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Abstract 

The polarized optical states in the transmission spectrum of a twisted-nematic Fabry–Pérot cavity with the 
distinctly broken Mauguin’s waveguide regime have been theoretically and experimentally investigated. 
Specific features of the electric field-induced transformation of the polarization and spectral characteristics 
of eigenmodes of the neighboring series at the overlap resonant frequencies have been examined. It is 
demonstrated that the linear polarizations of eigenmodes at the cavity boundaries remain nearly orthogonal 
and their frequency trajectories reproduce the avoided crossing phenomenon. The experimental data are 
confirmed analytically and by the numerical simulation of light transmission through the investigated 
anisotropic multilayer with the use of a Berreman matrix method. The results obtained can be generalized to 
any materials with the helix response.  

 

Introduction  

 

One of the promising directions in modern photonics is the development of controlled devices on the 

basis of structures with the permittivity periodically modulated in one, two or three dimensions on a spatial 

scale comparable to the light wavelength. Such structures are called photonic crystals (PCs)1,2. The Fabry–

Pérot microcavities with the distributed Bragg mirrors, i.e., layered structures with the refractive index 

periodically changing in one spatial direction, are, in fact, one-dimensional PC structures with a defect layer. 

A specific feature of electromagnetic eigenstate spectrum in the layered structure is the presence of photonic 

band gaps (PBGs) almost totally reflecting the incident radiation1–3. The defect layer breaks the periodicity 

of dielectric properties and thereby leads to the localization of light with certain wavelengths inside the band 

gap.  

The optical properties of the Fabry–Pérot cavity can be effectively controlled by using an electric 

field-sensitive medium as a defect layer. Here, the highly promising materials are liquid crystals (LCs), 

which exhibit a great variety of electrooptical effects useful for controlling the refractive index by changing 
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the LC director configuration under low voltages4. Close attention of researches has been paid to the wave 

processes in optically anisotropic materials, including twisted-nematic LCs placed inside a Fabry−Pérot 

cavity. In such structures, the ease of controlling LCs by low voltages is combined with the high spectral 

resolution of the cavity5–8. This allows governing the intensity, phase, and polarization of the transmitted or 

reflected light9,10. It was analytically established that twisting of the optical axis of a nematic LC and the 

difference between the propagation constants of the extraordinary (е) and ordinary (о) waves in such a 

medium cause their coupling and form a new class of eigenmodes called twist extraordinary (tе) and twist 

ordinary (tо) waves11. These waves are elliptically polarized. The ellipticity of polarization is retained; the 

semimajor axis of the ellipse is directed along (te) or across (to) the local director. As was demonstrated 

using the theory of coupled modes, a pair of the te and tо waves at the same frequency is coupled by 

reflection in a twisted-nematic Fabry−Pérot cavity (TN-FPC). This coupling produces a cavity mode pair, re 

and ro. The polarization and, consequently, the mode type, re or ro, depend on the ratio between te and tо 

mode amplitudes12. In this case, despite the ellipticity of the cavity modes, they remain linearly polarized at 

the TN-FPC boundaries13,14. In a previous study14, the effect of mode coupling on the polarization states of 

eigenmodes of the TN-FPC containing a thin nematic layer with the distinctly broken Mauguin’s waveguide 

regime15 was investigated. The spectra were measured and calculated for the unpolarized incident light. It 

was shown that the device can be used as an electric field-controlled rotating linear polarizer. However, 

there are little-studied problems on specific features of the TN-FPC polarized transmission spectra, where 

peaks are accompanied by satellites. So, at first, the spectra seem to be random sets of peaks with arbitrary 

intensities. Experimental data that would reflect the correlation between the field-effect dynamics of the 

spectral positions of eigenmodes and change in their polarization state are lacking. In particular, it is 

important to clarify how the mode couplings manifest themselves at the field-effect transition through the 

Gooch–Tarry spectral point16, where the te and tо elliptic modes are maximally coupled. These problems 

have to be solved to regulate the concepts on the behavior of modes in twisted structures and optimize the 

structure of tunable TN-FPCs designed for telecommunication applications17. For this purpose, a modified 

experimental approach is needed.  

