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Abstract: Isolated microgrids must be capable to perform autonomous operation without external1

grid support. This leads to a challenge when non-dispatchable generators are installed because2

power unbalances can produce frequency excursions compromising the system operation. This3

paper addresses the optimal operation of PV-Battery-Diesel based microgrids taking into account4

the frequency constraints. Particularly, a new stochastic optimization method to maximize the5

PV generation while ensuring the grid frequency limits is proposed. The optimization problem is6

formulated including a minimum frequency constraint, which is obtained from a dynamic study7

considering maximum load and photovoltaic power variations. Once the optimization problem is8

formulated, 3 complete days are simulated to verify the proper behaviour. Finally, the system is9

validated in a laboratory scaled microgrid.10

Keywords: Energy Management System; microgrids; frequency stability; renewable power11

generation12

1. Introduction13

The integration of distributed generation requires the development of new concepts for active14

grid operation, where microgrids are the most promising one [1]. Microgrids are capable to operate in15

grid connected and in isolated modes [2,3]. In isolated mode, the active power balance to maintain the16

grid frequency has become one of the main challenges. The integration of large amount of photovoltaic17

(PV) generation can stress even more the power balance due to the lack of inertia and the fast power18

variations of the resource. One possible solution to avoid frequency deviations produced by PV power19

generation is its curtailment [4]. Frequency deviations can also be limited increasing the grid inertia,20

which can be achieved by connecting rotating machines [5]. The main drawback is that these solutions21

have and adverse effect on the operation cost.22

To solve the power balance problems while minimizing the operation cost, a hierarchical control23

architecture is commonly used [6–9]. The primary control layer stabilizes the voltage and frequency24

deviations due to power unbalances by adjusting the active and reactive power references in a time25

frame of milliseconds. Then, the secondary control is responsible for recovering the voltage and26

frequency to their reference values. Commonly, it is done by using PI based closed loop controllers in a27

slower time scale than the primary control response time. And finally, The tertiary control determines28

the power references to perform the optimal operation of the microgrid.29
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1.1. Literature review30

Different methods has been considered for designing energy management systems (EMS), i.e.31

the tertiary control layer, for microgrids. These methods mainly consist on i) formulate an objective32

function; ii) define a set of constraints to ensure the proper system behaviour; and iii) apply an33

algorithm to find the optimal solution.34

In [10], a mixed integer linear program (MILP) is formulated to miniminze the microgrid operation35

cost. The microgrid includes critical and controllable loads, energy storage, controllable generation and36

renewable generation. Because of the system under study is connected to the utility grid, any power37

unbalance is considered to be compensated by the external network producing a very small frequency38

deviation. Accordingly, power reserves are not considered. Despite the problem formulation does39

not consider forecast errors, its periodical execution similar to the rolling horizon process permits to40

redefine periodically the operation plan compensating unpredicted deviations.41

The works presented in [11–13] proof the real implementation of different EMSs for the minimum42

price or minimum cost of the isolated microgrid operation. These papers solve the optimization43

problems using MILP, multi-layer ant colony optimization and multi-period gravitational search44

algorithms, respectively. These studies consider perfect forecast. So, the hierarchical control structure45

is not implemented and power reserves are not considered. As a consequence, power unbalances and46

frequency deviations are not studied. So, the grid stability cannot be ensured.47

The study performed in [14] proposes an heuristic method, based on genetic algorithms, for48

solving the cost minimization problem for the microgrid operation. It first develop a forecasting49

method and then formulates the problem and the generic algorithm. The problem formulation differs50

depending on if the microgrid operates connected or disconected form the main grid, considering load51

and generation forecast for the power balance equations. As power reserves are considered, the power52

unbalances due to forecast errors may be compensated, but this may lead to a suboptimal operation53

point of the microgrid. In addition, the transient response when unbalances due to forecast errors54

occur is not analysed.55

To avoid operating in a suboptimal operation point in microgrids due to foracast errors, different56

studies propose the formulation of stochastic optimization problems [15–17]. In this method, a set of57

forecasted scenarios is generated. Then, the decision variables are optimized for all scenarios, where58

the objective function is the sum of the objective function of each scenario. In the particular case of59

