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Abstract 

Smart systems are those that display autonomous or collaborative functionalities, and include 

the ability to sense multiple inputs, to respond with appropriate operations, and to control a 

given situation. In certain circumstances, it is also of great interest to retain flexible, stretchable, 

portable, wearable, and/or implantable attributes in a smart electronic system. Among the 

promising candidate smart materials, carbon nanotube (CNT) exhibits excellent electrical and 

mechanical properties, and structurally fabricated CNT based fibers and yarns with coil and 

twist further introduce flexible and stretchable properties. A number of notable studies have 

demonstrated various functions of CNT yarns, including sensor, actuator, and energy storage. 

In particular, CNT yarns can operate as flexible electronic sensors and electrodes to monitor 

strain, temperature, ionic concentration, and concentraion of target biomolecules. Moreover, a 

twisted CNT yarn enables strong torsional actuation and coiled CNT yarns generate large 

tensile strokes as an artificial muscle. Furthermore, the reverse actuation function of CNT yarns 

can be used as an energy harvester and when combined with a CNT supercapacitor has 

promoted the next-generation energy storage system. Here we report progressive advances of 

CNT yarns in electrical sensing, actuation, and energy storage, and further consider the future 

challenges in smart electronic systems. 
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1. Introduction 

“Smart systems” refer generically to various advanced technologies that are regarded 

as platforms for next-generation devices in a variety of fields.[1] The principal functions of a 

smart system are realized by the seamless integration of monitoring and responding systems 

that react autonomously and appropriately to specific signals.[2] Notable recent advances in 

smart materials are expected to make it possible for the miniaturization and integration of smart 

systems into portable wearable or implantable devices for applications including personal 

health management and for human-machine interactions.[1, 3] In general, smart materials are 

those that display multiple functionalities, including stimuli-responsiveness; the ability to 

generate, transport and/or store charge; and, in some cases biocompatibility or 

biodegradability.[4] The integration of smart materials have the potential to revolutionize 

conventional electronic systems in healthcare, manufacturing, and robotics.[3a, 3b] 

Fiber based smart materials are particularly attractive for many applications.[4] Fiber 

processing enables the enhancement of mechanical and electrical properties as well as 

providing control of composition, surface area and porosity. Textile fabrication also allows 

fibers to be integrated into fabrics with complex architectures. Next generation wearable 

technologies will be built from textiles incorporating sensor fibers; actuating fibers; and fibers 

that harness movement or latent heat to generate their own power.[5] Fundamentally important 

in all of these applications are the need for fibers with high electrical conductivity and 

mechanical robustness. The sensor and actuator elements are electrically networked for 

monitoring and control and must be integrated with a suitable power supply. The desire to 

implement these systems in wearable or implantable applications also requires flexibility, 

stretchability and resistance to mechanical damage. In line with these needs, carbon nanotube 

yarns have emerged as ideal candidate materials that demonstrate capabilities as electronic 

sensor, actuator, and energy harvester. Significant advances in recent times to improve the 
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basic electrical and mechanical properties of these materials have enabled their further 

development as smart materials. Here we review progress in this field, consider various 

potential applications for carbon nanotube yarns and summarize the areas for future work. 

 

2. Properties of Carbon Nanotube Yarns  

Carbon nanotubes (CNTs) are currently the most promising material for fiber based 

smart systems. The high strength and electrical conductivity of CNT yarns created much initial 

interest in using these materials for electronic applications.[6] Recently, numerous studies have 

also demonstrated the multi-functionality of CNT yarns as fiber-shaped electrical sensors, 

actuators, supercapacitors, and energy harvesters (Figure 1). CNTs are carbon-based materials 

with a cylindrical nanostructure that can be envisaged as a layer of graphene rolled into a 

hollow cylinder.[7] This structure is known as a single-walled nanotube, (SWNT). In fact, CNTs 

often exist as multiple concentric cylinders that are called multiwalled nanotubes (MWNTs). 

The latter are fabricated or “grown” by heating a precursor gas above 700°C so that vertically 

aligned and densely packed “forest” of MWNTs form on the solid substrate, such as 

mesoporous silica.[8] In 2004, Zhang et al. established a major breakthrough by drawing sheets 

of MWNT taken from a nanotube forests and twisting these sheets to form yarn (Figure 2a). 

The CNT yarns exhibit excellent mechanical strength and have an electrical conductivity ~300 

S/cm at room temperature.[9] Further refinements has improved the electrical conductivity of 

CNT yarn to 595 S/cm at room temperature.[10] 

Numerous studies have attempted to further improve the electrical conductivity of 

CNT yarns. For instance, the electrical conductivity can be regulated by inducing the oxidation 

on the surface of CNT yarn. In fact, oxidizing the CNT yarn in air or by the treatment of HNO3 

enhanced its conductivity, whereas the conductivity was diminished by annealing CNT fibers 

in Ar + 6% H2 at 800 °C.[10] Another approach has been to combine metal nanoparticles into 
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the CNT yarn. Au nanoparticle-coated CNT yarns improve the electrical conductivity, but these 

yarns also show a unique conductivity-temperature relationship unlike bare CNT yarn, 

resulting in semi-conductive behavior at temperature above 280 K, whereas conductive 

behavior changed to metallic at temperature higher than 250 K.[10] 

Other attempts showed that Cu- or Au- composite CNT yarns prepared by 

electrodeposition exhibit higher metal-like electrical conductivities (2~3 x 105 S/cm) compared 

to the bare CNT yarn (5 x 102 S/cm). However, their tensile strengths were reduced by around 

30-50%.[11] It has been further demonstrated that silver particle-coated CNT yarns improve the 

electrical conductivity (4.28 x 104 S/cm) without sacrificing its mechanical strength[12] and 

post-treatment of CNT yarn by coupling with FeCl3 enhances both the electrical conductivity 

