
1 



Tree ring-based reconstruction of the long-term 1 

influence of wildfires on permafrost active layer dynamics 2 

in Central Siberia 3 

 4 

Running title: Fire effects on permafrost active layer dynamics 5 

 6 

Anastasia A. Knorre
a,b

, Alexander V. Kirdyanov
b,c,d*

, Anatoly S. Prokushkin
b
, 7 

Ulf Büntgen
c,e,f,g,

 8 

 9 

a
State Natural Reserve ‘Stolby’, Kar’ernaya 26A, Krasnoyarsk, 660006, Russia 10 

b
Sukachev Institute of Forest SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russia 11 

c
Department of Geography, University of Cambridge, CB2 3EN, UK 12 

d
Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, 13 

660041, Russia 14 

e
Global Change Research Institute CAS, 603 00 Brno, Czech Republic 15 

f
Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland 16 

g
Department of Geography, Masaryk University, Kotlářská 2, 61137, Czech Republic 17 

 18 

 19 

 20 

 21 

* Corresponding author: kirdyanov@ksc.krasn.ru (Alexander V. Kirdyanov) 22 

Submitted as an original research article to STOTEN, 7th July 2018 23 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Siberian Federal University Digital Repository

https://core.ac.uk/display/286451185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 



Highlights 24 

A novel technique based on dating of cambial activity cessation in  tree stems buried under 25 

moss layer demonstrate a good efficiency for estimating the post-fire permafrost rise as well 26 

as reconstruction of a dynamics of ground cover recovery and soil active layer thickness 27 

changes. 28 

 29 

A thickness of 10-15 cm of the Sphagnum layer was shown to be crucial for interrupting tree-30 

ring production in larch roots and buried stem layers. 31 

 32 

Wildfires exert a long-term effect on active soil layer thickness and forest ecosystems in 33 

continuous permafrost zone in northern Eurasia.  34 

 35 

Abstract 36 

Although it has been recognized that rising temperatures and shifts in the hydrological cycle 37 

affect the depth of the seasonally thawing upper permafrost stratum, it remains unclear if and 38 

how the frequency and intensity of wildfires and subsequent changes in vegetation cover 39 

influence this soil active layer at different spatiotemporal scales. Here, we use ring width 40 

measurements of the below-surface stem part of 15 larch trees from a Sphagnum bog site in 41 

Central Siberia to reconstruct long-term changes in the thickness of the active layer since the 42 

last wildfire occurred in 1899. Our novel dendroecological approach reveals a three-step 43 

feedback loop between above- and belowground ecosystem components: The thawing upper 44 

permafrost stratum increased over the first ~20 years after the fire killed almost all vegetation 45 

and thus enhanced the direct atmospheric heat penetration into the upper soil horizon. The 46 

slow recovery of the insulating ground vegetation then reversed the process and initiated a 47 

gradual decrease of the active layer depth. Due a continuous spatial and vertical thickening of 48 

the moss cover during the last decades, the upper permafrost horizon increased by 0.52 49 

cm/year. This study, for the first time, demonstrates the strength of annually resolved and 50 

absolutely dated tree-ring chronologies to assess the effects of historical wildfires on the 51 

functioning and productivity of boreal forest ecosystems at centennial time-scale, and how the 52 

complex interaction of above- and belowground components translate into changes in the 53 

active permafrost stratum. Our results are also relevant for improving estimates of long-term 54 

changes in the terrestrial carbon pool that strongly depend on the ecosystem productivity of 55 

the boreal forest.  56 
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1. Introduction 61 

Underling up to 24% of the Northern Hemisphere landmass (Zhang et al., 1999; 2000), 62 

permafrost is an important component of the widespread, circumpolar, boreal forest biome. 63 

Both, soil-forming activities (Ershov 1994, 1995; Gubin and Lupachev, 2008), as well as 64 

water and nutrient supply for plants (Sugimoto et al., 2002; Saurer et al., 2016; Prokushkin et 65 

al., 2018), predominantly depend on thaw-freeze processes of the upper permafrost layer. 66 

Generally operating at large spatial and temporal scales, a multitude of effects of ongoing 67 

global climate change have been reported for the behavior of different components of the 68 

permafrost-sphere (Groose et al., 2016), with their influences likely to increase under 69 

predicted warming (IPCC, 2013). In this regard, far reaching ecological consequences are 70 

expected well-beyond the permafrost body itself (Chadburn et al., 2017; Lawrence and Slater, 71 