[15].60

In [18], an EMS for minimizing the use of diesel generation in a PV-wind-diesel-battery based61

isolated microgrid is developed. The optimization problem is formulated as a MILP and executed62

using the rolling horizon technique to reduce the effects of the uncertainties of forecasted variables. In63

addition, the primary control layer (particularly the droop curves) vary depending if diesel generation64

is turned on or off. This fact can affect the transient performance, but a transient study is not performed.65

The authors of [11–13] do not consider forecast errors. This issue is solved in [14,18] by considering66

power reserves. To improve the average optimal operation point against the uncertainty, authors of67

[15–17] propose a stochastic optimization method. These previous studies does not analyse dynamic68

and transient behaviour. This gap is treated in [19]. This study develops a multi agent EMS for an69

isolated microgrid. One of the particularities and not studied in the previous cited papers, is that the70

transient response considering the primary and secondary control layers is analysed. The tertiary71

control layer (EMS), which is the objective of the study, determines not only the scheduled setpoints but72

also the required reserves to compensate photovoltaic and load forecasting errors, avoiding frequency73

deviations. These frequency deviations are analysed later in a real time dynamic simulator platform.74

The frequency deviations is an important aspect that should also be considered. Local controls of75

generation units will react to these deviations in order to achieve a power balance and to maintain the76

grid frequency. In [20], the system frequency is introduced into the optimization problem. Particularly,77

the f-P droop control is considered and a the maximum frequency deviation is constrained. These78

constraints apply for the steady state, but they do not consider the transient behaviour. An OPF79
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problem which includes the frequency transient behaviour has been presented in [21], explaining the80

need to limit its deviations. However, the main assumption is that the frequency decrease linearly81

during the first few seconds until reaching the steady state. The typical frequency transient behaviour82

usually present and overshoot as shown in [22]. Hence, the maximum frequency deviation during the83

transient may be greater that the deviation in the steady state. This effect is not considered in [21].84

1.2. Required improvements in the EMS development for isolated microgrids85

As shown before, EMSs for isolated microgrids are commonly designed without analysing their86

dynamic behaviour. The primary and secondary control layers are responsible to stabilize the microgrid87

after disturbance, but the EMS must consider their necessities to perform the operation properly. This88

issue has been previously solved by incorporating power reserves constraints in the optimization89

problems of the EMSs [14,19]. Nevertheless, very little dynamic considerations has been performed90

when designing EMSs. In addition to the power up/down regulation capacity, there are dynamic91

aspects that should be considered by the EMSs which are not studied yet.92

Utility grids are usually characterized by incorporating lots of rotating machines and,93

consequently, having large inertia. During power unbalances, and until the primary and secondary94

controls react, the required energy is obtained from the rotating machines leading to frequency95

variations. Due to the big inertia, these frequency variations are usually small. Accordingly, in grid96

connected microgrids it can be assumed these deviations are not relevant [10]. In contrast, grid isolated97

microgrids present low inertia, and even lower when large amount of photovoltaic power is installed.98

Accordingly these assumptions can no longer be accepted. Power reserves will determine whether the99

inner control loops will or will not be capable to compensate the microgrid unbalances. But due to the100

low inertia, the transient frequency deviations can reach unacceptable levels collapsing the system.101

Despite the study performed in [19] considers the up/down regulation and analyses the dynamic102

response, the required inertia to ensure the frequency do not exceed the acceptable limit is not studied.103

Hence, in case the EMS developed in [19] disconnects too match rotating machines, the system stability104

could be compromised. Similarly, if frequency transients present overshoots, the stability of the system105

is not ensured by the proposed methods in [20,21].106

According to the above issues, for designing a reliable EMS it is still necessary to incorporate107

dynamic constraints into the problem formulation. Particularly, in addition to the power reserves, the108

minimum grid inertia to ensure an stable operation should be considered on the tertiary control layer109

of isolated microgrids.110

1.3. Paper contributions111

This paper focuses on the above mentioned issue. In particular, an EMS for ensuring that transient112

frequency deviations do not exceed a defined limit is developed. Accordingly, the main contribution113

of this paper are:114

• The analysis of the parameters that, being available by the EMS, may influence the frequency115

deviations.116

• The formulation of the maximum frequency deviation in front of the maximum power unbalance.117

This formulation uses the above mentioned parameters.118

• The formulation of an EMS including a frequency constraint.119

• Validation of the proposed EMS using dynamic simulation and laboratory platform.120

