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Abstract — The Cauchy problem for a stiff system of ODEs 

is considered. The explicit m-stage first order methods of the 

Runge-Kutta type are designed with stability domains of 

intermediate numerical schemes conformed with the stability 

domain of the basic scheme. Inequalities for accuracy and 

stability control are obtained. A numerical algorithm based 

on the first-order method and the five-stage fourth order 

Merson method is developed. The algorithm is aimed at 

solving large-scale systems of ODEs of moderate stiffness 

with low accuracy. It has been included in the library of 

solvers of the ISMA simulation environment. Numerical 

results showing growth of the efficiency are given. 

Keywords - Runge-Kutta methods; accuracy and stability 

control; conformed stability domains; stiff problems; 

I.  INTRODUCTION 

Nowadays software for mathematical modelling and 
simulation is widely used for describing different 
processes in Chemical Kinetics, Electrotechnics and other 
applications. Models often are defined via either systems 
of ODEs or systems of PDEs. At that, systems of PDEs 
can be transformed to systems of ODEs applying 
discretization spatial derivatives. The greater the 
discretization step, the higher dimension of corresponding 
system of ODEs is. Furthermore, such problems are often 
stiff. This paper presents the algorithm of alternating order 
and step which is aimed at solving large-scale stiff 
problems with low accuracy. This algorithm has been 
included in the library of solvers [1] of the ISMA 
simulation environment. 

Consider the Cauchy problem for the stiff system of 
ODEs 

0 0 0( ) ( ) ,ky f t y y t y t t t        (1) 

where, y and f are sufficiently smooth real N-dimensional 
vector functions, t is an independent variable. Eigenvalues 
of its Jacobi matrix are pure real. It is well known that any 
initial value problem involving ODEs with higher 

derivatives can be reduced to this standard form. In [2-3] 
for the solution of (1) the explicit Runge-Kutta methods 

1
1 1 1
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m i

n n mi i i n i n ij ji j
y y p k k hf t h y k 
  
         (2) 

are presented, where ki, 1≤i ≤m, are stages of the method, 
αi, pmi, βij, 1≤ i≤ m, 1≤ j≤i-1, are numerical coefficients, 
defining accuracy and stability properties of scheme (2). 
Methods of form (2) are rather efficient on solving 
non-stiff problems. However, from the numerical results 
of solving stiff problems with integration algorithms 
based on explicit formulas which choose stepsize 
according to the required accuracy it follows that on the 
settling region (where derivatives of a solution are low) 
there is plenty of declined solutions. This is a result of 
appearing instability of a numerical scheme. 

Algorithms based on explicit methods with stability 
control of a numerical scheme can solve this problem. In 
this case previous errors are suppressed due to stability 
control, whereas new errors are low due to low values of 
solution derivatives. As a result, the practical accuracy is 
even greater than the accuracy, which is required. Further 
improvement of the efficiency can be reached on 
application of methods with conformed stability domains. 

In [3] the algorithm for obtaining coefficients of 
stability polynomials is presented. The use of these 
coefficients allows to design explicit Runge-Kutta m-stage 
methods for m equal up to 13 with defined form and size 
of a stability domain. It is also shown there that combining 
numerical formulas with different stability properties gives 
significant growth of performance. Transition from one 
numerical formula to another is performed according to 
stability criteria. At that, there is no explanation in [3] how 
to choose coefficients βij which affect stability of 
intermediate (inner) numerical schemes and, finally, the 
efficiency of the integration algorithm. The authors just 
noted that the stability of intermediate formulas can be 
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achieved, if βij are chosen sufficiently small. Below the 
method for choice of coefficients βij is offered. 

II. NUMERICAL SCHEMES 

For simplicity, here is considered the Cauchy problem 
for autonomous system of ODEs  

0 0 0( ) ( ) ky f y yt y t t t        (3) 

but all the findings that are to obtained below stay true for 
non-autonomous problems, if the coefficients in (2) are 
defined by the formulas  

1
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i ijj
i m  


         (4) 

To solve problem (3) the Runge-Kutta methods of the 
following form  
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 (5) 

can be applied, where ki = hf(yn,i-1), 1 ≤ i ≤ m, yn,0 = yn, and 
yn,i are defined by formulas (2).  

Introduce matrix Bm with elements bij [3]  

1

1
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1 1 0 2 1 1,

2

i ki

i
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b i m b k m i k

b b k m k i m
  

            

       
 (6) 

where βij are coefficients of scheme (2) or (5). It is to be 
used in the remainder of this paper. 

