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Abstract. Distribution of read starts over a sequences genetic entity
is studied. Key question was whether the starts are distributed uni-
formly and homogeneously along a sequence, or there exist some spots
of the increased local density of the starts. To answer the question, 15
bacterial genomes have been studied. It was found that some genomes
exhibit extremely far distribution pattern, from an homogeneity, while
others show lower level of the inhomogeneity. The inhomogeneity level
was determined through the Kullback-Leibler distance between the real
string distribution, and that one bearing the most probable continuations
of the shorter strings.

Keywords: Order · Digitalization · Entropy · Mutual entropy ·
Equilibrium

1 Introduction

Currently, the sequencing technologies are growing up rapidly. These technolo-
gies are both smart and complex, thus challenging researchers to figure out the
issues resulted from biology, and those resulted from the technology details.
These latter may be quite complicated and not obvious, at the first glance. A
variety and abundance of the problems ranging from biological issues (so called
“wet protocol”) to computational and ever hard mathematical (i.e. assembling
and the uniqueness of that latter) points hardly could be just outlined, not
speaking about a comprehensive analysis. Here we focus on the specific problem
that becomes acute due to the progress in sequencing and processing of genetic
data.
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There are many tools and pipelines to assemble the read ensemble into a set
of contigs, scaffolds, and further on. All of them are based on de Bruijn graph
methodology [1–4]. Regardless the specific details of the assembling algorithm,
all of them have one key idea standing behind the approach: the starts of reads
obtained by a sequencer from a genetic entity are supposed to be distributed
(almost) uniformly and homogeneously along the sequenced genetic sequence.
Our paper aims to prove (or disprove) the validity of this supposition, through
a simulation of read generation.

Coverage (local coverage, to be exact) HL(n) is the most common index of a
quality of sequencing. It is defined as a number of unique reads covering a given
nucleotide; here L stands for the length of reads (they are supposed to be of
equal length, for simplicity). Evidently, this index is not expected to the same,
for different fragments of a genetic sequence under consideration, that is why
the local index should be introduced [3,4]. Obviously

H = N−1
N∑

n=1

HL(n) (1)

is the average (over a genome) cover index. A quality of sequencing output could
be characterized with two figures: the former is the average cover (1), and the
latter is its variance (or standard deviation) determined over a genome.

Indeed, that is a common place that the figure of the standard deviation
of (1) is small, and a sequence is covered rather homogeneously by reads. Such
homogeneity is not observed, in reality: as a rule, local cover is extremely inhomo-
geneous. Of course, the up-to-date algorithms and software platforms are able
to process such inhomogeneous data flows, while it takes significantly greater
time and resources. Reciprocally, the assembling quality becomes doubtful, not
speaking about an uniqueness.

Here we aim to simulate a sequencer operation, in order to model the dis-
tribution of read starts over a sequence. Also, we study the patterns of real
distribution and compare them to simulation ensembles, in order to find out the
rules standing behind the distribution. Such rules are of great value for evalua-
tion of an assembling quality, for any genome entity, and any sequencing machine
and pipeline.

2 Study of the Real Distribution of Start Points of Reads
Along a Genome

To begin with, we have studied the distribution of the real read starts along a
genome sequence. To do that, we downloaded the assembled genomes and the
reads ensemble. Then, we mapped the reads back over the genome, and fixed
the positions of the starts of the reads. Mapping has been carried out with
Bowtie 2 software. Two output files were developed, due to the mapping: the
former was {0, 1}-sequence of the length N (here N is the length of a genome
under consideration), and the latter was the sequence of integers mj of the
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length N , 1 ≤ j ≤ N , where mj was the number of reads (of various lengths)
starting at the j-th position.

