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Abstract: In this paper, a Kretschmann configuration based surface plasmon resonance (SPR) sensor 
is numerically designed using graphene-MoS2 hybrid structure TiO2-SiO2 nano particles for formalin 
detection. In this design, the observations of SPR angle versus minimum reflectance and SPR 
frequency (FSPR) versus maximum transmittance (Tmax) are considered. The chitosan is used as probe 
legend to perform reaction with the formalin (40% formaldehyde) which acts as target legend. In this 
paper, both graphene and MoS2 are used as biomolecular acknowledgment element (BAE) and TiO2 
as well as SiO2 bilayers is used to improve the sensitivity of the sensor. The numerical results show 
that the variation of FSPR and SPR angles for inappropriate sensing of formalin is quite insignificant 
which confirms the absence of formalin. On the other hand, these variations for appropriate sensing 
are considerably significant that confirm the presence of formalin. At the end of this article, the 
variation of sensitivity of the proposed biosensor is measured in corresponding to the increment of a 
refractive index with a refractive index step 0.01 refractive index unit (RIU). In inclusion of 
TiO2-SiO2 bilayers with graphene-MoS2, a maximum sensitivity of 85.375% is numerically 
calculated. 
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1. Introduction 

Formalin is an ecologically extensively chemical 

compound that causes cancer to humans [1]. 

Exposure to formalin will possibly cause 

antagonistic health effects. It is the greatest practical 

contact allergen in metal working fluids [1]; toxic 

incident can cause ecological hypersensitivity and 
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chronic worsening disease [1]. Formalin is a 

poisonous element which contains 40% 

formaldehyde soluble in water [2]. Formaldehyde 

travels the blood throughout the body and rejoins 

with proteins, abolishing their biological function. 

Also, it can react with an amine functional group of 

the amino acid lysine in a protein, called rhodopsin. 

Formaldehyde also reacts with amino groups in 

other proteins, including many enzymes, and the 

loss of the function of these biological catalysts 

causes death [1]. Recent news and research have 

explored the frequent use of formaldehyde in food 

preservation, which is very popular, particularly in 

Asian region [2]. Therefore, the accurate detection 

of formalin is a serious national issue, which is a 

biochemical process. Its mechanism of action for 

fitting deceits in its aptitude to form cross-links 

between soluble and structural proteins. The 

resulting structure holds its cellular constituents in 

them in vivo associations to each other, giving it a 

degree of mechanical strength, which permits it to 

survive subsequent processing [3]. 

Many conventional procedures are available for 

the detection of formaldehyde, enzyme detection, 

food safety, and environmental monitoring [4–7]. 

These procedures are Deniges and Eegriwes 

methods [4], gas chromatography-mass 

spectrometry (GC-MS) [5], high performance liquid 

chromatography (HPLC) [6], fluorimetry [7], Nash 

test [7], gravimetric methods [6], and other chemical 

based procedures. Unfortunately, these methods, 

reagents, and reaction products are often harmful to 

human health. The conventional methods require 

similarly hazardous reagents and suffer from a 

number of interferences, resulting in false positions. 

Additionally, conventional methods are 

impracticable for real-time measurements [1]. To 

overcome the drawbacks of the conventional 

procedures and meet the requirement of concerned 

issue, the biosensor technology can play a 

significant role in the solution.  

In recent years, refractive index based surface 

plasmon resonance (SPR) bio-sensing has been 

widely researched because this sensor technology 

has a great potential for detection and analysis of 

chemical and biochemical substances in many 

important areas including medicine, biotechnology, 

monitoring of drug, food quality, environment safety, 

formalin detection, medical diagnosis, enzyme 

detection, and doxyribonucleic acid (DNA-DNA) 

hybridization [8–19].  

The collective oscillation of metallic electrons in 

the presence of time varying electromagnetic field at 

the meta-dielectric interface is defined as SPR 

[19–25]. Plasmons are stand-alone solutions of 

Maxwell’s equations consisting in collective 

excitations of charge, which move coherently with a 

common frequency and wave-vector [19]. While 

bulk plasmons are related to bulk systems, surface 

plasmons waves (SPW) that propagate along the 

metal-dielectric interface [19–22]. When the phase 

matching condition between incident wave and 

surface plasmons wave is satisfied, the externally 

shined light gets coupled with the surface plasmon 

modes of the metal-dielectric interface giving birth 

to the propagating oscillation in the longitudinal 

direction and evanescently decaying in transverse 

directions [19]. The condition of phase matching is 

found to be met only with the transverse magnetic 

(TM) polarization mode of the incident light [26]. 

