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ablate target tumours. The implementation of an accurate treatment planning system, coupled with 
simulation tools that allow for independent verification of calculated dose distributions are required to 
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one of three MRT delivery rooms and therefore compare simulation results with equivalent experimental 
data. The normalised x-ray spectra produced by the Geant4 model and a previously validated analytical 
model, SPEC, showed very good agreement using wiggler magnetic field strengths of 2 and 3 T. However, 
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simulated electrons was unable to be established. This work shows a possible limitation of the 
G4SynchrotronRadiation process to model synchrotron radiation when using a variable magnetic field. To 
account for this limitation, experimentally derived normalisation factors for each wiggler field strength 
determined under reference conditions were implemented. Experimentally measured broadbeam and 
microbeam dose distributions within a Gammex RMI457 Solid Water® phantom were compared to 
simulated distributions generated by the Geant4 model. Simulated and measured broadbeam dose 
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Validation of a Monte carlo 
simulation for Microbeam 
Radiation therapy on the imaging 
and Medical Beamline at the 
Australian Synchrotron
Andrew Dipuglia1, Matthew cameron1, Jeremy A. Davis1, iwan M. cornelius1,  
Andrew W. Stevenson2,3, Anatoly B. Rosenfeld1, Marco petasecca1, Stéphanie corde  1,4, 
Susanna Guatelli1 & Michael L. f. Lerch1*

Microbeam Radiation therapy (MRt) is an emerging cancer treatment modality characterised by the 
use of high-intensity synchrotron-generated x-rays, spatially fractionated by a multi-slit collimator 
(MSc), to ablate target tumours. the implementation of an accurate treatment planning system, 
coupled with simulation tools that allow for independent verification of calculated dose distributions 
are required to ensure optimal treatment outcomes via reliable dose delivery. in this article we present 
data from the first Geant4 Monte Carlo radiation transport model of the Imaging and Medical Beamline 
at the Australian Synchrotron. We have developed the model for use as an independent verification 
tool for experiments in one of three MRt delivery rooms and therefore compare simulation results 
with equivalent experimental data. The normalised x-ray spectra produced by the Geant4 model and a 
previously validated analytical model, SPEC, showed very good agreement using wiggler magnetic field 
strengths of 2 and 3 T. However, the validity of absolute photon flux at the plane of the Phase Space 
File (PSF) for a fixed number of simulated electrons was unable to be established. This work shows a 
possible limitation of the G4SynchrotronRadiation process to model synchrotron radiation when using a 
variable magnetic field. To account for this limitation, experimentally derived normalisation factors for 
each wiggler field strength determined under reference conditions were implemented. Experimentally 
measured broadbeam and microbeam dose distributions within a Gammex RMI457 Solid Water® 
phantom were compared to simulated distributions generated by the Geant4 model. Simulated and 
measured broadbeam dose distributions agreed within 3% for all investigated configurations and 
measured depths. Agreement between the simulated and measured microbeam dose distributions 
agreed within 5% for all investigated configurations and measured depths.

The objective of radiotherapy is to deliver high doses of radiation to the tumour to ensure local tumour control 
while simultaneously minimising normal tissue toxicity complications. In current clinical practice it is impos-
sible to entirely spare the normal tissue during treatment delivery. Improvements in conventional techniques 
to minimise the doses delivered to normal tissues have seen improvements in patient outcomes1–6; however, 
normal tissue toxicity is a limiting factor in efficacy of radio-resistant cancer treatment. The constraints to dose 
delivery by conventional techniques so as to avoid adverse effects presented by normal tissues remains one of the 
primary motivational factors to develop novel radiotherapy delivery techniques and modalities7–9. The treatment 
of radio-resistant cancers using Microbeam Radiation Therapy (MRT) is based on the possibility of improved 
therapeutic ratios resulting from reduced normal tissue complications while maintaining high tumour control 
probability when exposed to high, spatially fractionated doses. Whilst MRT is currently in the pre-clinical stage, 
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there are many studies demonstrating the efficiency of the MRT treatment modality10–18. The underlying physi-
cal, chemical, and biological mechanisms that govern the positive selectivity observed between the normal and 
cancerous tissue response in MRT are yet to be completely understood. Precise treatment delivery models play an 
essential role in expediting the increase in this understanding and facilitating future human clinical trials.

Three MRT delivery rooms (commonly referred to as hutches) are available for use on the Imaging and 
Medical beamline (IMBL) at the ANSTO/Australian Synchrotron (AS). At the AS, MRT is delivered via a bril-
liant, synchrotron-generated x-ray beam, with a photon spectral energy range extending from 40–300 keV19,20, 
which is highly polarised in the electron orbital plane21,22. The use of a synchrotron coupled to a dedicated multi-
stage bending magnet or ‘wiggler’ to generate x-rays results in a treatment beam with very small beam divergence 
and a much higher dose rate in comparison with conventional clinical x-ray treatment beams. For MRT the x-ray 
beam (denoted as the broadbeam [BB]) is collimated by a multi-slit collimator (MSC), typically made of tungsten 
carbide, producing the array of x-ray microbeams (MBs) used as a conduit to deliver a therapeutic treatment dose 
to a cancer target. High dose-rate ‘peaks’ within the microbeam (MB) array are 50 μm wide, and separated by low 
dose-rate ‘valleys’, with a pitch of 400 μm. The MRT beam features are designed to allow treatment delivery that 
minimises the impact of patient/organ motion on the broadening of the MRT peak dose, so as to preserve the 
corresponding spatial fractionation of the MRT treatment dose field. In contrast to the millimeter-sized spatial 
resolution implemented in conventional radiotherapy, MRT ideally requires micrometer-sized spatial resolution 
to enable adequate sampling of the MB peaks. This spatial resolution requirement leads to significantly increased 
complexity to attain the desired signal-to-noise ratio in the clinically relevant dosimetric quantities of peak dose, 
valley dose (between MBs), peak to valley dose ratio (PVDR), and full width at half-maximum (FWHM) of the 
MBs. Experimental measurements of dosimetric quantities of interest may be compared to theoretically calcu-
lated values to provide quality assurance of the radiation field. Monte Carlo (MC) radiation transport simulations 
are based on the use of pseudorandom number generation to approximate the stochastic nature of radiation inter-
actions. MC radiation transport simulations require large computational times and associated resources for accu-
rate analysis of complicated radiation field geometries. The long computational times are a limiting factor of MC 
simulations for MRT. As such, simplified MC methods10,23–29 and analytical techniques are usually implemented 
in treatment planning systems (TPS)30–32. However, it is imperative for patient safety that MC codes are used 
for independent patient-specific pre-treatment verification of dose distributions obtained by the TPS33. IAEA 
Technical Reports Series No. 43034 indicates the need for dose verification of the simplified models implemented 
by TPS in order to mitigate the risk of dose calculation errors.