Study stability on the linear scalar Dahlquist equation 

0(0) 0y y y y t        (7) 

with complex λ, Re(λ) < 0 (see [4]). Applying the second 
formula of (5) to (7), get  
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 (8) 

In the notations Cm = (cm1, …, cmm)
T
 and  

Pm = (pm1, …, pmm)
T
, the third relation of (8) can be written 

in the form  

m m mBP C     (9) 

where the elements of matrix Bm are defined by relations 
(6). For intermediate numerical schemes (4) we have 
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 (10) 

On βk = (βk+1,1, …, βk+1,k)
T
 and ck = (ck1, …, ckk)

T
 

coefficients βij of numerical schemes (5) and the 
coefficients in the corresponding stability polynomials 
satisfy the equation  

1 1k k kB c k m         (11) 

From the comparison between (6) and (10) it follows 
that bki = ci-1,k-1, i.e. the elements of (k+1)-th column of 
matrix Bm equal to coefficients of stability polynomial 
Qk(z). Hence, if the coefficients of stability polynomials of 
basic and intermediate numerical schemes are defined, 
then the coefficients of methods (5) are unambiguously 
determined from linear systems (9) and (11) with upper 
triangular matrices Bi, 1 ≤ i ≤ m. 

Expansions of the exact and approximate solutions in 
the Taylor series in powers of h have the form 
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 (12) 

where the elementary differentials are computed on 
exact y(tn) and approximate yn solutions, respectively. 
Comparison between relations (12) under assumption that 
y(tn) = yn, shows that numerical formula (5) has the first 

order of accuracy, if 11
1

m
j mjj
b p


 . Hence, to design 

m-stage methods of the first accuracy order, it is necessary 
to set cm1 = 1 in linear system (9). 

III. CONFORMATION OF STABILITY DOMAINS 

Assume that the coefficients of the stability 
polynomials  

1
( ) 1 1

k i
k kii
Q z c z k m


        (13) 

are defined. Using approach from [5], we choose 
coefficients of the polynomial so that the stability domain 
expands along the imaginary axis and becomes singly 
connected. It provides better stability properties to 
rounding errors whereas the stability interval length 
reduces insignificantly. 

For each k, 1 ≤ k ≤ m, γk represents the length of such 
a maximal interval [γk, 0], that for any z∈[γk, 0] inequality 
|Qk(z)| ≤ 1 satisfies. Taking into account, that z = hλ, in 
(13) for all Qk(z), 1 ≤ k ≤ m we replace h with  
(hγk / γm). As a result, formula (13) may be written as 
follows 
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k i
kik i

i
ki k m ki

z zQ c

c k mc  


   

     


  (14) 

The replacement of h with (hγk / γm) means that the 
approximate solution obtained by intermediate schemes 
(5) is computed at points (tn + c'k1h) 1 ≤ k ≤ m ‒1 instead 
of (tn + ck1h) 1 ≤ k ≤ m ‒ 1. In this case the maximal 
stepsize, obtained according to the stability requirements 
of the basic scheme is also maximal for intermediate 
numerical formulas.  

Determine coefficients of methods (5) as follows. 
First, using [2] we compute coefficients of polynomials 
(13), satisfying some defined properties. Further, compute 
coefficients of polynomials (14) applying corresponding 
substitution of variables. Taking into account, that 
elements of (k + 1)-th column of matrix Bm coincide with 
coefficients of the stability polynomials Q'k(z), form 
matrix 
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 
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 
 
  

  (15) 

Using in (11) vector c'k = (c'k1, …, c'kk)
T
 instead of ck, we 

unambiguously determine all coefficients of methods (5) 
with conformed stability domains from linear system (9) 
and (11). 

IV. ACCURACY AND STABILITY CONTROL 

We use the estimation of local truncation error δn,1 to 
control accuracy of the first order methods. Applying (12) 
we get that for the m-stage method it has the form  

2 3
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where cm2 is the coefficient at z
2
 in stability polynomial 

(8). Estimation εn,1 of the error can be computed using the 
formula  

1 2[(05 ) ( )]( )

1
n m i j i jc k k

i j m i j

         

     
 (16) 

The graph of a solution of a stiff problem can be 
divided into two types of regions. The first one is the 
settling region (where values of solution derivatives are 
low), and the second one is the transition region (where 
values of solution derivatives are high). Taking this into 
account, to increase the performance of calculations we 
proceed as follows. We apply  

,1 2 2 2 1[(05 ) ]( )n mc k k         (17) 

to make an over-cautious estimation. As k1 linearly 
depends on integration stepsize, omission of inequality of 
||ε'n,1|| ≤ ε leads just to one additional computation of the 
right part of (3). Here, ε is the absolute or relative 
tolerance of calculations, ||·|| is some norm in R

N
. Taking 

into account, that  

2 3
1 1( ) ( )n nnhf y k h f Ohf    , 

the final decision on accuracy we make checking 
inequality ||ε''n,1|| ≤ ε, where  

1 2 1 1(05 )( ( ) )n m nc hf y k      .  (18) 

We construct the inequality for stability control 
similarly to [2]. To obtain this inequality we apply method 
(5) to problem (3) on f(y) = Ay + b, where A and b are  
N-dimensional matrix and vector with constant elements, 
respectively. As the result, we can estimate maximal 
eigenvalue λn

max
 of Jacobi matrix ∂f(yn)/ ∂y of (3) using 

the formula  

2 3 3 2 2 3 1max 1
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  
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
(19) 

Then inequality for stability control for m-stage 
method (5) has form hλn

max 
≤ |γm|, where |γm| is stability 

interval length of the m-stage scheme. 