2005; Nelson et al., 2001; Schuur et al., 2015), such as changes in the intertwined 72 

hydrological and biogeochemical fluxes that are characteristic for the high northern latitudes 73 

(McGuire et al., 2002; Pokrovsky et al., 2005).  74 

 Moreover, wildfires are major drivers of forest structure and species composition, thus 75 

influencing the energy exchange, biogeochemistry, hydrology and carbon storage of the 76 

boreal forest (Certini, 2005; Conard and Ivanova, 1997). Although it has been argued that the 77 

frequency and intensity of wildfires will increase under rising temperatures (Kharuk et al., 78 

2013), it is unclear how fires will, directly or indirectly, contribute to changes in the 79 

seasonally thawing upper permafrost stratum, the so-called active layer (Permafrost 80 

Subcommittee, 1988). Since most of northern Eurasia’s permafrost area is covered by 81 

undisturbed larch (Larix spp) forests (Abaimov et al., 1997), and wildfires are a natural 82 

component of this boreal ecosystem, it is worthwhile to assess possible fire effects on 83 

permafrost active layer dynamics. This pending task appears particularly relevant to current 84 

debates on the amount of carbon and methane that might be released from melting permafrost 85 

in a warmer future (Anisimov, 2007; Koven et al., 2011; Schaefer et al., 2011; Schuur et al., 86 

2015). Thus, greenhouse gas fluxes from the cryosphere into the atmosphere may be 87 

sufficiently affected by alterations in the return frequency, severity and spatial extent of 88 

wildfires and their impact on permafrost active layer dynamics. 89 

Here, we present the first tree ring-based reconstruction of long-term changes in the 90 

depth of the seasonally thawing upper permafrost stratum that occurred after a massive 91 

wildfire in 1899 killed most of a Sphagnum forest-bog ecosystem. Conducted in an 92 

undisturbed, natural forest in Central Siberia, our study aims to test the hypothesis that fire-93 
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induced modifications of the depth of the permafrost active layer are directly related to the 94 

rate of change in the insulating vegetation cover, and thus may range from multi-decadal to 95 

centennial time-scales.  96 

 97 

2. Material and Methods 98 

The genus Larix is well adapted to the harsh environmental conditions of the widespread 99 

boreal permafrost zone in northern Eurasia. Larch trees are resistant to extremely low and 100 

extended winter temperatures, as well as to late spring and early autumn frosts. Due to the 101 

possibility of producing adventitious roots (Cooper, 2011; Sukachev, 1912), larch trees are 102 

also tolerant to very low soil temperatures and a particularly shallow active permafrost layer 103 

(Abaimov, 2010). This phenomenon is especially well pronounced in Sphagnum ecosystems, 104 

in which an extensive moss and peat layer translates into exceptionally high insulation rates of 105 

direct solar radiation, and subsequently cold soil conditions. 106 

 This study was conducted in an undisturbed (Fig. 1a), Gmelin larch (Larix gmelinii 107 

(Rupr.) Rupr.) dominated Sphagnum bog in the Kochechum River valley in Central Siberia 108 

(64°19’30’’N, 100°14’53’E, and 147 m asl). Located within the continuous permafrost zone, 109 

the region is characterized by a severe continental climate. Based on meteorological 110 

measurements from the nearby instrumental station in Tura that operates since 1929, mean 111 

annual temperature is -8.9° C, with the warmest (+16.6° C) and coldest (-35.9° C) monthly 112 

means mainly occurring in July and January, respectively. The average amount of annual 113 

precipitation is 357 mm, and the growing season is generally restricted to ~70-90 days 114 

between the end of May and the beginning of September (Bryukhanova et al., 2013; Shishov 115 

et al., 2016). 116 

  Dendroecological standard techniques were used to reconstruct the fire history in this 117 

region (Panyushkina and Arbatskaya, 1999; Kharuk et al., 2005, 2008). Moreover, we follow 118 

Borggreve (1889), who suggested that tree seeds which germinate on the surface of a 119 

Sphagnum bog may allow moss growth rates to be estimated. This approach is based on the 120 

fact that Sphagnum grows vertically during succession, but a tree’s root collar (hypocotil) 121 

remains at the same position at which its seed germinated. The vertically growing Sphagnum 122 

thus buries the lower part of a tree stem, which can, in the case of larch, produce adventitious 123 

roots (Cooper, 2011; Kajimoto, 2010; Kajimoto et al., 2003; Sukachev, 1912). Assuming that 124 

seed germination occurred on the surface of a Sphagnum mat, tree age at the collar provides 125 
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precise, annually resolved information of the rate of vertical moss growth (Borggreve, 1889; 126 