(3.5 x 103 S/cm) and mechanical strength (420 MPa).[13] On the contrary, the encapsulation of 

CNT yarn by facile heat treatment has considerably improved both mechanical strength and 

thermal conductivity, but has also increased the electrical resistance.[14] 

As an alternative approach, some research groups have tried to integrate various 

polymers with CNT yarns to improve electrical conductivity. It was shown that polyvinyl 

alcohol-inserted CNT yarn considerably enhances the electrical conductivity (9.2 x 102 S/cm), 

which is comparable to HNO3-induced oxidized and Au nanoparticle-coated CNT yarns.[15] It 

was also found that a conducting polymer, polypyrrole-contained CNT yarn shows a slightly 

higher electrical conductivity (around 2.60 x 102 S/cm) than pure CNT yarn (2.15 x 102 S/cm) 

in addition to improved mechanical strength.[16] In contrast, a polyaniline SWCNT composite 

fiber made by electrospinning failed to greatly improve the electrical conductivity despite of 

good compatibility between two components.[17] Interestingly, in situ observation by 

transmission electron microscopy during voltage application has found rotation and breakage 

of CNT yarn, suggesting that the damage can cause circuit failure due to the resistive heating 
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occurring during the current flow.[18] Therefore, it seems that mechanical strength should also 

be considered when improving electrical conductivity. 

CNT yarns of small diameter have exhibited good flexibility, while maintaining good 

strength and conductivity (Figure 2b).[19] Silk-sheathed CNT yarns have been fabricated by 

electrospinning silk fibroin solution on rotating CNT yarns.[20] Consequently, it has found that 

silk-sheathed CNT yarn exhibit a high mechanical strength, flexibility, durability, and electrical 

conductivity (3.1 x 104 S/m) suitable for textile electronics.[20] However, CNT yarns are still 

limited in terms of stretchability. To overcome this limitation, remarkable improvements in the 

stretchability of CNT yarns has been achieved through structural deformations by introducing 

coiled structures by twisting the yarns under tension (Figure 2c-e). The coiled CNT yarns show 

spring-like extensibility while maintaining high electrical conductivity.  

 

3. CNT yarn as an electronic sensor 

There has been a growing demand for the development of smart monitoring systems 

to collect, quantify and qualify information associated with the human body.[21] The monitoring 

systems are equipped with smart electronic sensors that are either worn externally or implanted 

into the body.[22] Flexible fiber or yarn-based sensors are highly attractive because of their 

small diameters, high surface-to-volume ratios, light-weight, and suitability for integration into 

textiles.[23] Since CNT yarns combine good mechanical and conductive properties, a variety of 

studies on CNT fiber or yarn as an electronic sensor have been actively investigated. Currently, 

most CNT fiber-composed strain, thermal, and potentiometric sensors are based on monitoring 

electrical resistance or capacitive changes of the CNT fiber in response to strain deformation, 

thermal change, or changes in chemical environment. In addition, some biochemical sensors 

operate by detecting current flow at a CNT electrode that is derived from oxidized molecules 

by low voltage input. 
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3.1 Electronic strain sensor 

Electronic strain sensor can generate electrical signals, responding to strain 

deformation produced in response to an external force. Flexible and miniaturized strain sensors 

are expected to facilitate new approaches for smart wearable applications, such as the 

monitoring and detection for human motion, health, and medical treatment.[24] Generally, the 

integration of conductive materials and flexible substrates is a common method to fabricate 

flexible strain sensors. The challenges for using CNT fibers or yarns as strain sensors has been 

to determine strain sensitive properties that can be monitored in situ and to enable high 

stretchability.  

To verify intrinsic sensitivity of CNT yarn to strain, first studies investigated the 

variation in electrical resistance to tensile strain under variable temperature ranges.[25] It was 

revealed that the resistance of CNT yarn changes in a linear manner when the strain increased 

from 0.5 to 1%, and maintains a stable resistance at temperatures ranging from 77 to 373 K.[25] 

Another study has attempted to make entangled CNT yarn to utilize as an elastic strain sensor 

over large strain (up to 500%).[26] The entangled structure was fabricated by over-twisting to 

generate a snarled and knotted structures that reversibly and linearly changed in electrical 

resistance when untangled by pulling the yarn ends (tensile strain) (Figure 3a).[26] These 

entangled CNT yarns have also generated the tensile actuation, simultaneously rotating a heavy 

object at high speed when released.[26] It seems that the entangled CNT yarns could be used in 

some smart electronics which need physical movement (actuation) while sensing the strain 

deformation. 

Applying elastic polymers to CNT yarns has also been used to increase the strain 

deformation. It has found that CNT-coated PU/cotton yarn exhibits a linear increase in 

electrical resistance to 300% strain, and could be reversible stretched and released about 
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300,000 times under 40% strain without damage (Figure 3b).[27] In fact, the CNT coated 

PU/cotton strain sensor could effectively detect human motions such as finger movement, 

elbow motions, walking, and eye winking.[27] Interestingly, Sim and colleagues have 

established a self-powered strain sensor based on PU/triboelectric materials/CNT composites 

(Figure 3c).[28] Their device detected the voltage difference between a PU-wrapped positive 

triboelectric electrode and a CNT-coated negative triboelectric electrode when stretched and 

released. The voltage responses of the CNT composite strain sensor were detected as the 

applied strain increased from 10% to 50%, and the sensor could be cycled around 10,000 times 

to 50% strain.[28] Indeed, the self-powered strain sensor woven into the wristband of a glove 

effectively monitored the changes in the x-, y- and diagonal directions.[28] The piezoresistive 

concept has also been applied to develop strain gauges to detect piezoresistive changes in the 

arrangement of the CNT yarns by mechanical loading (Figure 3d).[29] The piezoresistive CNT 

sensor has shown to reversibly detect the strain deformation.[29] An interesting related device 

uses an array of several CNT yarns on grooved silicon to form a thermoacoustic chip (Figure 

