% with monitoring applied only on the 

critical components, the results of a predictive maintenance system on the standard failures 

are presented in table 14. Moreover, for comparison, the results (difference) from the analysis 

of failures that cause downtime from the previous section are included. 
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Table 14 Standard failures and failures causing downtime 

 Failures causing 

downtime 

Standard failures 

Point 

number 

Difference (%) Base case 

Failure rate 

(f/yr) 

PdM 

applied 

Failure rate 

(f/yr) 

Difference (%) 

Point 1 0.0000% 2.00491 2.00491 0.0000% 

Point 2 0.0000% 2.00491 2.00491 0.0000% 

Point 3 -0.0121% 2.235240114 2.234942634 -0.0133% 

Point 4 -0.0121% 2.235240114 2.234942634 -0.0133% 

Point 6 0.0000% 0.021180966 0.021180966 0.0000% 

Point 7 0.0000% 0.021180966 0.021180966 0.0000% 

Point 8 -0.5807% 0.017648902 0.016496164 -6.5315% 

Point 9 -0.5807% 0.017648902 0.016496164 -6.5315% 

Point 10 -0.5220% 0.018986902 0.017834164 -6.0712% 

Point 11 -0.4509% 0.022318902 0.021166164 -5.1649% 

Point 12 -1.1372% 0.019618902 0.017313429 -11.7513% 

Point 13 -1.1372% 0.019618902 0.017313429 -11.7513% 

Point 14 -0.4509% 0.022318902 0.021166164 -5.1649% 

Point 15 -0.5092% 0.019268902 0.018116164 -5.9824% 

Point 16 -0.5100% 0.024186902 0.023034164 -4.7660% 

Point 18 -3.9031% 0.029218902 0.020931669 -28.3626% 

Point 19 -3.9031% 0.029218902 0.020931669 -28.3626% 

Point 21 -0.4978% 0.024468902 0.023316164 -4.7110% 

 

For the low voltage circuit breakers, the failure in service parameter is only 5% when the 

downtime failures are analyzed, whereas for standard failures that parameter is set to 100%. 

Additionally, one of the main characteristics of the gold book standard network is that it consists 

entirely from low voltage circuit breakers where the impact of PdM is the highest according to 

paragraph 5.3. Consequently, due to those two reasons the failure rate per year of standard 

failures can be reduced by up to 28.36%. 

 

6.1.3. Prediction efficiency 

 

In this subparagraph, the impact of prediction efficiency on the failure rate is investigated. It is 
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assumed, as in the previous case, that only critical equipment is under monitoring. The focus 

of the calculations will be on points 18 and 19 in which important loads are supplied. These 

points exhibit the same characteristics thus the results for one of them applies for both. 

 

Table 15 can be considered as an extension of figure 16 with more information regarding 

causes of failures addressed and system efficiency. 

 

Table 15 Causes of failure addressed by PdM against system efficiency 

System Efficiency Addressable 

causes of failure 

for LV CBs 

Addressable 

causes of failure 

for MV CBs 

Addressable 

causes of failure 

for Transformers 

20% 19% 5% 8% 

30% 28% 8% 12% 

40% 37% 10% 16% 

50% 47% 13% 20% 

60% 56% 15% 24% 

67% 62% 17% 27% 

70% 65% 18% 28% 

80% 74% 20% 32% 

90% 84% 23% 36% 

100% 93% 25% 40% 

 

By applying the different percentage for each system efficiency case on the lambda factor of 

the spreadsheet tool, the following graph is obtained. 

 

 

Figure 18 Failure rate reduction at point 18 vs system efficiency 

 

The graph indicates a linear relationship of the system efficiency with the percentage of failure 
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rate reduction on point 18. The best case enables the mitigation of causes of failure for the LV, 

MV circuit breakers and transformers by 93, 25 and 40 percent, respectively, leading to a total 

failure rate reduction of 5.83 at point 18 of the installation. Although, along this project, as it 

was previously mentioned, a system efficiency of 67% was considered as a realistic value 

according to [43]. 

6.2. Alternative to the G.B. Std. Net. 

 

In [21] an alternative network to the gold book standard is proposed to deal with larger and 

more complex systems found in the industry. Some concepts that are commonly found and 

are included in the model are the use of double-ended systems with automatic switches, 

normally open and normally close circuit breakers. The idea of using the model is to perform 

comparisons and challenge different analytical methodologies. Although, in this section the 

model is used to evaluate the impact of a predictive maintenance to the failure rate at different 

points of the installation. 

 

In figure 19 the single line diagram of the alternative network with its protective zones is 

presented and in table 16 the equipment of the model is listed with the failure rate, the MTTR 

and the failure in service data. 

 

Figure 19 Alternative Network with protective zones added [21] 
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Table 16 Equipment of alternative network [21] 

Equipment Failure rate 

(f/yr) 

MTTR (h) Failure in 

Service 

(%) 

Bus Duct, Outdoor, > 600v 0.00030000 9.50 40 

Bus Duct, Outdoor, 600v 0.00033300 9.50 40 

Cable, 15 KV Tray 0.00360000 48.00 98 

Cable, 5 KV Tray 0.00523000 48.00 98 

Cable, 600 V Tray 0.00400000 5.00 98 

Circuit Breaker, 15 KV Indoor 0.00360000 8.00 5 

Circuit Breaker, 5 KV Indoor 0.00400000 8.00 5 

Circuit Breaker, 600 V ID 

Metaclad 

0.00500000 16.00 5 

Circuit Breaker, 600 V Molded 0.00520000 4.00 50 

Fused switch, 5 KV Enclosed, 

indoor 

0.00250000 8.00 100 

MCC, 600 V Vert Section 0.00100000 72.00 80 

Starter MCC, motor 600V 0.01390000 24.00 80 

Starter, motor E-2 and E-1 0.00500000 24.00 75 

Switch, Auto Transfer mechanism 0.07800325 6.31 95 

Switchgear, Cubicle Indoor > 

600v 

0.00191700 36.00 8 

Switchgear, Cubicle Indoor 600v 0.00720000 36.00 8 

Transformer 300 - 10000 KVA 0.00100000 300.00 90 

5 kv Motor 0.05000000 250.00 94 

Utility U1 and U2 0.22222222 0.63 100 

480 v Motor 0.08000000 8.00 100 

Utility U3 4.75000000 2.16 100 

    