In this article we describe the development and validation of a full Geant4-based MC model of the IMBL 
at the AS for wiggler magnetic field strengths of 2 and 3 T. Geant4 is a C++ Object-Oriented MC toolkit that 
describes particle interactions and transport in matter, originally developed for high energy physics, that has 
since found extensive use in the fields of radiotherapy, radiation protection, and medical imaging35,36. Validation 
of the model was divided into two sections: (i) Comparison of the Geant4-generated x-ray spectrum against a 
previously validated analytical model and (ii) Comparison of simulated BB and MB dose distributions within a 
RMI457 Gammex Solid Water® phantom compared to experimental PTW PinPoint® (model 31014) ionisation 
chamber (IC) and Gafchromic™ EBT3 film measurements.

Geant4 provides the essential features needed to satisfy the requirements of MRT simulations: the ability 
to model pseudo time-dependent geometries required for dose delivery in MRT (due to the stationary beam 
requiring vertical patient translation); a selection of photon and electron physics models both with and with-
out polarisation that have been validated for common materials in the energy ranges relevant for radiotherapy 
applications37,38; the ability to model complex geometries via a computer-aided design (CAD) interface39; and the 
ability to import data using the DICOM interface to read-in patient-specific geometries acquired by CT scans40,41.

This article is an important first step towards a full Geant4-based IMBL MRT model for independent, precise, 
patient-specific, pre-treatment verification of dose distributions delivered using this emerging cancer treatment 
modality. In conjunction with quality assurance dosimeters and in-beam monitors, this will form an integral part 
of the accurate and safe delivery of MRT at the AS.

Materials and Methods
The ability to accurately and efficiently predict the distribution of delivered dose to the patient based on the 
planned treatment parameters is vital to patient safety in any radiation treatment modality. The accuracy of MC 
simulations makes them ideal for treatment plan verification and for development and optimisation of novel 
radiation detectors used for quality assurance42–48. The development of the Geant4 MC model for the IMBL at 
the AS is based upon a previously benchmarked Geant4 application describing the ID17 Biomedical beamline 
at European Synchrotron Radiation Facility (ESRF)49 interfaced with SHADOW x-ray optics and ray-tracing 
libraries50 to model the production of synchrotron radiation in the wiggler magnets. When developing the Geant4 
application for IMBL this dependency was removed and the whole beamline, including the wiggler, was modelled 
in Geant4.

Geant4 MC toolkit version 9.6 patch 4 was used in the simulation. The simulation is carried out in two stages: 
(i) production and transportation of photons to the phantom, (ii) energy deposition within a voxelised phan-
tom geometry. Stage One models the synchrotron radiation production in the insertion device and transports 
the resulting photons through the IMBL MRT beamline where they are then stored in a phase-space file (PSF) 
prior to the phantom for use in Stage Two. Stage Two consists of high spatial resolution dose calculations in the 
vertically scanned phantom, (see Fig. 1). The splitting of the simulation into two distinct phases allows re-use of 
the same radiation field, stored as a PSF, to calculate the dose in different phantom conditions for the same beam-
line configuration without rerunning Stage One. A library of PSFs generated using the most common beamline 
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configurations used in treatment would make Stage I simulations unnecessary for day-to-day patient-specific 
dose verification, thus significantly reducing required simulation time per patient.

The simulations were performed on the M2 MASSIVE cluster51. This cluster consists of 42 nodes with 12 
cores per node running at 2.66 GHz. Each node has 48 GB of RAM and 2 nVidia M2070 GPUs with 6 GB of 
DDR5 RAM. The typical PSFs used for MB and BB dose delivery contained 12 × 106 and 21 × 106 unique photons 
respectively.

For all simulations used in this study 100 separate jobs were submitted on either a single cluster node or split 
between separate nodes. Each job is assigned a unique seed for its respective random number generator. The 
mean simulated dose across all jobs was calculated within each voxel with uncertainties represented by a standard 
error of the mean with a 95% confidence limit. The photon spectra in the PSFs for each of the simulated BDA 
configurations and maximum wiggler field strengths were analysed and compared to the previously validated 
analytical model, SPEC20.

physics. The Low Energy Livermore Polarized Physics list52 was activated for this simulation. This physics 
list models the photoelectric, Rayleigh, and Compton interactions for photons and is valid for an energy range 
between approximately 250 eV and 10 GeV. Multiple Coulomb scattering, ionisation, and Bremsstrahlung pro-
duction are modelled for electrons. The photon cross sections have been validated over the energy range between 
1 keV and 100 GeV36.