3e).[30] The suspending CNT yarn arrays across the grooves linearly respond to sound pressure 

at 10, 20, 40 kHz, depending on the depth of the grooves. The acoustic sensor could be used as 

a microphone and was successfully integrated to earphones as an application in consumer 

electronics.[30] 

 

3.2 Electronic thermal and potentiometric sensors  

Temperature sensors can be classified into several types based on the material and 

their operation and include thermistors (temperature sensitive resistors) and thermocouples 

(voltage generating metal junctions) and silicon-based sensors.[2b, 21c, 31] Many types of 

temperature sensors are used to detect the temperature by sensing changes in electrical 

resistance of the thermosensitive materials such as ceramics, polymers, and metals.[2b, 21c, 31] 
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Importantly, new types of temperature sensor have attempted to monitor the body temperature 

in the real-time through the wearable sensor.[2b, 21c, 31] 

A limited number of studies have investigated CNT yarns as fiber-based temperature 

sensors that could be miniaturized and were sufficiently flexible for textile application. In 2008, 

one initial study has characterized the bridge current that is voltage drop across an external 

resistor, due to changing the temperature. The study revealed that the currents of a 4-ply CNT 

yarn were increased over a temperature range from -50 to +50 °C, suggesting the application 

as a temperature sensor. Further investigation has improved the temperature sensing capability, 

increasing the resistance change ratio of CNT by combining epoxy resin polymers.[32] Other 

polymers have also been used. Sibinski and colleagues have produced flexible CNT based 

temperature sensor[33] based on polyvinylidene fluoride (PVDF) monofilament due to its good 

flexibility and sufficient thermal resistance. The CNT-coated PVDF fibers exhibited a high 

positive temperature coefficient, indicating the resistance increased as temperature was 

raised.[33] 

The potentionmetric sensor is a kind of chemical sensor that can determine the 

analytical concentration of target components.[34] Currently, potentiometric sensors have 

received great attention due to their potential in a wide area, including environmental 

monitoring and medical diagnostics.[35] For wearable applications it is preferable to integrate 

the potentionmetric sensors into textiles, so researchers have been developing fiber-based 

sensors including those based on CNTs.  

In the potentionmetric sensor, output signals are generally characterized by the 

electrical potential difference of an electrode when compared to a reference electrode. As a 

potentionmetric sensor, it was first found that the construction of CNT-cotton yarn with a 

polymeric membrane could determine the concentration of pH, K+, and NH4
+ as a fiber-shaped 

potentiometric sensor.[36] A noticeable feature of CNT-cotton yarn was the stability of the 
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signals for the target ions, which can be attributed to the high capacitance of the CNTs.[36] Also, 

CNT-cotton sensor covered a broad range of pH between 3 to 11, and limits of detection for 

other ions was 10 μM for K+ and 1 μM for NH4
+ that are similar to values found for solid-state 

ion-selective electrodes.[36] 

In summary, the current status has demonstrated the potential of CNT based sensors 

for temperature and chemical species. It is likely that more research will have to be continued 

to apply these materials in smart electronics such as portable and wearable devices. 

 

3.3 Electronic sensors for neurotransmitter monoamines 

Specialized chemical sensors are needed for detecting bioactive molecules. In central 

nervous system, for example, monoamines are a bioactive neurotransmitter consisting of one 

amino group attached to an aromatic ring by a two-carbon chain, which includes dopamine, 

serotonin, and epinephrine.[37] Because the levels of monoamines are known to regulate the 

mood such as anxiety, and happiness, it is considered important to measure the monoamine 

levels in the blood.[38]   

In biochemical analysis, fast-scan cyclic voltammetry (FSCV) is an electrochemical 

technique that can measure monoamine levels such as dopamine, serotonin, and 

norepinephrine.[39] Since the monoamines can be oxidized by low voltage, the currents are 

generated by electron transfer owing to the oxidation process by cyclic voltammetry.[39] 

Carbon-based fibers are often used for microelectrodes because the carbon fiber electrodes are 

stable and inert at the voltages that is sufficient to oxidize the amine.[40] 

Among carbon fibers, CNT yarns are attractive as a microelectrode substrate, and 

several studies have shown selectivity and sensitivity for monoamines. In 2013, Schmidt and 

colleagues have shown that CNT yarn electrodes could discriminate rapid fluctuations of 

dopamine and serotonin in acute brain slices.[41] They have also demonstrated that the CNT 



  

11 

 

yarn microelectrode has a higher selectivity, sensitivity, and spatial resolution, as well as faster 

discrimination when compared to the conventional carbon fiber electrodes.[41] In further detail 

analysis for high-speed measurement, it was revealed that CNT yarn microelectrodes could 

detect the changes in dopamine at the 2-ms time scale with FSCV, which indicates a 2-fold 

increase in speed than conventional carbon fiber electrodes.[42] Also, CNT yarn electrode is 

suitable for detecting low concentration of dopamine to be 8 nM, and could measure the 

currents for dopamine oxidation to 25 μM.[42] Interestingly, laser-treated CNT yarn 

microelectrodes have further improved the temporal detection and sensitivity for in vivo 

dopamine due to the larger surface and higher oxygen content on the surface of the CNT yarn.[43] 

Yang et al. have attempted to improve the sensitivity to dopamine, providing negatively 

charged surface by the treatment of chlorosulfonic acid in CNT yarn electrodes.[44] Noticeably, 

the oxygen plasma etching and antistatic gun treatment of CNT yarn electrodes lead to 12-fold 

increase in the currents for dopamine.[45] Further investigation has shown that the oxygen 

plasma etching augments surface oxygen content without the change of surface roughness, 

while the antistatic gun treatment facilitates surface roughness without the change in surface 

oxygen content.[45] Other attempts to improve electrode surface characteristics have coated 

Nafion polymer after fabrication of CNT yarn onto a micro Pt-wire. This electrode has been 

shown to increase the selectivity and sensitivity to dopamine as a probe sensor.[46] In summary, 

several studies have supported that CNT yarn electrodes are beneficial for high selective and 

sensitive detection for monoamines with fast-speed measurement. 