Consider firstly a binary sequence obtained from mapping of reads over a
genome. The key question here is whether zeros and ones are following in some
(statistically revealed) manner, or they run randomly, with no order or pattern
in their interlocation. Two approaches here should be explored:

1. Supposing the sequence of zeros and ones follows some probabilistic law, fit
the sequence with some proper distribution function and identify the param-
eters of the distribution for further analysis;

2. Considering the sequence of zeros and ones as a symbol one, convert it into
a series of frequency dictionaries {Wq} of increased thickness q, 1 ≤ q ≤ q∗

and figure out the most unexpected strings of the length q derived from the
frequencies of the strings of the length l < q.

Here we follow the second approach that is completely similar to that one used
to study the statistical properties of nucleotide sequences [5–11].

3 Simulation of Start Points of Reads: Theoretical
Background

Let now describe the approach to study the statistical properties of the start
points distribution in more detail. A digitalization described above converts a
genome sequence into a symbol one, with two types of alphabet: the former is
binary one {0, 1}, and the latter consists of M symbols, where M is the maximal
number of reads starting at the same point, in a genome.

As soon as a genome is converted into a symbol sequence, it must be trans-
formed into a series of frequency dictionaries {Wq} of increasing thickness q.
The thickness q is the length of words (strings) comprising a dictionary. More
exactly, let q be the length of window that identifies a fragment in a sequence.
Frequency dictionary Wq is the list of all the words (strings) observed within a
sequence, so that each word ω in a dictionary is supplied with its frequency. The
frequency

fω =
nω

N
, (2)

where nω is the number of copies of a word ω, and N is the length of a sequence;
to make the definition (2) feasible, one must connect a sequence into a ring, see
details in [5–11]. Such closure results in appearance of q − 1 phantom words in
a dictionary, while we neglect them.

Consider now the series

W1,W2,W3, . . . , Wq−1,Wq

of the frequency dictionaries in more detail. The key question here is the relation
between the dictionaries observed in this series. Actually, a “downward” transfer
(i.e., the transfer from Wj to Wj−1 dictionary) is obvious: to do it, one must sum
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Fig. 1. Information capacity (5), vertical axis, determined for the symbol sequence
representing the distribution of starts, with respect to the number of the starts observed
in each nucleotide. Horizontal axis represents the thickness q.

up the frequencies of all the words differing in the first (or in the last) symbol1.
The “upward” transfer Wj �→ Wj+1 is less evident.

Indeed, in general such transfer yields a family of dictionaries {Wj+1}, instead
of a single one. Of course, the family contains the real frequency dictionary Wj+1,
while there is no way to identify it. Simultaneously, there exists the specific fre-
quency dictionary W̃j+1 in this family that comprise the most expected contin-
uations of the words of the length j into the words of the length j + 1. This
specific dictionary (let’s call it reconstructed one) exhibits the maximal entropy,
among others comprising the family.

This extremal principle, together with the linear constraints of the “down-
ward” transfer in a series of frequency dictionaries, yields the expected frequency
explicitly:

f̃ν1ν2...νq−1νq
=

fν1ν2...νq−2νq−1 × fν2ν3...νq−1νq

fν2ν3...νq−2νq−1

; (3)

here we derive f̃(ωq) from f(ωq−1), see details in [5–11]. Finally, one must com-
pare the real frequency dictionary Wq to that one bearing the most expected con-
tinuations: W̃q. To do that, the specific entropy of real frequency dictionary Wq

against the reconstructed one must be calculated:

1 The equality of these two sums stands behind the connection of a sequence into a
ring.
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Table 1. Information capacity (5) for the genomes Acinetobacter baumannii (1),
Clostridium autoethanogenum DSM 10061 (2), E. coli K12 (3), E. coli O157 (4), Saccha-
ropolyspora erythraea (7), Stanieria spp. NIES-3757 (8), Staphilococcus aureus NCTC
8325 (9), Yersinia pseudotuberculosis YPIII (10) with respect to the number of starts
in each nucleotide.

