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Abstract 

In luminous bacteria NAD(P)H:flavin-oxidoreductases LuxG and Fre there are homologous 

enzymes that could provide a luciferase with reduced flavin. While Fre functions as a 

housekeeping enzyme, LuxG appears to be a source of reduced flavin for bioluminescence as it 

is transcribed together with luciferase. This study is aimed at providing the basic conception of 

Fre and LuxG evolution and revealing the peculiarities of the active site structure resulted from a 

functional variation within the oxidoreductase family. A phylogenetic analysis has demonstrated 

that Fre and LuxG oxidoreductases have evolved separately after the gene duplication event, and 

consequently, they have acquired changes in the conservation of functionally related sites. 

Namely, different evolutionary rates have been observed at the site responsible for specificity to 

flavin substrate (Arg 46). Also Tyr 72 forming a part of a mobile loop involved into FAD 

binding has been found to be conserved among Fre in contrast to LuxG oxidoreductases. The 

conservation of different amino acid types in NAD(P)H binding site has been defined for Fre 

(arginine) and LuxG (proline) oxidoreductases. 

 



Introduction  

In bacteria a bioluminescent reaction is regulated by a set of proteins encoded in lux-operon.1 

Two genes, luxA and luxB, code for a bacterial luciferase that is the most studied enzyme playing 

a major role in the bioluminescent reaction. The rest of a multienzyme bioluminescent system 

involved in continuous light emission is poorly investigated and the role of each enzyme is still 

under consideration.2,3
 

The gene product of luxG that flanks luxAB is supposed to function as NAD(P)H:flavin 

oxidoreductase. Its function has been hypothesized on the basis of LuxG homology to the flavin 

oxidoreductase found in Escherichia coli (Fre).4,5 Fre is the essential enzyme involved into 

different metabolic pathways in bacteria, including the reduction of ferric iron integrated into 

active sites of various enzymes.6 Precisely it catalyzes the reduction of soluble flavins (FMN, 

FAD or riboflavin) associated with NADH or NADPH oxidation.7 Hence, LuxG has been 

proposed as a source of reduced flavin, FMNH2, for bacterial luciferase.8 Moreover, LuxG has 

also turned out to reduce the ferric irons in vitro9 and vice versa Fre has proved to provide 

FMNH2 to the bioluminescent reaction catalyzed by a bacterial luciferase in recombinant E. 

coli.10
 

In many luminous species (i.e. Aliivibrio fischeri, Photorhabdus luminescens and others) not 

only LuxG, but also Fre-like oxidoreductases have been found.5 Probably, they are not involved 

into the regulation of bioluminescence in vivo except for in Photorhabdus species which lack 

luxG gene and apparently compensate oxidoreductase activity by Fre. 

LuxG crystal structure has not been identified yet, however the folding patterns of this 

subfamily could be analyzed using the known spatial structure of Fre oxidoreductase. The latter 

has turned out to be structurally similar to the members of the ferredoxin:NADP+ reductase 

(FNR) family.11 At the same time, amino acid sequence similarity between Fre and FNR is very 

low.12 An exception is the identical functional residues involved into the binding of flavins and 

NAD(P), and these regions are uniformly ordered along the sequence.11 



LuxG and Fre oxidoreductases were discovered when only a few luminous species were 

described. Since then a numerous sequences of lux and fre genes have become available, but all 

the experimental investigations of functional properties have been carried out using only either 

LuxG from P. leiognathi or Fre from E. coli. It has been revealed that LuxG functions as a 

homodimer and its unique feature is the half-sites reactivity which is impossible for Fre that 

exists exclusively as a monomer.13 Additionally the difference in substrate specificity has been 

shown: for Fre FAD is a preferred substrate and an inhibitor while for LuxG it is not the case.14 

Also the possibility for Fre or LuxG to form a complex with bacterial luciferase has been studied 

and functioning of LuxG as a source of reduced flavins for the ferric iron reduction process has 

been revealed.3,9,10 

Regardless the incomplete knowledge about the characteristics of proteins involved into 

bacterial bioluminescence, it is widely applied as an enzyme-based bioassay and whole-cell 

biosensor for ecotoxicology, foods quality control, etc.15,16Research of LuxG and Fre evolution 

and specific structural changes occurred to LuxG upon functioning as a part of lux-operon could 

shed light on the mechanisms of bacterial bioluminescence. This study is aimed at providing a 

basis conception of Fre and LuxG evolution and revealing the peculiarities of an active site 

structure resulted from a functional variation within the oxidoreductase family. The phylogenetic 

relationships between Fre and LuxG oxidoreductases have been analyzed and critical changes of 

functionally important sites have been identified. 

