
Multiple Start Modifications of Ant Colony Algorithm for

Multiversion Software Design

M.V. Saramud1,2, I.V. Kovalev1,2, V.V. Losev1 and А.А. Voroshilova1

1 Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy Av.

31, Krasnoyarsk, 660037, Russian Federation
2 Siberian Federal University, 79 Svobodny avenue, Krasnoyarsk, 660041, Russian Federation

msaramud@gmail.com

Abstract. The paper discusses the use of an optimization algorithm based on

the behaviour of the ant colony to solve the problem of forming the composition

of a multiversion fault-tolerant software package. A model for constructing a

graph for the implementation of the ant algorithm for the selected task is pro-

posed. The modifi-cations of the basic algorithm for both the ascending and the

descending design styles of software systems are given. When optimizing for

downstream design, cost, reliability, and evaluation of the successful implemen-

tation of each version with the specified characteristics are taken into account.

When optimizing for up-stream design, reliability and resource intensity indica-

tors are taken into account, as there is a selection from already implemented

software modules. A method is proposed for increasing the efficiency of the ant

algorithm, which consists in launching a group of “test” ants, choosing the best

solution from this group and further calculating on the basis of it. A software

system that implements both modifications of the basic ant algorithm for both

design styles, as well as the pos-sibility of applying the proposed multiple start

technique to both modifications, is considered. The results of calculations ob-

tained using the proposed software tool are considered. The results confirm the

applicability of ant algorithms to the prob-lem of forming a multiversion soft-

ware package, and show the effectiveness of the proposed method.

Keywords: Ant Algorithm, Multiversion Programming, Reliability, Optimiza-

tion, Software Design, Architecture.

1 Introduction

Recently, the development of genetic algorithms, which are optimization algorithms

based on natural decision-making mechanisms, has been very actively developing [1].

One of such algorithms is the ant colony algorithm (an optimization algorithm for

imitating an ant colony, Ant Colony Optimization - ACO) [2]. This algorithm is a

product of cooperation of scientists studying the behaviour of social insects and spe-

cialists in the field of computer technology. The basis of this algorithm is the behav-

iour of ants, or rather their ability to find the shortest paths to the food source.

The main idea of ant algorithms is to use the principles of self-organization of real

ants to coordinate artificial "agents" who cooperate in performing computational

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Siberian Federal University Digital Repository

https://core.ac.uk/display/286449869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tasks. The essence of ant algorithms (AA) is artificial stigmergy - a mechanism of

spontaneous indirect interaction between individuals, which consists in leaving envi-

ronmental labels to individuals that stimulate the further activity of other individuals

to coordinate sets of artificial “agents”. One of the most successful applications of AA

is the optimization algorithm of the ant colony imitation. It imitates the principles of

collecting food used by ants in anthills.

The ant colony is a multi-agent system, and, despite the simplicity of its individual

representatives, this system is capable of solving complex problems. Each representa-

tive of the colony is trying to find the shortest way to the source of food, while it can-

not get access to information obtained by other representatives of the colony, so they

must have a mechanism that would allow combining their knowledge. This mecha-

nism is the ability of ants to mark the path with the help of pheromone. If in the pro-

cess of searching the ant finds a source of food, then on the way back it will mark its

route with a pheromone [3]. Other ants will rely on this signal when searching for

food. The higher the pheromone value marks the path, the more likely the ant will

choose this route in its search. This self-organization mechanism formed the basis of

the ant colony algorithm.

Agents mark the traversed path with pheromone, increasing the chances of this

path when choosing alternatives. In order for the algorithm not to roll into the region

of local extremum, there is a mechanism such as pheromone evaporation. This mech-

anism is responsible for ensuring that the paths, mistakenly chosen as a solution,

gradually lose their attractiveness due to the evaporation of pheromone on them.

2 The problem of designing multiversion software systems

In recent years, industries have actively developed, requiring reliable, fault-tolerant

real-time control systems. These include high-tech production using composite and

hazardous materials, autonomous unmanned objects - from multi-rotor systems to cars

with autopilot function and motorized seats for people with disabilities. Software is an

integral part of modern control systems, however, only simple software can be guar-

anteed to be created without errors. Modern software of control systems is used for

solving more and more complex tasks, the volume of the processed information in-

creases in an avalanche manner. Increasing software complexity causes probability of

errors [4].