Dubakh, 1927; Schulze at al., 2002; Knorre et al., 2003; Prokushkin et al., 2006). 127 

For larch growing on permafrost at Sphagnum-dominated sites, it was found that tree-128 

ring formation ceases at different positions along the root and buried in moss stem in different 129 

years (Fig. 2). Here we use data on cambium activity cessation at different locations along the 130 

larch tap roots and stems below the current moss surface to reconstruct the dynamics of active 131 

soil layer thickness. 132 

Ten and five larch trees between 0.6-3.0 m high were sampled in 2002 and 2005, 133 

respectively. The moss-buried, belowground stem parts were entirely excavated (Fig. 1b), 134 

before being transported to the laboratory at the Sukachev Institute of Forest SB RAS in 135 

Krasnoyarsk. For each tree, a total of 4-11 discs were cut along the buried stem section from 136 

the current surface of the moss layer (i.e. 0 cm for each individual) down to the level of the 137 

root collar (e.g. between 27 and 45 cm depending on individual trees). For each disc sample, 138 

ring widths were measured along the two longest, undisturbed and continuous radii using a 139 

LINTAB measuring system (RINNTECH e.K., Heidelberg, Germany). The disc-specific ring 140 

width series were visually cross-dated and then averaged in TSAP-win (Rinn, 2003). The 141 

resulting disc chronologies were further cross-dated between discs from different positions of 142 

the same tree. The cross-dated ring width chronologies were then used to define the calendar 143 

year of the first, oldest (innermost) and last, youngest (outermost) tree ring at each sample 144 

depth of the belowground ―stem section. The calendar year of the innermost ring at the root 145 

collar was considered the year of tree establishment, whereas the year of the outermost ring 146 

referred to the year when cambium activity ceased at this particular stem position. Due to 147 

heavily suppressed wood, the outermost rings of three out of 77 discs could not be accurately 148 

cross-dated and were therefore excluded from any further analysis. 149 

To test the hypothesis of a thermal-induced cessation of cambial activity within the 150 

belowground part of a tree, a set of waterproof sensors S-TMB-M002 (Onset Computer 151 

Corporation, Bourne, MA, USA) were installed to measure temperatures at 5, 10, 20 and 40 152 

cm soil/stem depth below the Sphagnum upper surface. All sensors were connected to a 153 

HOBO Micro Station Data Logger H21-002 (Onset Computer Corporation, Bourne, MA, 154 

USA) that recorded mean hourly temperature at each depth from the end of the 2007 growing 155 

season until the end of the 2008 growing season. Data were then averaged to represent daily 156 

temperature means at each of the depths. 157 
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To reconstruct the post-fire dynamics of active soil layer thickness, we complement 158 

our data with the measurements of seasonal upper permafrost layer thaw depth for a sequence 159 

of sites affected by wildfires in 2005, 1990, 1994, 1981 and 1947, as well as several control 160 

sites nearby that were not affected by fire for at least 150 years. These additional 161 

measurements were conducted between mid-July and mid-August 2005, i.e. still before the 162 

maximum upper permafrost thaw that usually occurs in September. 163 

 164 

3. Results and Discussion 165 

Killing almost all trees, as well as the entire understory vegetation, including the extensive 166 

moss layer and large parts of the organic upper soil horizon, the last major wildfire devastated 167 

the study site in 1899 AD.  168 

The regeneration rate of larch trees was particularly high during the first decades after 169 

wildfire, because of a favorable soil temperature regime and, most probably, a lack of 170 

competition for the new seedlings since ground vegetation had been completely removed by 171 

wildfire. The vast majority of trees germinated within the first 10 years after the fire (50%) 172 

and all of the larch seedlings established within the first 34 years between 1900 and 1932 AD. 173 

The age of the individual larches that were sampled thus varies from 71-103 years, with a 174 

mean of 91 years (±9.4 years standard deviation). As a direct consequence of the post-fire 175 

reforestation that coincided with the expansion and vertical growth of Sphagnum, the root 176 

collars of the sampled trees are now buried under a 20-45 cm thick moss layer. The mean root 177 

collar depth is 32.5 cm (±6.5 cm).  178 

Recovery of ground vegetation reduced the depth of the permafrost active layer and 179 

sealing the roots and stems in permafrost leads to cessation of cambial withering away. Since 180 

the outermost tree ring of each tree disc refers to the year in which cambial activity stopped, 181 

we found a positive linear relationship between cessation and moss-peat layer thickness with 182 

the upper levels of the buried stem dying later (Fig. 2). The average difference in calendar 183 

years of formation of the last (outermost) tree-rings at the uppermost disk (collected from the 184 

current surface of moss layer) and the root collar was 35.6 (± 13.1) years and ranged from 6 185 

