Comparing the magnetic and magnetoelectric properties of the SmFe₃(BO₃)₄ ferroborate single crystals grown using different solvents

Evgeniy Eremin^{a,b,c,*}, Irina Gudim^a, Vladislav Temerov^a, Dmitriy Smolyakov^a and Maxim Molokeev^{a,b}

E-mail adress: eev@iph.krasn.ru (E. Eremin).

Abstract

SmFe₃(BO₃)₄ single crystals have been grown from the bismuth trimolybdate and lithium tungstate-based melt–solutions. Samarium ferroborate single crystals were grown first from the lithium–tungstate flux. The magnetic and magnetoelectric properties of the synthesized crystals have been compared. It is shown that the SmFe₃(BO₃)₄ ferroborate grown from the bismuth trimolybdate-based melt–solution contains impurities of Bi³⁺ ions (~5% at.), which replace Sm³⁺ ions, while the SmFe₃(BO₃)₄, ferroborate grown from the lithium tungstate-based melt–solution contains minor or zero amounts of such impurities. The magnetoelectric and magnetodielectric effects with the Bi³⁺ admixture appeared 1.5x stronger than in SmFe₃(BO₃)₄; this is probably due to twinning.

Keywords: A.1. Impurities; A.2. Growth from solutions; A.2. Single crystal growth; B.1. Borates; B.2. Ferroelectric materials; B.2. Magnetic materials.

^aKirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036 Russia

^bSiberian Federal University, Krasnoyarsk 660041, Russia

^cSiberian State University of Science and Technologies, Krasnoyarsk 660037 Russia

^{*}Corresponding author at: Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036 Russia

1. Introduction

In recent years, RFe₃(BO₃)₄ (R = Y, La-Lu) rare-earth ferroborates with a huntite structure have been in focus of researchers due to their multiferroic properties [1, 2]. The main element of the rare-earth ferroborate crystal structure (sp. gr. R32 at high temperatures) is spiral chains of edge-sharing FeO₆ octahedra oriented along the c (third-order) axis. In the crystal structure of these compounds, the exchange coupling inside a chain is much stronger than the interchain coupling.

Magnetically, ferroborates are antiferromagnets with two (rare-earth and iron) interacting magnetic subsystems. The iron subsystem is ordered at $T_N = 30-40$ K. The rare-earth subsystem is magnetized by the f-d interaction and essentially contributes to the magnetic anisotropy and orientation of the magnetic moment.

The first technique developed for growing isostructural nonlinear-optical trigonal RAl₃(BO₃)₄ aluminoborate crystals was based on using $K_2Mo_3O_{10}$ – B_2O_3 potassium trimolybdate melt–solutions [3]. Then, it was proposed to synthesize the RAl₃(BO₃)₄ and RFe₃(BO₃)₄ single crystals using Bi₂Mo₃O₁₂–B₂O₃ bismuth trimolybdate melt–solutions [4], in which Bi₂O₃ and MoO₃ are coupled stronger than K_2O_3 and MoO₃. Therefore, the substitution of bismuth and molybdenum in the grown crystal for the rare-earth element was assumed to be relatively weak [5]. However, as was shown by the chemical and structural studies for the GdFe₃(BO₃)₄ ferroborate [6], Bi³⁺ ions replace the rare-earth ion in an amount up to 5 at.%, which is smaller as compared with substitution of potassium and molybdenum [5]. At that time, the lithium tungstate-based melt–solutions were proposed.

It is well-known that the oxide compounds containing Bi^{3+} or Pb^{2+} ions have an unbound (lone) electron pair on the s orbital and can establish the conditions for the occurrence of local dipoles in the crystal structure, which inevitably affects the electrical properties of a compound [7] and, in addition, can influence the magnetoelectric properties.

The aim of this study was to investigate the effect of the Bi³⁺ ion impurity on the magnetic and magnetoelectric properties of rare-earth ferroborates with the

huntite structure. A technique for growing SmFe₃(BO₃)₄ single crystals from a new Li₂WO₄–B₂O₃ lithium tungstate melt-solution was developed. The particular interest in the SmFe₃(BO₃)₄ compound is due to its magnetoelectric effect [8] greatest among all single-component ferroborates and the giant magnetodielectric effect [9].