The generation of synchrotron radiation is handled by the G4SynchrotronRadiation process. For this simula-
tion the maximum step-length in the wiggler is set to 0.1 mm and the minimum energy of synchrotron photon 
production is set to 40 keV. The minimum energy is set to this level to avoid transporting very low energy photons 
that will be fully absorbed before they reach the phantom. As electrons traverse the length of the wiggler synchro-
tron photons are produced with the G4SynchrotronRadiation process53 using the G4HelixSimpleRunge solver to 
approximate the curved path of the electron in the magnetic field. For details the reader is directed to the Geant4 
Physics Reference Manual52.

In order to increase the simulation efficiency a global ‘production cut’ of 0.01 mm was adopted. The ‘cut’ was 
optimised to reduce simulation times whilst maintaining a adequate degree of accuracy in the dosimetric results 
of the simulation.

Geant4 simulation stage one - synchrotron radiation production. The wiggler parameters used 
for synchrotron radiation production are outlined in Table 1. Following the synchrotron radiation production in 
the wiggler the electrons are directed into a ‘kill plane’ by the bending magnet positioned after the wiggler, 3 m 
from the source. The kill plane stops the transportation of the electrons to speed up the simulation times as they 
are no longer required after this point in the simulation. The photons are transported through the IMBL MRT 
beamline, as shown in Fig. 1. On the IMBL interchangeable tungsten beam defining apertures (BDAs) provide 
intrinsic x-ray radiation beam dimensions of constant 30 mm width (Y) and variable height (Z) of 0.532, 1.053, 
or 2.014 mm. The addition of tungsten conformal masks positioned approximately 0.5 m downstream from the 
BDA allow for the further reduction of the intrinsic beam width to 5, 10 or 20 mm. A synchrotron-generated BB 
can also be utilised when the MSC is removed and the intrinsic field is only defined by the BDA and conformal 
mask for a more conventional flat beam profile. The beam heights are defined using the BDAs to provide consist-
ent and reproducible beam dimensions. Full details of the beamline component positions have been provided by 
Stevenson et al.20 and so will not be repeated here. However, details on filtration configurations used in this work 
can be found in Table 1.

After generation and transportation of the photons through the beamline each photon that crosses the 
phase-space scoring plane has its position, momentum, polarisation, and energy recorded in the PSF. The 
phase-space scoring plane is positioned in Hutch 2B at a distance of 33.4 m from the source (downstream from 
the BDA), just after the MSC. This allows for the same position of the PSF to be maintained in both the BB and 
MB configurations.

Stage two - dose delivery in user specified phantom. Stage two of the simulation consists of dose cal-
culations in the vertically scanned phantom incorporating the target volume, and positioned at a distance 34.16 m 
from the source. As aforementioned, the vertical height of the synchrotron generated x-rays is limited by the 
BDAs creating an effective intrinsic treatment beam height. In order to treat targets of heights greater than 2 mm 

Figure 1. Schematic of the IMBL beamline modelled in Geant4.
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the target is moved vertically at a constant speed to ensure full coverage of the target. The equivalent “dose paint-
ing” technique is commonly used in charged particle therapy by steering a particle pencil beam. The movement of 
the phantom stage in the z-direction is simulated by Geant4 using a time-dependent parameterised geometry54, 
where the vertical translation step size of the phantom is determined by dividing the desired field length by the 
total number of primary particles to be simulated. For experimental data acquisition the sample stage was verti-
cally translated at a constant vertical velocity of 10 mm·s−1 through the beam in a single scan.

For BB simulations the phantom was modelled as a rectangular slab with dimensions 140 mm × 100 mm × 
100 mm (X,Y,Z). The material of the phantom was modelled as Gammex RMI457 Solid Water® to match the 
experimental setup. Gammex RMI457 Solid Water® was chosen for this validation study as the dose delivered 
within this material has been shown to be equivalent to water in the photon energy range of interest for MRT38. 
A voxelised scoring mesh with dimensions 140 mm × 100 mm × 100 mm was overlayed on the modelled rectan-
gular phantom. This mesh recorded the spatial distribution of energy deposition within the phantom, allowing a 
determination of the dose delivered. A voxel size of 2 mm × 2 mm × 5 mm for the BB configuration was used. This 
voxel size was chosen to approximate the size of the PTW PinPoint® Ionisation Chamber (IC) sensitive volume 
used in the experiments. For the MB configuration voxel sizes of 1 mm × 0.01 mm × 0.1 mm were used to reduce 
simulation time whilst maintaining adequate spatial resolution to resolve the MB profile. Given the increased 
complexity of the MB simulations and decreased voxel size, the dimensions of the voxelised scoring mesh was 
reduced to a 140 mm × 2 mm × 2 mm volume placed centrally within the phantom.

Dose delivery validation. Experimental validation of the dose delivery was carried out on both BB and MB 
configurations. The BB configuration chosen in the validation for comparison with the PTW PinPoint® IC was 
20 mm × 20 mm (Y,Z), since the chamber is only recommended for field sizes of 20 mm × 20 mm or larger. BDA 
heights of 1.053, and 2.014 mm were used for MB dose delivery. The BB and MB x-ray treatment field height and 
width for each configuration was kept at a constant 20 mm and was defined by the conformal mask that moves 
with the target volume, with the target volume centred with respect to the mask along the line of the x-ray beam.