Particularly, this paper proposes a power dispatch optimization algorithm for PV-Battery-Diesel121

based microgrids including demand and PV forecasting. To deal with uncertainty, the problem is122

based on stochastic optimization and computed on-line, in a similar way than the rolling horizon123

technique. The algorithm, which maximizes the PV generation, considers a frequency variation124

constraint obtained by analysing multiple off-line dynamic simulations and performing a statistical125

study. The result shows that the minimum system frequency depends on the number of connected126



Version May 20, 2019 submitted to Appl. Sci. 4 of 18

diesel generators, the battery power generation/consumption and the PV power generation. The127

algorithm is tested using simulation software (MATLAB-SIMULINK for simulation; and GAMS for128

solving the MILP optimization problem, using the SCIP solver) and validated in a laboratory platform.129

Particularly, three different days (based on real second-by-second data) are simulated. Then, one of the130

simulated days is tested in the laboratory scaled microgrid platform.131

2. System description132

The system under study is depicted in Figure 1. The microgrid consists of several diesel generators133

(Nd), where each unit i has a rated power Pdi; a PV power plant, where the rated power is Ppv−nom; a134

battery which rated power and capacity are Pbat−nom and Cbat respectively. Finally, all these generation135

and storage units feed the total power demanded by the loads (Pc). The layout is based on a real136

stand alone system. It has the particularity that all generation and storage units (controllable units)137

are connected to the same bus. So, the load side can be treated as a single aggregated load. Each138

controllable unit has its local controller (LC) which is in charge of managing each resource separately:139

• LC for diesel generation power plant: the local controller is in charge of controlling the frequency140

of the grid. A proportional-integral (PI) controller, where the input is the frequency error (filtered141

by a low pass filter), computes the mechanical torque setpoint of each diesel generator. This142

local controller also receives the required number of connected diesel generators and accordingly143

sends orders of connection/disconnection to each diesel unit. Each diesel generator has its144

internal controller in charge of reaching the torque setpoint and to perform its connection and145

disconnection according to the LC requirements. A similar control architecture is found in [23].146

The main difference is that in the present paper the PI is a central controller that coordinate all147

the diesel units, while in [23] a single unit is considered.148

• LC for the PV power plant: this LC implements a power-frequency droop curve to provide149

support to the grid. Reducing the active power will always be possible, but to increase it (under150

frequency events) will depend on the available active power. The controller is also capable to151

perform power curtailments. A maximum PV power setpoint is received externally and a PI152

controller computes the active power setpoint of each PV inverter. This controller is defined in153

[24], but the ramp rate limitation is not taken into account.154

• LC for the battery: this controller receives externally an active power sepoint and applies a155

power-frequency droop curve to provide grid support. The output is the droop modified156

setpoint. The inner control loops will be in charge of reaching this value of active power. The157

dynamic model is simplified as in [25], but the local frequency droop has been included.158

3. Methodology159

3.1. EMS design requirements160

The purpose of this section is to describe the steps followed for designing the EMS. The process is161

depicted in Figure 2. It shows that the EMS requirements are mainly determined by the characteristics162

of the system it will operate (System definition), the usage of the forecasting information (System data163

processing) and the identified operational requirements (System operation requirements).164

First, the system characteristics are gathered -mainly the electrical characteristics and the165

forecasting available data- assuming grid isolated operation. Then, a statistic analysis of the forecasting166

for PV generation and demand is performed to identify the probability distribution of their errors.167

This allows to generate random forecast scenarios (as detailed in Section 3.5. Next, the operation for168

the storage system is defined considering long term variability of PV generation and demand. The169

minimum number of diesel generating units needed to face the largest demand change expected in the170

system is also determined. Finally, the EMS is designed, with two main purposes. On the one hand,171

the optimization problem is formulated based on the steady state equations determining the power172
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Figure 1. Simplified PV-Battery-Diesel-based microgrid scheme

balances in the system and limiting system variables. On the other hand, a frequency constraint, which173

will be included in the optimization problem, is formulated (based on dynamic simulation results)174

relating the PV power generated, the battery power and the number of connected diesels with the175

minimum allowed frequency after a maximum power unbalance in the system.176

The EMS performance is described in Section 3.2. The execution cycle of the EMS is detailed in Section177

3.3. The procedure to determine the frequency constraint is explained in Section 3.4. For the stochastic178

optimization problem it is required to generate a number of random scenarios, which is explained in179