Since the direct light does not carry enough 

momentum to excite surface plasmons at the desired 

interface, Kretschmann configurations have been 

proposed to provide light the extra momentum 

[22–25]. In these configurations, the light gets its 

extra momentum from the high refractive index of 

the dielectric material of prism [20]. The SPR 

technique is successfully applied to detect the 

presence of formalin in sample biomolecules. 

Numeral SPR biosensors have been industrially 

advanced, and among them the compact surface 

plasmon (CSPR) sensor [27], the optical sensing 

surface plasmon resonance (OSSPR) sensor [28], the 

localized surface plasmon resonance (LSPR) sensor 
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[29, 30], and the long-range surface plasmon 

resonance (LRSPR) sensor [31, 32] have the 

benefits of compactness, lightness in weight, high 

sensitivity, the case of multiplexing and remote 

sensing, and so on. Fundamentally, there is no major 

difference in operating principle among the 

above-mentioned sensors. LRSPRs are surface 

electromagnetic waves that can be created on thin 

metallic films entrenched between two identical 

refractive index dielectrics [31, 32], on the other 

hand, LSPR can be used on the metal-dielectric 

interface with different refractive indexes to 

generate SPW [29, 30]. In LSPR, the variation of the 

concentration of biomolecules owing to chemical 

reaction will make a local change of surrounding 

refractive index near the sensor surface [29]. This 

change of refractive index results in a change of 

propagation constant of the SPW and thus the SPR 

angle and SPR frequency (FSPR) change [10]. The 

principle of OSSPRs is the same with LSPRs except 

that it is fabricated in optical fiber cables [12, 17, 

28]. Compared with these SPR biosensors, the 

LRSPRs have longer surface propagation lengths, 

higher surface electric field strengths, and narrower 

angular resonance curves [32]. The LSPRs offer 

better sensitivity, robustness, and facile detection 

[29]. OSSPRs accept the benefits of remote sensing 

applications [33].  

One of the key ingredients of any sensing device 

is the binding/adsorbing material with a large 

surface area [9, 14, 21], and the graphene and MoS2 

have attracted a considerable amount of attention 

interestingly because of their large band gap [14], 

high optical absorption efficiency [34, 35], and large 

work function [12]. Titanium dioxide (TiO2) is one 

of the most widely used semiconductors in photo 

catalysis and solar energy conversion [22]. As an 

SPR sensitive material, it has distinguished 

advantages such as low cost, high stability, high 

permittivity, and environmental friendliness [16, 18, 

36, 37]. The silicon dioxide (SiO2) layer also 

increases the sensitivity of the probe [16, 18, 38, 39]. 

The porous TiO2 & SiO2 film gives us a huge 

surface area to maximize the amount of incident 

light that can be absorbed. For this reason, 

TiO2-SiO2 nano particles show tremendous 

plasmonic effect near TiO2-SiO2 interface 

facilitating effective light trapping. This effective 

light trapping generates more surface plasmons (SPs) 

which will eventually enhance the SPR angle and 

frequency. This rise of SPR angle and frequency will 

increase the sensor sensitivity [16, 38]. 

In the current study, numerical Kretschmann 

configuration based refractive index sensor utilizing 

graphene-MoS2 hybrid layers with TiO2-SiO2 nano 

particles is designed and investigated, which can 

explore a new window for the detection of formalin. 

A composite graphene-MoS2-Au-TiO2-SiO2 layer is 

used for faster immobilization by monitoring the 

change of SPR angle-minimum reflectance attributor 

and SPR frequency-maximum transmittance 

attributor. Finally, the influence of adding TiO2-SiO2 

with graphene-MOS2 is investigated, which results in 

a higher sensor sensitivity of 85.375% compared 

with the conventional structure reported. At the end 

of this article, a study of the variation of sensitivity 

of the proposed biosensor is measured in 

corresponding to the increment of a refractive index 

with a refractive index step 0.01 refractive index 

unit (RIU). 