 

6.2.1. Results 

 

In table 17 the results of the reliability analysis on the alternative network are presented. In this 

case it was assumed that all the transformers, LV and MV circuit breakers are under monitoring 

and the predictive maintenance system efficiency is 67%. Both standard failures and failures 

related to downtime are presented in the table with their percentage difference from each base 

case. 
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Table 17 Standard failures and failures causing downtime 

 Failures causing downtime Standard failures 

Point 

number 

Base case 

Failure 

rate (f/yr) 

PdM 

applied 

Failure 

rate (f/yr) 

Difference 

(%) 

Base case 

Failure 

rate (f/yr) 

PdM 

applied 

Failure 

rate (f/yr) 

Difference 

(%) 

Point 1 0.222375582 0.222376 0.0000% 0.224139222 0.224139 0.0000% 

Point 2 0.222375582 0.222376 0.0000% 0.224139222 0.224139 0.0000% 

Point 3 4.75015336 4.750153 0.0000% 4.751917 4.751917 0.0000% 

Point 4 0.223015662 0.222986 -0.0135% 0.233490222 0.232887 -0.2583% 

Point 5 0.223475742 0.223446 -0.0135% 0.239241222 0.238638 -0.2520% 

Point 6 4.75140688 4.751377 -0.0006% 4.768936 4.768333 -0.0126% 

Point 7 0.234659022 0.234358 -0.1285% 0.259507222 0.258033 -0.5680% 

Point 8 0.234659022 0.234358 -0.1285% 0.259507222 0.258033 -0.5680% 

Point 9 0.234659022 0.234358 -0.1285% 0.259507222 0.258033 -0.5680% 

Point 10 0.235119102 0.234818 -0.1282% 0.265258222 0.263784 -0.5557% 

Point 11 0.230201742 0.2299 -0.1310% 0.254041222 0.252567 -0.5802% 

Point 12 0.239529102 0.239228 -0.1259% 0.269758222 0.268284 -0.5464% 

Point 13 0.235272462 0.234971 -0.1281% 0.267175222 0.265701 -0.5517% 

Point 14 0.235119102 0.234818 -0.1282% 0.265258222 0.263784 -0.5557% 

Point 15 4.76305024 4.762749 -0.0063% 4.794953 4.793479 -0.0307% 

Point 16 4.7632036 4.762902 -0.0063% 4.79687 4.795396 -0.0307% 

Point 17 4.75330288 4.753001 -0.0063% 4.781336 4.779862 -0.0308% 

Point 18 0.235250416 0.234878 -0.1583% 0.269495434 0.266676 -1.0463% 

Point 19 0.024058192 0.023957 -0.4202% 0.035951976 0.034459 -4.1530% 

Point 20 0.304978422 0.304677 -0.0989% 0.333507222 0.332033 -0.4420% 

Point 21 0.338757882 0.338215 -0.1602% 0.364384222 0.362642 -0.4781% 

Point 22 0.251653242 0.251111 -0.2157% 0.289471222 0.287729 -0.6018% 

Point 23 0.239882462 0.239547 -0.1397% 0.275675222 0.273531 -0.7777% 

Point 24 0.235625822 0.235291 -0.1422% 0.273092222 0.270948 -0.7851% 

Point 25 4.7634036 4.763069 -0.0070% 4.80087 4.798726 -0.0447% 

Point 26 0.024724196 0.024619 -0.4272% 0.035719614 0.034848 -2.4403% 

Point 27 0.024742565 0.024637 -0.4268% 0.035949435 0.035078 -2.4247% 

Point 28 4.828749976 4.828293 -0.0095% 4.865639259 4.86105 -0.0943% 

Point 29 0.261503242 0.260805 -0.2671% 0.306471222 0.301614 -1.5850% 

Point 30 0.353799242 0.353101 -0.1974% 0.401571222 0.396714 -1.2096% 
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 Failures causing downtime Standard failures 

Point 31 0.339084738 0.338386 -0.2060% 0.390754481 0.385897 -1.2431% 

Point 32 4.832149976 4.831693 -0.0095% 4.871839259 4.86725 -0.0942% 

Point 33 0.235425842 0.235124 -0.1281% 0.269094222 0.26762 -0.5478% 

Point 34 4.76335698 4.763055 -0.0063% 4.798789 4.797315 -0.0307% 

Point 35 0.235119102 0.234818 -0.1282% 0.265258222 0.263784 -0.5557% 

Point 36 0.235472462 0.235137 -0.1423% 0.271175222 0.269031 -0.7906% 

Point 37 4.76305024 4.762749 -0.0063% 4.794953 4.793479 -0.0307% 

Point 38 4.7634036 4.763069 -0.0070% 4.80087 4.798726 -0.0447% 

 

According to the results, a reduction up to 4.15% can be achieved regarding the standard 

failures, whereas in the case of failures per year that cause downtime the reduction is much 

lower due to the impact of the failure in service factor on the calculations. Specifically, for the 

circuit breakers, when the analysis of system failures is conducted, the failure in service factor 

is only 5%, since only a small amount of circuit breakers failure lead to system failure. Thus, 

considering that for every circuit breaker of the system, it is understandable that any impact of 

a predictive maintenance system is low. Equation (5.2) analyzed in chapter 5 is used to 

describe that relationship between the different parameters.  