q 1 2 3 4 7 8 9 10

2 0.006855 0.000151 0.017722 0.000194 0.001249 0.000003 0.006578 0.001581

3 0.007378 0.000131 0.010428 0.000194 0.001073 0.000004 0.008799 0.000969

4 0.009004 0.000318 0.006923 0.000620 0.001005 0.000006 0.012815 0.000998

5 0.009519 0.000899 0.004901 0.002075 0.001076 0.000008 0.013922 0.001346

6 0.009734 0.002810 0.005316 0.006755 0.001513 0.000012 0.015945 0.002269

7 0.010228 0.007856 0.005875 0.018833 0.001909 0.000018 0.020776 0.004497

8 0.011036 0.018508 0.005971 0.044770 0.001709 0.000024 0.031730 0.009182

9 0.013226 0.038805 0.005699 0.089915 0.001422 0.000042 0.050902 0.017498

10 0.017014 0.071194 0.005139 0.151169 0.001490 0.000052 0.078325 0.029912

11 0.022700 0.111794 0.004541 0.210797 0.001954 0.000066 0.109040 0.046115

12 0.030096 0.153165 0.003988 0.242604 0.002791 0.000077 0.134495 0.064515

13 0.038545 0.181569 0.003534 0.227371 0.003967 0.000105 0.148101 0.081751

14 0.047060 0.184315 0.003184 0.174954 0.005500 0.000132 0.141853 0.095160

15 0.054321 0.160808 0.002907 0.110638 0.007324 0.000151 0.120265 0.101762

16 0.059905 0.120647 0.002617 0.058855 0.009580 0.000176 0.089713 0.101649

17 0.062156 0.077580 0.002541 0.027123 0.012024 0.000208 0.059527 0.095004

18 0.060816 0.043650 0.002395 0.011079 0.014533 0.000228 0.035781 0.083791

19 0.057186 0.021745 0.002449 0.004268 0.017319 0.000249 0.019894 0.070384

20 0.050751 0.009841 0.002410 0.001649 0.020015 0.000303 0.010248 0.056214

N 4335793 4352205 4641652 5498578 8212805 5319768 2821361 4689441

Dth 98.40 198.67 203.79 234.70 102.74 108.72 188.51 84.03

σ 58.05 25.57 20.63 35.93 41.07 18.86 74.93 22.87

S
[
W̃q|Wq

]
=

∑

ω∈Ω

fω · ln
(

fω

f̃ω

)
. (4)

Keeping in mind the expression (3), one gets

Sq

[
W̃q|Wq

]
= 2Sq−1 − Sq − Sq−2; Sq

[
W̃2|W2

]
= 2S1 − S2. (5)

More details on these formulae could be found in [6–8].
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Table 2. Information capacity (5) for the genomes Acinetobacter baumannii (1),
Clostridium autoethanogenum DSM 10061 (2), E. coli K12 (3), E. coli O157 (4), Saccha-
ropolyspora erythraea (7), Stanieria spp. NIES-3757 (8), Staphilococcus aureus NCTC
8325 (9), Yersinia pseudotuberculosis YPIII (10) for binary genome representation.