2. Methodology and theoretical design 
strategy 

The proposed SPR biosensor is composed of 

seven layers, of which the configuration is shown in 

Fig. 1. The incident light in the transverse magnetic 

(TM) polarization state is the most important 

condition for excitation of SPs [22]. For an inciting 

TM polarized light, a polarizer is used in the way of 

incident. For the angular interrogation method, the 

Kretschmann arrangement based sensor, this paper 

considers the Fresnel optical system to design the 

proposed sensor which was discussed in detail in 

[9–16]. To give extra momentum to the incident 
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light, high wave vector photonic crystals need to be 

used [40]. So to fulfil this condition, we specify high 

refractive indexed prism, such as SF11 glass prism, 

as a base layer having a high refractive index (np), 

which is shown in Table 1. In this paper, gold is used 

to maintain good resistance from oxidation and 

corrosion, better chemical stability, and superior 

optical performances [9, 22]. A resonant excitation 

of photon-electron coupling takes place when the 

wave vector of the incident light remains confined at 

the interface and decays exponentially in the 

transverse directions [14, 41]. 

Table 1 Sensor layers’ description with the optimized 
material’s geometries 

Position 
Layer 

materials 
Refractive 

index (n) (RIU)
Optimized 

thickness (d) (nm) 
References

1st 
SF11 glass 

prism 
n1=1.7786 --- [12, 18] 

2nd Porous TiO2 n2=2.5837 d2=37 [16, 18] 
3rd Porous SiO2 n3=1.4570 d3=20 [16, 18] 

4th Gold (Au) 
n4=0.1838 
+i3.4313 

d4=20 
[9, 11,   
14, 22] 

5th MoS2 n5=5.9+i0.8 d5=0.65 [18, 39] 

6th Graphene 
n6=3.0 

+ i1.1487 
d6=0.34 [42–44] 

7th PBS solution n7=1.34 ---- [45, 46] 

The evanescent tail of SPR is very sensitive to 

changes in a complex refractive index of a metal 

layer, surrounding dielectric medium, and their 

geometrical sizes [14, 22], which results in high 

sensor sensitivity [22]. For accelerating sensitive 

changes of tail in SPR evanescent wave to obtain a 

high sensor sensitivity, we select graphene and MoS2 

which have high complex refractive index as well as 

high carrier mobility, high optical transparency, 

exceptional mechanical flexibility, mechanical 

strength, low resistivity, tunable conductivity, and 

extreme mode confinement [47–50]. And the final 

layer is phosphate buffer saline (PBS) solution as 

bare sensing dielectric medium, which affords better 

adsorption of biomolecules [45, 46]. A complete 

theoretical configuration of the proposed sensor with 

the optimized material’s geometries has been 

summarized in Table 1. After confirming the setup, a 

TM polarized He-Ne light with a wavelength of  

633 nm is used, which passes through the prism and 

some portion is reflected at the composite layer 

interface. 

 

SF11 (np=1.7786)

SiO2 (n2=1.4570)
Au (n2=0.1838+i3.4313)

Graphene (n6= 3.0+i1.1487)

Sensing medium 

MoS2 (n5= 5.9+i0.8)

Probe molecule 

Target molecule 

molecules

Incident light

Reflected light 

Other

TiO2 (n2=2.5837)

sens sens
d

a

dn
n n C

dc
 = + 
 

 
Fig. 1 Schematic diagram of the proposed SPR biosensor, 

where the MoS2 layer is coated on Au film (thickness dAu is   
50 nm to maintain both high detection accuracy and quality 
factor we have considered gold layer thickness of 50 nm 
throughout the analysis. Another point would be the fluctuating 
nature of SPR angle except 50 nm, which suggests difficulty to 
find out a stable sensing stage) and monolayer graphene is 
coated on the lower MoS2 layer as the biomolecular recognition 
element. 

At the time of ongoing light energy to composite 

layer interface, an evanescent momentary wave is 

produced which is known as SPW mentioned in the 

section that propagates with a dissimilar propagation 

constant from light wave. The propagation constant 

of SPW can be adjusted in such a way that it equals 

to the propagation constant of optical wave in order 

to obtain surface resonance. The point at which the 

optical wave propagation constant equals to the 

SPW propagation constant is called SPR point [12]. 

As expressed in (1), the SPR angle is a refractive 

index dependent parameter of the sensing medium. 