 

6.2.2. Impact of the utility source 

 

The previous results trigger a question about the impact of the source failure rate on the 

calculations. 

 

Based on the listed equipment of table 16 and the single line diagram of the system there are 

three utility supplies. The first two have failure rate and MTTR data coming from conventional 

textbooks such as the gold book standard. On the other hand, the third utility supply has a 

more real-life performance values based on [21]. 

 

The points linked to the third source, which present a much higher failure rate compare to the 

other two sources, show a small impact when a predictive maintenance system is applied 

based on the results of table 17. To investigate that further, the results of an unrealistic scenario 

with the source omitted are presented in table 18. 

 

As in the previous case all transformers, LV and MV circuit breakers are assumed under 

monitor with a system efficiency of 67%. 
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Table 18 Standard failures with and without system sources omitted 

 Standard failures with utility 

sources 

Standard failures without utility 

sources 

Point 

number 

Base case 

Failure 

rate (f/yr) 

PdM 

applied 

Failure 

rate (f/yr) 

Difference 

(%) 

Base case 

Failure 

rate (f/yr) 

PdM 

applied 

Failure 

rate (f/yr) 

Difference 

(%) 

Point 1 0.224139222 0.224139 0.0000% 0.001917 0.001917 0.0000% 

Point 2 0.224139222 0.224139 0.0000% 0.001917 0.001917 0.0000% 

Point 3 4.751917 4.751917 0.0000% 0.001917 0.001917 0.0000% 

Point 4 0.233490222 0.232887 -0.2583% 0.011268 0.010665 -5.3514% 

Point 5 0.239241222 0.238638 -0.2520% 0.017019 0.016416 -3.5431% 

Point 6 4.768936 4.768333 -0.0126% 0.018936 0.018333 -3.1844% 

Point 7 0.259507222 0.258033 -0.5680% 0.037285 0.035811 -3.9533% 

Point 8 0.259507222 0.258033 -0.5680% 0.037285 0.035811 -3.9533% 

Point 9 0.259507222 0.258033 -0.5680% 0.037285 0.035811 -3.9533% 

Point 10 0.265258222 0.263784 -0.5557% 0.043036 0.041562 -3.4250% 

Point 11 0.254041222 0.252567 -0.5802% 0.031819 0.030345 -4.6325% 

Point 12 0.269758222 0.268284 -0.5464% 0.047536 0.046062 -3.1008% 

Point 13 0.267175222 0.265701 -0.5517% 0.044953 0.043479 -3.2790% 

Point 14 0.265258222 0.263784 -0.5557% 0.043036 0.041562 -3.4250% 

Point 15 4.794953 4.793479 -0.0307% 0.044953 0.043479 -3.2790% 

Point 16 4.79687 4.795396 -0.0307% 0.04687 0.045396 -3.1449% 

Point 17 4.781336 4.779862 -0.0308% 0.031336 0.029862 -4.7039% 

Point 18 0.269495434 0.266676 -1.0463% 0.047211033 0.044396 -5.9628% 

Point 19 0.035951976 0.034459 -4.1530% 0.013656302 0.012168 -10.9002% 

Point 20 0.333507222 0.332033 -0.4420% 0.111285 0.109811 -1.3245% 

Point 21 0.364384222 0.362642 -0.4781% 0.142162 0.14042 -1.2254% 

Point 22 0.289471222 0.287729 -0.6018% 0.067249 0.065507 -2.5904% 

Point 23 0.275675222 0.273531 -0.7777% 0.053453 0.051309 -4.0110% 

Point 24 0.273092222 0.270948 -0.7851% 0.05087 0.048726 -4.2147% 

Point 25 4.80087 4.798726 -0.0447% 0.05087 0.048726 -4.2147% 

Point 26 0.035719614 0.034848 -2.4403% 0.012344443 0.011526 -6.6329% 

Point 27 0.035949435 0.035078 -2.4247% 0.012536049 0.011717 -6.5316% 

Point 28 4.865639259 4.86105 -0.0943% 0.115639259 0.11105 -3.9688% 

Point 29 0.306471222 0.301614 -1.5850% 0.084249 0.079392 -5.7656% 
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 Standard failures with utility 

sources 

Standard failures without utility 

sources 

Point 30 0.401571222 0.396714 -1.2096% 0.179349 0.174492 -2.7084% 

Point 31 0.390754481 0.385897 -1.2431% 0.168532259 0.163675 -2.8822% 

Point 32 4.871839259 4.86725 -0.0942% 0.121839259 0.11725 -3.7668% 

Point 33 0.269094222 0.26762 -0.5478% 0.046872 0.045398 -3.1447% 

Point 34 4.798789 4.797315 -0.0307% 0.048789 0.047315 -3.0212% 

Point 35 0.265258222 0.263784 -0.5557% 0.043036 0.041562 -3.4250% 

Point 36 0.271175222 0.269031 -0.7906% 0.048953 0.046809 -4.3797% 

Point 37 4.794953 4.793479 -0.0307% 0.044953 0.043479 -3.2790% 

Point 38 4.80087 4.798726 -0.0447% 0.05087 0.048726 -4.2147% 

 

The results reveal the impact of the sources on the failure rate calculations. The higher the 

source failure rate the less visible is the impact of a predictive maintenance system. The main 

reason for that, is that the equipment under monitoring present low failure rate values compare 

to the sources. Thus, the source failure rate dictates the cumulated failure rate at the different 

points of the system. The improvement is only taking place on the equipment under monitoring 

while the sources cannot be affected. Consequently, the general impact of a predictive 

maintenance system is low. 