Under experimental conditions the phantom is translated in the Z-direction at constant speed so the intrinsic 
synchrotron x-ray beam is effectively incident on the phantom for a known time (beam-on time) depending on 
the treatment field size and the calculated speed. The calculated speed, νz, depends on the desired dose, D, intrin-
sic dose rate, D, and BDA height, h as shown in Eq. 1. In the second MRT treatment room of the IMBL at the AS, 
the recommended fastest speed used is 10 mm·s−1; so, for example, using the 20 mm × 20 mm mask leads to an 
effective beam-on time of 2 seconds. In order to simulate a beam-on time of 2 seconds using Geant4, for a maxi-
mum wiggler field strength of 3 T and a BDA of 2 mm height, running 100 jobs on 100 separate nodes would take 
approximately 1021 hours to produce an x-ray photon distribution, comparable to that produced by SPEC. Whilst 
the chosen approach has the disadvantage of increased computational time, it should be noted that it provides a 
clear benefit in terms of particle information, i.e. momentum, polarisation etc, which is not given by SPEC. Due 
to the unrealistic simulation time required, the calculated dose delivered within the phantom using Geant4 is 
scaled to the actual experimental conditions according to the ratio of the storage ring current in the experiment 
and the number of simulated electrons entering the wiggler, as shown in Eq. 2.

ν =
×D h
D (1)z

Machine Parameters

Iring 200.1 mA

Ering 3.032 GeV

Wiggler Parameters

Bpeak 2 and 3 T

λ 52 mm

Nperiods 30

Dsource 1.56 m

Beamline Filtration

3 T filtration 2 T filtration

Paddle 1 0.45 mm graphene at 90° 0.45 mm graphene at 90°

Paddle 2 +5 mm HD graphite at 45° (7.07 mm) +5 mm HD graphite at 45° (7.07 mm)

Paddle 3 +10 mm HD graphite at 45° (14.14 mm) +10 mm HD graphite at 45° (14.14 mm)

Paddle 4 +1 mm Cu at 45° (1.41 mm) +1 mm Cu at 45° (1.41 mm)

Paddle 5 +1 mm Cu at 45° (1.41 mm) +2 mm Al at 45° (2.83 mm)

Table 1. Beamline parameters used for synchrotron photon generation where; Iring is the beamline ring current 
in continuous top-up mode, Ering is the energy of electrons within the ring, Bpeak is the peak wiggler field, λ is 
the period of the wiggler field, Nperiods is the number of periods of the wiggler field, and Dsource is the magnetic 
length of the wiggler.
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v
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where D = dose (Gy), Ev = energy deposited in voxel (keV), mv = mass of voxel (kg), Iring = current in the storage 
ring, texp = experimental beam-on time and ne−sim = number of simulated electrons.

For the validation of the BB configuration, calculations were compared to dosimetric profiles measured using 
the PTW PinPoint® IC and Gafchromic™ EBT3 film. Due to the limitations in the sensitive volume size the IC 
is inadequate for use in the MB configuration. As such only EBT3 film are able to be used for the MB irradiation 
configuration. In order to reduce the film uncertainties relevant planned treatment doses are ideally selected (in 
both BB and MB configurations at the phantom depths measured) to ensure that all doses fall within the limited 
operating range of the film. This is more challenging in MB irradiations than for BB due to the significant differ-
ences in the peak dose and the valley dose.

The EBT3 film was scanned using a Leica (Leica Microsystems, Wetzlar, Germany) DMI4000B microscope 
with an 8-bit Leica DMC2900 camera coupled to a 10x objective lens. For each film the scanning procedure con-
sisted of multiple scans using the motorised sample stage which were stitched together using the Leica Application 
Systems software, producing a single 8-bit TIFF image. A total of 30 scans per film were implemented to produce 
a final film scan with dimensions of 1.5 cm × 1.5 cm positioned at the centre of the 2 cm × 2 cm film. Each film was 
scanned both prior and post-irradiation, allowing a 24 hour development time before post-irradiation scans were 
taken as a trade off between film development stability and experimental practicality (strict time frame limits for 
synchrotron facility experiments).

To minimise the influence of external light on the film scans the microscope is housed in a large volume 
incubator with an opaque covering. For each scan a white field correction was applied to correct for radial 
non-uniformity of the film scan caused by the microscope light.

The average pixel value for the calibration and BB film scans was determined using a 1 cm diameter region 
of interest positioned at the centre of each film scan. For the MB film scans the analysis procedure consisted of a 
1 cm × 1 cm (Y, Z) rectangular region of interest positioned at the centre of the film. The 1D Y-profile was then 
determined by averaging the pixel values over the Z axis for each Y position in 1 μm steps. This MB analysis 
procedure was performed for both the film and simulation measurements to ensure parity between the two. The 
profiles measured by the film were extracted for discrete depths of interest within the phantom and compared to 
the simulation results.

The pixel value was determined using single-channel analysis and correcting the post-irradiation scan by the 
pre-irradiation scan for each film, see Eq. 3.

= −P P P (3)Corrected Post Pre

where PPost = pixel value post-irradiation, PPre = pixel value pre-irradiation and PCorrected = corrected pixel value.
The green channel was chosen for this work using the read-out and scanning strategies developed for the Leica 

microscope imaging system. Compared to using the red channel for analysis it provided a larger dynamic range 
while maintaining comparable errors. The blue channel was deemed unsuitable for this work due to the lack of 
reproducibility in measurements coupled with poor sensitivity over the range of interest.

The recommendation from the manufacturer of the film is to scan the film at 72 dpi; however, the scanning 
resolution of approximately 3600 dpi was implemented. Scanning at this resolution resulted in one pixel per 
seven micrometres and allowed for adequate resolution to resolve the microbeams. A caveat of scanning with 
this resolution is that the ‘granular’ structure of the film is apparent and may produce image artefacts. The effect 
of the granular structure on the corrected pixel value is a greater minimum pixel value and reduction in film scan 
uniformity.