At the SPR point, the frequency at which SPW 

propagates is called surface plasmon resonance 

frequency (FSPR) [10] and the angle of incidence is 

called SPR angle [10–12] that can be expressed by 

(1) [12, 16, 18]: 

( )
1 eff sens

SPR
2 2

prism eff sens

( )
sin

n n

n n n
θ −=

+
         (1) 

where nprism and nsens are the refractive indexes of 

SF11 glass prism (n1=1.7786) and sensing dielectric 

medium (n7=1.34 for PBS in bare sensor), 

respectively; neff refers to the equivalent refractive 

index of Graphene-MOS2-Au metallic with 
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TiO2-SiO2 nano composite layers which are defined 

in [12, 16, 18]. When formalin is fleeting into 

chitosan on the sensor medium, the refractive index 

of sensing medium is modified owing to performing 

chemical reaction between chitosan and formalin as 

follows [10, 12, 15]: 

sens sens sens senssensΔ d
aa

dndn
n n n n Cn C

dcdc
 = − = − =+ 
 

 

 (2) 
where sens

dn  is the refractive index of the sensing 

dielectric medium after adsorption of formaldehyde 

molecules, sensn  is the refractive index of the 

sensing dielectric medium before adsorption of 

formaldehyde molecules and is equal to the 

refractive index of PBS saline, aC  is the 

concentration of adsorbed biomolecules for example 

1000 nM formaldehyde solution, and dn/dc is the 

refractive index increment factor. For PBS, the 

increment factor is 0.181 cm3/gm [12, 16, 18, 51]. If 

a change in the SPR angle is found, a change in the 

propagation constant of SPW has been found which 

is explained mathematically in [10] as given below: 

SPW prism SPR

2
sinK n

Π θ
λ

= .                (3) 

Finally, FSPR is changed due to the change in the 

propagation constant of SPW which can be 

explained by the following equation [10, 16, 18]: 

SPW
SPR

eff2
oK C

F
nΠ

=              (4) 

where effoC n  is the propagation velocity of SPW 

that is a perpendicularly confined evanescent 
electromagnetic wave [52–54]. If the SPR angle of 
optical wave is tuned, SPR condition is achieved, 
where reflectance (R) of reflected wave is the 
minimum and transmittance (T) is the maximum and 
then SPW penetrates at FSPR along the x-direction. 
We define two plots “transmittance versus surface 
resonance frequency (T~FSPR curve)” as well as 
“reflectance versus surface resonance angle (R~θSPR 
curve)” as surface resonance detecting attributors. 
To make these curves, we use Fresnel equation for 

the seven-layer hetero optical system to determine 
reflected and transmitted light intensities discussed 
elaborately in [9–12, 14, 21, 22]. 

3. Numerical results analysis 

3.1 Formalin detection approach 

In this paper, Formaldehyde is detected by 

interacting with Chitosan and biomolecular 

components. Therefore, when a chemical bond is 

formed with the probe which is attached to the target 

component, it forms additional bonding which 

shows peculiar phenomena. From the response of 

the phenomena, one can easily determine that the 

sample contains formalin or not. This section is 

based on the tabulated value of concentration for the 

minimum reflectance & SPR angle along with the 

SPR frequency and maximum transmittance which 

helps detect formalin successfully. Here, we discuss 

in detail how dose our proposed biosensor 

distinguish from the presence of formaldehyde in the 

sensing solution. Firstly, a numerical analysis is 

initiated by checking the R~θSPR and T~FSPR curves 

in the absence of both formalin (target ligand) and 

chitosan (probe ligand), which is normally known as 

bare sensor, as shown in Fig. 2. In our proposed SPR 

device, PBS is used as a sensing medium that helps 

measure the dependency of reflectance on θSPR and 

transmittance on FSPR. The work is continued by 

assuming that our sensor is susceptible of 

differentiating between probe element (chitosan) and 

detectable target (formalin) with regard to the 

analysis of detection. It is noticeable that an increase 

in the SPR angle and SPR frequency towards the 

right side of R~θSPR and T~FSPR curve is found due 

to the use of nano film TiO2-SiO2 layers, whose 

phenomenon accounts for enhanced sensitivity [39].  

Figures 2(a) and 2(b) illustrate the R~SPR angle 

and T~FSPR curve. The blue line in Figs. 2(a) and 2(b) 

shows the SPR angle (56.26°) and FSPR (97.968 THz) 

during both probe (chitosan) and target (formalin), 

which are absent respectively in the sensor. The SPR 
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angle and FSPR of bare sensor are 56.26° and  

97.968 THz, respectively. The red line in Fig. 2(a) 

shows the SPR angle (56.34°) and the green line in 

Fig. 2(b) shows FSPR (98.688 THz), while 1000 nM 

probe (chitosan) is presented in PBS. 
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Fig. 2 SPR imaging curve of bare sensor: (a) R~θSPR curves 
and (b) T~FSPR curves in the absence of formalin and presence 
of chitosan. 