6.3. Case 1: Chemical industry in US circuit 1 

After the implementation and the sensitivity analysis of the approach in two theoretical 

networks, real case investigations are presented in the following sections. 

In this first case, a part of a chemical manufacturing industrial system is analyzed. The single 

line diagram of the installation is presented in figure 20 along with its zones and the monitored 

equipment, indicated with greed dots. It should be noted though, that the impact on the motors 

is not included in the calculations. 
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Figure 20 Case 1 SLD of a part of a chemical industry 

 

The list of equipment is presented in table 19 with its failure rate, failure in service and MTTR 

data. The failure in service factor is set at 5% for LV circuit breakers, 10% for MV circuit 

breakers and 90% for transformers. The installation is less than 15 years old, so the related 

data are utilized. 

 

Table 19 Case 1: Equipment of a part of a chemical industry 

Equipment Failure rate 

(f/yr) 

MTTR (h) Failure in 

Service 

(%) 

Cable, 15 KV Tray < 15 yr 0.00360000 48.00 98 

Circuit Breaker, 15 KV Indoor < 

15 yr 

0.00360000 8.00 10 

Circuit Breaker, 600 V ID 

Metalclad < 15yr 

0.00500000 16.00 5 

MCC, 600 V Vert Section < 15yr 0.00100000 72.00 80 

Starter MCC, motor 600V < 15yr 0.01390000 24.00 80 
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Equipment Failure rate 

(f/yr) 

MTTR (h) Failure in 

Service 

(%) 

Switchgear, Cubicle Indoor > 

600v <15 yr 

0.00191700 36.00 8 

Switchgear, Cubicle InDoor 600v 

<15 yr 

0.00720000 36.00 8 

Transformer 300 - 10000 KVA 

<10yr, Monitored 

0.0010000 300.00 90 

480 v Motor 0.08000000 8.0 94 

Utility U1 and U2 0.22222222 0.63 100 

 

6.3.1. Reliability analysis 

 

Based on the approach the lambda factor is adjusted to include the impact of a predictive 

maintenance (PdM) system on the monitored assets. The efficiency of the system is set to 

67%. Thus, the lambda factor is considered as: 

 

• 0.3769, 62.31% reduction in the case of Low Voltage Circuit Breakers 

• 0.8325, 16.75% reduction in the case of Medium Voltage Circuit Breakers 

• 0.732, 26.8% reduction in the case of Transformers 

 

Table 20 summarizes the results of failure rate and forced downtime for failures related to lose 

of power. The forced downtime is presented in this case since it is a parameter that is included 

in the cost benefits analysis calculations to extract the average downtime per failure, as it was 

explained in chapter 4. 
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Table 20 Case 1: Results of failures related to system failure 

Point 

number 

Failure Rate per 

year without 

PdM 

Failure 

Rate per 

year with 

PdM 

Difference 

(%) 

Forced 

Downtime 

(Hrs/Yr) 

without 

PdM 

Forced 

Downtime 

(Hrs/Yr) 

with PdM 

Difference 

(%) 

Point 1 0.222576 0.222576 0.0000% 0.155881 0.155881 0.0000% 

Point 2 0.222576 0.222576 0.0000% 0.155881 0.155881 0.0000% 

Point 3 0.223089 0.223029 -0.0270% 0.164282 0.163799 -0.2936% 

Point 4 0.223089 0.223029 -0.0270% 0.164282 0.163799 -0.2936% 

Point 5 0.22367 0.223609 -0.0270% 0.055917 0.055902 -0.0270% 

Point 6 0.22367 0.223609 -0.0270% 0.055917 0.055902 -0.0270% 

Point 7 0.22493 0.224568 -0.1609% 0.056232 0.056142 -0.1608% 

Point 8 0.22493 0.224568 -0.1609% 0.056232 0.056142 -0.1608% 

Point 9 0.22518 0.224662 -0.2298% 0.060232 0.057649 -4.2881% 

Point 10 0.22518 0.224662 -0.2298% 0.060232 0.057649 -4.2881% 

Point 11 0.245683 0.245165 -0.2107% 0.06142 0.061291 -0.2107% 

Point 12 0.332003 0.331485 -0.1559% 0.92982 0.929691 -0.0139% 

 

The calculations indicate a really small improvement in the failure rate per year of the 

installation. That can be attributed to the low failure rate of the equipment, the failure in service 

factor, the configuration and the high impact of the source failure rate, which cannot be 

improved. Regarding the force downtime difference an improvement up to 4.28% is observed. 

One point that requires attention in this configuration is the repair time. The system includes 

three tie breakers which enable the switch between the sources at different points. To 

incorporate the impact of tie breakers in the calculations, a 0.25 hours repair time is inserted 

manually in the points after the tie breakers. Thus, the values of MTTR on those points are not 

based on formulas and a predictive maintenance system does not have any impact. That point 

is important during the cost benefit analysis. 

 

Table 21 summarizes the calculations of failure rate of standard failures. The results will be 

used during the cost benefit analysis to calculate the average reduction of the fixed expenses 

parameter. 
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Table 21 Case 1: Results of standard failures 

Point 

number 

Failure Rate per 

year without 

PdM 

Failure 

Rate per 

year with 

PdM 

Difference 

(%) 

Point 1 0.224344 0.224344 0.0000% 

Point 2 0.224344 0.224344 0.0000% 

Point 3 0.229861 0.229393 -0.2036% 

Point 4 0.229861 0.229393 -0.2036% 

Point 5 0.235446 0.234978 -0.1988% 

Point 6 0.235446 0.234978 -0.1988% 

Point 7 0.240046 0.23884 -0.5024% 

Point 8 0.240046 0.23884 -0.5024% 

Point 9 0.245046 0.24074 -1.7572% 

Point 10 0.245046 0.24074 -1.7572% 

Point 11 0.280054 0.275745 -1.5386% 

Point 12 0.373954 0.369645 -1.1522% 

 

In this case, as it was previously explained, the impact of a predictive maintenance system on 

the standard failures is higher. 