In this work, we compare the magnetic and magnetoelectric properties of the $SmFe_3(BO_3)_4$ single crystals grown using a new $Li_2WO_4-B_2O_3$ solvent and the $SmFe_3(BO_3)_4$ compound grown using the previously developed bismuth trimolybdate solvent in order to establish the effect of the Bi^{3+} impurity on the magnetic and magnetoelectric properties of $SmFe_3(BO_3)_4$.

2. Growing the single crystals

The SmFe₃(BO₃)₄ single crystals were grown from the bismuth trimolybdate and lithium tungstate melt–solutions [10, 11].

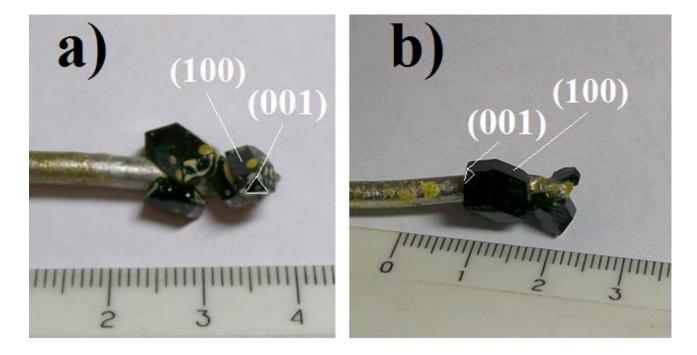
2.1. Phase formation

First, let us discuss the control of nucleation of the $SmFe_3(BO_3)_4$ crystal trigonal phases for the two melt–solution systems: $Bi_2Mo_3O_{12}-B_2O_3-Sm_2O_3-Fe_2O_3$ and $Li_2WO_4-B_2O_3-Sm_2O_3-Fe_2O_3$.

The investigated melt–solution systems can be expressed in the quasi-binary form:

$$78\% \ mass. \ [Bi_2Mo_3O_{12} + 3,2B_2O_3 + 0,5Sm_2O_3] + 22\% \ mass. \ SmFe_3(BO_3)_4 \eqno(1)$$

75% mass.
$$[Li_2WO_4 + 3,6B_2O_3 + 0,3Sm_2O_3] + 25\%$$
 mass. $SmFe_3(BO_3)_4$. (2)


The 150-g melt-solution weights were prepared at T=1000–1100^oC by sequential melting of the corresponding oxides [Bi₂O₃ (reagent grade) and MoO₃ (analytical grade) or Li₂WO₄ (analytical grade)], B₂O₃ (special-purity grade), [Fe₂O₃ (special-purity grade), Sm₂O₃ (SmO-L)](domestic reagents) in a platinum cylindrical

crucible with a 50mm diameter and 60mm height. Then, the crucible with the melt–solution was placed in a furnace with a temperature gradient, the vertical component of which at $T=1000^{\circ}\text{C}$ decreases at a rate of 2–3°C/cm from the bottom to the top of the crucible. After melt–solution homogenization at $T=1000^{\circ}\text{C}$ for 24 h, the temperature was reduced to the expected saturation temperature (T_{sat}) and a platinum wire crystal carrier 4 mm in diameter was immersed into the melt–solution. After 1–2 h, the crystal carrier was withdrawn and the nucleation on it was estimated. Then, the probes were continued with the temperature decreasing down to $T\approx 850^{\circ}\text{C}$ with a step of $10-20^{\circ}\text{C}$ without intermediate overheat of solution. Thereafter the saturation temperature was determined with an accuracy of ± 2 ° C using test crystals. For the first melt solution, the saturation temperature was 965 ° C and for the second 973 ° C.

It was established previously that hematite α -Fe₂O₃ is in the single crystallizing phase without an excess of B₂O₃ and Sm₂O₃ in the melt in the temperature range from its T_{sat} to 850°C. As the B₂O₃ and Sm₂O₃ contents increase to 3 and 0.4 moles respectively, hematite remains in the high-temperature phase and Fe₃BO₆ crystallites arise in the lower part of the temperature interval. The α -Fe₂O₃ and Fe₃BO₆ phases continue forming, but they occur closer to the lower SmFe₃(BO₃)₄ metastability zone boundary and, at a certain time after the formation, start dissolving (the nonequilibrium effect) [10]. The lower boundary of the SmFe₃(BO₃)₄ metastability zone is the maximum supercooling, where spontaneous crystals do not form on the superheated rod for 24 h.