The overall uncertainty of the Gafchromic™ film dosimetry system used in this work for the green channel 
was calculated using the ISO Guide to the expression of Uncertainty in Measurement (GUM) methodology55, the 
overview of the uncertainties are shown in Table 2.

Source Type A Type B

Film Scan Uniformity 3.6

Microscope Light Influence 1.3

Positioning Reproducibility 0.4

Signal Growth* 2.1

Sheet Uniformity 0.6

Reproducibility 2.7

Combined Standard Uncertainty in Pixel Value (%) 5.2

Expanded Uncertainty in Pixel Value (%) 10.4**

Table 2. Overall uncertainty of film dosimetry protocol using single channel analysis for MRT implemented 
in this work. *Signal growth error based off a development time of (24 ± 2) hours. **Expanded uncertainty 
based on the standard uncertainty multiplied by a coverage factor of k = 2, providing a coverage probability of 
approximately 95%.
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The same scanning and read-out procedure was followed for the calibration films. Each of the calibration 
films were irradiated at a constant depth of 2 cm in a Gammex RMI457 Solid Water® phantom. The literature has 
demonstrated the ability to extend the useful range of EBT3 well above the manufacture’s recommended range 
using an array of different scanning techniques56–58. The scanning technique implemented in this work allowed 
for absorbed doses of up to 65 Gy to be delivered to the EBT3 film, provided an adequate number of calibration 
points were chosen. The absolute limits of the methodology implemented in this work are currently under inves-
tigation. The calibration curve implemented for this work is shown in Fig. 2, for the dose range of 0.25–64 Gy and 
associated polynomial fit depicted in Eq. 4. The total dose delivered to the film was adjusted by varying the speed 
of the motorised sample stage, see Eq. 1.

= × + × + × + × +Dose a P b P c P d P e (4)Corrected Corrected Corrected Corrected
4 3 2

where a = 1.15 × 10−6, b = −3.21 × 10−4, c = 3.33 × 10−2, d = −1.40 and e = 20.5.
The dose delivered to the PTW PinPoint® IC was read out using the PTW Unidos Webline electrometer 

coupled to a 10 m extension cable. Biasing conditions were set to those specified for the calibration certification 
supplied by PTW: a bias of +400 V was applied to the IC using the internal biasing function of the electrometer. 
The following correction factors were applied to the PTW PinPoint® IC throughout this work: temperature and 
pressure (kTP), polarisation (kpol), electrometer calibration factor (kelec), and recombination (ks). The calculated 
chamber specific energy correction (kQ), was taken as 0.95, per the calibration certificate.

Results and Discussion
photon spectrum. The Geant4 simulated and SPEC calculated photon spectra for two different wiggler 
magnetic field configurations are displayed in Fig. 3. The average simulation time per-job for the generation of 
the BB x-ray spectrum with a maximum wiggler field strength of 3 T were 16, 35, and 75 hours for the 2.014 mm, 
1.053 mm, and 0.532 mm BDAs respectively. The simulation times for the MB configurations, on average, required 
2.5 times longer to produce the same number of photons at the PSF. When the maximum wiggler magnetic field 

Figure 2. Calibration curve using green channel analysis for EBT3 film implemented in this work. Polynomial 
fit given in Eq. 4 depicted by the blue dotted curve.

Figure 3. Frequency distribution of the BB x-ray photon spectra from Geant4 compared to SPEC for (a) 3 T 
and (b) 2 T wiggler field strengths.
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strength was switched from 3 T to 2 T, a decrease in the photon yield was observed as expected. This resulted in 
approximately 45% longer Stage One execution times for similar sized PSF files. The change in wiggler field or 
BDA did not impact simulation times for Stage Two of the simulation as this stage is only dependent on the num-
ber of photons in the PSF. The average simulation time for Stage Two dose delivery within the phantom for BB 
and MB were 20 and 40 minutes respectively, for all configurations.

The normalised spectra generated by Geant4 for each intrinsic beam configuration were identical, thus only 
the 2.014 mm BDA results for each wiggler are shown in Fig. 3. Slight differences are evident between the spectra 
generated by Geant4 and SPEC in Fig. 3. These differences can be attributed to the underlying calculation models 
and assumptions between the programs; SPEC using an analytical approach in contrast to Geant4’s MC approach.

The comparison between the normalised photon spectra for wiggler field strengths of 3 and 2 T generated by 
SPEC and Geant4 at the plane of the PSF are depicted in Table 3. Good agreement between the generated spectra 
maximum value and mean energy is seen, with a percentage difference between the mean of energy of the gen-
erated spectra of 2.92% and 1.70% and percentage difference of spectra maximum values of 2.5% and 0.3% for 
wiggler field strengths of 3 and 2 T respectively.

However, when comparing the expected and simulated photon fluence for a time interval dt, given a fixed 
beam current, the Geant4 simulated photon fluence deviated from the expected fluence at the position of the PSF. 
The ratio of expected photons to Geant4 simulated photons reaching the plane of the PSF for a fixed number of 
electrons were 2.00 and 2.60 for wiggler field strengths of 3 and 2 T respectively.

The energy distribution of photons in the range of 40–300 keV is in excellent agreement indicated by the close 
proximity in values of Emax and Emean, however the flux is otherwise. The cause of this deviation may be attributed 
to the G4SynchrotronRadiation process which has been validated for constant magnetic fields. This model is a 
good approximation for photon production in magnetic fields which remain relatively constant over the forma-
tion length for synchrotron radiation52, however has yet to be validated for varying magnetic fields such as that 
produced from a multi-pole wiggler. The current implementation of the G4SynchrotronRadiation process leads 
to increased production of low energy photons which are preferentially absorbed by the beamline filtration and 
account for the deviation seen at the plane of the PSF. This may suggest development of a model valid for use in 
wiggler fields be implemented in future work. Subsequently, the validity with respect to the total number of photons 
produced as a function of simulated electrons has not been established and is under active investigation. As a result, 
the Geant4 simulations require normalisation to experimental data and limits the capability of calculating and 
comparing absolute doses. Equation 2 has been updated to include a calibration factor to account for this discrep-
ancy using the experimental reference conditions data at 2 cm depth for each wiggler field strength, see Eqs. 5 and 6.