q 1 2 3 4 7 8 9 10

2 0.000016 0.171241 0.016968 0.000051 0.032699 0.000071 0.000002 0.000690

3 0.000005 0.092698 0.009659 0.000044 0.022948 0.000067 0.000002 0.000358

4 0.000039 0.027254 0.005648 0.000078 0.017313 0.000188 0.000002 0.000296

5 0.000017 0.006960 0.002577 0.000107 0.012300 0.000296 0.000002 0.000282

6 0.000027 0.002292 0.001462 0.000147 0.008861 0.000321 0.000003 0.000252

7 0.000045 0.001216 0.000894 0.000209 0.006493 0.000287 0.000004 0.000241

8 0.000039 0.000672 0.000522 0.000241 0.004674 0.000261 0.000004 0.000224

9 0.000033 0.000516 0.000390 0.000240 0.003582 0.000209 0.000007 0.000245

10 0.000096 0.000508 0.000331 0.000246 0.002880 0.000201 0.000012 0.000256

11 0.000082 0.000485 0.000296 0.000220 0.002359 0.000165 0.000017 0.000268

12 0.000139 0.000743 0.000341 0.000238 0.001891 0.000180 0.000024 0.000323

13 0.000280 0.001145 0.000431 0.000333 0.001753 0.000216 0.000034 0.000438

14 0.000509 0.001630 0.000674 0.000481 0.001693 0.000337 0.000046 0.000638

15 0.000989 0.002188 0.001256 0.000825 0.001897 0.000604 0.000057 0.001061

16 0.001938 0.002616 0.002020 0.001567 0.002697 0.001074 0.000067 0.001930

17 0.003840 0.003202 0.002553 0.003088 0.004363 0.001666 0.000082 0.003718

18 0.007741 0.003807 0.002690 0.006113 0.008357 0.002521 0.000097 0.007337

19 0.016023 0.004396 0.002607 0.012768 0.015387 0.003796 0.000115 0.015557

20 0.035304 0.004948 0.002472 0.028037 0.021780 0.005396 0.000145 0.034443

4 Results

We examined 16 bacterial genomes that meet the criteria; namely, we need the
genome that

(1) sequenced by Illumina technology;
(2) are duly assembled and annotated, and
(3) there is a set of original reads available for the further analysis.

There are few non-bacterial genomes meeting these criteria; besides, a genome
consisting of several chromosomes poses some other technical and essential prob-
lems, so we kept ourselves within the prokaryotic genomes, twelve entities in
total.

Table 1 shows the data on information capacity (5) obtained for eight bacte-
rial genomes. The genomes gathered in the table have rather smooth and similar
pattern of the information capacity behaviour; the upper part of the table shows
the data obtained for the digitalization with number of starts taken into account.
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Fig. 2. Information capacity (5) determined for the binary symbol sequence represent-
ing the distribution of starts.

The lower part of that former shows similar data for binary digitalization (i.e.
regardless the number of starts occurred in a nucleotide). Also, this table lengths
of the bacterial genomes (denoted N), total genome cover depth (Dth), and the
standard deviation for the set of local cover indices (1). All these figures are
shown in the bottom of the table.

Figure 1 shows the patterns observed for four bacterial genomes; these
genomes exhibit quite variable behaviour and rough pattern of the information
capacity variation with the frequency dictionary thickness q growth. Similarly,
Table 2 and Fig. 2 show the figures and pattern, respectively, for the same set
of bacterial genomes, while transformed into a binary sequence each. Coprother-
mobacter proteolyticus genome yields a tremendous growth of information capac-
ity (5) (see Fig. 1) with maximum figure of 0.404645, for non-binary digitaliza-
tion. Reciprocally, the pattern of information capacity (5) observed for binary
digitalization of the genome has four local minima; probably, these two observa-
tions make an evidence of the increased complexity of the reads starts distribu-
tion along a sequence.

Let now concentrate on Figs. 1 and 2. They show the behavioural patterns
of information capacity (5), for four bacterial genomes each. First of all, all the
curves are bell-shaped and it results from the finite sampling effect: an abundance
of a frequency dictionary Wq grows exponentially, as q grows linearly. Hence, the
greatest majority of the strings occur in a single copy, as q becomes great enough.
Moreover, there exists specific figure q∗ that yields no word occurred in two or
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more copies, at all; this figure makes a redundancy measure of the frequency
dictionary of this thickness [11].

Figure 1 shows the pattern for the distribution of reads starts along a
sequence, with respect to the number of the starts taken place in each nucleotide.
The information capacity (5) of the frequency dictionaries of various thickness q
reflects a predictability of a continuation of a word of the given length q − 1
into a word of the length q; if Sq ≈ 0, then all the words (the frequency of each
word, to be exact) of the length q could be quite exactly predicted from the
frequencies of the words of the length q − 1. The predictability goes worse, in
general, as Sq grows up (see details in Sect. 5). Hence, the genomes shown in
these figures exhibit quite low level of predictability of the distribution of the
number of starts observed in a window of the given length q, as derived from
the frequency ensemble of the starts numbers distribution observed in a shorter
window.