 

4. Electrochemical actuation of CNT yarn 

Advanced actuators that can operate without the need for manual interaction are 

gradually finding their way into smart electronic systems.[47] Recent development in smart 

materials is encouraging miniaturized and multifunctional soft actuators that can be electrically 
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controlled.[48] For the last several years, CNT yarns have been investigated as an artificial 

muscle, whose actuation may mimic physiological muscle.[49] Those accumulated studies have 

demonstrated torsional and tensile actuation of CNT yarns by electrical, chemical, thermal or 

photonic power.[50] The current review focuses specifically on electrically controlled CNT 

yarns.  

As an artificial muscle, Foroughi and colleagues have first showed a reversible 

torsional actuation of CNT yarn in electrochemical system.[51] The torsional actuation was 

15,000° rotations and 590 revolutions per minute, with the actuation mechanism due to the 

volume increase of CNT yarn by electrochemical double-layer charge injection.[51] Further 

investigations have tried to utilize solid gel electrolyte-coated CNT yarn instead of liquid 

electrolyte, and consequently they showed all-solid-state torsional and tensile actuation of CNT 

yarn with no need for liquid solution.[52] Such gel electrolyte based CNT yarn actuators are 

more suited to application in wearable devices and textile electronics. 

Coiling of twisted fibers and yarns enables the torsional actuation in the twisted fiber 

to be translated to a tensile actuation along the length of the coil. Twisted and coiled CNT yarns 

have been electrochemically stimulated to generate tensile contractions. In one study, the CNT 

biscrolled with reduced graphene oxide have provided relatively large tensile actuation (8.1%) 

in aqueous inorganic electrolytes,[53] which has improved over 6-fold when compared to the 

previous results in an inorganic electrolyte (1.3%).[54] Most recently, Kim and colleagues have 

dramatically improved electrochemical-induced tensile stroke (15.1%) and power capacity 

(3.78 kJ/kg) of CNT yarn in an inorganic electrolyte by coiling plies of twist-released CNT 

yarns (Figure 4).[55]  

Torsional and tensile actuation can also be stimulated by non-electrochemical means. 

Fast torsional actuation of CNT yarns by electrothermal stimulation has been achieved by 

infiltrating paraffin wax guest into yarns.[56] Such paraffin waxes have the large volume 
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changes with thermal expansion.[56] Thus, the applied electrical power lead to a high torsional 

and tensile actuation of paraffin-filled CNT yarn.[56] These systems are electrolyte-free and 

fully dry. Interestingly, less dense coiled paraffin-infiltrated yarn has exhibited a different 

actuation mechanism where the melted paraffin waxes move out from yarns.[61] [57] Some other 

guest polymers have been also been investigated for electrothermal actuation of CNT yarns. 

Polystyrene (PS) and poly(styrene-b-isoprene-b-styrene) (SIS) are known to induce specific 

volume change by phase transitions with increasing temperature.[58] Accordingly, PS or SIS-

infiltrated CNT yarns have shown a significant volume expansion by applied electrical power, 

and PS-infiltrated CNT yarns (29.7°/mm) have demonstrated much larger torsional behaviors 

than those of the SIS-infiltrated CNT yarn (14.4°/mm).[59] Recently, Song et al. have provided 

a large tensile stroke (~13.8%) within 5 sec by combining thermoplastic PU resin with CNT 

yarns. The electrothermal volume expansion of thermoplastic PU guest induced the contraction 

in length and untwisting of the CNT yarn, which returned to its original length when cooled.[60]   

 

5. Energy storage of CNT yarn 

Wearable electronic device enables a platform for monitoring various surrounding and 

physiological signals on the body.[61] Consequently, wearable electronics require flexible 

energy storage system to maintain reliable performance and safety.[62] Compared with batteries, 

supercapacitors can deal with unstable electrical input and output because electrical energy is 

regulated by charge, discharge, and recharge.[63]  Therefore, flexible supercapacitors are 

indispensable for wearable electronics.  

The reliable transmission and distribution of electric charge in smart systems are 

required for efficient operation. Energy harvesting from variable sources and energy storage 

for later use is desirable and important in self-powered applications of sensing and actuating 

system.[64] For example, the integration of supercapacitors with energy harvesters has been 
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developed as a self-charging power system to with high efficiency.[65] Multifunctional 

materials capable of harvesting and/or with the capacity to store electrical energy are ideal for 

smart electronic systems. Numerous studies have demonstrated the remarkable capacitive 

performance of CNT yarns that make these materials stand out candidates in the field of 

supercapacitors. Some investigations have also investigated the functions of CNT yarns as an 

energy harvester. Those findings present a blueprint for enabling smart energy storage systems 

that are integrating both energy harvesting and storage through supercapacitance.  

 

5.1. Supercapacitor 

Capacitors are passive electronic components that stores electrical energy and consists 

of one or more pairs of conductors separated by an insulator. Devices that enable higher values 

of the energy density are called supercapacitors.[66] With a raised demand for portable and non-

toxic energy, electrochemical supercapacitors have been receiving great attention due to their 

higher power density and longer cyclic lifetime when compared with Li batteries.[67] Unlike 

common capacitors, electrochemical supercapacitors depend on electrostatic and/or 

electrochemical principles for charge storage. Pseudo-capacitors store electrical energy by 

electron charge transfer between an electrode and electrolyte through fast surface redox 

reactions.[67] The transition metal oxides, such as MnO2 and NiO2, are commonly used for 

redox reactions in pseudo-capacitors. Electrical double-layer capacitors (EDLCs) store 

electrical energy by ion adsorption at the interface between the porous surface of electrode and 

electrolytes and without any redox reaction.[67] For EDLC electrodes, carbon-based materials 

have been frequently used due to their high porosity to facilitate increased ion adsorption.[68] 

Comparing pseudo-capacitors and EDLCs, the former exhibit a higher energy density and 

shorter cyclic lifetimes, whereas EDLCs have somewhat limited energy density and longer 
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cyclic lifetimes. Hence, functional materials with pseudo-capaciticity have attempted to 

integrate to EDLCs to improve the performance of the supercapacitor. 