The nonequilibrium effect and its relaxation time were estimated by observing simultaneously the behavior of the equilibrium and labile phases immersed in the flux. At a temperature of 12^{0} C below the SmFe₃(BO₃)₄ formation, noticeable α -Fe₂O₃ and Fe₃BO₆ dissolution was observed at 10–16 h; with an increase in supercooling to 20^{0} C, this period was over 1 day. The overcooling threshold, after which any labile phase nucleated, significantly depends on B₂O₃ and Sm₂O₃ content. This additionally narrows the range of their possible content values and requires preventing their significant deviation during the flux preparation because of the uncontrollable

variation in the composition due to evaporation. Trigonal SmFe₃(BO₃)₄ becomes the sole high-temperature phase with a wide stability range only at $3,2B_2O_3$ and $0,3Sm_2O_3$ for first system and $3,6B_2O_3$ and $0,6Sm_2O_3$ for second one at temperatures up to 850 ° C. Grown single crystals have a typical huntite crystal shape (fig. 1) [3].

Fig. 1. SmFe3(BO3)4 single crystals grown in fluxes based on (a) bismuth trimolybdate, (b) lithium tungstate.

2.2. Preparing seeds

Since the number of the crystals grown by spontaneous nucleation is unknown, we cannot set an optimal rate of temperature reduction. The crystals growth from seeds is easier to control.

At $T = 1000^{\circ}$ C, the wire crystal carrier was immersed into the flux and reversal rotated at 30 rpm. The furnace temperature was decreased to $T = T_{sat} - 12^{\circ}$ C. After 2 h, the crystal carrier was withdrawn from the furnace. Thus, few crystallites were formed of a cooled flux enveloping carrier of crystals. After that, the crystal carrier was immersed into the flux again (without overheating at the same temperature $T = T_{sat} - 12^{\circ}$ C) and rotated at 30 rpm with a change of direction every minute. In the next

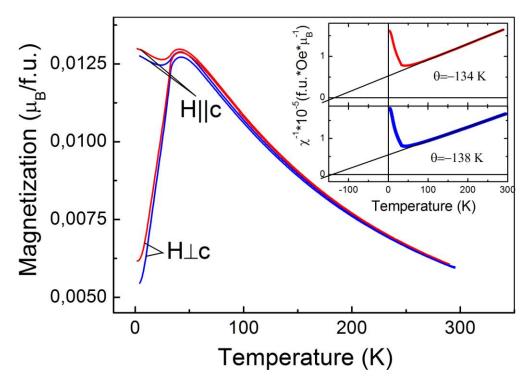
24 h, 10–30 crystals 0.5–2 mm in size grew. They were high-quality and were used as seeds.

2.3. Seed growth of the crystals

Without knowing the number of crystals, we cannot calculate the temperature decrease rate that would ensure a crystal growth rate of no more than 0.5 mm per day. The growing crystal inherits all seed defects, so we use small seeds. The seeds were placed into holder holes.

The crystal carrier with four high-quality seeds smaller than 1 mm in size was suspended above the flux at $T = 1000^{\circ}$ C. After that, the temperature was decreased to $T = T_{sat} + 7^{\circ}$ C and the crystal holder with seeds was immersed into the flux to a depth of 25–30 mm and the rotation with a speed of 30 rpm and a reversal period of 1 min was switched on. After 15 min, the temperature was decreased to $T = T_{sat} - 5^{\circ}$ C. Then, the temperature was decreased by 1–3°C per day, according to a special program. In 9–13 days, the growth process was finished. The crystal carrier was lifted above the flux and cooled to room temperature with the furnace supply switched-off. The grown crystals were about 6–10 mm in size, which is sufficient for studying their physical properties. No spontaneous formation and foreign phases were observed.

