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Abstract

In this thesis we present three financial applications of Markov chain models based

on three separate papers. The focus is about two important topics in finance, namely

stock valuation and price discovery.

In the first paper, we propose further advancements in the Markov chain stock

model. First, we provide a formula for the second order moment of the fundamental

price process with transversality conditions that avoids the presence of speculative

bubbles. Second, we assume that the process of the dividend growth is governed

by a finite state discrete time Markov chain and, under this hypothesis, we are able

to compute the moments of the price process. We impose assumptions on the div-

idend growth process that guarantee finiteness of price and risk and the fulfilment

of the transversality conditions. Subsequently, we develop non parametric statisti-

cal techniques for the inferential analysis of the model. We propose estimators of

price, risk and forecasted prices and for each estimator we demonstrate that they

are strongly consistent and that properly centralised and normalised they converge

in distribution to normal random variables, then we also give the interval estima-

tors. An application that demonstrate the practical implementation of methods and

results to real dividend data concludes the paper.

In the second paper, we propose a dividend stock valuation model where multiple

dividend growth series and their dependencies are modelled using a multivariate

Markov chain. Our model advances existing Markov chain stock models. First, we

determine assumptions that guarantee the finiteness of the price and risk as well as

the fulfilment of transversality conditions. Then, we compute the first and second
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order price-dividend ratios by solving corresponding linear systems of equations and

show that a different price-dividend ratio is attached to each combination of states

of the dividend growth process of each stock. Subsequently, we provide a formula

for the computation of the variances and covariances between stocks in a portfolio.

Finally, we apply the theoretical model to the dividend series of three US stocks and

perform comparisons with existing models.

In last paper, we propose a new measure to establish price leadership among

multiple related price series using a Multivariate Markov Chain modelled through

a Mixture Transition Model. This new measure, the Price Leadership Share (PLS),

can easily process more than two price series simultaneously, offering an advantage

over the existing price discovery measures. In addition, we propose a leadership

concentration index for comparative analysis. An application to six gold contracts,

including spot, futures, and ETF, over a 2-year period, shows that gold futures

contracts, mainly CME contract, have a major role in price discovery confirming

previous literature’s findings. Besides, the PLS results are provided for different

settings of the model parameters to test the validity of the model. Overall, our

results show how the Price Leadership Share overcomes the limits of other price

discovery measures.

A Python implementation of the three Markov chain applications is reported in a

separate chapter with description of the procedures and routines useful to replicate

the analysis.
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1 Introduction

This thesis presents three studies on the application of Markov chain models in

finance. The focus is on two major financial topics, namely stock valuation and

price discovery. In the first two applications, we advance existing literature on

dividend stock models, proposing general frameworks for Markov stock valuations,

in both univariate and multivariate settings, and providing empirical applications

on real dividend data. The last study proposes a new measure of price discovery,

advancing the debate on existing measures and providing useful tools for analysing

multiple price series and comparing results in a different context. An application to

six gold contracts confirms the validity of the measure.

This dissertation is complemented with an introduction to Markov chain models

and a comprehensive review of models in both topics where we identify gaps and

pose questions. In addition, we describe an algorithmic implementation of proposed

models using Python programming language. In the remainder of this chapter, we

introduce the problems in both stock valuation and price discovery.

1.1 Stock valuation

One of the main approaches to calculating the value of a share of stock is to consider

the discounted value of future cash flows of that asset. The obtained value is called

the intrinsic value or fundamental price of the stock. In general, the future cash flows

are represented by dividends, i.e., profits distributed to the shareholders. Some of

the most influential research articles in corporate finance are based on this idea (see,

e.g., Williams, 1938, Gordon and Shapiro, 1956, Gordon, 1959, 1962).
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Considerable research has been dedicated to improving the Gordon model, which

assumes the dividend growth rate is constant. This model has been frequently crit-

icised for this assumption and, consequently, many variants have been suggested

in the literature. These variants impose ever less constraining assumptions on the

dividend process. For example, Brooks and Helms (1990), Barsky and De Long

(1993) consider multistage models with dividend growth rates changing determin-

istically among the stages. The hypothesis of a deterministic nature of dividends

was abandoned in favour of more realistic probabilistic assumptions. Models based

on Markov chains were proposed in Harrison and Kreps (1978), Hurley and John-

son (1994, 1998), Yao (1997), Ghezzi and Piccardi (2003) and, in general, regime

switching in the dividend process were advanced in Gutiérrez and Vázquez (2004).