The issue of designing fault-tolerant software systems of control systems is becom-

ing increasingly important. The most relevant approach today is multiversion pro-

gramming. Multiversion programming [5] offers parallel execution of N independent-

ly developed functionally equivalent versions with the choice of a correct exit by the

decision block, as a rule, on the basis of voting.

In the process of applying the methodology of multiversion programming in the

task of designing software, it becomes necessary to form the optimal composition of

the multiversion software components. Depending on the design style used, the layout

task also changes. In the case of top-down design, we know the required functionality,

but there are no ready-made implementations of software components yet. In this

case, the problem of selecting the optimal software modules and their specific ver-

sions for implementation arises.

In the case of an ascending design style, we already have implementations of soft-

ware components, often with already known characteristics. The problem arises of the

optimal layout of the existing components, and, if necessary, the development of the

missing ones.

To solve both of these tasks, it is advisable to apply actively developing today evo-

lutionary algorithms, namely, the optimization algorithm of the ant colony imitation.

3 Architecture of the designed software

To increase the fault tolerance of software systems, software redundancy in the most

critical modules for reliability is introduced into them. There are usually several such

modules, in our case we will consider a software package with 10 modules (m1-m10).

The probability of activation of modules can be different and depends on the architec-

ture of the software package and the frequency of calling a specific functional imple-

mented by the modules. Let us consider the architecture of the software, which will be

described in this paper in Figure 1.

Fig. 1. Architecture of the considered software

Why do we need to know the architecture of the designed software? It affects the

calculation of the most important parameter - reliability, or rather, estimates of the

probability of failure-free operation for a given period of time [6]. This is a probabil-

istic characteristic taking values from 0 to 1, where 0 is an absolutely unreliable sys-

tem, and 1 is an absolutely reliable one. The architecture is not used to calculate the

total cost of implementing the software and the probability of its successful imple-

mentation. Let us consider the architecture under consideration (Figure 1). It is clearly

seen from the scheme that the modules m1 m10 are always used, the modules m2-m4

are activated with a probability of 0.16, and the module m8 with a probability of 0.16

(0.38 * 0.43). The overall reliability will be calculated using the formula

 𝑃𝑟𝑒𝑙 = 𝑃𝑚1 ∗ (0.62 ∗ (𝑃𝑚2 ∗ 𝑃𝑚3 ∗ 𝑃𝑚4) + 0.38 ∗ 𝑃𝑚5 ∗ (0.57 ∗ (𝑃𝑚6 ∗ 𝑃𝑚7) +
0.43 ∗ 𝑃𝑚8) ∗ 𝑃𝑚9) ∗ 𝑃𝑚10.

As it becomes clear from the formula, the change in the reliability of different

modules will not equally affect the reliability of the entire software package. For ex-

ample, the reliability of the modules m1 and m10 is more important than the reliabil-

ity of the module m8.

The formation of the multiversion software package is an important optimization

problem that can be solved in various ways, from simple enumeration to recently

gaining popularity of evolutionary algorithms.

4 Modification of the ant algorithm for descending design

In solving the problem of descending design, we know the requirements for the ver-

sions that need to be developed. The following parameters will be used for optimiza-

tion: the cost of the version implementation, the reliability of the version, the proba-

bility of a successful version implementation (the probability that the version will be

implemented with a given reliability for the expected cost).

 Our case will differ from the traveling salesman problem, which is most often cited

as an example of the work of ant algorithms [7,8]. Earlier we described the construc-

tion of a graph for the ant algorithm when solving the problem of optimizing the

composition of a multiversion software package [9]. In our case, it will be a directed

graph in which the ant will make M decisions - by the number of modules in the sys-

tem, in this example 10. Each time the arcs will be all possible implementations of

this module. For implementation of multiversion voting, the number of versions N ≥3

is necessary, we have only 10 versions of versions, so we will consider all possible

combinations of these versions in the module with N from 3 to 10. Each version can

be included in the module only one time, therefore we cannot build a module of more

than 10 non-repeating versions. We will take into account all theoretically possible

combinations with given restrictions on the number of versions. With N from 3 to 10:

{1; 2; 3} ... {1; 4; 8; 9; 10} ... {2; 3; 5; 7; 8; 9} ... {1; 2; 3; 4; 5; 6; 7; 8; 9; 10}, the

total of such combinations will be 968 for each module, that is, the ant will choose

from 968 arcs at each step. The total system implementation options will be 968m,

where m is the number of modules in the system.