 

6.3.2. Cost benefit analysis 

 

To evaluate the impact of predictive maintenance in financial terms the revenue requirement 

(RR) method, as it was described in chapter 4, is utilized. The focus during the analysis is on 

the points that a failure will have significant financial consequences thus, in this case point 11 

of the SLD will be investigated. 

 

Based on the reliability analysis the reduction of failures per year related to downtime due to 

PdM is 0.2107%. Regarding the repair time, as it was previously explained, there is no 

difference due to tie breakers. In the case of standard failures per year at point 11 there is a 

reduction of 1.53% and of 0.7215% on average at the installation. To calculate the fixed 

expenses percentage that average value is used. 

 

Concerning the financial terms of the installation and according to [43], the initial capital 

investment is 728.000 $ and it is increased by 1.8% due to the predictive maintenance system 

installation. The margin between losses and savings is 6000 $ per hour and the plant restart 

time after a failure is set to 72 hours. Lastly, the extra expenses incurred per failure are 
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considered to be 27.500 $ (average value) with a 30% reduction due to PdM. That last 

reduction is assumed, and a sensitivity analysis will be performed to support better the results. 

Regarding the fixed investment charges factor, none of the parameters is affected by the 

implementation of PdM except the fixed expenses per dollar of investment. That value initially 

is considered to be 8.25% and includes property taxes, fixed maintenance cost and insurance. 

When PdM is applied the percentage is calculated considering the standard failures (related 

to fixed maintenance cost) and the subscription fee of the PdM system. The summary of the 

RR methodology parameters is presented in table 22. 

 

Since only a part of the system is analyzed, the calculation of the fixed expenses percentage 

assumes that 90% is related to fixed maintenance cost and the rest to the other factors. Then, 

in the initial value the subscription fee percentage has to be added and the fixed maintenance 

cost should be reduced based on the failure rate reduction and the extra expenses incurred 

per standard failures. The same 30% reduction is assumed for the extra expenses incurred for 

the standard failures. 

Table 22 Case 1: Summary of RR method values 

Parameter Description Value without 

PdM 

Value with 

PdM 

Difference Comment 

C Capital 

investment 

 $ 728,000   $ 741,104  1.8% Calculated 

 

 

 

 

 

 

 

X 

Failure rate 0.245682672 0.245164957 -0.2107% Calculated 

Extra 

expenses 

incurred per 

failure 

 $ 27,500   $ 19,250  -30% Assumed 

Revenues 

lost per hour 

of plant 

downtime 

 $ 22,000   $ 22,000  0% 
 

Variable 

expenses 

saved per 

hour of plant 

downtime 

 $ 16,000   $ 16,000  0% 
 

Repair or 

replacement 

time after a 

failure 

0.249998247 0.249998251 0% No change 

due to tie 

breakers 

Plant start-up 72 72 0% 
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Parameter Description Value without 

PdM 

Value with 

PdM 

Difference Comment 

time after a 

failure 

 

 

 

 

 

F 

Minimum 

acceptable 

earnings per 

$ of 

investment 

0.15 0.15 0% 
 

Years prior 

to start-up 

that an 

investment is 

made 

1 1 0% 
 

Life of 

investment 

20 20 0% 
 

Risk 

adjustment 

factor  

1 1 0% 
 

Income tax 

depreciation, 

levelized per 

$ of 

investment  

0.05 0.05 0% 
 

Income taxes 

per $ of 

investment 

0.05 0.05 0% 
 

Fixed 

expenses 

per $ of 

investment 

[insurance, 

property 

taxes, fixed 

maintenance 

cost] 

8.25% 7.00% -15.185% Calculated 

 

Based on the calculations the percentage of fixed expenses is reduced by 15.18%. The 

subscription fee yearly adds 1.01% percent (7.500 $/year) although, a reduction of 30.5% of 
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the cost of standard failures due to PdM is leading to the final percentage of 7% from the initial 

value of 8.25% without PdM applied. The calculation can be described by the following formula: 

𝑒𝑛𝑒𝑤 = [𝑓𝑖𝑥𝑒𝑑 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑎𝑛𝑑 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑡𝑎𝑥𝑒𝑠] + [𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡]

+ [𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑓𝑒𝑒]
 

⇒ 

𝑒𝑛𝑒𝑤 = 10% ∙ 8.25% + 90% ∙ 8.25% ∙ (1 − 30.5%) + 1.01% 

The calculations related to the standard failure cost reduction are presented in table 23. In 

summary from the amount of 6.883 $ per failure per year the new variable cost due to PdM 

goes to 4.784 $ reaching a reduction of 30.5%. Since standard failures are not causing 

downtime, savings, losses, repair, replacement and restart time are not considered in the 

calculations. The variable expenses are the product of the failure rate with the expenses due 

to a failure. For the failure rate of standard failures, the average value is considered in fixed 

maintenance cost calculations. 

Table 23 Case 1: Variable cost of standard failures 

Description Value without PdM Value with 

PdM 

Difference Comment 

Failure rate 0.250291028 0.248498214 -0.7215% Calculated 

Extra expenses 

incurred per failure 

 $ 27,500   $ 19,250  -30% Assumed 

Variable expenses 

due to standard 

failures per year 

 $ 6.833   $ 4.783  30.5% Calculated 

 

Finally, considering all the calculations above, the results of the RR method are presented in 

table 24. 