The aim of this study is to investigate the spectral features of polarization components of the modes in 

a TN-FPC with a thin twisted-nematic layer within photonic band gap. We discuss the polarization and 

spectral behavior of selected modes in the vicinity of the Gooch–Tarry maximum under the field-effect 

dynamics. The spectral position of this point is governed by a low (~1 V) electric voltage and the spectra 

and polarization states of the re and ro cavity eigenmodes are detected by the rotating polarizer technique 

under their independent excitation. The experimental data are compared with the results of numerical 

simulation using the 4×4 transfer matrix method.  

 

Results and Discussion   

 



The superimposed polarization components T||,⊥(λ) of the TN-FPC transmission spectrum are 

presented in Fig. 1a. Each component consists of two intervals that divide the PBG approximately in half. In 

the short-wave spectral range in the vicinity of a wavelength of λmin = 458 nm, one can see a band of well-

resolved peaks, which correspond to the re cavity modes in the T||-component and the ro modes in the T⊥-

component. At the parameters of the investigated twisted-nematic structure, this wavelength corresponds to 

the Gooch–Tarry minimum condition16. At the wavelength of λ = 458 nm the values of the refractive indices 

ne = 1.763 and no = 1.552 of the 5CB liquid crystal (t = 25°C) and thickness d = 4.15 µm yield 

2Δnd/λ = 3.82. Thus, λ = 458 nm corresponds to the second Gooch–Tarry minimum. This condition 

simulates the Mauguin’s regime in the LC layer for the transmitted light linearly polarized along the director 

or orthogonally to it on the input mirror. In contrast to the Mauguin’s regime, the propagation of waves in 

the TN-FPC is not waveguide, since the modes in the bulk of LC remain elliptically polarized12,18. The 

wavelength λmax = 560 nm shown by the arrow in Fig. 1a is a center of the mixed peak band. In particular, in 

the T||-component, along with the well-defined rе modes, the lower-intensity ro modes are observed as 

satellites and, vice versa, the rе modes are visible in the T⊥-component. At the parameters of the investigated 

twisted-nematic structure, the wavelength λmax corresponds to the Gooch–Tarry maximum condition16. The 

electric field applied along the sample normal will unwind the nematic helix. The director field deformation 

is related to the weakening of the optical anisotropy of the LC medium, which, in turn, allows the spectral 

positions of modes to be controlled. For example, above some critical voltage applied to the sample, the 

mode λre = 493 nm will shift toward the mode λro = 484 nm (Fig. 1a) and experience the avoided crossing 

phenomenon6,8,12. Figure 1b shows the calculated TN-FPC transmission spectrum. It can be seen that the 

experimental and calculated spectral positions of the cavity modes agree well within photonic band gap.  

The spectral features are explained by the essential difference between the states of polarization (SOP) 

of the optical modes in the vicinity of the Gooch–Tarry minimum and maximum. A parameter for estimating 

the SOP can be angle ξ or θ of the deviation of the linear polarization of the modes from the LC director on 

the input (ξ) or output (θ) cavity mirror, respectively. According to the approach described in ref. 18, the 

angle ξ is determined as  

11 φ
ξ tan tan υ

2 υ
−  = −  

,      (1) 

where 2 2υ δ φ= +  is the twisted anisotropy phase, ϕ is the LC director twist angle, δ = Δndk0/2 is the 

anisotropy phase (angle), Δn = ne − no is the difference between the refractive indices of the e and o waves, 

and k0 is the wavenumber in vacuum. In addition, the analytical solution of Eq. (1) contains the LC 

frequency dispersion in the implicit form. For the investigated structure the angles ξ and θ are 

complementary. In particular, in the configuration presented in Fig. 7 below, the angle θ can be determined 

experimentally from the angle of deviation of the transmission direction of analyzer А from the y axis to the 

maximum transmission in this resonance. The θ values are assumed to be positive upon deviation of А to the 



positive direction of the x axis and negative upon deviation to the opposite side. Note that the rotation of the 

analyzer by 90° relative to the desired θ value leads to the quenching of the peak, which is indicative of the 

nearly linear polarization of the radiation at the cavity output. Figure 2 shows experimental and numerically 

simulated angles θ for all the resonant peaks of the TN-FPC spectra.  