Secondly, we observe the change of detecting 

attributors (Δθ SPR & Rmin) and (ΔFSPR & Tmax) due 

to adding different concentrated formalin as shown 

in Fig. 3, and these changed are provided in Table 2. 

The data of Table 2 are extracted from Figs. 3(a) and 

3(b), respectively. 

Table 2 Data of detecting attributors Rmin (%), θSPR (deg), 

Tmax (dB) and FSPR (THz) for different concentrated formalin 
ranging from 1000 nM to 1200 nM. 

Concentration Rmin (%) 
θSPR 

(°) 
Tmax 
(dB) 

FSPR  
(THz) 

1000 (Immobilizer probe) 0.0044 56.3400 0.3795 98.688 
1000 (Detectable target) 0.0062 58.0500 0.3981 99.875 
1001 (Detectable target) 0.0066 58.3800 0.4002 100.008 
1010 (Detectable target) 0.0070 58.6700 0.4018 100.106 
1100 (Detectable target) 0.0082 59.4900 0.4106 100.627 
1110 (Detectable target) 0.0085 59.6800 0.4129 100.761 
1200 (Detectable target) 0.0100 60.6200 0.4249 101.447 
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Fig. 3 SPR imaging curve of proposed sensor: (a) R~θSPR 
curves and (b) T~FSPR curves for different concentrated 
detectable targets. 

Since the change of concentration is due to the 

immobilization of chitosan within the sensing 

medium, the local refractive index of the sensing 

medium is also changed followed by (2). Equation 

(1) states that the SPR angle changes if nsens changes, 

which finally translates a change in KSPW observed 

from (3). At the transition point where the SPW 
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wave vector and optic wave vector are equal, the 

minimum reflectance (Rmin) and maximum 

transmittance (Tmax) are found. As illustrated in   

Fig. 2, before reaction of formalin with chitosan on 

the sensor device, no significant change occurs in 

the SPR angle ( Δθ SPR = 0.080°) and frequency    

(ΔFSPR =0.72 THz) due to no bonding reaction 

between the probe ligand and sensing target. 

Based on chemical bonding between the probe 

ligand and sensing target, the chemical bonding 

configuration is changing, which leads to a change 

in the optical properties of the interface. If the 

concentration of formalin is increased, it forms more 

bonds with probe thus indicating greater interaction 

[55, 56]. Due to these greater interactions, more 

changes in the local refractive index near the 

composite layer interface are found. The amount of 

right shift of the SPR angle and FSPR along 

rightwards with the increment of concentration of 

the detectable target ranging from 1000 nM to  

1200 nM are illustrated in Fig. 3 and analytical data 

are listed in Table 2. The amount of changes would 

determine whether the formalin detection event 

would occur or not based on chemical bonding. 

In the detection style, firstly, we found out the 

threshold values of min( )p tR −Δ  & SPR( )p tθ −Δ  and 

SPR( )p tF −Δ  & max( )p tT −Δ  from Table 2 by using the (5). 
Probe Target

min Th min min

Probe Target
SPR Th SPR SPR

Probe Target
max Th max Max

( ) ~

             0.0044~0.0062 0.0018     (5a)

( ) ~

               56.340~58.050 1.71        (5b)

( ) ~

          

p t

p t

p t

R R R

T T T

θ θ θ

−

−

−

Δ =

= =

Δ =

= =

Δ =

Probe Target
SPR Th SPR SPR

    0.3795~0.3981 0.0186     (5c)

( ) ~

               98.688~99.875 1.187       (5d)

p tF F F−

= =

Δ =

= =

 

where Probe
minR  represents the minimum reflectance 

of probe ligand (chitosan), Target
minR denotes the 

minimum reflectance of sampling target, Probe
SPRθ  

depicts the SPR angle of probe ligand, and Target
SPRθ  is 

the SPR angle of sampling target. We reach the same 

conclusion by taking SPR
p tF −Δ  and max

p tT −Δ  also as the 

detecting attributors.  

Then we determine the change of the minimum 

reflectance, change of SPR angle, change of 

maximum transmittance, and change of FSPR for 

different concentrated formalin molecules by using 

the data in Table 2 and tabulated them into Table 3. 