= ×
×

×
−

D E
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I t
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K
(5)

v

v

ring

e sim
w
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=K
D
D (6)

w
sim mm

exp,1 mm

,1

where Kw = calibration value for the simulation as a function of maximum wiggler field strength, Dexp,1mm = exper-
imental dose delivered under reference conditions for the 1.053 mm BDA and Dsim,1mm = simulation dose 
delivered under reference conditions for the 1.053 mm BDA. The reference dosimetry protocol conditions imple-
mented on IMBL emulate the ESRF protocol59, with a measurement depth of 2 cm, a 20 mm × 20 mm field size 
and a sample stage translation speed of 10 mm·s−1. For this work a Gammex RMI457 Solid Water® phantom was 
used to enable film dosimetry to be performed.

Geant4 compared to IC and EBT3 film for synchrotron BB dose delivery. The Kw factors deter-
mined using the measured dose under reference conditions in Eq. 6 were 1.91 and 2.54 for wiggler field strengths 
of 3 and 2 T respectively. Table 4 depicts the comparison between the ratio Dexp/Dsim for each wiggler field strength 
and beam configuration at 20 mm depth within the Gammex RMI457 Solid Water® phantom. For each wiggler 
field strength there is good agreement between all BDA configurations, however the 1.053 mm BDA is chosen 
as the reference beam geometry due to the improved experimental reproducibility of the beam compared when 
defined using the 2.014 mm BDA and increased experimental beam stability compared when defined using the 
0.532 mm beam.

Spectra Comparison

Field Strength 3 T 2 T

Modality SPEC Geant4 SPEC Geant4

Spectra Maximum (keV) 81 79 61.9 62.1

Mean Energy (keV) 94.63 91.91 70.73 69.54

Uncertainty Mean (keV) 0.61 0.01 0.51 0.01

φSPEC/φGeant4 2 2.6

Table 3. Comparison between normalised photon spectra generated by SPEC and Geant4 at the plane of the 
PSF. Where φSPEC/φGeant4 is the ratio of absolute number of photons produced by SPEC vs Geant4 for a fixed 
number of simulated electrons.
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The calculated Kw values agreed with the deviation in absolute number of photons produced for a fixed num-
ber of simulated electrons (φSPEC/φGeant4) of 2.00 and 2.60 for wiggler field strengths of 3 and 2 T respectively. The 
percentage difference between the calculated Kw and φSPEC/φGeant4 were 4.6 and 2.3% for wiggler field strengths 
of 3 and 2 T respectively. This further indicates the G4SynchrotronRadiation process implemented in this work is 
producing a correct distribution of photons at the plane of the PSF, however with an incorrect magnitude.

Figures 4 and 5 show the dose delivered as a function of depth for a BB treatment field of 20 mm × 20 mm 
within the Gammex RMI457 Solid Water® phantom. The simulated doses were compared to the PTW PinPoint® 
IC and EBT3 film for a range of intrinsic x-ray beams of varying height, as defined by the BDA. Overall there was 
seen to be excellent agreement across all three intrinsic beams tested for the 3 T wiggler and the two intrinsic 
beams tested for the 2 T wiggler. The IC measurement depths begin from 5 mm depth and compare extremely 
well with the EBT3 film and simulation data. The EBT3 film calibration was performed at 20 mm depth using the 
1.053 mm BDA for all BB and MB measurements.

When using a maximum wiggler magnetic field strength of 3 T, the dose determined by the simulation agrees 
within 2% across all depths for each BDA configuration. The maximum deviations were seen when using the 
2.014 mm BDA to define the intrinsic beam, with an average percentage difference of 1.7%. For the other two 
BDAs the average percentage difference was found to be 0.9% for the 1.053 BDA and 1.1% for the 0.532 mm 
BDA. The largest variation between simulated and measured dose, at either wiggler magnetic field, was seen for 
the EBT3 film data very close to the surface of the phantom. However this variation was within the uncertainty 
of the measurements and simulations so was not considered significant enough to warrant further investigation.

For each BDA configuration using the 2 T wiggler, the dose delivered with depth in the simulation agrees 
within 3% across all depths to those measured by the IC and film. The maximum deviations were seen when using 
the 1.053 mm BDA to define the intrinsic beam, with an average percentage difference of 2.3%. For the 2.014 mm 
BDA the average percentage difference across all depths was found to be 1.6% and 1.4% for the 0.532 mm BDA.

Geant4 compared to EBT3 film for synchrotron MB dose delivery. Figure 6 shows a comparison 
between simulated and measured MB profiles for the five central microbeams using the (a) 2.014 mm and (b) 
1.053 mm BDAs. The depth for the comparison is 20 mm in the Gammex RMI457 Solid Water® phantom, the 
wiggler field strength is 3 T and the target translation speed is 10 mm·s−1. The top plot in Fig. 6 is a colour map of 
the simulated dose near the centre of the MRT treatment field (target centre is at 0, 0 of the y − z plane and x, the 
depth, is 20 mm. In the bottom plots of Fig. 6 the 2D profile of the central five microbeams for the simulated MB 
(in the plots above) are compared with the equivalent measured MB profiles. Overall, one can see there is very 
good agreement between the simulated and measured plots, however it is immediately clear from the 2D profile 
plots in Fig. 6 that the uncertainties in the simulated data could obviously be reduced by further simulation data. 
Such data would require an increase in the overall simulation time required above the current 23 minutes. In any 
case, the comparison is limited by the reasonably achievable uncertainty in the film data, and is discussed in more 
detail below. The error bars in the film data in Fig. 6 have therefore been removed to better illustrate the compar-
ison, refer to Table 2 for the overall film errors associated with the measurements.