The θ(λ) functional dependence in Fig. 2 according to Eq. (1) allows us to follow the SOP evolution in 

the spectrum, starting from the λmin wavelength. As expected, in the vicinity of the Gooch–Tarry minimum, 

re and ro modes are linearly polarized along the x || n (–90°) and y (0°) axes, respectively. As the λ value 

increases, the linear polarization smoothly and unidirectionally deviates from the coordinate axes up to 

critical angles of −45° for the rе modes and +45° for the rо modes at the Gooch–Tarry maximum point. It 

can be seen that the transition of this point leads to the change in the θ angle sign for the modes of both 

types. Thus, the modes, in fact, exchange by their SOP. Moving further to the long-wave region, the 

polarization directions monotonically approach the corresponding coordinate axes: θ → +90° (x axis) for the 

rе modes and θ → 0° (y axis) for the ro mode. The presented θ(λ) dependence elucidates the reasons for the 

essential difference between the structures of polarization components T||,⊥(λ) of the transmission spectrum 

(Fig. 1a) in the band of pure peaks and in the band of mixed ones. It is noteworthy that the above-mentioned 

trends to the TN-FPC mode SOP evolution in the spectrum are only determined by the strict alternation of 

the Gooch–Tarry extrema upon variation of the Mauguin’s parameter16 u ~ 2Δnd/λ and, in this sense, are 

general. The number of bands in the PBG and their spectral positions can be different, since they are 

determined by the specific parameters of the investigated structure, including cavity thickness d, anisotropy 

value Δn, and twist angle φ.  

Figure 3 presents experimental dependences of the polarized (T⊥-component) and unpolarized (Т) TN-

FPC spectrum in the region of resolved peaks under applied voltages of 0.74 (Fig. 3a) and 0.97 V (Fig. 3b). 

The Freedericksz transition voltage is Uc = 0.76 V. For clarity, the field-effect dynamics of the spectral 

position of the modes is shown against the background of the spectra of the T⊥-component measured under 

zero voltage. The transmission peak position is determined by the cavity eigenmode frequencies. They 

satisfy the phase matching condition14, which requires the total phase incursion of eigenmodes for a cycle to 

be multiple of 2π: 

12σ  2sin (cosΘ sinυ)  2πN−± ⋅ = .     (2) 

Here, the quantity 2σ = (ne + no)k0d is the mean mode phase for a cycle and the ellipticity parameter 

Θ = tan−1(ϕ/δ) reflects the smoothness of twisting relative to the nematic layer anisotropy value. The integer 

N = 1, 2, 3,… in Eq. (2) unambiguously determines the number of each resonant series from two peaks of 

close frequencies, which correspond to the re and ro mode. In Fig. 3a, one can see four such series. A 

remarkable property of the modes of one series is that they can cross with each other, i.e., resonate at the 

same frequency, only when the parameter υ amounts to an integer number of π. Coincidence of the re and ro 



modes at a wavelength of λmin = 458 nm is an example of such crossing, which allows us to determine, 

according to the refractometric data on 5CB from ref. 19, the number N = 30 of this series using Eq. (2). As 

the wavelength increases, the series number decreases by unity; thus, the series in Fig. 3a from the left to the 

right have the numbers N = 30, 29, 28, and 27. Another remarkable property of the twisted-nematic cavity is 

that the avoided crossing phenomenon can only be observed between crossed modes of the neighboring 

series with the numbers of different evenness12.  

As we mentioned above, the electric field-induced untwisting of an LC leads to the smooth shifting of 

the rе modes, while the position of the ro modes is almost field-insensitive. In particular, above the 

threshold voltage Uc, the rе modes (468.8, 480.5, and 493.1 nm) shown by horizontal arrows in Fig. 3a start 

shifting from the initial position toward the nearest short-wave ro modes (457.9, 470.4, and 484.3 nm) of the 

neighboring series, forming mixed pairs with the latter (Fig. 3b). Under a certain voltage, each pair 

experiences the avoided crossing phenomenon, which indicates a new position of the Gooch–Tarry 