3. The magnetic and magnetoelectric properties

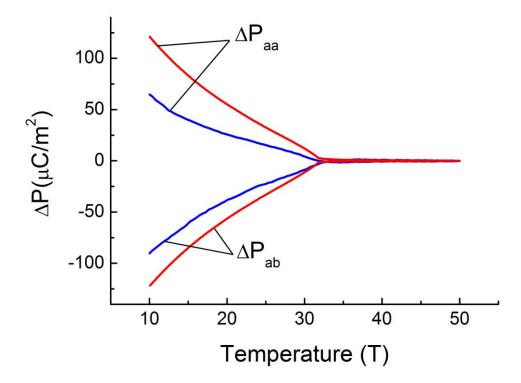

The magnetic study was carried out on a Physical Property Measurement System (Quantum Design) in the temperature range of 4.2–300 K and a magnetic field of 1 kOe. To measure the magnetoelectric polarization and permittivity on the face of the sample in the form of a plane-parallel plate (the faces were perpendicular to the *a* axis), epoxy resin electrodes with a conductive filler were formed. The charge induced in the sample by the magnetoelectric effect was measured with a Keithley 6517B electrometer. The dielectric properties were measured with an E4980A Precision Agilent LCR-meter at a frequency of 100 kHz.

As was shown in [6], the use of the bismuth trimolybdate solvent leads to the occurrence of the Bi³⁺ ion impurity in the crystal; therefore, the crystals grown from this melt–solution are hereinafter referred to as SmFe₃(BO₃)₄:Bi and the crystals grown from the lithium tungstate melt–solution, as SmFe₃(BO₃)₄, since, in this case, uncontrolled impurities of Bi³⁺ are not expected.

Figure 2 shows the temperature dependences of magnetization for the $SmFe_3(BO_3)_4$ single crystals grown using different solvents (bismuth trimolybdate and lithium tungstate). The temperature dependence of magnetizations $M_{||}$ and M_{\perp} was measured in a magnetic field of 1 kOe directed along the crystallographic c axis and in the basal plane along the a axis, respectively.

At temperatures of $T < T_N \approx 32$ K, the magnetization behavior for both crystals is not qualitatively different from the behavior observed earlier in SmFe₃(BO₃)₄ [12,13]. The magnetization in the basal plane decreases monotonically with a decrease in temperature; along the c axis, its value equal to the value at the Neel point remains almost invariable. This is indicative of the fact that the magnetic moments of Fe³⁺ ions are ordered in the basal plane.

In the paramagnetic region, the magnetization of both compositions is isotropic and obeys the Curie–Weiss law (inset to fig.2). The experimental paramagnetic Curie temperatures differ insignificantly and amount to $\theta_1 = -138~K$ for SmFe₃(BO₃)₄ and $\theta_2 = -134~K$ for SmFe₃(BO₃)₄:Bi. The negative sign is indicative of the antiferromagnetic exchange coupling in the magnetic system. It can be seen that the paramagnetic Curie temperature of SmFe₃(BO₃)₄:Bi is lower. It decreases, as expected, upon substitution of nonmagnetic bismuth Bi³⁺ ions for magnetic Sm³⁺ ions. Substitution also decreases the effective magnetic moment experimentally determined by the Curie–Weiss law $\mu_{eff} = 10.71~\mu_B$ for SmFe₃(BO₃)₄ and $\mu_{eff} = 10.7~\mu_B$ for SmFe₃(BO₃)₄:Bi. At the same time, the magnetization of the compound increases (Fig. 2). This behavior was explained in the framework of a simple phenomenological model by the example of Sm_{1-x}La_xFe₃(BO₃)₄ solid solutions [14], in which the magnetic moment increases and paramagnetic Curie temperature decreases upon substitution of nonmagnetic La³⁺ ions for magnetic Sm³⁺ ions.


Fig. 2. Thermal dependencies of magnetization of SmFe₃(BO₃)₄ (blue) and SmFe₃(BO₃)₄:Bi (red) oxyborate with huntite structure measured in a magnetic field of 1 kOe directed along the crystallographic c axis (H||c) and in the basal plane along the a axis (H \perp c). Inset shows temperature dependence of the reciprocal magnetic susceptibility χ^{-1} .