In comparing Geant4 simulation data to the EBT3 measurement data for Fig. 6, a full dataset for the 3 T 
wiggler field with the intrinsic beams defined by the 2.014 mm and 1.053 mm BDAs was able to be completed. 
However, no such comparison could be made for the 0.532 mm BDA. Further to this, the equivalent 2 T wiggler 
field case dataset was even more restricted, and only the peak doses using the 2.014 mm and 1.053 mm BDAs were 
able to be compared. The restricted datasets are due to the combined effect of the limited dynamic range of the 
film, ‘granular’ structure of the film, and the inability to deliver doses less than 0.25 Gy for calibration purposes. 
The dose delivery limitation for calibration is because in the BB configuration the air kerma rate is approximately 
1 kGy·s−1 and with the current motor and BDA configurations available on the IMBL at AS, delivery of doses 
below 0.25 Gy is not feasible. As such, valley doses for the MB treatment delivery when using the EBT3 film are 
unreliable when they are below the minimum dose used for the calibration of the film. This was seen for all 2 T 
results as well as the 3 T results using the 0.532 mm for between 80 and 140 mm depth. The valley doses were 
omitted for the configurations where they could not be reliably calculated from the film data. Peak values as a 
function of depth were compared for these configurations. In future either the two-film technique or the use of 
Gafchromic™ HDV2 film may be employed. The two-film technique requires a primary film to be used to meas-
ure the peak and a secondary film to measure the valley, subsequently enabling potentially more reliable measure-
ments of both the peak and the valley dose. However, the strict spatial resolution requirement for the peak dose 

Dose Comparison

BDA height (mm)

Dexp/Dsim

3 T 2 T

2.014 1.95 2.45

1.053 1.91 2.54

0.532 1.94 2.49

Mean 1.93 2.49

Uncertainty 0.04 0.09

Table 4. Comparison between ratio of Dexp/Dsim for each wiggler field strength and beam configuration at 
20 mm depth within the Gammex RMI457 Solid Water® phantom, with uncertainties represented by two 
standard deviations.
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estimates and the associated resulting uncertainties will remain a challenge. The implementation of HDV2 film, 
with a larger dynamic range, will allow for higher doses to be delivered to the film. Simultaneous peak and valley 
doses measurements using one film will present the same challenges as seen for EBT3.

The larger voxel size of 10 μm used in the simulation compared to the smaller sensitive volume of approx-
imately 7 μm of the EBT3 film results in notably sharper shoulders in the EBT3 profiles. Good agreement was 
seen across the profiles for the 2.014 mm and 1.053 mm BDAs, with the mean percentage difference in the peak 
values of 1.4% and 3.2% respectively. Good agreement was seen for the valley dose values above the film dose 
threshold, with a mean percentage difference of 1.3% and 0.93% respectively. Agreement in the shoulders of the 
profiles can be improved by reducing the size of voxels used in the simulation in the y dimension from 10 μm to 
1 μm; however, this would result in much slower simulation times as well as larger output file sizes and so remains 
a challenge for very precise MRT dosimetry.

Figure 7(a) and 8(a) show the full 2D depth-dose distribution for the 3 T wiggler field, calculated by the 
Geant4 simulation, and showing the central five microbeams within the RMI457 Solid Water® phantom as a 
function of depth using the 2.014 mm and 1.053 mm BDA respectively. The figures are excellent quantitative illus-
trations of the spatially fractionated MRT irradiation treatment field. The extremely small x-ray source divergence 
gives rise to the microscopic MBs acting as conduits to the full treatment dose coverage of a macroscopic target 
volume, which in this case has a cross-sectional area of 20 mm × 20 mm. The short range of the secondary parti-
cles associated with MRT ensure the striated structure of the radiation dose field remains very tight with depth 
and is a unique feature of this exciting emerging cancer treatment modality. Such a tightly striated dose structure 
with depth is therefore impossible to achieve using conventional clinical LINAC beams or particle therapy beams.

Also shown in Figs. 7 and 8 are summary plots of all of the simulated and measured data combined, display-
ing the peak dose, valley dose and peak-to-valley dose ratio (PVDR) with depth in the Gammex RMI457 Solid 
Water® phantom. For each of the 2D depth-dose distributions the average peak and valley was determined as a 
function of depth within the phantom and compared to EBT3 film. For the 2.014 mm BDA there was good agree-
ment across all depths for the peak, valley and subsequent PVDR values. The average percentage difference for the 
peak and valley values was found to be 1.8% and 3.7% respectively across all depths with a maximum difference 
of 2.1% and 4.7% respectively. In regards to the 1.053 mm BDA, the valley dose for the depth of 80 mm was lower 
than the smallest calibrated dose of 0.25 Gy, and subsequently was omitted from the results shown in Fig. 8.

Figure 4. Simulated BB dose as a function of depth in a Gammex RMI457 Solid Water® phantom using Geant4 
for a 3 T wiggler field and a BDA of (a) 2.014 mm (b) 1.053 mm and (c) 0.532 mm height. Measured data using a 
PTW PinPoint® ionisation chamber and EBT3 film are overlayed.