Table 3 Change of min
p tR −Δ , max

p tT −Δ , SPR
p tF −Δ , and SPR

p tθ −Δ  values from (5) for different concentrations of dielectric formalin. 

Concentration (Ca) (nM) Probe Target
min min min(%) | |p tR R R−Δ = −  Probe Target

SPR SPR SPR(deg) | |p tθ θ θ−Δ = − Probe Target
max max max( ) | |p t dB T TΤ −Δ = − Probe Target

SPR SPR SPR(THz) | |p tF F F−Δ = − |

1000 (Target) min Th)p tR −(Δ  SPR Th)p tθ −(Δ  max Th)p tΤ −(Δ  SPR Th)p tF −(Δ  

1001 (Target) 0.0022 2.04 0.0207 1.32 
1010 (Target) 0.0026 2.33 0.0223 1.418 
1100 (Target) 0.0038 3.15 0.0311 1.939 
1110 (Target) 0.0041 3.34 0.0334 2.073 
1200 (Target) 0.0056 4.28 0.0354 2.759 

Table 4 Four probable conditions for making decision about successful interaction. 

Conditions for using SPRθ  & Rmin as detecting attributor Conditions for using FSPR & Tmax as detecting attributor Judgement 

min min Th( )p t p tR R− −Δ Δ≥   &  SPR SPR Th( )p t p tθ θ− −Δ Δ≥  max max Th( )p t p tT T− −Δ Δ≥   &  SPR SPR Th( )p t p tF F− −Δ Δ≥  Formalin is detected

min min Th( )p t p tR R− −Δ Δ≥   &  SPR SPR Th( )p t p tθ θ− −Δ Δ≤  max max Th( )p t p tT T− −Δ Δ≥   &  SPR SPR Th( )p t p tF F− −Δ Δ≤  Reevaluate 

min min Th( )p t p tR R− −Δ Δ≤   &  SPR SPR Th( )p t p tθ θ− −Δ Δ≥  max max Th( )p t p tT T− −Δ Δ≤   &  SPR SPR Th( )p t p tF F− −Δ Δ≥  Reevaluate 

min min Th( )p t p tR R− −Δ Δ≤   &  SPR SPR Th( )p t p tθ θ− −Δ Δ≤  max max Th( )p t p tT T− −Δ Δ≤   &  SPR SPR Th( )p t p tF F− −Δ Δ≤  Free probe 
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If the measured values are greater than these 

threshold parameters, we observe the presence of 

formalin in that target sample. For clarifying 

detection conditions, we reach a conclusion 

according to Table 4. These values can really give an 

idea about successful interaction or the failed ones. 

The first condition in Table 4 expresses the desired 

condition, the second and third ones need careful 

recheck for attaining desired condition, and the 

fourth condition confirms that the probe is still free a 

target molecule. 

3.2 Effect of different layers on sensor sensitivity 

The sensor’s performance is evaluated in terms 

of sensitivity (S) which is defined as [16, 18]:  

SPR SPR

sens

Δ Δ 1

Δ a

S
C dn dcn

θ θ= =           (6) 

where SPRΔθ  is the change of SPR angle due to the 

presence of formalin, and sensΔn  is the change of 

refractive index of the sensing dielectric after 

adsorption of formaldehyde molecules described in 

(2). The SPR angle shifts rightward in the SPR 

curve with the increment of refractive index 

followed by (1).  

At the SPR point, the optical wave propagation 

constant which is represented by (3) must be equal 

to the surface wave propagation constant. It is 

known from (3) that the surface plasmon 

propagation constant changes according to the 

change of refractive index of sensing medium. 

Finally, it is observed that the SPR angle changing 

characteristics is responsible for the change of 

refractive index of sensing medium. 

Firstly, in this section, we discuss the effect of 

inserting different layers on the detecting attributors 

such as the change of SPR angle and SPR frequency 

in the sensor configuration. Figs. 4(a) and 4(b) show 

the minimum reflectance (Rmin) vs. SPR angle (θSPR) 

and the maximum transmittance (Tmax) vs. FSPR 

curves for different structures including the 

conventional structure and proposed structure at the 

refractive index nsens=1.34 RIU (bare sensor).  