Thus, the magnetic investigations showed that in the $SmFe_3(BO_3)_4$ ferroborate crystals grown using the bismuth trimolybdate melt–solution, Bi^{3+} ions replace Sm^{3+} ions.

Figure 3 presents temperature dependences of the magnetoelectric polarization of the SmFe₃(BO₃)₄ and SmFe₃(BO₃)₄:Bi single crystals in a field of 50 kOe. The magnetic field was applied along with the second-order crystallographic a axis and along the b axis, which is perpendicular to the a and c axes. It can be seen that the magnetoelectric response in SmFe₃(BO₃)₄:Bi is higher than in SmFe₃(BO₃)₄ by a factor of about 1.5.

At first it was assumed that the above result could be related to the effect of the Bi³⁺ admixture on the magnetoelectric properties. However, as we already know, in trigonal ferroborates with the huntite structure, domains with the right and left spirals (twinning), consisting of oxygen octahedra with Fe³⁺ ions, can coexist along the third-

order axis [14]. As was shown in [15], the twinning decreases the magnetoelectric polarization. In this case, the polarization is determined as a difference between the contributions of the right and left isomers subsystem.

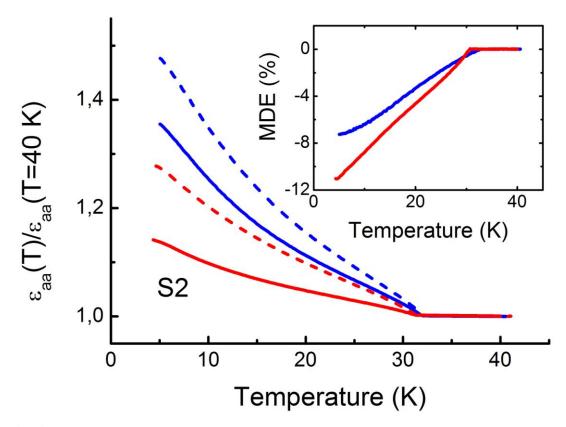


Fig. 3. Thermal dependencies of the magnetoelectric polarization of the SmFe₃(BO₃)₄ (blue) and SmFe₃(BO₃)₄:Bi (red) oxyborate with huntite structure measured in a magnetic field of 50 kOe directed along the crystallographic a axis (ΔP_{aa}) and along the b axis, which is perpendicular to the a and c axes (ΔP_{ab}).

In addition, the difference between the magnetoelectric polarization values can be caused by the change in the crystal field due to local distortions of the anionic environment of the rare-earth ion resulting from the presence of the Bi³⁺ impurity. This seems quite reasonable, since, for example, the difference between the values of the magnetoelectric effect in HoAl₃(BO₃)₄[16] and HoGa₃(BO₃)₄[17] was attributed to the effect of different crystal fields of these two oxyborates, which form the Ho³⁺ ion electronic structure.

The temperature dependences of the permittivity in a magnetic field of 8 kOe and without it for the two samples are presented in Fig. 4. The inset Fig. 4 shows that the value of magnetodielectric effect (MDE = $([\varepsilon(H) - \varepsilon(0)/\varepsilon(0)]*100\%)$) in

SmFe₃(BO₃)₄:Bi is higher than in SmFe₃(BO₃)₄ by a factor of 1.5, which is similar to the ratio between the magnetoelectric effects in these compounds. Since the magnetodielectric effect is governed by the same mechanisms as the magnetoelectric effect, this result is quite expected. However, the surprising result was the greater increase in the permittivity below the Néel temperature for SmFe₃(BO₃)₄ (ε (T = 5 K)/ ε (T = 40 K) = 1.5) as compared with SmFe₃(BO₃)₄:Bi (ε (T = 5 K)/ ε (T = 40 K) = 1.3) (Fig. 4).

Fig. 4. Thermal dependencies of the permittivity of the SmFe₃(BO₃)₄ (blue) and SmFe₃(BO₃)₄:Bi (red) oxyborate with huntite structure measured in a magnetic field H = 8 kOe (solid) and H = 0 (dash). The inset shows thermal dependencies of the magnetodielectric effect MDE = ($[\epsilon(8 \text{ kOe}) - \epsilon(0)/\epsilon(0)]*100\%$).