Figure 5. Simulated BB dose as a function of depth in a Gammex RMI457 Solid Water® phantom using Geant4 
for a 2 T wiggler field and a BDA of (a) 2.014 mm, (b) 1.053 mm and (c) 0.532 mm height. Measured data using 
a PTW PinPoint® ionisation chamber and EBT3 film are overlayed for 2.014 mm and 1.053 mm BDA. Only IC 
data was taken for the 0.532 mm BDA.
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Figures 7 and 8 demonstrate a reduction in valley dose at the entrance and exit of the phantom. The reduced 
valley dose in the first 20 mm is a direct result of the lack of incident photons between the MBs (by design) as 
well as the associated reduced forward scattered photons into the valley regions from the MB peaks due to the 
low-density air (relative to water) in front of the phantom. The reduced dose at the exit of the phantom is a direct 
result of the lack of density (relative to water) in the backscatter material (being air again).

Figures 9 and 10 show the simulated and measured (where possible) peak and valley doses delivered to the 
Gammex RMI457 Solid Water® phantom as a function of depth for a 2 T wiggler field, for the 2.014 mm and 
1.053 mm BDA. Only the peak doses are displayed for the EBT3 film data as the valley doses delivered to the film 
were below the minimum calibration value of 0.25 Gy. This was the case for all depths within the phantom, hence 
they are not displayed. Very good agreement is seen between the simulated and measured data. The data set is 
limited compared to that shown in Figs. 7 and 8 however it represents an extremely important milestone in terms 
of the MRT beamline model as it is associated with a different wiggler magnetic field which leads to a completely 
different photon energy spectrum (as seen in Fig. 3). In addition, the angular distribution of the x-ray photons 
emitted from the IMBL wiggler source is also distinctly different, along with the transmission and scattering 
probabilities of this x-ray beam through the various filters, windows and MSC, along the 33.4 m distance from the 
source to the RMI457 phantom.

For the 2.014 mm BDA there is good agreement across all depths for the peak values. The average percent-
age difference for the peak values was found to be 2.7% across all depths with a maximum difference of 3.4%. 
Similarly for the 1.053 mm BDA, good agreement is seen between the peak doses measured using the film com-
pared to those determined in the simulation. The average percentage difference for the peak values was found 
to be 0.4% across all depths with a maximum difference of 0.9%. The better agreement for the 1.053 mm BDA 
compared to the 2.014 mm BDA may be related to some limitation in the model of the x-ray intensity roll-off 
or energy roll-off (effectively softening the energy spectrum) with solid angle projected from the wiggler x-ray 
source in the y-z plane (see Fig. 1). Such an investigation is beyond the scope of this work, but important, and will 
be the focus of future research in this area. The intensity roll-off is less important experimentally for the 1.053 mm 
BDA since the intrinsic field size is substantially smaller than the maximum intrinsic field size in the z–direction 
on the IMBL at the AS.

Figure 6. Two dimensional dose distribution (top) and 1D dose profiles (bottom) at 2 cm depth within a 
RMI457 Solid Water® phantom for (a) BDA of height 2.014 mm and (b) BDA of height 1.053 mm, with a 
maximum wiggler field strength of 3 T.
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conclusion
The first Geant4-based model of the Australian Synchrotron Imaging and Medical Beam Line has been suc-
cessfully developed and validated in both BB and MB configurations using maximum wiggler magnetic field 
strengths of 3 and 2 T. Good agreement was seen between the normalised Geant4 simulation-generated photon 
energy distribution and the previously validated SPEC software. The validity of absolute photon flux at the plane 
of the PSF for a fixed number of simulated electrons was unable to be established. This work shows a possible 
limitation of the G4SynchrotronRadiation process to model synchrotron radiation when using a variable magnetic 
field, a subject of on-going investigations.

Figure 7. Geant4 (a) 2D MB depth dose distribution, (b) Peak dose and valley dose, (c) PVDR, within an 
RMI457 Solid Water® phantom for a BDA of height 2.014 mm compared with EBT3 film, for a maximum 
wiggler field strength of 3 T.

Figure 8. Geant4 (a) 2D MB depth dose distribution, (b) Peak dose and valley dose, (c) PVDR, within an 
RMI457 Solid Water® phantom for a BDA of height 1.053 mm compared with EBT3 film, simulation for a 
maximum wiggler field strength of 3 T.

Figure 9. Geant4 (a) 2D MB depth dose distribution, (b) Peak dose and valley dose, (c) PVDR, within an 
RMI457 Solid Water® phantom for a BDA of height 2.014 mm compared with EBT3 film, simulation for a 
maximum wiggler field strength of 2 T.
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To account for this issue, the use of an experimentally derived normalisation factor, Kw, was implemented 
using the experimental reference conditions for each wiggler field strength. Kw was determined to be 1.91 and 
2.54 for wiggler field strengths of 3 and 2 T respectively. The calculated Kw values agreed with the deviation in 
absolute number of photons produced for a fixed number of simulated electrons of 2.00 and 2.60 for wiggler field 
strengths of 3 and 2 T respectively.

Excellent agreement was seen in both the BB and MB dose delivered for a range of beam configurations and 
depths within a Gammex RMI457 Solid Water® phantom. In the BB case the calculated dose agreed within 3% 
across all depths for maximum wiggler field strengths of 2 and 3 T. The simulated MB dose profiles at 20 mm 
depth agreed with measured film data obtained under the same conditions within 4%.

Future work aims at validating the Geant4 model for the remaining beamline configurations available on the 
IMBL. In addition, further development of the MRT treatment simulations to include more complex and real-
istic treatment geometries for implementation in dosimetric studies for upcoming in–vivo pre-clinical trials has 
commenced.
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