V. FIRST ORDER METHOD 

For numerical solution of Cauchy problem (1) we 
consider the explicit five-stage Runge-Kutta method 

1 1 1 2 2 3 3 4 4 5 5
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5 51 1 52 2 53 3 54 4
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        (20) 

where y and f are real N-dimensional vector functions, t is 
an independent variable, h is the integration step, k1, k2, k3, 
k4, and k5 are stages of the method, p1, p2, p3, p4, p5, β21, 
β31, β32, β41, β42, β43, β51, β52, β53, β54 are numerical 
coefficients, defining accuracy and stability properties of 
(20). 

We choose coefficients of (20) so that it has the first 
accuracy order and the extended stability domain. The 
stability domain of a method with the maximal length of 
the stability interval is almost multiconnected. We design 
polynomials of the first, second, third, fourth, and fifth 
degree so that the corresponding them methods have singly 
connected stability domains with the stability interval close 
to the maximal possible one (see fig. 1). 

Applying the algorithm from [5], we get coefficients 

11 21 31 41 51 1,с с с с с      



22 0.128025128205128,с   

 

32 330.152092927269786, 0.00580524400854353,с с   

 

42 430.160464544241005, 0.00827164513740441,с с   

44 0.000133419220894335,с   

 

52 530.164341322127141,  0.00948975952580473,с с   

6
54 55 0.000223956930863224, =1.8509727522235310 .с с  

 

At that, 
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2, 7.79, 17.46,
30.99, 48.39.
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 

  
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Writing and resolving linear systems (9) and (11) 
using (15), we obtain the coefficients of method (20) 

21 31

32 41

42 43

51 52
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0.0413243016210550 0.0805823881610573
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p p
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To control accuracy of the numerical formula we use 
estimations (17) and (18). The stability interval length of 
numerical scheme (20) of the first accuracy order equals 
17.46. Therefore, for its stability control we can apply 
inequality hλn

max 
≤ 17.46, where hλn

max
 is defined by 

formula (19). 

 
Figure 1.  Stability domain of method (20). 

VI. MERSON METHOD 

 The fourth accuracy order Merson method [6] 
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  (21) 

is one of the most efficient and widely used explicit 
Runge-Kutta methods. The fifth computation of function f 
does not result in the fifth order of accuracy, but allows to 
extend the stability interval length to 3.5 and estimate 
truncation error δn,4 using stages ki, i.e. 

4 1 3 4 5(2 9 8 2 )/30.n k k k k       

We apply inequality ||δn,4|| ≤ 5ε
5/4 

for accuracy control. 
The inequality is obtained assuming that the global error 
accumulated with local truncation errors [3]. Despite the 
fact that the inequality for accuracy control is obtained on 
a linear equation, it shows high reliability on solving 
non-linear problems. 

Now let us construct the inequality for stability 
control. Applying to k3 – k2 the first order Taylor's 
formula with the remainder term written in the Lagrangian 
form, we have 

3 2 2 1[ ( )/ ]( )/6,nk k h f y k k      

where vector μn is computed in some vicinity of solution 
y(tn). Taking into account, that 
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the inequality 
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can be used for stability control of (21), where 3.5 is the 
approximate length of stability interval (see fig. 2). Let 
εn,4 = δn,4/5. Then inequalities εn,4 ≤ 5ε

5/4
 and vn,4 ≤ 3.5 can 

be applied respectively for accuracy and stability control 
of scheme (21). 

As estimation of eigenvalue vn,4 = hλn
max

 is rough, 
stability control is used to limit integration stepsize and to  

 



 
Figure 2.  Stability domain of method (21). 

switch between methods. The predicted step hn+1 is 
computed as follows. Step h

ac
, that is chosen according to 

the requirements of accuracy, is computed using formula 
h

ac 
= q1hn, where hn is the latest accepted stepsize, and q1, 

taking into account relation εn,4 = O(hn
5
), defined by 

q1
5
εn,4 ≤ ε. We compute step h

st
, that is chosen according 

to the stability requirements, using h
st 

= q2hn, where q2, is 
defined by q2vn,4 = 3.5 as vn,4 = O(hn). Then, the predicted 
step hn+1 is computed using the formula 

1 max[ ,min( , )].ac st
n nh h h h   

The given formula stabilizes stepsize over the settling 
region, where stability has the defining role. 