maximum for the structure under study. As an example, Fig. 3b shows the spectrum corresponding to the 

avoided crossing of the rо mode with 484.3 nm of the 28th series and the rе mode with 493.1 nm of the 27th 

series shifted toward the former under a voltage of U = 0.97 V. In the vicinity of the point λ = 484.3 nm, 

where the Gooch–Tarry maximum shifted at this voltage (shown by the arrow), the spectrum has the form of 

a doublet with the peaks symmetrically repulsed by ∼0.75 nm each relative to this point. Note that the mode 

spectra are analogous at the unpolarized incident light and in the presence of the polarizer for both T|| and T⊥ 

component. A further increase in the voltage to 1.05 V will lead to shifting of the Gooch–Tarry maximum to 

a wavelength of 470.4 nm and the occurrence of the avoided crossing phenomenon for the next mixed pair 

of modes, and so on.  

It is interesting to follow the field-effect evolution of the SOP of a pair of modes, which experiences 

the avoided crossing phenomenon. To do that, the SOP spectra for a pair of modes with 484.3 and 493.1 nm 

were detected independently by the rotating polarizer method in the voltage range of 0.86 ÷ 1.10 V with a 

step of 0.01 V. In this method, for each voltage, a polarizer position is found at which the transmittance of 

the investigated resonant peak attains its maximum value Tmax. In this case, the angle between the 

transmission direction of polarizer Р and the y axis taken for the reference point corresponds to the angle ξ 

in Eq. (1). At the SOP orthogonality, the mode of the pair selected in such a way looks like a single peak 

without satellites. Figure 4 shows experimental and calculated the SOP spectra obtained by the rotating 

polarizer method for modes 484.3 nm and 493.1 nm as a function of the applied voltage. The dependences 

evidence for not only the mode orthogonality at the avoided crossing point, but also for the synchronous 

evolution of the eigenstates in the vicinity of this point upon monotonic variation in the voltage applied to 

the sample. The field-effect dependence of the angle ξ (Fig. 5a) measured with the polarizer set in a desired 

position before spectrum detection evidences for the not quite obvious fact of the SOP evolution at which 

the modes remain orthogonally polarized at least in the range of 0.94 ÷ 1.0 V. The unobviousness is caused 

by the different field-effect dynamics of the spectral positions of the modes with increasing voltage 

(Fig. 5b). In particular, upon approaching the voltages around U = 0.97 V, the ro mode with 484.3 nm, 



which is initially insensitive to the field, starts shifting to the blue spectral range, while the active re mode 

with 493.1 nm slows down. In this case, each mode in the pair resonates at its own frequency (Fig. 5b). 

Nevertheless, in view of the frequency closeness, the key parameters υ determining the direction of linear 

polarization of the cavity mode on the mirror12,18 differ insignificantly even at the end points of the λ(U) 

dependence in Fig. 5b, when the modes start diverging. In particular, at U = 0.94 V, the ratio between the 

anisotropy phases δrо/δrе = (1 + Δλ/λro) and, consequently, between parameters υrо/υrе, differs from unity by 

only 0.4 %. Here, Δλ = λre − λro is the spectral interval between the combining modes. Such a discrepancy is 

noncritical for the ξ(υ) dependence of the polarization angles of the rе and rо modes in the range of small 

values of the υ parameter12, which results in the observed mode orthogonality effect at the essentially 

different field-effect dynamics of spectral positions of the modes. The specific feature of the behavior of the 

modes in the TN-FPC is that such independent characteristics as spectral position and polarization state are 

correlated. Comparison of the ξ(U) and λ(U) dependences shows that, e.g., the ro mode synchronously 

reacts to approaching the Gooch–Tarry maximum point by rotation of the angle ξ and shifting to the short-

wave spectral region.  