 

5.1.1. Flexible CNT yarn supercapacitor 

The introduction of pseudocapacitance materials such as conducting polymers has 

known to improve the energy density of supercapacitors. Many researchers have tried to 

incorporate various conducting polymers or metals to improve energy density of CNTs. Initial 

studies used a conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) coated on 

CNT sheet, which has provided micro-supercapacitor yarns with 30 μm diameter by twisting.[69] 

As a supercapacitor, the two-ply PEDOT composite CNT yarns have exhibited volumetric 

energy density (70 mWh/cm3) and power density (7910 W/cm3) with high mechanical strength 

and flexibility.[69] Wang and colleagues have infiltrated polyaniline nanowire into CNT 

yarns.[63] The symmetric polyaniline composite CNT yarn supercapacitor has exhibited an areal 

capacitance of 38 mF/cm2, which has been able to co-woven with conventional cotton yarns, 

suggesting potential application to wearable electronics.[63] Further investigation has improved 

the electrical capacitance, strength and efficiency of  polyaniline composite CNT yarns by 

using oxidized CNT yarns through a gamma irradiation treatment that increased the 

concentration of carboxyl groups on CNT.[70]  

To increase intrinsic capacitance using pseudo-capacitive materials, the use of 

transition metal oxides such as NiO2, Co3O4, and MnO2 has been investigated.[71] The 

application of MnO2 in supercapacitors is highly attractive because of the material’s excellent 

capacitance, low cost, and environmental compatibilities.[72] However, MnO2 still has a 

disadvantage in poor electrical conductivity and brittleness in the application of supercapacitors. 

One solution is to deposit MnO2 onto carbon-based materials with high electrical conductivity 
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to compensate the weakness of MnO2, and consequently it has been promoting the energy 

density of supercapacitors.[73] 

Considering fiber or threadlike supercapacitors for wearable electronics, MnO2 

composite CNT yarns have been developed as a supercapacitor electrode. In 2014, Choi et al. 

have provided a flexible supercapacitor with MnO2 particles deposited on the surface of a 

twisted CNT yarn with high internal porosity.[74] The deposited MnO2 is trapped in the pores 

of aligned CNT bundles, and provides an enlarged electrolytic surface area of MnO2.
[81] As a 

result, the symmetric MnO2-deposited CNT yarns showed a high capacitance of 25.4 F/cm3 

and a power density of 127 mW/cm3 in KOH gel electrolyte.[74] Further investigation 

demonstrated that the charge storage capability could be improved by alternating deposition of 

MnO2 and Ag layers.[75]The conductive Ag particles reduce the solid-state charge diffusion 

length in the MnO2, and also collect the generated electrons during the charge and discharge 

processes.[75]Another research group has also developed an asymmetric two-ply CNT yarn 

supercapacitor.[76] It was composed of as-spun CNT yarn as negative electrode and MnO2 

composite CNT yarn as positive electrode.[76] Consequently, the asymmetric two-ply CNT yarn 

supercapacitor achieved a power density of 19250 W/kg in H3PO4 gel electrolye.[76] Symmetric 

Co3O4 deposited CNT yarn supercapacitors have a areal capacitance of 52.6 mF/cm2 and 

energy density of 1.10 μWh/cm3
 in H2SO4 gel electrolyte.[77] These studies have shown that the 

psuedocapacitive material needs to be incorporated as fine powder and thin films because thick 

layers can hamper areal and volumetric capacitances due to intrinsic low electrical 

conductivity.[78] 

The transition metal MXene has created interests a conducting guest material to be 

used in various areas of supercapacitor.[79] The MXenes are a new conducting material with 

high electrical conductivity (~9880 S/cm) and hydrophobic surface, which is composed of 

carbides, nitrides, or carbonitrides.[80]  As a capacitor, it has been revealed that the 
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intercalation of cations into layered surface of hydrophilic Ti3C2 Mxene provides excellent 

volumetric capacitance of ~1500 F/cm3.[81] However, MXene-based fiber or yarn showed a 

limited performance in energy capacitance due to relatively low MXene loading and reduced 

electrical conductivity that was introduced during the fabricating process from MXene 

nanosheet.[82] For this reason, Wang and colleagues have attempted to develop Mxene-

biscrolled CNT yarn with up to 98 wt% loading.[83] The symmetric (Mxene/CNT and 

Mxene/CNT) electrode configuration has resulted in an areal capacitance of 3188 mF/cm2 and 

volumetric capacitance of 1083 F/cm3 in H2SO4 electrolyte.[83] Moreover, the asymmetric 

configuration (RuO2/CNT and Mxene/CNT) has showed a maximum energy density (61.6 

mWh/cm3) and power density (5428 mW/cm3), which has powered small electronic devices 

such as a distal watch and timer.[83] 