Section 3.5. Finally, the whole optimization problem formulation is addressed in Section 3.7.180

3.2. EMS performance181

The objective is to achieve the optimal utilization of the PV energy while achieving a182

generation-demand balance maintaining the grid frequency. In addition, it ensures that the minimum183

frequency ( f mn) reached after a severe generation-load unbalance is between the limits (see Section 3.4184

and the frequency constraint explained later for more detail).185

The output variables (the setpoints to the generation and storage units) of the EMS are i) number186

of diesel generators to be connected (D∗con); ii) the setpoint to the battery (P∗bat); and iii) the maximum PV187

power setpoint (P∗PVmax
) and are calculated for the remaining of the day at each optimization execution188

period. On the other hand, the inputs are i) the load forecast (Lc); ii) the available PV power forecast189

(LPV); and iii) the initial state of charge (SOC). Forecasts include the mean and standard deviation.190

Figure 3 shows the time periods used. (Tf or) represents the time periods when forecasts are191

updated. (TEMS) is the period between EMS executions. Finally, Tintra is the optimization problem192

time resolution. When the EMS is executed, the output variables (decision variables) are calculated for193

the rest of the day. While P∗bat and P∗PV−max are calculated with a time resolution of Tintra, the resolution194

of D∗con is TEMS.195

3.3. Execution cycle196

The optimization algorithm and its execution considers the daily Sun period. So, the horizon of197

each execution is end of the day. This can be observed in Figure 3, where the execution cycle during198

the day d is depicted.199

EMS period T execution: At period T ∈ {1, .., nTEMS} the Pbat∗
T,p & PPV∗max

T,p ∀ p ∈ {1, .., nTintra}200

are sent to its respective converters. These values are calculated in previous EMS executions (see201

Figure 3). Then, the SOC at the beginning of the EMS period T+1 is estimated using the current SOC202

and the battery setpoints for the current execution period.203
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Figure 2. EMS design methodology
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Figure 3. Temporal description of the daily execution cycle
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Using the estimated SOC at the EMS period T+1 and the forecast for the rest of the day d, the204

optimization problem is solved, and Pbat∗
t,p & PPV∗max

t,p ∀ p ∈ {1, .., nTintra}, ∀t ∈ {T + 1, .., nTEMS} and205

Dcon∗
t ∀ t ∈ {T + 1, .., nTEMS} are calculated.206

The solution must be reached before the beginning of the EMS period T+1. Otherwise, the207

setpoints calculated for the EMS period T+1 by the EMS execution at the period T-1 are sent to the208

respective converters.209

3.4. Modeling frequency deviations210

As explained before, one of the requirements of the isolated microgrid is the need to maintain the211

frequency in the required range. The frequency deviations depend on the grid inertia (i.e. the number212

of connected rotating machines) among other factors. One possible solution to ensure the frequency213

requirements is to connect the maximum number of rotating machines (diesel generators) providing214

large amount of inertia. But these machines usually have a minimum active power generation1. So,215

this strategy leads to a costly (fuel cost) and pollutant (CO2 emissions) solution. Accordingly, the216

optimal solution is to connect the minimum number of rotating machines that ensures that, after a217

maximum power unbalance, the grid frequency will be kept in the required range.218

So, the approach of this paper is to obtain an empirical linear equation determining the minimum219

frequency reached after a maximum power unbalance. This expression will be then used in the220

optimization algorithm.221

To obtain this expression, the worst case is first defined. The load and PV production of a real222

microgrid have been monitored with 1 second resolution during 6 days and with 30 second resolution223

during 1 year. Using load data, a maximum load variation of 1.5 MW in 1 second has been identified.224

This severe variation could have been produced due to the disconnection of a big load. For the case225

of PV data, it was registered a maximum power variation of 1 MW in 1 second. According to the226

available recorded data, these changes will not occur simultaneously. So, the worst case considered is227

that the maximum power unbalance will occur after a sudden load variation of 1.5 MW, representing228

the situation when the maximum frequency deviation will occur.229

Then, a simulation model of the microgrid is created. The model of the diesel generators are230

described in [23] while simplified PV and battery models are described in [25].231

Using the simulation model, a bundle of scenarios varying Dcon from Nd to Ndmin (being Ndmin232

the minimum number of diesel units connected to supply the maximum power unbalance), varying233

the Ppv from the rated PV power to 0 and varying the Pbat from PmxB (maximum battery power) to234