The weight of each arc will be calculated by the formula 𝑊𝑖𝑗 =
(𝑅∗𝑉)𝛽

𝐶
C, and the

probability of transition along this arc is 𝑃𝑖𝑗 =
𝜏𝑖𝑗

𝛼∗𝑊𝑖𝑗

 ∑(𝜏𝑖𝑗
𝛼∗𝑊𝑖𝑗)

, where 𝜏𝑖𝑗 is the pheromone

value on this arc, α and β are coefficients affecting the operation of the algorithm, the

larger α is, the stronger the ant’s decision depends on the pheromone level, the larger

β, the more ant’s decision depends on the weight of the arc [10]. The effect of α and β

coefficients on the operation of the algorithm was studied in [9]. It is important to

note that in our case the arc has no length, as in the classical algorithm, and the weight

is rather an inverse characteristic - the more weight, the “more attractive” the arc.

In the classical model, after the ant successfully passes the route, it leaves a trace

on all the ribs, inversely proportional to the length of the path. In our implementation,

the pheromone value will increase by the specified values in two cases - if an ant

chooses a composition that satisfies the constraints (for example, when optimizing at

cost, there are restrictions on the minimum reliability and evaluation of the successful

implementation of the system) and when the composition replaces the optimal solu-

tion. This change was made for reasons of the same number of edges passed by all

ants (by the number of modules, each arc is a specific combination of versions in the

module) and the absence of a length indicator, which is replaced by a weight indica-

tor. In addition, traces of pheromone evaporate, that is, the intensity of the pheromone

on all edges decreases at each iteration of the algorithm. Thus, at the end of each it-

eration, it is necessary to update the intensity values.

5 Modification of the ant algorithm for upstream design

Using the modification proposed above, we solve the task of arranging the optimal

composition of the multiversion software package only for top-down design, when we

know the requirements and architecture of the software being developed, but the func-

tional modules themselves have not yet been developed.

However, there is often a need to develop on the principle of bottom-up design,

when we already have developed components, of which it is necessary to make the

optimal structure of the developed software system. Such an approach can significant-

ly reduce both the time and material costs of software development by re-using the

previously developed software code.

In this case, the value of the previously developed module ceases to matter, since

its reuse will be conditionally free. Such a parameter as the probability of successful

implementation of the component, since it has already been developed, the cost of its

development, functional and reliability characteristics also loses its meaning. Thus,

we need to change again the formula for calculating the weights of the arcs. The cal-

culation of the probability of transitions and the general logic are preserved - arcs

with more weight remain more “attractive”.

Since we choose from the modules that have already been tested, we already know

not only their assessment of reliability, but also the functional characteristics, includ-

ing the resources consumed. Thus, for an upstream design, the weight of each arc will

be calculated by the formula 𝑊𝑖𝑗 =
(𝑅)𝛽

𝑇
, where T is the assessment of resource inten-

sity, determined by the consumption of a critical resource for this project and the im-

portance factor of resource intensity. It is necessary to clarify this point. If we leave

the evaluation of resource intensity in the denominator without a coefficient, and β

equals to 1, then the component with twice the reliability, but with twice the resource

intensity will be equally attractive from the point of view of the system. This should

be avoided, because in a real situation, as a rule, the requirements for resources are

not as critical as for reliability, and in the case of the availability of resources, a more

reliable component should always be chosen. Therefore, it is necessary to enter the

coefficient when calculating the resource intensity estimate and set the coefficient β to

be greater than 1.

6 Software implementation

Let us consider the software implementation of the proposed ant algorithm modifica-

tions. The program interface is shown in Figure 2, the screenshot shows the optimiza-

tion result for reliability for the top-down design.

The program allows loading the characteristic values of versions from a file or

generate values randomly. Randomly generated values can also be written to a file

and used later. The form sets the minimum and maximum values of versions and all

other parameters required for the calculation: coefficients α and β, evaporation coeffi-

cient, the number of ants in one “run”, restrictions on cost, reliability, probability of

successful implementation, resource intensity, the amount of pheromone added for the

path that satisfies the conditions and for the path that has improved the optimal solu-

tion. Also on the right is the number of “test ants” for the multiple-run mode. Optimi-

zation modes, maximization of reliability, probability of successful implementation of

the system, their work, or minimization of system cost for top-down design are select-

ed from the drop-down lists, reliability maximization and resource consumption min-

imization for upstream design.