A current metal collector has been applied into the linear supercapacitor to efficiently 

transport produced charges along the length of the supercapacitor. In the two-ply yarn 

supercapacitors, the metal filament core operatings as a current collector have been known to 

assist the movement of electrical charges, resulting to improve storage capacities in the energy 

and power. For instance, when single hybrid yarn was further plied with a metal wire, it had 

considerably improved the volumetric capacitance up to 179 F/cm3 with ultrafast charge and 

discharge.[84] CNT yarns have been twisted on a conductive Pt metal filament core for long, 

strong, and flexible threadlike supercapacitor.[85] Consequently, the symmetric CNT-twisted Pt 

supercapacitor has provided a gravimetric capacitance of 86.2 F/g, an areal capacitance of 52.5 

mF/cm2, an equivalent capacitance of 241.3 μF/cm in phosphoric acid gel electrolyte.[85] To 

find out the most effective current collector for CNT yarn, Zhang et al. have attempted to 

compare several candidate metal filaments, including Pt, Au, Ag, AuAg, PtCu, and Cu.[86] As 

a result, Cu and PtCu metal filaments have exhibited better capacitance than the other four 

metal filaments.[86]  They have further observed that Cu-contained filament is only oxidized 
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on its surface.[86]  Thus, they have suggested that unoxidized core portion of Cu can play the 

role as current collector due to high conductivity, and oxidized Cu on the surface also can 

function as active guest material.[86] 

CNT can also be fabricated into diverse fiber shapes and include other active materials. 

For example, chitosan composite CNT fibers have been obtained through wet-spinning 

technique and investigated as a micro-supercapacitor. The wet-spinning has enabled various 

hollow, twisted, and ribbon shaped fibers composed of graphene and SWNT composite.[87] 

Among them, ribbon fiber showed higher electrical conductivity (524 S/cm) and areal 

capacitance (2.38 mF/cm2) than those of other shapes in LiCl gel electrolyte.[87] Furthermore, 

Kou et al. have developed core-sheath fiber composed of graphene/CNT core and electrolyte 

sheath by coaxial wet-spinning method.[88] The core-sheath supercapacitor has exerted the areal 

capacitance of 177 mF/cm2 and energy density of 3.84 μF/cm in H3PO4-PVA gel electrolyte.[88] 

 

5.1.2. Stretchable CNT yarn supercapacitor 

Early investigations have attempted to increase the stretchability of CNT film or forest 

by the combination with rubber-like polymers. A rubber-like stretchable hybrid CNT film has 

been provided by coating uniformly dispersed SWNTs with PDMS-based rubber, resulting in 

high conductivity (57 S/cm) and stretchability (134% elastic deformation).[89] In a slightly 

easier way, direct infiltration of the aligned arrays of CNTs (CNT forests) with a PU solution 

has produced a high elastomeric conductive CNT composite.[90] 

As an alternative approach flexible fiber-shaped CNT supercapacitors have been 

achieved by coiling the elastic polymer composite CNT fiber or yarns. This coiling in fibers or 

yarns can provide structural stretchability.[56, 91]  In one instance, the electrode of a highly 

stretchable supercapacitor has been developed by a coiled MnO2-deposited nylon/CNT fiber 

(Figure 5a).[92] The parallel symmetrical a coiled MnO2-deposited nylon/CNT fiber in solid-
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state reversibly stretched by 150% strain with only a small reduction in capacitance (15%), and 

retained the capacitance during a stretch-release cycle.[92] The areal capacitance of this system 

was 40.9 mF/cm2 and power density of 66.9 mW/cm2.[92] Further investigation has improved 

the performance of elastomeric supercapacitor by a coiled MnO2-biscrolled CNT yarn (Figure 

5b).[93] The biscrolling process has lead to a higher loading of MnO2 nanoparticles (above 90 

wt%), and a coiling process has again produced a flexible and stretchable fiber despite the high 

loading of brittle metal oxide.[93]  In functional performance, the maximum areal capacitance 

of a coiled MnO2-biscrolled CNT yarn was 100-fold higher than the previously developed 

coiled MnO2-deposited nylon/CNT fiber.[93] Interestingly, Choi and colleagues have developed 

the structure of twistable and stretchable sandwich fiber for sensor and supercapacitors (Figure 

5c).[94] To fabricate the structure, fiber-shaped rectangular rubber has been first stretched in the 

axial direction by 300% strain, and then CNT sheets have been covered on opposite sides of 

the stretched rectangular core rubber.[94] When the pre- stretched fiber was relaxed from the 

strain, the CNT sheets on the rubber surface forms microscopically bulked configuration where 

the CNT coating becomes folded. This structure could contribute a large electrochemical 

surface area.[94] Consequently, two symmetrical buckled CNT fibers has provided a high areal 

capacitance of 11.88 mF/cm2 and retention of over 95% of initial energy storage capability on 

large strain deformations in LiCl gel electrolyte.[94] 

 

5.2. Energy harvesters 

It is often highlighted how useful it would be to convert low level ‘waste’ energies 

into electrical energy and such systems are called “energy harvesting technologies”. Various 

energy harvesters have been developed and are based on the target energy source, such as 

thermal, solar, or mechanical energies.[95] Energy harvesting from available energy sources 

could enable self-powered operation in micro-robots, soft robots, implantable devices, and 
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wearable devices.[64] To date, there has been active investigations into the electrical energy 

harvesting by CNT-based fibers or yarns from thermal, photo, and mechanical energies. 

 

5.2.1 Thermoelectric conversion using CNT yarns 

Thermoelectric generators are designed to convert heat flow directly into electrical 

energy with recent research focusing on systems that can efficiently harvest electrical energy 

from small temperature fluctuations. Certain polymer composite CNT films has known to 

exhibit thermoelectric effects that are capable of the conversion between thermal and electrical 

energy.[96] As a representative example of these composite CNT films, an alternative stack of 

conducting layer (PVDF composite CNT film) and insulation layer are known to produce 

thermoelectric voltages.[96a] However, those film-based thermoelectric generators are 

somewhat limited for wearable and portable electronics. For this reason, some researchers have 

developed fiber-shaped thermoelectric harvesters. Using electrospinning, the nanofibers have 

been coated with n- and p-type semiconductor sheaths (Bi2Te3 and Sb2Te3, respectively), and 

then twisted into flexible yarns.[97]  Finally, thermoelectric textile has been fabricated by 

alternatively incorporating n- and p-type yarns into textile, providing electrical energy between 

segments of the n- and p-type yarns from thermopowers.[97] Choi et al. have presented a flexible 

thermoelectric generator based on CNT yarns without metal electrodes.[98]  The CNT yarn 

was alternatively doped into n-type with polyethylenimine and p-type with FeCl3, and 

additional CNT yarns used as electrodes between n-type and p-type to minimize the circuit 

resistance (Figure 6a).[98] The CNT-based thermoelectric generator (60 pairs of n- and p-doped 