PmnB (minimum battery power) are simulated. In these simulations, the worst case (maximum load235

variation) is tested and the frequency response is analysed, storing the minimum frequency reached236

for each simulation. From the analysis, a relation between the EMS output variables and the minimum237

frequency is performed (this analysis is explained below). In order to maintain the optimization238

problem solvable using mixed integer linear programming (MILP), a linear regression is proposed for239

that purpose as (1). Where θx are the coefficients of linear regression.240

f mn = θind + θd · Dcon + θpv · PPV + θbat · Pbat (1)

The minimum frequency reached after the maximum power variation are represented in Figure241

4 as a box plot against the ONdies, Pbat and PPV∗max . For each of the decision variables is possible to242

observe the tendency of the minimum frequency reached. The lower is the Pbat and PPV∗max the higher243

(in absolute values) is the maximum frequency deviation reached. On the other hand, the lower244

is the ONdies the lower is maximum frequency deviation reached. Figure 5 shows the summary of245

1 Industry has reported that during low load condition diesel engines suffer from the ’slubbering’ effect. This effect is related
to the low heat in the cylinder, allowing unburned fuel and oil to leak through the slip joints. At the end this lead to power
losses, accelerated ageing and high maintenance costs.
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performing a linear regression, it can be observed that the coefficients for the PPV∗max and Pbat are246

negative and the coefficient for the ONdies is positive, the p-values for all the coefficients are lower247

than 10−8 and hence the obtained coefficients can be taken as significant.248
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Figure 4. Boxplot showing the relation between the minimum frequency reached and the decision
variables of the EMS

Figure 5. Linear regression results for the coefficients of the minimum frequency equation

3.5. Scenarios generation249

The forecasting system updates the forecasts for the rest of the day with a period Tf or. The forecasts250

are based on a mean value and an error following a normal distribution with mean value (µerr = 0)251

and a standard deviation (σerr). Using these values, the EMS generates a number of random scenarios252
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Ns defined by the the pair Lc
t,p,s and LPV

t,p,s, ∀t ∈ {To, ..., nTEMS}, ∀ p ∈ {1, ..., nTintra}; ∀ s ∈ {1, ..., Ns}253

being To the actual TEMS period.254

3.6. Stochastic formulation approach255

The forecast errors are considered by using stochastic formulation. Particularly in this paper,256

a number of Ns scenarios are generated (more details are given in section 3.5). Then, the decision257

variables are constant for all scenarios, i.e. devices receive the same setpoints in all scenarios. In258

contrast, the rest of the variables will be computed depending on each scenario. This way, the259

optimization problem ensures finding decision variables that fulfils the problem constraints for all260

scenarios generated. Then, global objective function will be the sum of objective function of each261

scenario. Note that as more probable is a scenario, more times will be generated and more times will262

be counted in the global objective function, i.e. the most probable scenarios will present higher weights263

in the objective function.264

3.7. Formulation of the optimization algorithm265

The optimization problem is stochastic. It means that from the forecast (mean and deviation266

values) a number of different scenarios are generated. The solution (the battery setpoints, the maximum267

PV power setpoints and the number of connected diesel generator setpoints) is unique independently268

of the scenario, but the constraints must be accomplished for all scenarios. The objective function is269

the sum of the objective of each scenario. This way we obtain an optimal solution considering forecast270

errors. In this section, the different optimization sets, decision variables and restrictions required to271

define the optimization problem are detailed.272

3.7.1. Sets273

The sets defining the EMS executions and the time resolution are shown in (2) and (3) respectively.274

TEMS = {1, ..., nTEMS} (2)

Tintra = {1, ..., nTintra} (3)

Where nTEMS is the number of the remaining executions of the optimization algorithm until275

the end of the day and nTintra is the number of periods of Tintra s between two executions of the276

optimization algorithm.277

The index of the diesel generators are defined by the set (4), where Nd is the total number of diesel278

generators.279

Ndiesel = {1, ..., Nd} (4)

It is considered stochastic optimization to take into account forecast errors. Hence, each280

optimization execution considers Ns scenarios which are generated from the forecast inputs (mean281

and deviation). The set of the different scenarios is defined in (5).282

S = {1, ..., Ns} (5)

