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ABSTRACT   

Phase unwrapping is one of the key steps for fringe projection profilometry (FPP)-based 3D shape measurements. 

Conventional spatial phase unwrapping schemes are sensitive to noise and discontinuities, which may suffer from low 

accuracies. Temporal phase unwrapping is able to improve the reliability but often requires the acquisition of additional 

patterns, increasing the measurement time or hardware costs. This paper introduces a novel phase unwrapping scheme that 

utilizes composite patterns consisting of the superposition of standard sinusoidal patterns and randomly generated speckles. 

The low-rankness of the deformed sinusoidal patterns is studied. This is exploited together with the sparse nature of the 

speckle patterns and a robust principal component analysis (RPCA) framework is then deployed to separate the deformed 

fringe and speckle patterns. The cleaned fringe patterns are used for generating the wrapped phase maps using the standard 

procedures of phase shift profilometry (PSP) or Fourier Transform profilometry (FTP). Phase unwrapping is then achieved 

by matching the deformed speckle patterns that encode the phase order information. In order to correct the impulsive fringe 

order errors, a recently proposed postprocessing step is integrated into the proposed scheme to refine the phase unwrapping 

results. The analysis and simulation results demonstrate that the proposed scheme can improve the accuracy of FPP-based 

3D shape measurements by effectively separating the fringe and speckle patterns.       

Keywords: Fringe Projection Profilometry; Robust Principal Component Analysis; Phase Unwrapping 

 

1. INTRODUCTION  

Fringe projection profilometry (FPP) has been widely applied to three-dimensional (3D) shape measurements due to its 

non-contact nature and superior performance in measurement speed and accuracy [1-4]. A typical FPP system consists of 

a projector and a camera. During the measurement, one or several periodic fringe patterns are projected onto the object; 

then, the patterns deformed by the uneven surface of the objects are captured by a camera from a different angle. By 

analyzing the difference between the reference images and deformed images the 3D shape information of the objects can 

be retrieved. However, traditional fringe analysis methods can only provide wrapped phase maps, which have 2𝜋 

discontinuities and can not be directly used for 3D construction. Therefore, phase unwrapping procedures are required to 

unwrap the phase in order to eliminate the discontinuities and to obtain the true phase maps [1-5]. 

Over the past decades, many phase unwrapping algorithms have been developed, which may be classified into two 

categories: spatial phase unwrapping and temporal phase unwrapping [3-4]. Spatial phase unwrapping is based on the 

analysis of neighboring pixels on a single wrapped phase map. It often fails to determine the fringe order and recover the 

absolute phase for spatially isolated objects [3]. In contrast, temporal phase unwrapping is able to recover the absolute 

phase for objects with abrupt surface changes by utilizing additional patterns. Typical examples include gray-code pattern 

projection [6] and multi-frequency approaches [7, 8]. However, the requirement of extra patterns may slow down the 

measurement speed. 

In order to achieve fast and reliable phase unwrapping, approaches based on composite patterns which embed auxiliary 

signals into the fringe patterns have been proposed. In these approaches, the fringe order information is encoded using 

structural markers or specially designed patterns. Budianto et al [9] embed several strip markers within a single fringe 

pattern to facilitate phase unwrapping and retrieve the marker cue through the dual-tree complex wavelet transform. 
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Similarly, Hu et al [10] propose a two-marker approach by embedding two specially designed markers with opposite 

intensity, which can enhance the absolute phase retrieval. However, these methods can only be used for reconstructing 

simple objects and may perform poorly for complex scenes. Zhang et al [11] propose to fuse speckle-like signal into the 

three-step phase shifting method. The sinusoidal fringes are used for fringe analysis, while the randomly distributed speckle 

signal is used to determine the fringe order. However, their method does not separate the speckle patterns and fringe 

patterns when determining the fringe order. This can lead to errors on the estimation of fringe order and further affect the 

final reconstruction results. 

In this work, we propose a novel phase unwrapping scheme that utilizes speckle-embedded fringe patterns. To achieve 

this, we exploit the low-rank property of the fringe signal and sparse nature of the speckle signal and apply robust principal 

component analysis (RPCA) to effectively separate the fringe patterns and speckles. We then retrieve the wrapped phase 

from the recovered fringe patterns using Fourier transform profilometry (FTP), and determine the fringe orders based on 

the recovered speckle pattern. To further eliminate the fringe order errors, a recently proposed fringe order correction 

algorithm is integrated into the scheme. Simulation results verify the effectiveness of the proposed method. 