To test the effect of twinning on the magnitude of the magnetoelectric effect, we determined the ratio of the left and right isomers in each sample. The study was carried out with a SMART APEX II diffractometer (Mo Ka, λ =0.7106 Å) at room temperature. Each crystal was broken and four microcrystals from different areas of each crystal were taken for research. It was determined that SmFe₃(BO₃)₄:Bi has an

average ratio of left and right isomers of 0/100 and SmFe₃(BO₃)₄ has a ratio of 82/18. The relative error in the definition of twinning does not exceed 8 %.

It can be seen that the polarization of $SmFe_3(BO_3)_4$ has a smaller value, primarily due to the presence of twinning in this sample. If we assume that there was no twinning, then its polarization would increase by about $100/(82-18) \approx 1.5$ times. Thus, we have to admit that the difference in the magnetoelectric effect of the studied crystals is mainly determined by the factor of twinning. Study of the influence of bismuth ions impurity on the magnetoelectric properties of rare-earth huntite requires further research.

4. Conclusions

The SmFe₃(BO₃)₄ single crystals were grown first from the lithium tungstate-based melt–solution. For comparison, the SmFe₃(BO₃)₄ single crystals were grown using the bismuth trimolybdate solvent. The magnetic and magnetoelectric properties of the synthesized ferroborates were compared.

According to the results of the magnetic study, the use of the bismuth trimolybdate solvent leads to the substitution of small (about 5 at.%) amounts of Bi^{3+} ions for Sm^{3+} ions. The use of the lithium tungstate-based solvent makes it possible to grow the $\mathrm{SmFe_3(BO_3)_4}$ ferroborate with higher purity.

The magnetoelectric investigations showed that the magnetoelectric effects of the SmFe₃(BO₃)₄:Bi³⁺ single crystal are stronger than in the pure (without the Bi³⁺ admixture) samarium ferroborate by a factor of approximately 1.5. This fact was mainly attributed to the influence of twinning in the investigated single crystals.

Acknowledgement

This study was supported by the Russian Foundation for Basic Research (RFBR) according to the research projects No. 18-02-00696_a and RFBR,

Government of Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund by project № 18-42-240011 p_a.

References

- [1] Hinatsu Y., Doi Y., Ito K., Wakeshima M., Alemi A., Magnetic and calorimetric studies on rare-earth iron borates LnFe₃(BO₃)₄ (Ln = Y, La-Nd, Sm-Ho), J.Solid State Chem. 172 (2003) 438-445; DOI: 10.1016/S0022-4596(03)00028-8.
- [2] A.K. Zvezdin, S.S. Krotov, A.M. Kadomtseva, G.P. Vorob'ev, Yu.F. Popov, A.P. Pyatakov, L.N. Bezmaternykh, E.A. Popova, Magnetoelectric effects in gadolinium iron borate GdFe₃(BO₃)₄, JETP Lett. 81 (2005) 272-276; DOI: 10.1134/1.1931014.
- [3] N. I. Leonyuk and L. I. Leonyuk, Growth and characterization of RM₃(BO₃)₄ crystals, Progress in Crystal Growth and Characterization. 31 (1995) 179-278; DOI: 10.1016/0960-8974(96)83730-2.
- [4] L.N. Bezmaternykh, V.L. Temerov, I.A. Gudim and N.A. Stolbovaya, Crystallization of Trigonal (Tb,Er)(Fe,Ga)₃(BO₃)₄ Phases with Hantite Structure in Bismute Trimolybdate-Based Fluxes, Crystallography Reports 50 (2005) 97-99; DOI: 10.1134/1.2133981.
- [5] Boldyrev K.N., Popova M.N., Bettinelli M., Temerov V.L.; Gudim I.A., Bezmaternykh L.N., Loiseau P., Aka G., Leonyuk N.I., Quality of the rare earth aluminum borate crystals for laser applications, probed by high-resolution spectroscopy of the Yb³⁺ ion, Optical Materials 34 (2012) 18851889; DOI: 10.1016/j.optmat.2012.05.021.
- [6] E.S. Smirnova, O.A. Alekseeva, A.P. Dudka, I.A. Verin, V. V. Artemov, L.N. Bezmaternykh, I.A. Gudim, K.V. Frolov, and I.S. Lyubutin, Structure of Gd_{0.95}Bi_{0.05}Fe₃(BO₃)₄ Single Crystals at 293 and 90 K, Crystallography Reports 61 (2016) 558–565; DOI: 10.1134/S1063774516040192.