Methods 

Sequence data collection and multiple sequence alignment 

Amino acid sequences of LuxG oxidoreductases from Vibrio harveyi (accession No 

ABX76849.1) and Photobacterium leiognathi (accession No KJF87632.1) have been used as an 

input to BLAST to identify homologous sequences available in NCBI.17,18 We have used the 

protein-protein BLAST algorithm with an e-value of e-10 and the BLOSUM62 matrix. Each 

query result  has contained 1,000 amino acid sequences. The dataset has been manually modified 



in a following way: {1} two search results have been merged, that has led to a set of 1,072 

unique sequences, {2} 13 partially sequenced proteins have been excluded from the dataset, {3} 

one sequence has been chosen as a representative from each group of sequences with a high 

identity (over 95%), so the resulting dataset has comprised 431 amino acid sequences (Table SI). 

In order to root the tree we have used an outgroup consisting of five amino acid sequences of 

enzymes belonging to FNR superfamily. The resulting sequences have been aligned using 

MAFFT software with default parameters implemented in the Jalview program package.19,20 

Reconstruction of phylogenetic tree 

The alignment has been used as the input to the ProtTest 3 program, which has identified 

LG+I+G as the best-fit amino acid replacement model for the evolution of LuxG and Fre 

oxidoreductases.21 This model has been implemented for the reconstruction of a phylogenetic 

tree with PhyML software  and support has been calculated with 1,000 bootstrap replicates.22 

Bayesian analysis has been conducted with MrBayes v3.2.6 program, computational runs have 

been performed for 3,000,000 generations sampled every 50 generations, and 25% of sampled 

trees have been used for building up a consensus tree.23 The tree has been displayed using the 

interactive Tree of Life (iTOL) website.24 

Analysis of conserved amino acids and functional divergence between Fre and LuxG 

The amino acid sequence of E. coli Fre, 14 sequences of LuxG and 19 sequences of Fre 

oxidoreductases from confirmed luminous species with available sequenced genomes have been 

retrieved from the final data set. The sequences have been realigned and phylogenetic analysis 

has been performed according to the procedure described above. The analysis of sites conserved 

among collected 34 oxidoreductase sequences and within the Fre and LuxG subfamilies and 

different between them has been performed.  

Additionally Diverge 3.0 has been used to identify the functional divergence that may have 

occurred after oxidoreductases split from a common ancestor.25 We have determined the 

positions that refer to type I or type II functional divergence. Type I means a considerable rate 



difference at a given site between Fre and LuxG oxidoreductases, it shows that functional 

constraints are different for two subgroups of the enzyme family. The coefficient of type I 

functional divergence, θI, has been estimated for two clusters of amino acid sequences. Then θI 

coefficient and its standard error have been used for statistical evaluation of each position of the 

alignment based on Z-score test. Sites that could be related to this type of functional divergence 

have posterior probability score under a cut-off value (0.75). Type II means a radical change in 

amino acid property of the alignment position, which is highly conserved within the subfamily. 

Similarly, coefficient θII has been estimated and used to predict the alignment positions 

responsible for type II functional divergence (with a posterior probability cut-off value  ≥0.75). 

Structure preparation and refinement 

To explore the potential function of the identified sites a spatial structure of E. coli Fre 

oxidoreductase (PDB ID: 1QFJ) and a modelled structure of V. harveyi LuxG have been 

analyzed. The latter one has been obtained using the Swiss-MODEL server with the structure of 

E. coli Fre applied as a template.26 The missing loop in E. coli Fre structure has been 

reconstructed with MODELLER.27 After LuxG model preparation and the reconstruction of Fre 

mobile loop we have performed 20 ns molecular dynamics simulation for both structures at 298 

K and a constant pressure of 1 atm, using a model of explicit water SPC/E and CHARMM36 

force field in GROMACS (version 5.1.4).28 Initially both structures have been put into a box 

with periodic boundary conditions and ions have been added to neutralize the system. Also 

before the production runs a minimization followed by NVT and NPT equilibration has been 

done in order to remove any bad contacts between the protein and the solvent, to heat the system 

and reach the pressure of 1 atm.  