It is important that, in the case of orthogonal SOP of the modes in a mixed pair in the above-

mentioned method for detecting the spectrum of a selected mode, the second cavity mode is blocked by the 

input polarizer, since both modes are linearly polarized at the boundaries. Nevertheless, the invisibility of 

the second mode does not affect the spectral position and polarization state of the investigated mode. In 

particular, at U = 0.97 V, the ro mode with 484.3 nm in Fig. 4a and rе mode with 493.1 nm in Fig. 4b 

occupy the same spectral positions as in the spectrum in Fig. 3b obtained by intensity equalization 

technique14. Thus, the independently detected modes appear repulsed by their virtual twins and thereby 

reproduce the trajectory corresponding to the avoided crossing phenomenon (Fig. 5). Coincidence of the 

mode trajectories obtained by different detection methods directly indicates their independence, despite the 

matched rearrangement of the polarization angles ξ under the action of the electric field. Indeed, the cavity 

modes represent a mixture of te and to waves in a certain ratio and do not couple, according to the 

definition11. As an example, Fig. 6 shows transformation of the SOP resonant peak at the frequency of the ro 

mode combined from two elliptically polarized waves under the action of electric field when the resonance 

is not excited at the re mode frequency.  

The observed rotation of the linear polarization plane indicates that upon approaching the Gooch–

Tarry maximum, the coupling between elliptical waves strengthens and a periodic energy flow from the to to 

te wave and back increases. The resulting phase shift, which moves the resulting mode frequency to the blue 

spectral range, grows. The transition through the Gooch–Tarry maximum leads to the transformation 

ro → o2e → rе and the short-wave mode becomes field-sensitive (the lower branch in Fig. 5b). The 

synchronous character of the mixed pair evolution suggests the analogous transformation rе → e2o → ro of 

the SOP; therefore, the long-wave rе mode, which was earlier field-sensitive, transforms to the ro mode and 



occupies a fixed spectral position, in which the ro mode of the neighboring series was localized at the lower 

voltage (the upper branch in Fig. 5b).  

 

Conclusions  

 

The polarization components of the spontaneous TN-FPC transmission spectrum with the distinctly 

broken Mauguin’s waveguide regime were experimentally and theoretically investigated. The correlation 

between the polarization and spectral characteristics for both the rе and rо modes at the field-effect 

transition through the Gooch–Tarry maximum critical point was demonstrated. The observed double 

response of the spectral peaks to the electric field-induced change in the phase shift between the elliptic 

waves forming the cavity mode is typical of the TN-FPC. At the critical point, each cavity mode transforms 

to the opposite one. In this case, the linear polarizations of the rе and rо modes at the TN-FPC boundaries 

remain nearly orthogonal and the trajectories of their superimposed frequencies reproduce the avoided 

crossing phenomenon observed under sample illumination by the unpolarized light. It was established that 

the mode transformation accompanied by the change in both mode polarization and spectral position is only 

determined by the mode coupling force of the elliptic waves and is independent of the excitation of the other 

mode in the cavity. The experimental results were confirmed analytically and by the numerical simulation of 

light transmission through the investigated multilayered structure using the 4×4 transfer matrix method. The 

examined TN-FPC structure can be used in sensing, filtering, switching, and optical modulation in photonic 

and optoelectronic devices, as well as in telecommunication. The reported results can be generalized to any 

helix structures20.  

 

Methods  

 

The SOP of transmission peaks in the TN-FPC spectrum with and without control electric field were 

experimentally studied on a setup schematically shown in Fig. 7. The cavity with the distributed Bragg 

mirrors had the (ZrO2/SiO2)
5ZrO2 (TN) ZrO2(SiO2/ZrO2)

5 layered structure. The ZrO2 and SiO2 layers 

alternately deposited onto fused quartz substrates had refractive indices of 2.04 and 1.45 and thicknesses of 

55 and 102 nm, respectively. The transmission spectrum of such a structure is a PBG in the spectral range of 

425 – 625 nm with a set of resonant peaks corresponding to the modes localized on the twisted-nematic 

defect layer (Fig. 1). Thin indium tin oxide (ITO) electrodes predeposited onto quartz substrates made it 

possible to apply an electric field along the mirror surface normal. A gap between the mirrors with an actual 

thickness of d = 4.15 µm was filled with a 4-n-pentyl-4′-cyanobiphenyl (5CB) nematic LC. To form the 

twisted structure of LC director n, the mirrors were coated with polyvinyl alcohol (PVA) films and then 

unidirectionally rubbed. The crossed directions of rubbing the output and input cavity mirrors, where the 



director n is parallel to the x and y axes of the laboratory system of coordinates (x, y, z), respectively, 

ensured homogeneous twisting of the nematic director n across the LC layer by an angle of ϕ = 90°.  