CNT yarn) has exhibited the maximum power density of 10.85 and 697 μW/g at temperature 

difference of only 5 and 40 K, respectively.[98] 

 

5.2.2 Photoelectric conversion of CNT yarns 
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Fiber-shaped solar cells are applicable for flexible electronics and designed for solar 

energy harvesting. For high power conversion efficiencies of CNT-based solar cells, Pt film or 

particles has been widely used as a composite material in electrodes for electrochemical energy 

conversion.[99] However, the deposited Pt particles tend to aggregate on the fiber and often 

render the fiber brittle when over-loaded, which causes lower energy transition efficiency.[100] 

To improve stability and flexibility, a fiber-shaped CNT-based solar cell has been produced by 

twisting Pt-adsorbed CNT yarns around TiO2-based counter electrode (Figure 6b).[101] This Pt 

nanoparticle- loaded solar cell has exhibited a similar power conversion efficiency of 4.85% 

under standard illumination (100 mW/cm2), compared with the Pt wire composite CNT solar 

cells (4.23%).[101] In addition, the efficiency of CNT solar cell was stable during repeated 

bending to 180° angle and straightening for 500 cycles.[101] In similar work, CNT yarn has been 

twisted around a conducting polymer-coated counter electrode, providing power conversion 

efficiency in the range 1.4% to 2.3%.[102] Interestingly, Yu et al. have attempted a photoelectric 

conversion by photochemical actuation of CNT yarns.[103] The photoelectric CNT device was 

composed of two functional electrodes; one electrode was prepared by CNT yarn coated with 

poly(tetrafluoroethylene) (PTFE) to store charges. The second electrode was made with the 

bilayer of CNT/paraffin wax/polyimide composite strip for photochemical bending. The 

photoelectric CNT device was reversibly actuated in response to periodical irradiation of 

visible light, generating output a peak voltage of around 150 mV.[103] 

 

5.2.3 Mechanoelectric conversion of CNT yarns 

All moving parts carry mechanical energy, which highlights the potential of 

mechanoelectric conversion for powering electronics especially in robotics and wearable 

technologies. Currently, a variety of studies have presented energy harvesting based on 

piezoelectric and triboelectric technologies that generate voltages from mechanical 
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deformations.[104] However, power generation from these systems is limited to high-frequency 

and low-strain deformations for efficient performance due to the lack of their elasticity.[104] 

Moreover, piezoelectric and triboelectric harvesters cannot be easy deployed in aqueous 

environments.[104] On the other hand, fiber-shaped EDLC harvesters are known to be sensitive 

to low frequencies and high strain deformations due to their high flexibility and stretchability. 

In addition, these systems operate electrochemically and are compatible with aqueous 

environments.  

Recent breakthrough research has provided a new technology for converting 

mechanical energy to electrical energy by using stretch-induced capacitance changes of coiled 

CNT yarns.[105]  Without the need for an externally-applied bias voltage, a coiled CNT yarn 

and counter electrode electrochemically provides electrical energy when stretched (Figure 

6c).[105]  Because electrochemical capacitance changes due to the tensile stroke or torsional 

rotation drive electrical energy, these harvesters have been dubbed a ‘Twistron’ harvester. As 

applications, Twistron harvester that is sewn into a shirt can be used for monitoring breathing, 

and also could harvest the energy of near-shore ocean waves in sea water.[105] 

 

6. Conclusion and Future Perspectives 

Well known for their high electrical conductivity and mechanical strength, CNTs also 

display useful electrochemical properties and, combined, these attributes are leading to new 

types of sensors, actuators and energy storage devices in integrated smart electronic systems 

(Figure 1). In addition, the recent development of CNT yarns and their conversion to highly 

stretchable materials by coiled is accelerating their functional applications in emerging flexible 

and wearable devices. Despite these rapid advances, there is still a need to further improve 

material properties and enhance device performance by fabricating prototypes with integrated 

smart materials.  
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CNT-fiber based sensors have provided functions as strain sensors, potentiometric 

sensors, and electrochemical biosensors. The miniaturized and robust (flexible / stretchable) 

CNT yarn sensors have great potential for application as wearable, portable, and implantable 

electronics. Importantly, the recent finding of a coiled CNT yarn harvester to convert 

mechanical energy into electrical energy suggests the possibility of self-powered sensors to 

monitor structural deformation, environmental conditions and human health. Combining an 

energy harvester with sensors opens the prospect of powering smart sensors through strain 

deformations underlying human motions, mechanical vibrations or fluid flow. These self-

powered sensors have a great advantage of being deployable for long periods in difficult places 

where battery exchange is difficult. Implantable electronic devices are a prime example. 