3.7.2. Decision variables283

The decision variables are those that the optimization algorithm will find in order to to optimize284

the objective function.285

The battery power setpoint is defined as (6), where positive values of power means that the battery286

is discharging. It is also distinguished if the battery is charging or discharging. The battery charging287

and discharging powers are defined as (7) and (8) respectively. To prevent obtaining a solution where288
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the battery could simultaneously charge and discharge, a binary variable is defined in (9). The SOC289

is shown in (10). In the EMS algorithm, it is assumed that the battery setpoint is the same as the real290

battery power generation/consumption.291

Pbat∗
t,p , ∀ t ∈ TEMS, ∀ p ∈ Tintra (6)

Pbatchar
t,p , ∀ t ∈ TEMS, ∀ p ∈ Tintra (7)

Pbatdisch
t,p , ∀ t ∈ TEMS, ∀ p ∈ Tintra (8)

Xchar
t,p , ∀ t ∈ TEMS, ∀ p ∈ Tintra; Xchar

t,p ∈ {0, 1} (9)

SOCbat
t,p , ∀ t ∈ TEMS, ∀ p ∈ Tintra (10)

The diesel connection/disconnection setpoint and the power generation of each diesel generator292

are denoted as (11) and (12) respectively. ONdies
t,p is 1 if the diesel generator d at the EMS period t and293

the intra period d is connected (and 0 otherwise).294

ONdies
t,p , ∀ t ∈ TEMS, ∀ d ∈ NDiesel , ONdies

t,p ∈ {0, 1} (11)

Pdies
t,p,s,d, ∀ d ∈ NDiesel , ∀ s ∈ S, ∀ t ∈ TEMS, ∀ p ∈ Tintra (12)

The PV power generation of each scenario is written as (13), while the maximum PV power295

setpoint is expressed as (14).296

Ppv
t,p,s, ∀ s ∈ S, ∀ t ∈ TEMS, ∀ p ∈ Tintra (13)

PPV∗max
t,p , ∀ t ∈ TEMS, ∀ p ∈ Tintra (14)

3.7.3. Parameters297

The load and PV scenarios are generated according to the forecast mean values and deviations.298

These scenarios are expressed as (15) and (16) respectively. They represent the active power of load299

and the available PV power.300

Lc
t,p,s, ∀ s ∈ S, ∀ t ∈ TEMS, ∀ p ∈ Tintra (15)

LPV
t,p,s, ∀ s ∈ S, ∀ t ∈ TEMS, ∀ p ∈ Tintra (16)

The battery capacity, the initial SOC, the battery efficiency and the maximum and minimum301

battery active power are written as Capbat, SOCi, ηbat, PmxB and PmnB respectively. The maximum302

and minimum active power of each diesel unit are expressed as PmxD and PmxD respectively. The303

minimum frequency is expressed as f mn. The diesel generators performs a frequency control through a304

PI controller. To provide a power reserve for frequency regulation, a power margin of diesel generators305

is reserved. This power margin is denoted as margedies.306

3.7.4. Objective function307

The objective function it to maximize the PV power generation. To do so, the battery will be308

charged and discharged according to the forecast and the problem requirements. At the charging and309
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discharging process there are some power losses. So, the real useful PV power must take into account310

them. Accordingly, the objective function is written as (17).311

[MAX] Z = ∑
t,p,s

PPV
t,p,s − nS (1− ηbat) abs(Pbat∗

t,p ) (17)

To linearise this function, it can be re-written as (18).312

[MAX] Z = ∑
t,p,s

PPV
t,p,s − nS (1− ηbat) (Pbatchar

t,p + Pbatdisch
t,p ) (18)

3.7.5. Constraints313

The objective function has been linearized, but to prevent obtaining simultaneous charge and314

discharge of the battery, the following constrains are included (19)-(23)315

Pbat∗
t,p = Pbatchar

t,p − Pbatdisch
t,p ∀ t ∈ TEMS, ∀ p ∈ Tintra (19)

Pbatchar
t,p ≤ PmxBXchar

t,p ∀t ∈ TEMS, ∀ p ∈ Tintra (20)

Pbatdisch
t,p ≤ PmxB(Xchar

t,p − 1) ∀ t ∈ TEMS, ∀ p ∈ Tintra (21)

Pbatchar
t,p ≥ 0 ∀ t ∈ TEMS, ∀ p ∈ Tintra (22)

Pbatdisch
t,p ≥ 0 ∀ t ∈ TEMS, ∀ p ∈ Tintra (23)