The characteristics of all available versions are displayed in the main area, while

optimizing the selected versions are highlighted in red. The characteristics used for

optimization in this mode are displayed, in Figure 2 the optimization for the descend-

ing design is presented, in Figure 3 - for the upward design.

Fig. 2. – Software implementation interface for optimizing the reliability of a downstream

design task

Fig. 3. – Software implementation interface for optimization of the upstream design task

7 Method of multiple algorithm start

As the simulation shows in the proposed software environment, the result of the ant

algorithm strongly depends on the passage of the first group of ants, which is almost

random, since the pheromone values at the beginning are the same, and the weights of

the arcs have relatively close values. When the first ants choose paths that are far

from optimal, however, improving the solution, these arcs will receive an increase in

the pheromone value, and from the truly optimal, but not used arcs, the pheromone

will evaporate, which will reduce the chance of finding a really optimal solution. To

further improve the operation of the algorithm, we can offer the following option: run

the first few groups of ants, compare the result obtained by them at the first iteration,

choose the best one and continue further modeling only with the best group. This does

not significantly complicate the calculations, however, it will allow to exclude cases

when, at the beginning of the simulation, the far-from-optimal arc solutions received a

high pheromone value and even a large number of further iterations do not improve

the solution.

The proposed method of increasing the efficiency of the ant algorithm consists in

launching a group of “test” ants, choosing the best solution from this group and fur-

ther calculating based on it. The scheme of work of a technique is presented in Figure

4.

This technique is implemented in a software tool for both modifications of the ant

algorithm.

Fig. 4. The scheme of the multiple start

8 Simulation results

Let us study the simulation results obtained in the software implementation. We will

carry out optimization of reliability with the number of ants from 100 to 600. Table 1

presents the result for the downward design, Table 2 - for the ascending design.

Table 1. The influence of the number of ants on the optimization results for the downward

design

Ants 100 200 300 600 300-10
Cost 3272 3327 3481 3495 3360
Reliability 0.9421 0.9395 0.9557 0.9628 0.9628
Succ. ratio 0.9997 0.9999 0.9999 0.9999 0.9998

As it is clearly seen from the results presented in Table 1, an increase in the num-

ber of ants leads to finding a more optimal solution. However, due to the randomness

inherent in the principle of the algorithm, its work depends on the passage of the first

group of ants. From the results it can be seen that 100 ants have found a more optimal

solution than 200. This is due to the fact that the first group of 200 ants went farther

from the optimal solution than at 100, and even twice the number of ants did not al-

low us to find a more optimal solution.

Table 2. The effect of the number of ants on optimization results for upstream design

Ants 50 100 200 300 600
Reliability 0.9912 0.9934 0.9941 0.9952 0.9954
Resource intensity 4408 4362 4698 4585 4798

As it is seen from the results presented in Table 2, for the upstream design, the

same patterns are preserved - an increase in the number of ants leads to finding a

more optimal solution.

Table 3. The effect of the number of test ants with multiple start (600 ants)

Ants 0 10 30 50 100
Cost 2955 3494 3401 3411 3480
Reliability 0,9845 9824 0,9862 0,9872 0,9874
Succ. ratio 0,9998 0,9996 0,9993 0,9991 0,9996

Table 3 presents the results of the optimization in reliability for the descending de-

sign with 600 ants. In the first column, the method of multiple starts was not used, in

the rest 10, 30, 50 and 100 test ants were used. The total number of ants has always

been 600, that is, with 50 test ants for the best of their solutions, 550 ants passed for

further optimization. Thus, the total number of ants in all cases is 600, which allows

us to objectively compare the results, and the use of the multiple start technique does

not lead to an increase in the resource intensity of the algorithm.

The results in Table 3 show that 10 ants are not enough to eliminate the probbility,

but already at 30 ants there is a more optimal solution that improves with an increase

in the number of ants used for multiple start. Despite the smaller number of ants par-

ticipating in the main optimization, the algorithm with the use of multiple start all

finds a more optimal solution.