VII. INTEGRATION ALGORITHM 

The algorithm of alternating order and step can be 
easily formulated on a base of the developed methods. It 
chooses the most efficient scheme on an each step. 
Calculations are always begun with the Merson method as 
it is more accurate. Switch to the first order method with 
conformed stability domains is performed on omission of 
vn,4 ≤ 3.5. Transition to the Merson method is performed, 
if vn,1 ≤ 3.5 satisfies. 

The norm in inequality for accuracy control is 
computed using the formula 

1

| |
|| || max ,

| |
i
ii N
ny r



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
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where i is a component number, r is a positive 
parameter. If inequality ||yn

i
|| ≤ r satisfies for i-th 

component of a solution, absolute tolerance rε is 
controlled, otherwise, relative tolerance ε. On calculations 
r was assumed to be equal to 3. 

VIII. MEDICAL AKZO NOBEL PROBLEM 

We chose the Medical Akzo Nobel problem [7] to test 
our method. The Akzo Nobel research laboratories 
formulated this problem in their study of the penetration 
of radio-labeled antibodies into a tissue that has been 
infected by a tumor. This study was carried out for 
diagnostic as well as therapeutic purposes. 

In [7] there is considered a reaction diffusion system 

in one spatial dimension: 
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u u
kuv

t x
 
 
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, 
v

kuv
t




,  (22) 

which originates from the chemical reaction A + B → C. 
Here, A, the radio-labeled antibody, reacts with substrate 
B, the tissue with the tumor, and k denotes the rate 
constant. The concentrations of A and B are denoted by u 
and v, respectively. 

Making necessary transformations and defining y(t) by 
y = (u1, v1, u2, v2,…, uN, vN)

T
 it is possible to write (22) in 

the form 

2( ) (0) 0 20Ndy
f t y y g y R t

dt
         , (23) 

Here, the integer N is a user-supplied parameter. The 
function f  is given by 
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where  

3 22( 1) /j j c    , 
4 2( 1) /j j c    , 1 j N  , 

1/N  , 1( ) ( )y t t  , 2 1 2 1N Ny y    , 2Ng R , 

 0 0 00 0 0 Tg v v … v       . 

The function φ(t) = 2 at 0 < t ≤ 5 and φ(t) = 0 at 
5 < t ≤ 20. Values for the parameters k, v0, and c are 100, 
1, and 4, respectively. Graph of the time and space 
dependencies of u and v is shown in fig. 3. 

IX. NUMERICAL RESULTS 

Calculations were performed on Intel(R) Core(TM)  
i3-5010U CPU with double precision. The parameter N 
was equal 200 that means that the system to be solved 
involved 400 equations. 

 

 

Figure 3.  u and v as functions of time and space. 



The stiffness ratio of the Medical Akzo Nobel problem 
approximately equals 10

6
. The graph of 133rd component 

of the solution is shown in fig. 4. 

Below IS, IW, and IF represent, respectively, total 
numbers of steps, declined solutions (due to omission of 
the defined absolute tolerance), and computed right parts 
of the problem. 

The algorithm of alternating order and step based on the 
first order method with conformed stability domains and 
the Merson method with accuracy and stability control 
gives the following results. For the defined absolute 
tolerance equal to 10

‒4
 we have IS = 11 505, IW = 1 266, 

and IF = 70 893. For the absolute tolerance  
10

‒7
: IS = 72 658, IW = 10 333, and IF = 403 066. 

X. CONCLUSION 

From the numerical results it follows that stability 
control leads to the efficiency gain due to the reduction of 
some declined solutions appearing as a result of instability 
of a numerical formula. Simulation of other test examples 
gives similar tendency. The designed method is aimed at 
the solution of large-scale problems of moderate stiffness 
with low accuracy, аs well as problems with protensive 

 

 

Figure 4.  Solution of the Medical Akzo Nobel problem. 

settling regions, where the first order methods with 
conformed stability domains give growth of the 
efficiency. 

The constructed algorithm is designed for low 
precision calculations – about 1% and lower. In this case, 
its maximum efficiency is reached. In the algorithm, with 
its parameters, one can specify different modes of 
calculations: 1) with the explicit first order method with 
conformed stability domains either with or without 
stability control; 2) with the Merson method either with or 
without stability control; 3) with automatic choice of a 
numerical scheme. Therefore, this algorithm can be 
applied both for solving stiff and non-stiff problems. In 
calculations with automatic choice of a numerical scheme, 
the integration algorithm makes a decision whether a 
problem to be solved is stiff or not by itself. 
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