- [7] R. Seshadri, G. Baldinozzi, C. Felser and W. Tremel, Visualizing electronic structure changes across an antiferroelectric phase transition: Pb₂MgWO₆ J. Matterials Chem. 9 (1999) 2463-2466; DOI: 10.1039/a904408f.
- [8] Popov Yu.F., Pyatakov A.P., Kadomtseva A.M., Vorob'ev G.P., Zvezdin A.K., Mukhin A.A., Ivanov V.Yu., Gudim I.A., Peculiarities in the magnetic, magnetoelectric, and magnetoelastic properties of SmFe₃(BO₃)₄ multiferroic, JETP 111 (2010) 199-203; DOI: 10.1134/S1063776110080066.
- [9] Mukhin A.A., Vorob'ev G.P., Ivanov V.Yu., Kadomtseva A.M., Narizhnaya A.S., Kuz'menko A.M., Popov Yu.F., Bezmaternykh L.N., Gudim I.A., Colossal magnetodielectric effect in SmFe₃(BO₃)₄ multiferroic, JETP Lett. 93 (2011) 275-281; DOI: 10.1134/S0021364011050079.
- [10] Bezmaternykh L.N., Kharlamova S.A., Temerov V.L., Flux crystallization of trigonal GdFe₃(BO₃)₄ competing with the crystallization of α-Fe₂O₃, Crist. Reports (2004) 855-857; DOI: 10.1134/1.1803319.
- [11] M.N. Popova, B.Z. Malkin, K.N. Boldyrev, T.N. Stanislavchuk, D.A. Erofeev, V.L. Temerov, and I. A.Gudim, Evidence for a collinear easy-plane magnetic structure of multiferroic EuFe₃(BO₃)₄: Spectroscopic and theoretical studies, Phys. Rev. B 94 (2016) 184418; DOI: 10.1103/PhysRevB.94.184418.
- [12] Demidov A.A., Volkov D.V., Gudim I.A., Eremein E.V., Temerov V.L., Magnetic properties of the rare-earth ferroborate SmFe₃(BO₃)₄, JETP 116 (2013) 800-805; DOI: 10.1134/S1063776113050038.
- [13] Eremin E.V., Volkov N.V., Temerov V.L., Gudim I.A., Bovina A.F., Specific features of magnetic properties of rare-earth ferroborates Sm_{1-x}La_xFe₃(BO₃)₄, Phys. of the Solid State 57 (2015) 569-575; DOI: 10.1134/S1063783415030051.
- [14] T. Usui, Y. Tanaka, H. Nakajima, M. Taguchi, A. Chainani, M. Oura, S. Shin, N. Katayama, H. Sawa, Y. Wakabayashi, T. Kimura, Observation of quadrupole helix chirality and its domain structure in DyFe₃(BO₃)₄, Nature materials 13 (2014) P. 611-618; DOI: 10.1038/NMAT3942.
- [15] Gudim I.A. Eremin E.V., Molokeev M.S. Temerov V.L., Volkov N.V., Magnetoelectric Polarization of paramagnetic HoAl_{3-x}Ga_x(BO₃)(4) Single

- Crystals, Trend in Magnetism: Nanomagnetism 215 (2014) 364-367; DOI: 10.4028/www.scientific.net/SSP.215.364.
- [16] Begunov A.I., Demidov A.A., Gudim I.A., Eremin E.V., Features of the magnetic and magnetoelectric properties of HoAl₃(BO₃)₄, JETP Lett. 97 (2013) 528-534; DOI: 10.1134/S002136401309004X.
- [17] Volkov N.V., Gudim I.A., Eremin E.V., Begunov A.I., Demidov A.A., Boldyrev K.N., Magnetization, magnetoelectric polarization, and specific heat of HoGa₃(BO₃)₄, JETP Lett. 99 (2014) 67-75; DOI: 10.-1134/S0021364014020106.