Table 24 Case 1: Results of the RR method 

Description Value without 

PdM 

Value with PdM Difference 

Capital investment (C)  $ 728,000   $ 741,104  1.8% 

Variable expenses (X) 

[$/year] 

 $ 113,259   $ 110,998 -2% 

Fixed investment 

charges factor (F) 

0.27326 0.26074 -4.58% 

Fixed investment 

charges (𝐶 ∙ 𝐹) [$/year] 

 $ 198.936  $ 193.233 -2.87% 

Minimum revenue 

requirements (𝐺 = 𝑋 +

𝐶 ∙ 𝐹) [$/year] 

 $ 312.196  $ 304.231 -2.55% 
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In summary, to apply a predictive maintenance system a 1.8% of the capital investment is 

required and a subscription fee of 7.500$ (1.01%) per year. That would result in a 2% reduction 

of the variable expenses and 2.87% of the fixed investment charges per year. Consequently, 

the minimum revenue requirements (MRR) are reduced by 2.55% from 312.196 $ per year to 

304.231 $ per year. Thus, based on the RR methodology described in the IEEE 493-2007 [13] 

standard the installations that includes a predictive maintenance system is preferable since it 

presents lower MRR.  

 

6.3.3. Sensitivity analysis 

 

To evaluate the impact of the assumed reduction of the extra expenses incurred per failure, a 

sensitivity analysis regarding this parameter is conducted in this section.  

The 30% reduction applied on the calculation is an estimation based on use cases [42] and 

expert experience [43]. Although, this number is not accurately calculated thus, in figure 21 a 

graph comparing MRR with the extra expenses incurred per failure percentage reduction is 

presented.  

 

Figure 21 Case 1: MRR against extra expenses incurred per failure reduction percentage 

 

 

According to the graph, when a reduction between 15 and 20 percent is applied the MRR of 

the PdM installation becomes the preferable choice. That percentage, although not precisely 

calculated, can be achieved considering the cost and the collateral damages of a failure that 

was not predicted (e.g. in a transformer). Additionally, the assumed percentage is supported 

by different sources such the US Department of Energy [5]. 
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6.4. Case 2: Chemical industry in US circuit 2 

 

A second part of the installation of the same chemical industry is analyzed in this section. The 

SLD along with the protective zones is presented in figure 22. The green dots indicate the 

equipment under monitoring. 

 

Figure 22 Case 2: SLD of a part of a chemical industry 

 

The equipment of the installation and the corresponding data are summarized in table 25. In 

this case that the installation is less than 15 years old thus the corresponding data are used 

according to the RAM table. 

 

Table 25 Case 2: Equipment of a part of a chemical industry 

Equipment Failure rate 

(f/yr) 

MTTR (h) Failure in 

Service 

(%) 

Cable, 15 KV Tray < 15 yr 0.00360000 48.00 98 

Bus Duct, Outdoor, 600v < 15yr 0.00033300 9.50 40 

Cable in Conduit/OH 15 KV < 15 

yrs 

0.00400000 48.00 98 

Cable, 600 V Tray 0.00400000 5.00 98 
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Equipment Failure rate 

(f/yr) 

MTTR (h) Failure in 

Service 

(%) 

Circuit Breaker, 15 KV Indoor < 

15 yr 

0.00360000 8.00 10 

Circuit Breaker, 600 V OD 

Metalclad <15yr 

0.00580000 16.00 5 

Generator, Diesel Standby 

250KW-1.5MW Packaged 

0.13386922 35.9 100 

MCC, 600 V Vert Section < 15yr 0.00100000 72.00 80 

Starter, motor E-2 < 15yr 0.00500000 24.00 75 

Switch, Automatic Transfer 0-600 

amp 

0.07800326 6.31 95 

Switchgear, Cubicle Indoor > 

600v <15 yr 

0.00191700 36.00 8 

Switchgear, Cubicle Indoor 600v 

<15 yr 

0.00720000 36.00 8 

Transformer 300 - 10000 KVA 

10yr 

0.00100000 300.0 90 

480 v Motor 0.08000000 8.0 94 

Single Circuit Utility Supply 1.95600000 1.32 100 

 

6.4.1. Reliability analysis 

 

The same lambda factors are utilized, and the system efficiency is set to 67%. The failure rate 

and the MTTR are summarized in table 26 for this case. 
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Table 26 Case 2: Results of failures related to system failure 

Point 

number 

Failure Rate per 

year without 

PdM 

Failure Rate 

per year 

with PdM 

Difference 

(%) 

MTTR 

(Hrs/Event) 

without 

PdM 

MTTR 

(Hrs/Event) 

with PdM 

Difference 

(%) 

Point 1 1.956222727 1.956222727 0.0000% 1.325316399 1.325316399 0.0000% 

Point 2 1.956736087 1.956674887 -0.0031% 1.32926205 1.329053405 -0.0157% 

Point 3 1.958062905 1.957697505 -0.0187% 1.46936162 1.43189804 -2.5497% 

Point 4 1.958196105 1.957830705 -0.0187% 1.469907899 1.432446964 -2.5485% 

Point 5 1.958196105 1.957830705 -0.0187% 1.469907899 1.432446964 -2.5485% 

Point 6 1.959728905 1.959363505 -0.0186% 1.510453131 1.473029068 -2.4777% 

Point 7 1.959062105 1.958516905 -0.0278% 1.482211271 1.44343296 -2.6162% 

Point 8 1.959062105 1.958696705 -0.0187% 1.482211271 1.444769195 -2.5261% 

Point 9 2.038678905 2.038313505 -0.0179% 1.791201563 1.755277375 -2.0056% 

Point 10 1.960002348 1.959277348 -0.0370% 1.494636556 1.454545613 -2.6823% 

Point 11 1.960002348 1.959277348 -0.0370% 1.494636556 1.454545613 -2.6823% 

Point 12 1.959426348 1.958701348 -0.0370% 1.484493229 1.444386746 -2.7017% 

Point 13 1.960002348 1.959636948 -0.0186% 1.494636556 1.45721476 -2.5037% 

Point 14 0.002484002 0.002482019 -0.0798% 12.9399786 12.9323188 -0.0592% 

Point 15 1.960292348 1.959387548 -0.0462% 1.496782437 1.455363679 -2.7672% 

Point 16 0.133869218 0.133869218 0.0000% 35.88 35.88 0.0000% 

Point 17 0.13423346 0.13423346 0.0000% 35.8199717 35.8199717 0.0000% 

Point 18 0.208912556 0.208912556 0.0000% 25.35303039 25.35303039 0.0000% 

 