After the production runs the structural validation of Fre and a modelled LuxG oxidoreductase 

have been performed by creating a Ramachandran plot using the PROCHECK software.29 The 

coordinates of FAD and 2’-phospho-5’-AMP have been derived from the structure of Spinacia 

oleracea oxidoreductase (PDB ID: 1FNC) using structural alignment with E. coli Fre. Then 



LuxG and Fre (with substrates) structures have been superimposed with VMD and plugin 

MultiSeq for the analysis of ligand binding patterns.30,31,32
 

Results and discussion 

Evolutionary relationships of LuxG and Fre 

The BLAST searches with amino acid sequences of V. harveyi LuxG and P. leiognathy LuxG 

have identified 367 amino acid sequences of Fre from non-luminescent species, 31 sequences of 

Fre from luminous bacteria and 33 sequences of LuxG (Table SI). As a result, the tree 

reconstructed from 431 homologous sequences clearly displays three clades containing {1} 

LuxG proteins, {2} Fre oxidoreductases of luminous bacteria together with a few non-

luminescent species and {3} Fre of non-luminescent bacteria and luminous Photorhabdus 

species (Figure 1 and more detailed Figure S1). Whereas the BLAST searches have been 

performed using two LuxG sequences as the query, a large representation of Fre oxidoreductases 

from luminescent and non-luminescent species has been observed in the dataset. A bias of Fre 

oxidoreductases should not affect the tree topology as e-values for the sequences have been  

belowthe selected threshold (Table SI). LuxG oxidoreductases have formed a single 

monophyletic clade {1}, while all Fre have fallen outside it. It has included some proteins of 

luminous bacteria that have been identified as general NAD(P)H:FMN-oxidoreductases 

according to the NCBI annotation, but the analysis of the associated genome, especially their 

neighboring genes has allowed assigning them to LuxG. Moreover, a few NAD(P)H:FMN-

oxidoreductases from non-luminous species have occurred in the LuxG clade, precisely from 

Photobacterium piscicola, Vibrio lentus and Vibrio sp. BCB494. The latter one is a natural dark 

mutant having a deletion in the luxC gene.33 Some isolates of P. piscicola containing a luxA gene 

have been described, therefore this sequence could be also designated as a LuxG 

oxidoreductase.34 V. lentus is phenotypically close to luminous V. splendidus, probably the 

detailed study of V. lentus genome could reveal functionally redundant lux genes.35
 



LuxG clade {1} contains two large groups composed of (i) Aliivibrio, Photobacterium and 

Shewanella genus, and (ii) Vibrio genus and Candidatus photodesmus katoptron, plus minor 

third branch formed by LuxG from closely related V. albensis (V. cholerae) and Vibrio sp. 

RC586.36 The division  of luminous species majority within the clade {1} is consistent with two 

previously described groups of luciferases (luxAB gene product): “fast” and “slow” ones.37 It 

supports the idea of luxAB and luxG genes co-evolution, opposite to Fre genes of luminous 

bacteria that do not follow the same partition tendency (Figure S2). The segregation of LuxG 

involving about 30 amino acid residues will be analyzed in detail elsewhere, here we indicate 

only the intriguing assumption of possible difference in functional properties of LuxG from two 

groups of luminous bacteria. The only LuxG oxidoreductase that has by now been purified and 

investigated is the one from P. leiognathi.3,8,13
 

Fre-like proteins found by BLAST are mainly represented by Vibrionaceae and 

Enterobacteriaceae families, with a few species from Shewanellaceae, Idiomarinaceae, 

Chromatiaciae, Pseudoalteromonadaceae and Yersiniaceae families (Figure S1). The first Fre 

clade {2} contains the majority of luminous species and consists of NAD(P)H:FMN-

oxidoreductases only, while the second Fre clade {3} includes also aquacobalamin reductases, 2-

polyprenylphenol hydroxylase-like oxidoreductases, and CDP-6-deoxy-delta-3,4-glucoseen 

reductases. These enzymes could function as a flavin oxidoreductase as well. Fre of luminous 