As an electronic actuator, CNT yarns and/or CNT composite yarns are known to 

exhibit torsional and/or tensile actuation in response to diverse stimulus, including 

electrochemical, thermal, photonic and by absorption/desorption of small molecules. In 

particular, the coiling and twisting the CNT yarn fibers further provides increased strength and 

actuation comparable to those of physiological muscle. These fiber-based actuators are ideally 

suited to smart textiles application where wearer comfort can be dynamically tuned using 

mechanically actuating fibers. Fabrics that change their porosity to trap or release heat and / or 

humidity on demand is one application example. One area of further work for CNT actuators 

is the desire to improve their energy conversion efficiency. The best performance to date is the 

5.4% conversion (a contractile energy efficiency) of input electrical energy to output 

mechanical energy in an electrochemically operated coiled CNT yarn.[52b] 

As an electronic energy storage, CNT-based fiber supercapacitors exhibit superior 

performance with the added advantages of flexibility and stretchability, which are important in 

wearable and portable electronics. As with self-powered sensors, the opportunity now exists to 

couple CNT energy harvesting with energy storage. As mentioned earlier, CNT yarns also 
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function as energy harvester through thermoelectric, photoelectric, and mechanoelectric 

conversions. In many applications, the energy drain will be intermittent (eg. occasional sensing, 

actuation or data transmission). Energy harvesting, however, can be continuous but requires 

efficient storage for later use. Further work is needed to develop such combined devices and to 

improve the energy harvesting efficiency from low energy sources, such as small temperature 

gradients, low frequency vibrations and low light conditions. 

Overall, CNT yarns and CNT-based fibers have many advantages for application as 

sensors, actuators, and energy harvesters as mentioned above. However, CNT yarns also have 

some limitations in performance. The need for electrolyte-filled devices also requires 

additional packaging that can add weight and bulk to the device. Furthermore, the potential for 

adverse human health effects associated with CNTs is still debated and applications require 

rigorous testing both during use and during the fabrication of the CNT based devices. Finally, 

it is likely that mass production or scale-up is somewhat limited since the unit cost of 

production of CNT yarns is still high. 

In summarizing, much recent works demonstrate that CNT yarns or its composites are 

valuable materials with great potential for smart devices. Their functions cover sensing, 

actuation, and energy storage/harvesting and can be formed into flexible, stretchable, portable, 

wearable, and/or implantable high quality devices. In addition, this smart system is also 

required to robotic system. Recently, there has been growing in the interest of soft and 

deformable structures in the robotic system.[48, 106]  These robotic devices can safely interface 

with the human body, and adapt to unpredictable and inapplicable environments in which 

conventional rigid robots are not viable.[107] However, it is not fully understood how to achieve 

sensing, actuation, and integration in soft robots.[108] In light of this point, CNT yarns could be 

applicable in the overall field for sensing, actuating, and energy storage in soft robotic systems. 
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In particular, functional integration of energy harvester and supercapacitance of CNT yarns 

might enable soft robotic to monitor and move with no need for electric motor and battery.  
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Figure 1. Schematic illustration of various functions of CNT yarns as a sensor, actuator, 

and energy storage. 
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Figure 2. CNT forest and CNT yarn structures. a) SEM image of CNT yarn in the 

spinning process from CNT forest. Reproduced with permission.[9] Copyright 2004, The 

American Association for the Advancement of Science. b-e) SEM images of single CNT yarn 

(b), two-ply CNT yarns (c), coiled CNT yarns (d), two-ply coiled yarns (e). Reproduced with 

permission.[59a] Copyright 2014, American Chemical Society. 
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Figure 3. Various fabrications of CNT-based fibers and CNT yarns as a stretchable strain 

sensor. a) Schematic illustration of the spinning process of entangled CNT strain sensor. 

Reproduced with permission.[26] Copyright 2013, American Chemical Society. b) Schematic 

illustration of the fabrication process of the PU/cotton/CNT yarn strain sensor. Reproduced 

with permission.[27] Copyright 2016, American Chemical Society. c) Schematic illustration of 

CNT-based triboelectric fiber strain sensor. Reproduced with permission.[28] Copyright 2016, 

Springer Nature. d) Schematic illustration of cross-section of the strain sensor comprising CNT 

yarns. Reproduced with permission.[29] Copyright 2018, MDPI. e) Schematic illustration of 

CNT thermoacoustic strain sensor. Reproduced with permission.[30] Copyright 2013, American 

Chemical Society. 
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Figure 4. CNT yarn muscle configuration and morphology. a) Schematic illustration of the 

hierarchical structure of a coiling plies of twist-released CNT yarns. b) SEM image of a twisted 

CNT yarn having a bias angle of 9.4°. c) SEM image of a fully twisted precursor yarn having 

a bias angle of 44.9°. d) SEM image of a twisted multiply CNT yarn. e) SEM image of a coiled 

multiply of twist-released CNT yarns. Scale bars indicate 50 μm (b and c) and 100 μm (d and 

e). Reproduced with permission.[55] Copyright 2019, American Chemical Society. 
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Figure 5. Various fabrications of CNT-based fiber and CNT yarns as a stretchable 

supercapacitor. a) Schematic illustration of Schematic illustration for the supercapacitor, 

which consist of two symmetric coiled MnO2/CNT/nylon fiber electrodes in the gel electrolyte. 

Reproduced with permission.[92] Copyright 2015, Springer Nature. b) Schematic illustration of 

the fabrication of a biscrolled MnO2/CNT yarn electrode, and coiled and woven supercapacitor 

by a biscrolled yarn. Reproduced with permission.[93] Copyright 2016, Springer Nature. c) 

Schematic illustration of a twist-induced rectangular fiber, which consist of a rubber core and 

two symmetric CNT electrodes. Reproduced with permission.[94] Copyright 2016, American 

Chemical Society. 
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Figure 6. Various fabrications of CNT yarns as energy harversters. a) Schematic 

illustration of the flexible thermoelectric generator based on CNT yarn. Reproduced with 

permission.[98] Copyright 2017, American Chemical Society. b) Schematic illustration of the 

fabrication process of Pt-CNT yarn on TiO2-Ti wire for photoelectric conversion. Reproduced 

with permission.[101] Copyright 2012, American Chemical Society. c) Schematic illustration of 

a coiled CNT yarn harvester electrode and counter and reference electrodes in an 

electrochemical bath. Reproduced with permission.[105] Copyright 2017, American Chemical 

Society. 
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