As it was explained in subsection 6.2.2, the high failure rate of the source has an impact on 

the calculations. Any improvement on the lower decimals points due to PdM is shadowed by 

the failure rate of the single source which cannot be affected. Specifically, in point 7 which is 

of interest only a 0.0278% reduction is achieved. Regarding the MTTR a maximum reduction 

of 2.76 at point 15 is observed. Points 15 to 18 show no improvement since they are related 

to the emergency diesel generator with no PdM applied. 

 

Table 27 summarizes the calculations of failure rate of standard failures. The average values 

of the results are used to calculate the fixed expenses factor during the cost benefit analysis. 
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Table 27 Case 2: Results of standard failures 

Point 

number 

Failure Rate per 

year without 

PdM 

Failure Rate 

per year 

with PdM 

Difference 

(%) 

Point 1 1.956227273 1.956227273 0.0000% 

Point 2 1.961744273 1.961132273 -0.0312% 

Point 3 1.966412455 1.964918455 -0.0760% 

Point 4 1.966745455 1.965251455 -0.0760% 

Point 5 1.966745455 1.965251455 -0.0760% 

Point 6 1.980412455 1.978918455 -0.0754% 

Point 7 1.979745455 1.974655455 -0.2571% 

Point 8 1.979745455 1.978251455 -0.0755% 

Point 9 2.065412455 2.063918455 -0.0723% 

Point 10 1.992821212 1.984135212 -0.4359% 

Point 11 1.992821212 1.984135212 -0.4359% 

Point 12 1.985621212 1.976935212 -0.4374% 

Point 13 1.992821212 1.991327212 -0.0750% 

Point 14 0.020238897 0.020235602 -0.0163% 

Point 15 1.998621212 1.986339212 -0.6145% 

Point 16 0.133869218 0.133869218 0.0000% 

Point 17 0.139744975 0.139744975 0.0000% 

Point 18 0.224948234 0.224948234 0.0000% 

 

The impact of PdM is higher compare to the failures related to downtime but is general is low 

compare to the previous cases due to the impact of the high failure rate of the source compare 

to the rest of the equipment of the installation. 

 

6.4.2. Cost benefit analysis 

 

In this case, the focus of the revenue requirement method calculations will be on point 7 of the 

installation since a downtime failure there is having significant financial losses for the industry. 

The reliability analysis at this point indicated a reduction of the failure rate per year by 0.0278% 

and by 2.61% for MTTR. Regarding the standard failures an average reduction of 0.19% is 

observed. 

 

The initial capital investment of this part of the installation is 817.125 $ and 26.965 $ (3.3% 

increase) are required for the implementation of the PdM system. The subscription fee is 5.175 

$ while the margin between losses and savings is doubled, compare to the previous case, to 
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12.000$. Finally, the average extra expenses due to a failure are 27.500 $ and a 30% reduction 

due to PdM is also assumed. 

 

Any change on the fixed investment charges factor is dictated by the fixed expenses per dollar 

of investment parameter since any other parameter remains the same. The calculations of that 

value are exactly the same with the previous case. The initial percentage is 8.25 which is 

reduced to PdM implementation by 19.69%. The summary of the RR methodology parameters 

is presented in table 28. 

 

Table 28 Case 2: Summary of RR method values case 2 

Parameter Description Value without 

PdM 

Value with 

PdM 

Difference Comment 

C Capital 

investment 

$ 817,125 $ 844,090 3.3% Calculated 

 

 

 

 

 

 

 

X 

Failure rate 1.959062105 1.95851690

5 

-0.0278% Calculated 

Extra 

expenses 

incurred per 

failure 

 $27,500   $19,250  -30% Assumed 

Revenues lost 

per hour of 

plant 

downtime 

 $28,000   $28,000  0% 
 

Variable 

expenses 

saved per 

hour of plant 

downtime 

 $16,000   $16,000  0% 
 

Repair or 

replacement 

time after a 

failure 

1.481720114 1.44296729

2 

-2.6154% Calculated 

Plant start-up 

time after a 

failure 

72 72 0% 
 

 

 

 

Minimum 

acceptable 

earnings per 

0.15 0.15 0% 
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Parameter Description Value without 

PdM 

Value with 

PdM 

Difference Comment 

 

 

F 

$ of 

investment 

Years prior to 

start-up that 

an investment 

is made 

1 1 0% 
 

Life of 

investment 

20 20 0% 
 

Risk 

adjustment 

factor  

1 1 0% 
 

Income tax 

depreciation, 

levelized per 

$ of 

investment  

0.05 0.05 0% 
 

Income taxes 

per $ of 

investment 

0.05 0.05 0% 
 

Fixed 

expenses per 

$ of 

investment 

[insurance, 

property taxes, 

fixed 

maintenance 

cost] 

8.25% 6.63% -19.690% Calculated 

 

The calculations related to the standard failure cost reduction are presented in table 29. In 

summary from the amount of 43,243 $ per failure per year the new variable cost due to PdM 

goes to 30,212 $ reaching a reduction of 30.13%. For the failure rate of standard failures, the 

average value is considered in fixed maintenance cost calculations. 
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Table 29 Case 2: Variable cost of standard failures 

Description Value without PDM Value with 

PDM 

Difference Comment 

Failure rate 1.572483228 1.569455268 -0.1929% Calculated 

Extra expenses 

incurred per failure 

 $ 27,500   $ 19,250  -30% Assumed 

Variable expenses 

due to standard 

failures per year 

$ 43,243  $ 30,212 30.13% Calculated 

 

Finally, considering all the calculations above the results of the RR method are presented in 

table 30. It is obvious that the costs are higher in this case due to the higher failure rate that 

this part of the installation presents. 