Photorhabdus species belong to the clade {3} that lacks oxidoreductases of other bioluminescent 

bacteria. Similar phylogenetic relationships have been observed for various housekeeping genes 

of luminous strains that have acquired lux genes horizontally.38
 

Conservation and coevolution of amino acids in LuxG and Fre sequences 

The obtained phylogenetic tree indicates that LuxG and Fre oxidoreductase subfamilies are the 

result of a gene duplication. In this case both natural selection and neutral evolutionary processes 

could be the mechanisms that have caused the difference in their evolution. To examine the 

conservation patterns in Fre and LuxG oxidoreductases, the group of amino acid sequences from 



confirmed luminous species with available sequenced genomes have been selected.1 The 

extracted dataset consists of 14 primary sequences of LuxG, 19 sequences of Fre 

oxidoreductases and one E. coli Fre. 

To study the potential function of the amino acids in Fre and LuxG oxidoreductases, missing 

structural motifs of E. coli Fre has been reconstructed, and V. harveyi LuxG 3D model has been 

constructed by homology modeling using Swiss-MODEL server with E. coli Fre structure as a 

template.26 The alignment of the query sequence and the template has been calculated by the 

server (Figure S3) and relatively high identity and similarity (39.04 and 54.27%, respectively) 

have been obtained. Both structures have been refined using MD to correct possible errors that 

could occur in variable loops, the relative orientations of secondary structure elements, etc. 

(Figure S4). Structural validation of the model has been performed using PROCHECK software 

before and after MD simulation.29 The analysis has showed that before MD refinement 87.3 % of 

LuxG residues have been found in most favored regions, while after the simulation there have 

been 90.7 % residues in most favored regions meaning a good quality of the obtained model 

(Figure S5). Both structures (PMDB ID: PM0081491 and PM0081492) have been used for 

further analysis of conserved positions and possible protein-ligand interactions. 

We have first determined the conserved sites using a multiple sequence alignment of 34 amino 

acid sequences of LuxG and Fre oxidoreductases using E. coli Fre as the reference sequence to 

display the conservation of the residues. 47 alignment positions have been identified as highly 

conserved among all oxidoreductases (Figure 2), a number of them belong to the active center 

residues in flavin and nicotinamide binding sites. 

Moreover, all Fre proteins have been found to share additional 22 highly conserved residues, 

which are distinct from the corresponding amino acids of LuxG subfamily (Table SII). Three of 

them have been identified as responsible for type I functional divergence (Lys45, Arg46 and Phe 

203) and one – for type II functional divergence (Arg 202) (Table I). Moreover, four amino acid 

residues conserved among LuxG oxidoreductases have been identified as related to type I 



functional divergence and one – to type II one. The determined specific residues can play a 

significant role in the division of oxidoreductases into Fre and LuxG subfamily and the 

mechanisms of their functioning. 

We have explored possible functions of sites that have showed a specific conservation using 

superimposed structures of LuxG and Fre obtained with VMD and plugin MultiSeq.31,32 FAD 

and 2’-phospho-5’-AMP  coordinates have been derived from the structure of Spinacia oleracea 

oxidoreductase (PDB ID: 1FNC) using a structural alignment with E. coli Fre.30
 

It is known that LuxG enzymes are able to reduce FMN, FAD and riboflavin with comparable 

efficiency, while for Fre oxidoreductases FAD is a preferred substrate.14 The difference in 

affinity to flavins could be partly attributed to the absence of the Arg46 in the structure of LuxG 

(Figure 3, A). This residue forms a conserved Arg46-Pro47-Phe48-Ser49 segment characteristic 

to all Fre oxidoreductases as well as to the members of FNR family, but not to LuxG 

oxidoreductases (Figure S7).4,12According to the alignment and the analysis of functionally 

diverged sites, Arg46 is characterized by different conservation between LuxG and Fre 

oxidoreductases indicating type I functional divergence (Table I and Table SII). In other words 

this site is characterized by significantly different evolutionary rates for Fre and LuxG meaning 

reduced functional constraints for LuxG oxidoreductases. This can lead to differences in flavin 

phosphate or pyrophosphate binding and consequently in the enzyme activity.  