Then, the power balance at each period must be accomplished. This is forced by the restriction316

(24).317

Ppv
t,p,s + ∑

d∈NDiesel

Pdies
t,p,s,d + Pbat∗

t,p − Lc
t,p,s = 0∀ t ∈ TEMS, ∀ p ∈ Tintra, ∀ s ∈ S (24)

Then, as commented before, a margin of diesel generation is reserved for frequency regulation.318

So, the maximum diesel generation is limited (equation (25))319

∑
d∈NDiesel

Pdies
t,p,s,d ≤ ∑

d∈NDiesel

ONdies
t,d PmxD −margedies∀ t ∈ TEMS, ∀ p ∈ Tintra, ∀ s ∈ S (25)

The relationship between the SOC at the instant t and the SOC at the instant t− 1 is shown in320

(26). The SOC is between 0 and 1 p.u. This constraint is formulated as (27). On the other hand, the321

battery power limits constraint is (28).322

-If TEMS = 1 and Tintra = 1

SOCbat
t,p = SOCinitial − Pbat

t,p
∆t

Capbat ∀ t ∈ TEMS, ∀ p ∈ Tintra

-If TEMS ≥ 1 and Tintra = 1

SOCbat
t,p = SOCbat

t−1,|p| − Pbat
t,p

∆t
Capbat ∀ t ∈ TEMS, ∀ p ∈ Tintra

-If Tintra 6= 1

SOCbat
t,p = SOCbat

t,p−1 − Pbat
t,p

∆t
Capbat ∀ t ∈ TEMS, ∀ p ∈ Tintra

(26)

0 ≤ SOCbat
t,p ≤ 1 ∀ t ∈ TEMS, ∀ p ∈ Tintra (27)
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PmnB ≤ Pbat
t,p ≤ PmxB ∀ t ∈ TEMS, ∀ p ∈ Tintra (28)

Then, the PV power cannot be greater than the available PV power of the corresponding scenario.323

So, equation (29) must be included into de optimization algorithm. The PV power must be also lower324

than the maximum PV power setpoint (30).325

PPV
t,p,s ≤ LPV

t,p,s ∀ t ∈ TEMS, ∀ p ∈ Tintra, ∀ s ∈ S (29)

PPV
t,p,s ≤ PPV∗max

t,p ∀ t ∈ TEMS, ∀ p ∈ Tintra, ∀ s ∈ S (30)

Each diesel unit has a maximum and a minimum power at each scenario, which is formulated as326

(31).327

ONdies
d,t,sPmnD

d ≤ Pdies
t,p,s ≤ PmxDONdies

d,t,s∀ t ∈ TEMS, ∀ p ∈ Tintra, ∀ s ∈ S (31)

Finally, the minimum frequency constraint is included in the optimization model. In the previous328

section, it has been shown how to express the minimum frequency reached in the microgrid after a329

maximum power unbalance. This constraint is written as (32).330

f mn ≤ θind + θd ∑
d

ONdies
t,d + θbatPbat∗

t,p + θpvPPV∗max
t,p ∀ t ∈ TEMS, ∀ p ∈ Tintra (32)

4. Case study331

Based on a real case, the microgrid includes: 9x1.2 MVA diesel units, 2x560 kWh batteries, that332

are interconnected through 4x550 kVA inverters (2 inverters per battery). The total battery power is333

then 2.2 MVA. The rated power of the PV plant is 10 MW, similar to the one presented in [24]. The334

minimum accepted frequency is f mn = 49.0 Hz. Finally, Table 1 shows the problem parameters.335

Table 1. Parameters for the EMS optimization problem

Parameter Value Parameter Value Parameter Value

nTEMS 288 Capbat 1120 kWh PmnB -2200 kW
nTintra 10 SOCi 0.9 PmnD 0.3*1100 kW

Nd 9 ηbat 0.9 PmxD 1100 kW
Ns 5 PmxB 2200 kW margedies 2000 kW

Three scenarios have been simulated. The load consumption is the same for all scenarios and336

shown in the result plots. The difference between the three scenarios is reflected in the available PV337

power profile. In the first case, after 12:30 pm., the available PV profile presents large variations. The338

second scenario has lower PV variability, but it is not a full sunny day. Finally, the last case consists339

of a sunny day with not appreciable fast PV power variations. The simulation results are shown in340