The peculiarities of cavity assembly with regard to the features of the rubbed polymer films used to 

the planar alignment of the LC director with a slight surface pretilt21 formed a uniform right-handed twisting 

of the nematic structure. An ac electric field with a frequency of 1 kHz was applied to the sample to ensure 

smooth untwisting of the director n until quasi-homeotropic alignment (twist-effect). Transmission spectra 

of the TN-FPC were recorded on an Ocean Optics HR4000 spectrometer under polarized and unpolarized 

illumination at a fixed sample temperature of t = 23.5°С. Input polarizer P was used to detect polarization 

components T||,⊥ of the transmission spectrum (subscripts || and ⊥ indicate the parallel and perpendicular 

orientations of P relative to the n direction on the input mirror, respectively) and determine the SOP of the 

cavity eigenmodes. The analyzer А placed after the sample served to determine the mode polarization angles 

at the cavity output. The polarizers used are Glan prisms equipped with a dial and both can freely rotate in 

the (x, y) plane. Radiation was introduced in a sample and extracted from it using optical fibers. 

The TN-FPC transmission spectrum was numerically simulated with regard to the field dumping in the 

layered structure and dispersion of the LC material using the approach described in detail in ref. 8. Using the 

director field free energy minimization procedure, we calculated the nematic orientational structure inside 

the cavity with and without electric field22. After that, using the 4×4 transfer matrix method23, the 

transmission and polarization of light in the investigated multilayer structure were simulated.  
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Figure 1. TN-FPC transmission spectra at the longitudinal (T||) and transverse (T⊥) polarizer orientations 
measured (а) and calculated (b) using the 4×4 transfer matrix method with regard to the mode decay 
(Im nLC = 3.9·10−4). Arrows indicate the wavelengths corresponding to the Gooch–Tarry minimum 
(458 nm) and maximum (560 nm) conditions. 

 
Figure 2. Angles θ of deviation of the linear polarization of the modes as a function of the LC director 
orientation at the output cavity mirror. Triangles show experimental values for the ro (Δ) and re (∇) cavity 
modes. Open circles show the numerical simulation data and the solid and dashed lines are built using Eq. 
(1). 

 
Figure 3. TN-FPC mode spectra measured for the unpolarized incident light Tunpol (solid lines) at (а) an 
under-threshold voltage of U = 0.74 V and (b) a voltage of U = 0.97 V at which the Gooch–Tarry maximum 
shifts to a wavelength of 484.3 nm from the initial position 560 nm (see Fig. 1a). The dashed line shows the 
spectrum of polarized ro modes (T⊥-component) measured in zero voltage.  

 

Figure 4. Experimental (a, b) and calculated (c, d) SOP spectra for the TN-FPC ro mode with 484.3 nm (a, 
c) and re mode with 493.1 nm (b, d) as a function of the applied voltage. 

 

Figure 5. Experimental field-effect dependences of (a) the SOP and (b) spectral positions of the maxima of 
the modes with 484.3 nm (blue branches) and 493.1 nm (red branches) reproducing the avoided crossing 
phenomenon. The voltage U = 0.97 V is marked by the vertical line; solid lines show the interpolation. 

 
Figure 6. Transformation of the coupled elliptically polarized to (dashed lines) and te (solid lines) modes at 
the field-effect transition (а → b → c) through the Gooch–Tarry maximum spectral point. The nematic 
director n on the input mirror is aligned parallel to the y axes, light propagates along the z axes, and 
reciprocal arrows show the orientation of the linear polarization plane of the ro mode: the angle ξ relative to 
the y axes is (a) 65°, (b) 45°, and (c) 25°.  

 

Figure 7. Electrooptical part of the experimental setup for studying the SOP of the TN-FPC spectral 
transmission peaks. The ZrO2/SiO2 multilayer mirrors are formed on the substrates with transparent ITO 
electrodes. The cavity is filled with the 5CB twisted-nematic LC. Polarizer P and analyzer A are Glan 
prisms. 
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