The results of these articles were integrated into a semi-Markovian framework as

provided by D’Amico (2013) where the semi-Markov hypothesis was advanced and

validated on real data. A further generalisation is given in D’Amico (2017) where a

continuous state space semi-Markov model is considered for the computation of the

fundamental price and risk of the stock.

In a recent paper (Agosto and Moretto, 2015) a formula for the variance of the

fundamental price was obtained in a multinomial-based model of dividend dynamics.

However some open problems remain and in the first paper of this thesis (Barbu,

D’Amico, and De Blasis, 2017), discussed in Chapter 3, we provide effective answers

to these. First, we extend the computation of the risk to the Markov chain model

that incorporates the multinomial setting. Second, we determine a specific assump-

tion that guarantees that the risk can be computed by means of a convergent series.

The assumption also assures that a transversality condition for the risk process holds

true and therefore that the risk depends only on the randomness in the dividend

process (the fundamental variable) and is not related either to the future value of

the price process or to the future risk of the stock.

Additionally, we develop non-parametric techniques for the estimation of the

parameters of the model, and we obtain point and interval estimators of the price,
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risk and price-dividend ratio. Statistical analysis of the dividend discount model

is surprisingly missing in the finance literature and, therefore, we also fill this gap.

More precisely, we obtain estimators of the first and second order moments of the

price process and the forecasted fundamental price; these estimators are shown to

be consistent, and we also derive their asymptotic distribution. It is worth noting

that the development of these statistical procedures represents a crucial step for

the application of this type of model to real data. Both theoretical and statisti-

cal results are applied in a numerical experiment based on data freely available at

http://www.econ.yale.edu/shiller/data.htm, collected by Robert Shiller.

Chapter 4 discusses the second paper of this thesis D’Amico and De Blasis (2018)

that extends the Markov stock model to a multivariate setting. The rationale is that

two or more stocks may be correlated. Thus, it is important to be able to consider

this effect in the valuation procedure of the stock or the portfolio of stocks. In a

recent paper, Agosto et al. (2018) computed the covariance between two stocks that

may be held in a portfolio by an investor. They considered a Markov chain with

state space equal to the set of possible couples of growth-dividend values for both

stocks. However, this strategy cannot be easily implemented in real applications,

especially when we introduce dependencies between more than two stocks as the

number of parameters to estimate increases drastically.

In Chapter 4, we propose an extension of the Markov stock valuation model to

consider an effective multivariate model with multiple dividend series. To reduce

the number of parameters to estimate, we model the dependencies between dividend

growth series using the mixture transition distribution model, that was first intro-

duced by Raftery (1985) for modelling high order Markov chains and extended by

Ching and Ng (2006) to multivariate Markov models. To perform the multivariate

valuation, first, we determine assumptions that guarantee that the price process, as

well as the risk process, can be expressed by convergent series depending only on the

dividend process. At the same time, the satisfaction of the transversality condition

avoids the presence of speculative bubbles. Second, we compute the first and second

3



order price-dividend ratios by solving corresponding linear systems of equations.

We show that a different price-dividend ratio is attached to each combination of

states of the growth process of each stock. In addition, we propose formulas for the

computation of the variances and covariances between stocks that can be used for

portfolio selection and valuation purposes. Finally, we apply our theoretical results

to three US stocks with a long history of dividend payments and compare results

with univariate valuation models.