Figure 6 for the first case, in Figure 7 for the second case and in Figure 8 for the last case. Note that341

the simulation has considered the execution cycle explained in Section 3.3 and the EMS outputs are342

introduced to the dynamic model.343

For each scenario, the top plot depicts the active power of microgrid’s devices as well as the344

power demand and the available PV power. In the middle plot, the SOC and the connections of diesel345

units can observed. Then, the bottom plot shows the frequency response of the microgrid, being the346

green lines the frequency droop dead-band (our of this range, the PV plant and the batteries provide347

frequency support). It can be observed that for the three scenarios, the battery is discharged at the348

beginning of the day in order to be able to charge during the hours of high PV power. Also, as it349

could be expected, the active power of diesel generators and the connected units follows a trend350
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complementary to the PV power generation. So, during the peak PV production hours the amount of351

connected diesel generators is lower, as well as their production. It is also shown that the frequency352

deviations are kept inside the acceptable range. Comparing the total PV energy generated to the353

available PV energy for the three scenarios, the relative amount of used PV energy has been 94.57 %,354

84.46 % and 94.98 % respectively. The second scenario has the lower PV profitability, but note that in355

this case, the maximum available PV power is higher than the load in some periods.356

Between the times 13h-15h, the frequency exceed the droop dead-band several times. So, the357

PV and battery provide frequency support. This happens because during this period the number358

of connected diesel generators is small (low inertia). Hence, either the large PV fluctuations or359

the connection of new generators injecting active power produce a frequency transient. While the360

frequency may exceed the frequency droop dead-band (green lines), it does not exceed the minimum361

value of 49 Hz.362
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Figure 6. Simulation results for the first scenario (high PV power variability after the midday)

5. Experimental validation363

5.1. Platform description364

An emulated microgrid has been used for performing the experimental emulation. As described365

in [26], an emulator consists on a platform capable to convert software processed variables to real366

magnitudes. Accordingly, real equipment can be tested by its interconnection to the emulator platform.367

Hence, the system presented above can be tested properly through the emulation concept.368

The layout of the laboratory microgrid (emulated microgrid) and its physical devices are depicted369

in Figures 9(a) and 9(b), respectively. The emulated devices (diesel units, PV generators, storage, and370

loads) mimic the behaviour of the real device they are representing and form the emulated subsystem371

of the experimental setup. They are configured using a dedicated PC and a communication network.372

On the other hand, the real devices of the experimental setup are the PV and battery inverters, the373

power transformers, the EMS (which is implemented in a dedicated PC) as well as the communication374
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Figure 7. Simulation results for the second scenario (medium PV variability)
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Figure 8. Simulation results for the third scenario (low PV variability)
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network and the SCADA system. Because it is desired to emulate the isolated operation, the switch375

interconnecting the real system with the external grid is opened.376
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(a) Microgrid emulator scheme
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Figure 9. Microgrid description

5.2. Emulation results377

The simulated results are validated using the first test case (the one presenting the highest PV378

power variability) and the emulation platform under a real time emulation test. The input data379

has been scaled-down according the emulators power ratings. The outputs of the EMS are sent,380

periodically (TEMS =5 minutes), to the devices (emulated). In Figure 10, the experimental results can381

be observed, showing how the response is very similar to the simulation results. In particularly, it can382

be observed the same tendency in the diesel units connections and disconnections as well as in the383

battery utilization. An important observation is that generally, the generation is greater than the load.384

It is due to the fact that the emulators inverters has power losses.385

6. Conclusion386

A new methodology for the optimal operation of isolated microgrids has been proposed. This387

methodology is based on stochastic optimization in order to consider the forecast errors. In addition, a388
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Figure 10. Laboratory emulation results for the first scenario (high PV power variability after the
midday

minimum frequency constraint has been formulated and included to the optimization algorithm to389

ensure the secure operation of the microgrid. To maintain the optimization problem as a mixed integer390

linear problem, this constraint has been defined using a linear regression.391

Three different scenarios, based on real data, have been tested using a dynamic model of the392

microgrid. The results show a good behaviour with a stable grid frequency and high rate of PV energy393

used.394

After proving the proper response of the EMS using a simulation model, it has been implemented395

to manage a laboratory scale microgrid, where real time limitations, communication delays and396

measurement errors occur. It has been shown that the system can also operate properly with real397

platforms having similar behaviour to the simulated system.398
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