The second segment where LuxG sequences have less conservative residues compared to Fre is 

a short mobile loop (residues 67 – 72 in the E. coli Fre structure). Particularly, all Fre 

oxidoreductases have conserved Asn70 and Tyr72, while LuxG ones display no conservation of 

corresponding residues (Figure S8). Generally, for other members of FNR family, the similar but 

a longer loop is known to provide the tight binding of an adenosine diphosphate moiety of FAD 

that acts as a cofactor.11 The shortened loops of Fre and LuxG could also perform the same 

function but with less efficiency because they use FAD as a substrate. Thus, the lack of 



conservation in the loop sequence obtained for LuxG enzymes well corresponds to their less 

specificity to FAD in comparison with Fre-like reductases. 

Both oxidoreductases use NADH as well as NADPH as donors of electrons. Previously it was 

shown that the nicotinamide ribose phosphate part of NAD(P)H plays a major role in binding to 

Fre, while the impact of adenosine phosphate part is negligible.39 The functional divergence 

analysis revealed that individual amino acid site, namely Arg202, is related to a type II 

functional divergence (Table I and Table SII). This type of functional divergence refers to radical 

change of physical and chemical properties of amino acid residue. The position is conserved in 

both subfamilies: arginine in Fre and proline in LuxG (Figure 3, B). A functional divergence 

may have occurred after a gene duplication event and further purifying selection acted to 

maintain the related, but distinct, functions of the position in LuxG and Fre sub-families. In the 

active site of Fre oxidoreductases arginine residue could interact with the phosphate of adenosine 

or nicotinamide part of NAD(P)H. No arginine or a polar residue that could serve the same 

function has been found near proline in the active site of LuxG. Therefore the structural analysis 

indicates that Fre and LuxG oxidoreductases can apply different NAD(P)H binding patterns. 

Conclusion 

The presence of a Fre oxidoreductase homolog in the lux-operon of luminous bacteria was 

discovered over two decades ago, later a series of experiments demonstrated the role of LuxG in 

a coupled reaction with luciferase.3,8 Here we have performed a comparative phylogenetic 

analysis to determine evolutionary relationship between Fre and LuxG including protein 

structural context of active site amino acid differences that have not been studied before. 

The phylogenetic tree obtained from 431 homologous sequences indicated that Fre and LuxG 

evolved independently from a single ancestor. Probably the gene duplication led to the split of 

these oxidoreductases into two subfamilies. The evolution of LuxG as a part of lux-operon has 

resulted in substantial variation in amino acid composition of segments that are highly conserved 

among Fre oxidoreductases including those of substrate binding site. It seems that LuxG has lost 



the specificity to FAD, while Fre has conserved this feature. This LuxG evolution pathway can 

be attributed to the bacterial luciferase specificity to reduced FMN, but not FAD. The alternative 

explanation can be based on the unknown role of LuxG in bacterial bioluminescence different 

from providing reduced flavin for the luciferase. A further comparative study of Fre and LuxG 

functioning in vivo and in vitro would shed light on probable additional functions of the latter 

oxidoreductase. 
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Figure 1 – A simplified representation of the phylogenetic relationship between Fre and LuxG 

oxidoreductases. The percentage of replicate trees in which the associated oxidoreductases 

clustered together in the bootstrap test (1000 replicates) is shown next to the branches together 

with Bayesian information criterion: bootstrap value/posterior probability 

 

 

 

 

 

 

 

 

 



 

Figure 2 – Arrangement of conservative amino acid residues on the structure of E. coli Fre 

oxidoreductase. Identical residues among 14 LuxG and 19 Fre oxidoreductases from luminous 

bacteria and E. coli Fre oxidoreductase are represented by a gold surface, identical with one 

exception are colored orange, identical with two exceptions – red, the rest of the structure is 

shown by a transparent gray surface. These residues have been determined directly from the 

multiple sequence alignment. 

The location of FAD (purple) and 2'-phospho-5'-AMP (green) in flavin- and NAD(P)-binding 

sites has been identified using structural alignment with Spinacia oleracea oxidoreductase (PDB 

ID: 1FNC), both molecules are shown in stick representation 

 

 

 



 

Figure 3 – Superposition of the active sites of E. coli Fre and V. harveyi LuxG. Ligands 

configuration has been retrieved from Spinacia oleracea oxidoreductase structure. Functionally 

important amino acids of Fre and LuxG found in the corresponding positions of the alignment 

are shown in stick representation. (A) depicts possible differences in phosphate binding of 

flavins; (B) shows adenine binding patterns distinctive for LuxG and Fre proteins 