1.2 Price discovery

Information has a fundamental role in the formation of prices in secondary markets.

Understanding how prices efficiently incorporate information about the fundamental

value has been, and still is, one of the main interests of the market microstructure

literature. Moreover, with the increase in market fragmentation, trading the same

asset in different venues becomes possible. The speed at which related prices incor-

porate news is another fundamental variable that needs to be considered.

This process is called price discovery, and there are currently three measures that

are widely used in the literature. They all base their analysis on structural models

of cointegrated price series that share a common random-walk efficient price. The

first metric aims at quantifying how much of the variance of the efficient price can be

attributed to the different markets. Hasbrouck (1995) refers to this proportion as the

Information Share (IS). The second measure is the Component Share (CS), applied

by Booth et al. (2002), Chu et al. (1999) and Harris et al. (2002) on the basis of the

econometric work of Gonzalo and Granger (1995). It focuses on the decomposition

of the price series into a permanent component, that reflects the contribution of the

efficient price, and a transitory component, that represents the deviation from the

efficient price due to market microstructure frictions.

Following a recent debate about the two measures and their interpretation,

Putniņš (2013) developed a third measure based on the insight of Yan and Zivot

(2010). If price series have different levels of noise, information share and compo-
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nent share result in different levels of leadership and relative avoidance of noise. To

eliminate this misinterpretation, the Informational Leadership Share combines the

two metrics, so the dependence on the level of noise cancels out.

All existing price discovery measures base their analysis on a permanent-transitory

decomposition of innovations, modelling prices with structural equation models and

with the assumption that cointegrated prices follow a common efficient price. The

general idea is to understand how much of the long-run information is due to one

market or another. However, these models present some limitations, for example,

there is no clear consensus in what information share and component share really

measure, and the informational leadership share can only measure price discovery

between two price series, with only one permanent and one transitory shock and

when the errors are uncorrelated. Therefore, we propose a new measure of price

discovery modelling price changes of dependent price series with a discrete-time

multivariate Markov chain.

While in all approaches prices track a common efficient price with different reac-

tion times and levels of noise, we focus on how prices influence the formation of other

prices. We argue that the fastest price to reflect new information releases a price

signal to the other slower price series. Once there is new information, prices follow

other observable and faster-adjusting prices. We are not able to directly observe the

variation in the fundamental price, but we can estimate dependencies between price

series based on observation of price changes. In this paper, we measure the portion

of influence that a price series has on the others using a multivariate Markov chain

to model the dynamics between price return series. Summarising the price influ-

ences, we define a measure that we call Price Leadership Share (PLS). Hasbrouck

(1995) interprets the Information Share as “who moves first” in the process of price

adjustment, with our Price Leadership Share we aim at finding “who is the price

leader” among all the price series.

In Chapter 5, the model is tested on the price return series of six gold contracts

around the globe, including one spot, four futures and one ETF contract. Our results
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show a strong price leadership from CME gold futures contract on all the other con-

tracts and a weaker leadership of the SGE spot contract. All the futures contracts

analysed together with the ETF contract are quicker in their price adjustment than

the spot, in accordance with the existent literature on price discovery (Bohl et al.,

2011, Rosenberg and Traub, 2009, Hauptfleisch et al., 2016). We test our model

under different combinations of parameters settings, e.g. increasing the number of

states of the Markov chain or the sampling frequency of the observation. Our results

show a trade-off between computational effort and measure’s precision, suggesting

a 3-state Markov chain to model the price changes is appropriate. Moreover, in-

creasing the sampling frequency generates a contemporaneous correlation between

price innovation reducing the reliability of the measure (see, e.g., Hasbrouck, 1995).

Hence, the lower the sampling interval, the better the price leadership measure.