 

2. THE PROPOSED METHOD 

 2.1 System Model 

We consider a single-shot measurement setting, which may be useful for achieving fast measurement. We adopt the 

following composite pattern which is the superposition of a pseudo-random speckle pattern and an ordinary sinusoidal 

fringe pattern:  

𝐼𝑝(𝑥, 𝑦) = 𝐴 + 𝐵 cos(2𝜋𝑓𝑥) + 𝐶𝑍(𝑥, 𝑦),                                                               (1) 

where (𝑥, 𝑦) give the coordinates of the pixel, 𝐴 and 𝐵 represent the background intensity and intensity modulation, 

respectively, for the sinusoidal fringe pattern with a spatial frequency of 𝑓. 𝑍(𝑥, 𝑦) ∈ {0,1} and 𝐶 control the distribution 

and intensity of the speckle signal, respectively. Following [11], we adopt the following rules while generating the speckle 

patterns in order to guarantee the distinguishability within a local window: (1) The speckle is simulated as white dots with 

size 𝑀×𝑀; (2) In each equivalent area of 3×3 dots, only one dot is white; (3) No two white dots are adjacent in their eight 

neighborhoods. The fringe order for each pixel is uniquely encoded by a sufficiently large patch of the speckle pattern 

centered at that pixel. When the designed pattern is projected onto the measured objects, the captured image is expressed 

as: 

 𝐼𝑐(𝑥, 𝑦) = 𝛼(𝑥, 𝑦){𝐴 + 𝐵 cos[𝜙(𝑥, 𝑦)] + 𝐶𝑍′(𝑥, 𝑦)} + 𝛽(𝑥, 𝑦),  (2) 

where 𝑍′(𝑥, 𝑦) denotes the deformed speckle pattern,  𝛼(𝑥, 𝑦) is the reflectivity of the object, 𝛽(𝑥, 𝑦) is the ambient light 
and 𝜙(𝑥, 𝑦) is the phase to be solved. For single-shot measurements, we often apply FTP by converting the deformed 
pattern into the frequency domain. Then the fundamental frequency is extracted by appropriate band-pass filtering. From 
(2), the speckle and fringe patterns are mixed and thus the standard FTP method cannot be directly applied. In the following, 
we propose a scheme to separate the speckle and fringe patterns using RPCA. We can then recover the wrapped phase 
using FTP and perform phase unwrapping by speckle correlation. In addition, we also introduce a recently proposed 
method to correct the fringe order errors. 

2.2 Pattern Analysis Based on Robust Principal Component Analysis (RPCA)   

The deformed pattern in (2), which is the superposition of the deformed speckle pattern and deformed fringe pattern, can 
be rewritten as 

𝐼𝑐(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) + 𝐿(𝑥, 𝑦) + 𝛽(𝑥, 𝑦),                                                               (3) 

                                                                                𝑆(𝑥, 𝑦) = 𝛼(𝑥, 𝑦)𝐶𝑍′(𝑥, 𝑦),                                                                   (4) 

                                                               𝐿(𝑥, 𝑦) = 𝛼(𝑥, 𝑦)(𝐴 + 𝐵 cos[𝜙(𝑥, 𝑦)]),                                                              (5)                                                                                                                               

In the above, 𝑆(𝑥, 𝑦) denotes the deformed speckle pattern and 𝐿(𝑥, 𝑦) is the deformed fringe pattern. We propose to 
separate these patterns such that the performance of reconstruction can be improved. According to the process of 
generating the speckle patterns as described above, the speckle pattern 𝑆(𝑥, 𝑦) is sparse, with about 11.1% of the pixels 
assuming nonzero grey values. For many applications, the fringe pattern 𝐿(𝑥, 𝑦) is also low-rank. Figure 1 demonstrates 
this property where the singular values of an example deformed fringe pattern with size 1000 × 1000 are shown. It can 
be observed that the singular values decrease rapidly and a small number, e.g., 10, of singular values can capture most 
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of the information of the fringe pattern. This number is significantly smaller than the size of 𝐿(𝑥, 𝑦) and thus 𝐿(𝑥, 𝑦) 
can be regarded as a low-rank matrix.  

                                                   
Figure 1. Singular value distribution of a simulated deformed fringe pattern with size 1000 × 1000 

Exploiting the above properties of 𝐿 and 𝑆, it is possible to separate the fringe pattern and speckle pattern from the 
deformed image 𝐼𝑐 by using RPCA. However, the original PRCA problem is NP-hard and thus not trackable [12-13]. 
Following [12-14], we relax the problem by using the 𝑙1 norm and nuclear norm to induce low-rankness and sparsity. The 
problem is now formulated as: 

                                                                min
𝑆,𝐿

𝛾‖𝑆‖𝑙1
+ ‖𝐿‖∗,     s. t.    𝑆 + 𝐿 = 𝐼𝑐,                                                             (6) 

where ‖∙‖𝑙1
 is the 𝑙1 norm, defined as the sum of the absolute value of the elements in S, ‖∙‖∗ is the nuclear norm, defined 

as the sum of all the singular value of L, and 𝛾 > 0 is a constant to balance low-rankness and sparsity. Different algorithms 
can be applied to approximately solve (6). We adopt the alternating direction method (ADM), which minimizes the 
following augmented Lagrangian function: 