Comparison of these two figures reveals significant smoothness in predictabil-
ity of the starts numbers distribution, when counting it with respect to the
specific numbers of starts observed in a nucleotide; probably, such behaviour
comes from combinatorial reasons rather than from biology. Indeed, the specific
numbers of starts taken into account for a dictionary implementation enlarge
the alphabet capacity, thus cutting-off the tail of the distribution. Such cut-off
manifests in a smoother pattern of the curve (5). Reciprocally, a multimodality
of the distributions shown in these figures is of great interest. An occurrence of
two (or more) local minima (and maxima, reciprocally) means an existence of
some meso-scale structuredness in the starts distribution. The patterns shown
in Figs. 1 and 2 differ in digitalization implemented for a study of the distribu-
tion of the reads starts numbers: the former shows the distribution with respect
to the number of starts observed in a nucleotide, while the letter represents
just the fact of a start, regardless to the specific number of reads starting in a
nucleotide. There are only two common genomes in these Figs: Campylobacter
jejuni and Enterococcus faecalis OG1RF; other genomes are different. It means
that predictability of the strings representing the distribution of starts number
is sensitive to digitalization version. In such capacity, those two genomes men-
tioned above exhibit the highest level of unpredictability in the starts numbers
distribution along a genome.

Another interesting question concerns the variation of the number of starts
to be observed in the same nucleotide, in different bacteria. Table 3 shows these
data, for nine bacterial genomes. The table contains a union of the records for
those genomes; blank cells in this Table mean that there was not a nucleotide
with such number of starts, in the genome. Definitely, the greatest majority of
nucleotides yields no start of a read; we shall not consider them. At a glance, the
number nucleotides with multiple starts decreases, as that latter grows up (see
Table 3). Here E. coli K12 genome completely falls out of the common pattern:
it shows permanent and consistent non-monotony in the number of starts dis-
tribution. Moreover, it looks like a kind of a cycle of the length 2; some reasons
of such behaviour are discussed below (see Sect. 5).
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Table 3. Acinetobacter baumannii (1), Clostridium autoethanogenum DSM 10061 (2),
Saccharopolyspora erythraea (3), Staphilococcus aureus NCTC 8325 (4), Stanieria spp.
NIES-3757 (5), Yersinia pseudotuberculosis YPIII (6), E. coli K12 (7), E. coli O157 (8),
Enterobacter cloacae (9).

ns 1 2 3 4 5 6 7 8 9

1 835013 1421481 1449801 736737 213175 1387796 34206 1687399 298955

2 228570 595816 190999 319300 13853 429958 66101 907832 221129

3 47061 195018 21748 105585 488 103255 8093 391783 49898

4 9859 55149 3205 33897 27 21449 19111 152246 27531

5 1788 14236 837 9888 1 4103 2899 54214 6285

6 463 3457 274 3041 815 5695 18568 3314

7 129 812 99 868 182 1094 6256 866

8 52 201 29 311 70 1748 1940 519

9 22 34 6 96 39 378 728 197

10 9 11 2 48 22 546 213 123

11 6 1 1 12 13 152 72 66

12 3 1 8 12 169 22 40

13 4 4 11 44 11 17

14 2 62 5 23

15 1 1 2 28 1 12

16 1 25 1 11

17 1 1 5 1 8

18 2 2 1

19 6 2

20 2

21 1

22 1 2

23 1 2

24 1

25 1

26 2

27 1

28 1 1

29 1 1

32 1

35 1

95 1

116 1

The table shows significant variation in the maximal number of starts found
in a nucleotide; probably, this fact results from the peculiarities of sequencing
procedure and may represent a quality of the sequencing rather than the biologi-
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cal issues. Extremely variable highest number of the starts (95 and 116 observed
for Staphylococcus aureus) supports indirectly this idea. In general, the number
of nucleotides giving the increasing starts number in a genome follows an expo-
nential law: indeed, one may calculate the ratio of the numbers in two subsequent
cells in Table 3 and find them to be quite proximal.