Figure 4 shows that the SPR angle and SPR 

frequency for the conventional layer biosensor are 

54.36° and 94.1547 THz, respectively. Again, Fig. 4 

shows that the SPR angle and SPR frequency with 

the graphene and gold metal layer based biosensor 

are 54.57° and 94.4015 THz, respectively. In this 

case, it can easily be observed that the change of 

SPR angle and SPR frequency for the conventional 

structure is very poor whereas the sensitivity with 

graphene but without TiO2, SiO2, and MoS2 layers is 

consistently better than the conventional structure. 

This is due to the electron loss of graphene, which is 

accompanying with the imaginary dielectric constant. 

This increased SPR angle will lead to obtaining 

increased sensitivity of the sensor as sensitivity is 

directly proportional to the variation of the SPR 

angle discussed in [42–44] according to (6). 

Furthermore, Fig. 4 shows that the SPR angle and 

SPR frequency without TiO2, SiO2, and graphene 

but with MoS2 layer are 55.60° and 95.5935 THz, 

respectively. This is because of MoS2’s larger band 

gap [11, 18, 22, 42, 43], higher optical absorption 

efficiency [22–24], and larger work function (5.1 eV) 

as compared with graphene [11]. Further again, if 

both graphene and MoS2 are used and TiO2 and SiO2 

layers are not used, then Fig. 4 shows that the SPR 

angle and SPR frequency are 55.86° and    

96.2495 THz, respectively. This is greater than the 

performance of using other materials due to the 

present of both characteristics of graphene and MoS2. 

Furthermore, if the TiO2-SiO2 composite layer is 

used with the graphene and MoS2, Fig. 4 shows that 

the SPR angle and SPR frequency are 55.90° and 

96.9236 THz, respectively. Since TiO2 and SiO2 

have a purely real refractive index, they can be used 

as an adherence layer above the prism base. As an 

adherence layer, the composite layer performs better 

than the individual TiO2 and SiO2 [16, 18] do 

because rich plasmon happens at the TiO2-SiO2 

interface [18]. And this plasmon enhances light 

trapping effectively [32] which will generate more 
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surface plasmons (SPs). More surface plasmons 

(SPs) will enhance the SPR angle rightwards. An 

increase in the SPR angle will increase the SPR 

sensitivity. Lastly, the SPR angle and SPR frequency 

for the proposed structure are 56.26° and     

97.968 THz, respectively, which reach the highest 

values among all the previous structures. Addition of 

probe molecules shifts the SPR angle rightwards due 

to the change of refractive index of the sensing 

dielectric. By adsorption of immobilized ions, an 

electron rich molecule would change in the sensing 

layer concentration which has led to a variation of 

the propagation constant. 
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Fig. 4 SPR response curves of (a) reflectance (%) vs. 
incident angle (θ) curve and (b) transmittance (dB) vs. SPRF 
(THz) curve for different structures of biosensor. 

Secondly, in this section, we represent the 

change of SPR angle with respect to the refractive 

index in Fig. 5. In Fig. 5, it is shown that the change 

of SPR angle with respect to RIU for the 

conventional structure and proposed different-layer 

structure. The change of SPR angle ( θSPR) for the 

conventional biosensor is very poor, which confirms 

a lower sensor sensitivity because the sensitivity is a 

proportionally dependent parameter of the change of 

SPR angle ( θSPR) as per the definition of sensitivity 

shown mathematically in (6). And for the proposed 

hybrid biosensor (Graphene & MoS2 layer with 

TiO2-SiO2 porous nano particles), the change of SPR 

angle and SPR frequency are the maximum which 

confirm the highest sensitivity according to (6). 

Equation (2) shows how the SPR angle changes due 

to the change of molarity of the solution and 

refractive index. By this calibration, one can directly 

know the SPR angle of the system, just by 

measuring the refractive index (RI) of the sensing 

solution. The variation of the reflection intensity in 

accordance with the incident angle is plotted in   

Fig. 5. The reflectance curves at 1.34 RIU of sensing 

medium refractive index (bare sensor) and 1.41 RIU 

(present of formalin in sensor) are presented by solid 

and dashed lines of different colors, respectively. 