Table 4. The effect of the number of test ants with multiple start (300 ants)

Ants 0 10 30 50 100
Cost 3403 3356 3266 3247 3409
Reliability 0,9809 9776 0,9804 0,9826 0,9786
Succ. ratio 0,9995 0,9999 0,9992 0,9992 0,9981

The results in Table 4 show that for 300 ants, the effectiveness of the multiple start

technique is not so high, since the number of ants for the main optimization is signifi-

cantly reduced. In the case of 100 test ants, a less optimal solution was obtained.

However, it should be noted that multiple experiments show that in case of using

multiple starts with 30 or more test ants, the algorithm shows more stable results,

“outliers” disappear - a much less optimal solution caused by a bad route of the first

group of ants.

Table 5. The effect of the number of test ants in multiple start for upstream design

Ants 0 10 30 50
Reliability 0,9919 0,9931 0,9931 0,9942
Resource intensity 3710 3700 3700 3978

The results in Table 5 show that for the upstream design, the multiple start tech-

nique is effective. It is noteworthy that in the case of 10 and 30 test ants the same

solution was found.

Many further experiments have shown a general trend - the use of the multiple-

start technique makes the solution of the ant algorithm much more stable. If in the

classical implementation there are often “outliers” - solutions that are far from opti-

mal, then when applying the multiple start technique with a sufficient number of test

ants, the system always gives a suboptimal solution.

9 Conclusion

The simulation results in the proposed software environment show the applicability of

ant algorithms to the problem of designing the optimal composition of a multiversion

software for both top-down and bottom-up design. The proposed modifications of the

ant algorithm have a good performance, since they allow an acceptable solution to be

obtained in 100-600 iterations, which is significantly faster than comparing 968m (in

our case, m = 10) combinations for the classical search for an optimal solution using

the search method. The results show the effectiveness of the proposed method of mul-

tiple starts. This technique allows getting rid of the main drawback of ant algorithms -

a strong dependence on the trajectory of the first group of ants, which is almost ran-

dom, since the pheromone values at the beginning are the same, and the weights of

the arcs have relatively close values. The use of the technique of multiple starts makes

the ant algorithms more “stable”, eliminating the emergence of solutions that are far

from optimal, while almost without increasing the complexity of the algorithm calcu-

lation.

Acknowledgments. This work was supported by Ministry of Education and Science

of Russian Federation within limits of state contract № 2.2867.2017/4.6

References

1. Dorigo, M., Birattari, M.: Swarm intelligence. Scholarpedia 2(9), 1462 (2007)

2. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithm for discrete optimization. Arti-

ficial Life 5(2), pp. 137–172 (1999)

3. Yahong Zhai, Longyan Xu, Yanxia Yang: «Ant Colony Algorithm Research Based on

Pheromone Update Strategy», 2015 7th International Conference on Intelligent Human-

Machine Systems and Cybernetics, Volume: 1, pp. 38 – 41 (2015)

4. Meng-Lai Yin, J. Peterson, R.R.: «Arellano Software complexity factor in software relia-

bility assessment», Annual Symposium Reliability and Maintainability, pp.190-194 (2004)

5. Marcus S. Fisher: Software Verification and Validation: An Engineering and Scientific

Approach, Springer Science & Business Media, 172 p. (2007)

6. Kovalev, I., Losev, V., Saramud, M., Petrosyan, M.: «Model implementation of the simu-

lation environment of voting algorithms, as a dynamic system for increasing the reliability

of the control complex of autonomous unmanned objects», MATEC Web of Conferences

Volume 132, 31 October 2017, № 04011. (2017).

7. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem. BioSys-

tems 43(2), 73–81 (1997)

8. Xue Yang, Jie-sheng Wang: « Application of improved ant colony optimization algorithm

on traveling salesman problem», 2016 Chinese Control and Decision Conference (CCDC),

pp. 2156 – 2160 (2016)

9. Saramud M.V., Kovalev I.V., Losev V.V., Karaseva M.V., Kovalev D.I.: « On the applica-

tion of a modified ant algorithm to optimize the structure of a multiversion software pack-

age», Tan Y., Shi Y., Tang Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture

Notes in Computer Science, vol 10941, Springer, pp. 91-100 (2018)

10. Dorigo, M., Blum, C..: Ant colony optimization theory: a survey (2007)