(for a tree established in 1932) to 58 years (for a tree established in 1900). In general, 186 

belowground stem parts at positions closer to the current moss surface on average live longer 187 

than at deeper stem layers (Fig. 2). The duration of cambial activity for stems buried 30-45 188 

cm deep was 24-69 years, compared to 61-97 years of cambial activity at the moss surface (0 189 

cm).  190 
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The most recent cases of cambial activity cessation are observed in the larch stem 191 

levels currently buried at the depth of 10-15 cm (Fig. 3). Seasonal dynamics of temperature at 192 

different depth of a moss layer (Fig. 4) confirm the predominant role of low temperature as a 193 

triggering factor for this activity cessation. In summer 2008, temperature at the depth of 20 194 

cm reached 2.3°C, the physiological minimum threshold for root growth of frost-tolerant 195 

species (Schenker et al., 2014), just for a few days at the first half of July and never reaches 196 

even 3.0°C. At the depth of 10 cm, temperature becomes >2.3°C on 31 May. However, the 197 

level of 5°C, which is a widely accepted as a low temperature limit for xylogenesis (Rossi et 198 

al., 2007, 2008; Körner 2012) and a threshold for root and shoot growth of Larix decidua 199 

Mill. (Häsler et al., 1999), is reached only in the middle of June (14 June 2007). Seasonal 200 

growth analysis data from the region testify that by this date, up to 25% of the final tree-ring 201 

width is already completed and lignification of early wood started (Bryukhanova et al., 2013). 202 

Results of dendroclimatic analysis also confirm that climatic conditions at the very beginning 203 

of growing season are the most important for larch stem growth (Benkova et al., 2015; 204 

Kirdyanov et al., 2013; 2016). Though temperature data for the depth of 15 cm were not 205 

measured, we may conclude that the period when temperature is suitable for tree growth at 206 

this depth is too short and appears late in the season. 207 

Our data on tree-rings in buried stems, active layer thickness for a sequence of sites 208 

affected by wildfire in different years and features of Sphagnum growth (Prokushkin et al., 209 

2006) allow reconstruction of changes in seasonally thawing depth of the upper layer of 210 

permafrost and the dynamics of this particular forest-bog ecosystem over the last century (Fig. 211 

5). A forest fire occurred in 1899 and killed most of the larch trees as well as burned the 212 

insulating layer of ground vegetation. As a consequence of removal of the ground vegetation 213 

and the forest canopy, seasonal thawing of permafrost starts earlier in spring and in 1-2 years 214 

after fire the active layer can be up to 1.5-2 m thick in late summer (Abaimov et al., 1997; our 215 

own observations in the region of sites fired in 1980-2005). Rain water, which is not 216 

intercepted by the ground vegetation, supplies additional heat flow from the atmosphere into 217 

the soil. These favorable conditions stimulate successful regeneration of larch (current density 218 

of the tree stand is 5700 trees/ha) and formation of deep rooting systems. Seasonal tree 219 

growth can last from late May till the end of vegetation period (early September) during the 220 

first years after fire. Ground vegetation during this period is mostly presented by separate 221 

patches of Sphagnum and other vegetation which extend mostly horizontally and gradually 222 

occupy the area with time. Vertical growth of Sphagnum occurs primarily in slight 223 
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depressions.  According to our estimates (Prokushkin et al., 2006) duration of this period is 224 

approximately 20 years (indicated as stage I on Fig. 3).   Decomposition of litter is of high 225 

rate during this period due to optimal hydro-thermal conditions and vertical growth rates of 226 

mosses are low. 227 

Formation of a continuous ground vegetation layer insulates the soil. Vertical growth 228 

of Sphagnum leads to a delay in seasonal permafrost thawing in summer and a gradual 229 

decrease of active soil layer thickness from year to year. Our data suggest that the rising 230 

permafrost table leads to the progressive death of the buried stem as well as adventitious roots 231 

beneath the moss layer.  Cambium cessation of buried stems started in the 1950s at a current 232 

depth of ~40 cm. If 20 years are necessary for Sphagnum to cover the surface (Prokushkin et 233 

al., 2006), the following 25-30 years for the moss to grow up with the annual rate of 0.5-0.6 234 

cm/year (Prokushkin et al., 2006; Knorre et al., 2006), to form a layer of approx. 15 cm thick 235 

which is enough to start cambium cessation of larch stems at lower levels of peat (period II on 236 