Here, the proposed structure (with all layers) is 

compared with some other structures including 

firstly the structure without TiO2, SiO2, MoS2, and 

graphene layers (conventional structure), secondly 

the structure without TiO2, SiO2, and MoS2 layers, 

thirdly the structure without TiO2, SiO2, and 

graphene layers, fourthly the structure without TiO2 

and SiO2, fifthly the structure without TiO2 layer, 

and finally the structure without SiO2. The 

resonance angle (θSPR) at 1.34 RIU and 1.41 RIU of 

the sensing layer is calculated and then the 

sensitivity is measured. One can easily observe from 

Fig. 4 that the sensitivity increases gradually in 

accordance with the adding layers and it reaches the 

maximum with the hybrid structure of seven layers 

(proposed structure). 

Thirdly, in this section, the shift of the SPR 

angle with the increment of refractive index having 
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a step size δCn= 0.01 is measured and the 

corresponding increment of sensitivity of the 

proposed biosensor according to the (6) is also 

determined and graphically shown in Fig. 6.  

nsens= 1.34 RIU (Solid Line)
nsens= 1.41 RIU (Dashed Line)
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Fig. 5 Variation of the Reflection Intensity with respect to 

the incidence angle for different structures of SPR sensor. 
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Fig. 6 Percentage of sensitivity vs. refractive index curve for 

different structures proposed. 

From Fig. 6, firstly it is observed that the 

sensitivity for the conventional structure ranges 

from 70.44% to 75.375% with respect to the sensing 

medium refractive index ranging sens
dn =1.34 RIU to 

sens
dn =1.41 RIU, respectively. After then the 

sensitivity of the proposed structure with graphene 

but without TiO2-SiO2 and MoS2 is investigated and 

it equals to a range from 71.62% to 76.375%, which 

is comparatively better than the conventional 

structure. Furthermore, the sensitivity of the 

structure with MoS2 but without TiO2-SiO2 and 

graphene covers a range from 76.44% to 81.375%. 

If both graphene and MoS2 are used and 

TiO2-SiO2 are not used, the sensitivity is more 

improved than the previous structures whose 

sensitivity covers from 77% to 82.625%. Now, if the 

SiO2 layer is used with grapheme and MoS2 and 

TiO2 is not used, the sensitivity enhances to a range 

from 78% to 85.00%. 

If a TiO2 layer is used instead of the SiO2 layer 

in previous structures, just like before the sensitivity 

keeps almost constant. If we use all the layers at a 

time, which is a proposed structure in this work, the 

sensitivity is the highest among all the previous 

structures, which covers the range from 79% to 

85.375%. Finally, in this section, the sensitivities for 

different structures are summarized in Table 5. 

Table 5 Analysis of sensitivity corresponding to sensing 
layer refractive index at 1.41 RIU for seven different structures 
at the optimum thickness of TiO2-SiO2 and monolayer of MoS2 
and graphene. 

Modeling structure Sensitivity (%RIU−1)

Without TiO2, SiO2, MoS2 and Graphene 75.26 
Without TiO2, SiO2 and MoS2 and with graphene 76.24 
Without TiO2, SiO2 & graphene and with MoS2   81.82 
With graphene & MoS2 and without TiO2 & SiO2 82.40 
With graphene, SiO2 & MoS2 and without TiO2 85.14 
With graphene, TiO2 & MoS2 and without SiO2 82.10 
With graphene-MoS2-TiO2-SiO2 (proposed) 85.375 

3.5 References 

In this paper, a numerical analysis is investigated 

to notice the consequence of adding of graphene, 

MoS2, TiO2, and SiO2 layers step by step on 

sensitivity parameters for formalin detection. The 

first concern of this study is to detect the presence of 

the formalin based on the ATR method by noting the 

change of “SPR angle versus minimum reflectance” 

attributor and “FSPR versus maximum transmittance” 

attributor. In this paper, chitosan is used as a probe 

legend to react with formalin (formaldehyde). The 

second concern is the sensitivity analysis by adding 

of graphene, MoS2, TiO2, and SiO2 layers step by 

step. Graphene as well as MoS2 thin films plays an 

important role in developing electro-optical sensor 

device due to their biocompatibility, high surface to 

volume ratio, low isoelectric point, and better 

chemical stability properties, which makes it very 

suitable for applications like formalin detection. For 

plasmonic effect near TiO2-SiO2 interface, the light 
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trapping is effectively enhanced because the 

enhanced light trapping more surface plasmons is 

generated which will eventually enhance the 

resonance angle, which can indeed satisfy the 

maximum sensitivity requirement. Numerically, the 

sensitivity of 85.375% with a refractive index of 

1.41 RIU has been observed for the proposed sensor. 
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