 𝐿𝒜(𝑆, 𝐿, 𝐸) = 𝛾‖𝑆‖𝑙1
+ ‖𝐿‖∗ − 〈𝐸, 𝑆 + 𝐿 − 𝐼𝑐〉 + 𝜆

2
‖ 𝑆 + 𝐿 − 𝐼𝑐‖2,       (7) 

where 𝐸 ∈ ℛ𝑚×𝑛 is the multiplier of the linear constraint of (6); 𝜆 > 0 is the penalty parameter for the violation of linear 
constraint and 〈∙〉 represents the standard trace inner product. The solution can be found iteratively. Let 𝑃

Ω∞
𝛾 𝜆⁄  denote the 

Euclidean projection onto Ω∞
𝛾 𝜆 ⁄

= {𝑋 ∈ ℛ𝑛×𝑛|− 𝛾 𝜆 ≤ 𝑋𝑖𝑗 ≤ 𝛾 𝜆⁄⁄ }, k the number of iteration, and (𝑆𝑘, 𝐿𝑘 , 𝐸𝑘) the current 
solution. The ADM updates the solution using the following steps [14]: 

1. Generate 𝑆𝑘+1 =
1

𝜆
𝐸𝑘 − 𝐿𝑘 + 𝐼𝑐 − 𝑃

Ω∞
𝛾 𝜆⁄ (

1

𝜆
𝐸𝑘 − 𝐿𝑘 + 𝐼𝑐)  

2. Generate 𝐿𝑘+1 = 𝑈𝑘+1diag (max {𝜎𝑖
𝑘+1 −

1

𝜆
, 0}) (𝑉𝑘+1)𝑇 , where 𝑈𝑘+1, 𝑉𝑘+1 and {𝜎𝑖

𝑘+1} are generated by 

the singular value decomposition (SVD) of  𝐼𝑐 − 𝑆𝑘+1 +
1

𝜆
𝐸𝑘 

3. Update the multiplier 𝐸𝑘+1 = 𝐸𝑘 − 𝜆(𝑆𝑘+1 + 𝐿𝑘+1 − 𝐼𝑐) 

We can terminate ADM by setting an appropriate stopping criterion: The iteration stops when  
‖(𝑆𝑘+1,𝐿𝑘+1)−(𝑆𝑘,𝐿𝑘)‖

𝐹

‖(𝑆𝑘,𝐿𝑘)‖
𝐹

+1
≤

10−6. 

Once the deformed fringe and speckle patterns are separated, we can retrieve the phase map from image L by using FTP. 
However, the FTP-based approach can only provide wrapped phase value ranging from – 𝜋  to 𝜋 , which has 2𝜋 
discontinuities. Thus, phase unwrapping is needed to eliminate the phase ambiguity as: 

                                    Φ(𝑥, 𝑦) = 𝜙(𝑥, 𝑦) + 2𝜋 × 𝑑(𝑥, 𝑦)                                                                   (8) 

where Φ(𝑥, 𝑦) denotes the absolute phase and 𝑑(𝑥, 𝑦) the fringe order. Spatial phase unwrapping methods may be used. 
However, they may suffer from error propagation and fail to determine the fringe orders correctly for spatially isolated 
objects. 
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2.3 Enhanced Speckle Correlation-Based Phase Unwrapping 

In this subsection, we introduce a speckle correlation-based image matching approach to unwrap the phase. We assume 
that the deformed speckle patch and the corresponding reference speckle patch share nearly the same local speckle 
distribution. The fringe order can then be found by maximizing the following normalized correlation coefficient: 

 
corr =

∑ (𝑆𝑟(𝑥, 𝑦) − 𝑆�̅�)(𝑆𝑑(𝑥, 𝑦) − 𝑆𝑑
̅̅ ̅)𝑥,𝑦

√∑ (𝑆𝑟(𝑥, 𝑦) − 𝑆�̅�)2
𝑥,𝑦 √∑ (𝑆𝑑(𝑥, 𝑦) − 𝑆𝑑

̅̅ ̅)𝑥,𝑦
2

 
 (9) 

 

 

where 𝑆𝑟  and 𝑆𝑑 are the same-size patches captured from the reference speckle image and the deformed speckle image 
(separated by using RPCA), respectively, 𝑆�̅�  and 𝑆𝑑

̅̅ ̅ are the average intensity of 𝑆𝑟  and 𝑆𝑑. The fringe order is an integer 
number within [0, 𝐾 − 1], where K denotes the number of candidate fringe orders. Thus, for each pixel in the deformed 
image, (9) is computed for K times, each time with a patch in the reference pattern whose center pixel has the same wrapped 
phase. 