Table 30 Case 2: Results of the RR method 

Description Value without 

PDM 

Value with PDM Difference 

Capital investment (C) $ 817,125 $ 844,090 3.3% 

Variable expenses (X) 

[$/year] 

$ 1,781,337 $1,763,772  -1% 

Fixed investment 

charges factor (F) 

0.27326 0.25702 -6.31% 

Fixed investment 

charges (𝐶 ∙ 𝐹) [$/year] 

$ 223,291 $ 216,948 -2.84% 

Minimum revenue 

requirements (𝐺 = 𝑋 +

𝐶 ∙ 𝐹) [$/year] 

$ 2,004,628 $ 1,980,721 -1.19% 

 

The results suggest that the configuration of the system that includes predictive maintenance 

should be the favourable choice according to the RR method and the IEEE 493-2007 [13]. The 

implementation of PdM requires 3.3% of the capital investment and an annual subscription fee 

of 5.175 $. Consequently, the variable expenses due to a failure are reduced by 1% and the 

minimum revenue requirements are also lower by 1.19%. 

 

6.4.3. Sensitivity analysis 

 

A sensitivity analysis on the extra expenses incurred per failure percentage reduction is 

conducted in this case too. In figure 23 the results of the MRR for different percentages of 

reduction are presented. 
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Figure 23 Case 2: MRR against extra expenses incurred per failure reduction percentage 

 

In this case, a bit less than 10% reduction on the extra expenses incurred per failure, when a 

predictive maintenance system is applied, is enough to justify its installation. That number 

considering the prevention of a crucial failures is not hard to be achieved indicating the 

preference for a PdM system. 
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Conclusions 
 

According to the proposed approach new failure rates are calculated for the equipment under 

monitoring when a predictive maintenance is applied. Those values are then inserted in the 

spreadsheet tool to evaluate the impact of the implementation of such a system. Additionally, 

cost benefit analysis was conducted utilizing the revenue requirement method. The overall 

methodology was applied in two theoretical and two real industrial networks. 

 

The results indicate that the failure rate of the system decreases when the number of 

monitored equipment increases although, implementation cost should be considered in the 

different cases. Additionally, the impact is higher to standard failures compare to the failures 

related only with downtime due to the different failure rate considered percentage (failure in 

service factor). The results are also affected by the type of the equipment under monitoring 

and the configuration of the system. Furthermore, the prediction efficiency of the system affects 

linearly the reliability indices at the different points of the installation. Finally, the cost benefit 

analysis on actual cases indicates that a PdM system should be preferred even with lower 

reduction percentage of extra expenses incurred per failure, than the one assumed. 

 

As a general conclusion, it can be noted that the low failure rate of the equipment along with 

the high of the utility sources lead to a small improvement on the reliability of the installation. 

The impact of predictive maintenance appears only on the selected equipment under 

monitoring which presents low failure rate values per year. On the other hand, the high failure 

rate of the sources, that cannot be affected by the system, dictates the calculations thus, the 

overall impact appears to be low. Despite that, the cost benefit analysis suggests the 

preference on PdM regardless of that low impact on the failure rate. That justifies the overall 

benefits of a predictive maintenance system.  

 

The limitations on available data and consequently of the suggested approach leads only to 

the consideration of the mitigation of causes of failures by a predictive maintenance system. 

An approach that can incorporate the predictive maintenance along with the preventive 

maintenance actions that take place, might indicate different results on the reliability indices. 

Finally, it should be noted that all the calculations are in an annual basis and assume a 

constant failure rate in time. Consequently, the accumulated calculated impact is higher and 

becomes even more when an increased failure rate is considered. 
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Future Work 
 

The presented static approach attempted to quantify the impact of predictive maintenance on 

an industrial system. Although, further improvements can be made to justify and provide better 

results. 

 

The base of the approach is constructed around the statistical information of causes of 

equipment failure. That utilized knowledge came from IEEE surveys that date back some 

decades and consequently, that information could be revised and updated by new and more 

accurate studies. Additionally, a deeper failure mode analysis would enable a better 

understanding of the failure mechanisms and would allow a more accurate and broader link 

between the functions of a predictive maintenance system. A project could be just dedicated 

to study that relationship. Furthermore, the upcoming development of such a system with more 

capabilities would require the update of the approach.  

 

Regarding the utilized methodologies, time dependent functions could be used in the future to 

provide more holistic results as it was explained in section 5.4. However, that process would 

require a big amount of data related to the failure rate and the failure mechanisms for the 

studied equipment. Additionally, different approaches that enable the analysis of big data might 

be required.  

 

Finally, to be able to perform the presented approach or any other alternative to more industrial 

installations, access to financial parameters is necessary to conduct cost benefit analysis. 

Moreover, further investigation on the revenue requirement parameters can be conducted to 

justify better the assumed values. Lastly, other benefits of predictive maintenance could be 

included such as the timecard savings, equipment lifetime (increase of the lifetime investment 

parameter of RR method) and any other cost reduction and benefit. 
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