5 Discussion

The distribution of read starts along a nucleotide sequence is studied. This ques-
tion is rather acute, since numerous inhomogeneities in this distribution may
bring problems in assembling, annotation and further analysis of genetic enti-
ties. We explore the generalized approach to reveal some inhomogeneities in the
starts distribution similar to [5–11]. Here a genome is considered as a symbol
sequence, and we refrain from implementation of any biological knowledge “till
the end”; in other words, we seek for the highly unexpected sites in the symbol
sequences and the procedure is free from any biological knowledge. As soon as
the sites are found, their biological role is studied. Basically, the hypothesis is
that the sites tend to be located non-randomly, with a sounding preference to
some biologically charged loci. It was found that the sites are distributed along
a genome very non-randomly; whether the sites are located in the biologically
important parts of a genome, still awaits for the answer.

The results provided above definitely show that the distribution of start
points over a genetic entity is rather far from any equilibrium, or homoge-
nous one. Any experimentalist knows that sequencing may skip some (rather
extended) areas in a genetic sequence; the reasons of such distortion may follow
both from biological issues of a matter, and from peculiarities of the sequencing
technology. Here we tried to answer the question towards the character of this
inhomogeneity in starts distribution.

To begin with, it should be said that the results shown above are biased.
The problem may arise from the structure of reads ensemble. Indeed, we used
the assembled genome, and the reads used to do it. The point is that the reads
are obtained from both strands of DNA, while we used the leading one to align
them. We used BowTie 2 to map the reads, and some of them might be mapped
at the leading strand, while the have been sequenced from the ladder one. Thus,
it might increase, to some extent, the number of observed starts (both unique,
and multiple ones). The pattern of the number of starts distribution observed
for E. coli K12 genome (see Table 3) proves indirectly this assumption. Hence,
we plan to reconsider the starting points pattern with respect to the detailed
analysis of the reads from the point of view of their strand origin.

To reveal the structuredness in the strings containing the nucleotides with
various numbers of starts of reads, we used the idea of information capacity (3–
5); this is an averaged measure telling on the distribution character in general,
but nothing could be understood on individual level. To enhance the analysis,
an idea of information valuable words [5–10] could be implemented. The idea is
based on the detail analysis of (4) definition: if f̃ω ≈ fω, then the corresponding
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term in the sum (4) is close to zero. On the contrary, the greatest contribution
into the sum (4) is provided by the terms with the greatest deviation of f̃ω from
fω. Such words are claimed information valuable ones.

So, the idea of further analysis is as following:

(1) Count the expected frequency f̃ω for each ω ∈ Wq;
(2) Identify those with the deviation of f̃ω from fω exceeding some given level α;
(3) Match all such information valuable words over the genome, and check it

against the annotation.

The hypothesis is that such words would match some peculiar sites, within a
genome.

Another very important issue that falls beyond the scope of this paper, while
is expected to be done soon is the approximation of the distribution of starts
points located along a genome sequence with a number of various patterns,
among them are Poisson distribution, LaPlace distribution, geometric distribu-
tion, negative binomial one, and many others. The idea is to fit the observed
data best of all, with some specific distribution, so that some biologically sound-
ing results might be retrieved from this fitting. In particular, the patterns shown
in Figs. 1 and 2 support the hypothesis towards the feasible simulation of those
distributions by Markov chains of the order 5 to 7, and around.

All these data and observations would be used for further simulation studies
of the sequencing procedures implemented in various machines. Such simulation
is of great value for better understanding of the details of assembling, annotation
and comparison of sequenced genetic entities.
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