Fig. 3). As peat layer continues to grow up, permafrost is rising and cessation of cambial 237 

activity occurs at higher and higher levels along the buried stems (period III on Fig. 3).  238 

Data on Fig. 3 provide the estimation of the rate of post-fire permafrost ―rise‖, i.e. 239 

decrease of the seasonal soil thaw depth after 1950s. The mean slope of the regression line 240 

(0.52 cm/year) indicate the rate of progressive rise of the buried stem sections with cambial 241 

activity ceased due to permafrost rise (decrease of active soil layer). Our estimate for the rate 242 

of permafrost (0.52 cm/year) is quite in line with the rate of vertical moss growth in the region 243 

(Prokushkin et al., 2006, Knorre et al., 2006). Some difference in the rate of permafrost rise 244 

between the trees (Fig. 3) could be related by the difference in thermo-hydrological conditions 245 

at various elements of micro-topography (mounds and troughs) and variations in density of 246 

the insulating moss cover. 247 

 248 

Conclusion 249 

In this study, we used tree-rings of tap roots and buried in moss lower part of a Gmelin larch 250 

stems to reconstruct the post-fire ecosystem dynamics based on cambial activity cessation 251 

dates in a forested Sphagnum bog ecosystem in northern Central Siberia. A thickness of 10-15 252 

cm of the Sphagnum layer was found to be crucial for interrupting tree-ring production in 253 

larch roots and buried stem layers. In general, our case study indicates a good efficiency of a 254 

proposed technique for estimating the post-fire permafrost rise as well as reconstruction of a 255 

dynamics of ground cover recovery and soil active layer thickness changes. The reconstructed 256 
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dynamics of ground cover recovery and soil active layer thickness changes on   The effect of 257 

fire on active soil thickness evident for at least six decades that implies a long   Further 258 

investigations on root tree-rings in the permafrost zone are needed on a broader scale to get 259 

data on the effect of the current climate changes on the active soil layer thickness coupled 260 

with ecosystem productivity and tree growth in the largest monodominant vegetation belt on 261 

the globe. 262 

 263 
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 421 

Figure 1. (a) Studied larch stand established on a Sphagnum bog, (b) sampled trees with 422 

adventitious roots of larch (cut) and frozen peat layer at the bottom of a ground vegetation 423 

layer. Insert shows the study site location (red circle).  424 

 425 

 426 

Figure 2. (a) Tree-ring width chronologies obtained for tree discs of tree N5 from different 427 

depths of a moss layer. (b) The serial section technique with the tree disc samples along the 428 

―root‖ shown on the panel (a) for the tree N5 429 

 430 



17 



 431 

Figure 3.  The cessation dates of ―root‖ cambium activity of buried in a moss and peat layer 432 

at different depths. Line presents least square approximation of the permafrost rise rate. I – 433 

period of increased active layer thickness and ―horizontal" distribution of Sphagnum when 434 

insulating moss layer gradually occupies the area, II – period of vertical growth of mosses till 435 

the height of approx. 15 cm which is crucial to suppress cambial activity of larch below, III – 436 

period of rising permafrost which follows the moss layer growth. ºC 437 

 438 

 439 

Figure 4.  Temperature dynamics at four depths (5, 10, 20 and 40 cm) of a moss-peat layer at 440 

the studied site. The temperature sensors were installed in late summer 2007. The dashed  441 

horizontal line indicates the physiological minimum threshold for root growth of frost-tolerant 442 

species 2.3°C (Schenker et al., 2014) and solid line corresponds to 5°C, a widely accepted low 443 

temperature limit for xylogenesis (Rossi et al., 2007, 2008; Körner 2012) 444 

 445 

 446 
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447 
Figure 5.  Schematic representation of post-wildfire evolution of a forested bog ecosystem in 448 

the continuous permafrost zone in Siberia. The diagram shows the main features of the 449 

studied ecosystem development after fire event in 1899 and some facts about permafrost area 450 

in the region. It also refers to the sampling design and source of data presented in figures of 451 

the paper (fig 1-4 in circles). 452 