The above method has similarity to [11] in using image correlation to identify the fringe order. However, we have utilized 
the cleaned speckle pattern with the influence from the fringe patterns eliminated, while [11] uses directly the composite 
pattern where the speckle and fringe patterns are mixed. We have observed from our simulations that the proposed approach 
can significantly improve the accuracy of fringe order recovery as compared with the approach without separating the two 
components.  

Let us consider the fringe order sequence 𝑑(𝑥, 𝑦) retrieved using speckle correlation. Ideally, 𝑑(𝑥, 𝑦) should exhibit a step-
wise increase with respect to the direction vertical to the fringes (i.e., x-axis), and 𝑑(𝑥, 𝑦) increases by 1 on the boundary 
of any two adjacent fringes. However, speckle correlation-based phase unwrapping can still suffer from errors in the fringe 
order due to the deformation of the speckle pattern and noise, which result in unwrapped phase errors and errors in the 
ultimate 3D shape reconstruction. In speckle correlation-based phase unwrapping, the fringe order of each pixel is 
recovered independently. Therefore, the fringe order error of one specific pixel will not propagate into the adjacent pixels. 
In light of this, we apply a recently proposed fringe order correction method to remove errors [15]. 

1. Row by row, divide the recovered fringe order map into several steps based on phase jumps in the wrapped phase. 

2. Counting the number of pixels with different fringe order values in each step, select the fringe order value with 
the highest frequency. This fringe order value is selected as the true fringe order value of this step.  

 

3. SIMULATION RESULTS 

In order to verify the feasibility of the proposed method, numerical simulations are carried out. We use a hemisphere and 

double hemisphere as the measured objects, respectively. Gaussian noise with a variance of 𝜌 and a mean of zero is added 

to the generated pattern and we assume perfect calibration. The signal to noise ratio SNR ≜
1

𝜌𝑀𝑁
∑ ∑ |𝑠𝑥,𝑦|

2𝑁
𝑦=1

𝑀
𝑥=1  is set as 

25dB with the image size 𝑀 × 𝑁 = 1000 × 1000. (We assume that the effect of reflectivity 𝛼(𝑥, 𝑦) can be ignored.) 

 

We first demonstrate in Fig. 2 the feasibility of applying the RPCA method for separating the patterns. It is seen that we 

are able to separate the fringe pattern and the speckle pattern in the deformed image by taking advantage of the low-rank 

structure of the fringe signal and the sparse nature of the speckle signal. 

 

In order to balance the computational complexity and performance, speckle image patches of size 27×27 are used for 

correlation analysis. Fig. 3(a)-(b) show that our method can effectively reconstruct the object with high accuracy. To 

demonstrate the performance of reconstructing isolated objects of our method, we also measure a double-hemisphere object 

and the results are shown in Fig. 3(c)-(d). It is seen that the proposed method can reconstruct the entire scene with single 

projection. 
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(a)                                                    (b) 

 

(c)                                                  (d) 

Figure 2. Separation of the fringe pattern and the speckle pattern by using RPCA. (a) Simulated hemisphere. (b) Speckle-embedded 
image of hemisphere. (c) Separated speckle pattern. (d) Separated fringe pattern.  

  
(a)                                                    (b) 

 
(c)                                                    (d) 

Fig. 3. Simulation results for measuring the 3D shape of a hemisphere and a double-hemisphere. (a) Reconstructed sphere with Mesh 

display (b) Reconstructed hemisphere surface (c) Reconstructed double-hemisphere with Mesh display  (d) Reconstructed double 

hemisphere surface 

 
The effectiveness of the fringe order correction scheme is also demonstrated in Fig. 4. Fig. 4(a) indicates that there are 
noticeable errors in the fringe orders after applying speckle correlation-based phase unwrapping. Fig. 4(b) depicts the 
fringe orders of the recovered absolute phase map. Using the correction method, we successfully correct the fringe order 
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errors and the corrected fringe orders are shown in Fig. 4(c) and (d). Based on the corrected fringe order maps, we are able 
to obtain the smoothed absolute phase map for further 3D reconstruction.  

 

                                                                   (a)                                                       (b)                                                                 

 

                                             (c)                                                         (d)                                                               

 

Figure 4. Fringe order correction results on the section y=400. (a) Recovered fringe order using speckle correlation (b) Fringe order of 
the hemisphere without correction (c) Corrected fringe order after employing the correction (d) Corrected fringe order of the hemisphere. 

 

4. CONCLUSION 

In this paper, we propose a FPP technique based on speckle-embedded patterns. RPCA is applied to effectively separate 

the fringe and speckle patterns, which enables wrapped phase retrieval and phase unwrapping to be achieved using only a 

single projection of the composite pattern. A recently proposed fringe order correction method is adopted to efficiently 

correct the fringe order errors. The effectiveness of the proposed scheme has been verified by numerical simulations.    
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