In general, we find that our model presents some advantage over existing mea-

sures of price discovery. First, we can apply our model to more than two price

series simultaneously and generate a ranking of price leadership. Second, the price

leadership share measure is not dependent on lagged observation. Therefore, it can

benefit from the entire set of observations, this being useful in the particular case of

illiquid stocks.

1.3 Summary

The three studies in this thesis examine applications of Markov chain models to two

crucial issues in finance, stock valuation and price discovery. This chapter introduced

problems from both financial perspectives and motivations for the analysis presented

in the following chapters.

The remainder of this thesis is structured as follows. Chapter 2 presents a brief

introduction to the theory of the Markov chain models, from a univariate and a mul-

tivariate perspective. Then, two sets of literature analysis follow. First, we present a

review of the dividend discount model and its variations, with a focus on the Markov

chain stock models. Finally, we include an analysis of the literature on price discov-
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ery in financial markets and its applications. Both reviews end with a formulation of

research questions that introduce the problem discussed in the remaining chapters.

The core discussion is presented in three separate chapters. Chapter 3 and Chapter

4 illustrate the dividend discount model extended by a Markov chain model, from

univariate and multivariate perspectives, respectively. Chapter 5 introduces the ap-

plication of multivariate Markov chain models to market microstructure, specifically

price discovery. Chapter 6 presents an algorithmic implementation of methods and

techniques proposed in this thesis using Python programming language. Complete

routines are accompanied by a full description of functions and variables. The thesis

closes with some concluding remarks about the three applications. All mathematical

proofs are reported in the appendix.
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2 Literature Review

2.1 Markov Chain Model

The Markov chain is a stochastic model that is useful to describe a series of events

in which the probability of an event depends only on the state of the previous event.

The model was first introduced in the early 20th century by the Russian mathemati-

cian Andrey Markov (Markov, 1906) and it has been widely used for predictions in

many fields, like meteorology, physics, biology, chemistry, and social sciences. Ap-

plications in finance include the modelling of financial markets (Chu et al., 1999),

stock valuation (Hurley and Johnson, 1994, Yao, 1997, Hurley and Johnson, 1998,

Ghezzi and Piccardi, 2003, Barbu et al., 2017), and credit rating modelling (Jarrow

et al., 1997, D’Amico et al., 2006, Vasileiou and Vassiliou, 2006, D’Amico et al.,

2016). Some authors focus on the multivariate analysis, like Nicolau (2014) for fi-

nancial applications, Ching et al. (2002) for modelling multiple categorical data in

demand predictions, Siu et al. (2005) for analysing credit risk, and D’Amico and

De Blasis (2018) for stock valuation.

This section reviews the discrete-time Markov chain model on the basis of the

extensive work of Brémaud (1999). The first part describes a simple univariate

model, followed by an analysis of the multivariate setting, modelled via a Mixture

Transition Distribution (MTD) model that was first introduced by Raftery (1985)

for high-order Markov chains to reduce the number of parameters.
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2.1.1 Discrete-Time Markov chain model

A categorical time series can be described as a sequence of independent and identi-

cally distributed random variables {St}t≥0 taking values in the countable set M =

{1, 2, 3, ...,m}, that is the set of the possible states of our sequence. In this context,

t represents time, but in general, it could represent a space or something else. If

time t is discrete then the process is a discrete-time stochastic process and we call

it a Markov Chain if for each t, and j, i0, . . . , it ∈M

P(St+1 = j|St = it, St−1 = it−1, ..., S0 = i0) = P(St+1 = j|St = it). (2.1)

The Markov Property (2.1) indicates that the probability of being in the state j

at time t+1 depends only on the state it occupied by the series at time t, regardless

of the previous history. So, the future behaviour of a Markov is independent of the

past states given the current state.

When this condition is time independent, the process is called a Homogeneous

Markov Chain (HMC), and the probability

P(St+1 = j|St = i) = pij, (2.2)

represents the probability to move from state i to state j at any point in time.

Considering all the possible combinations of changing from one state to another,

in the set of statesM, and in accordance to Formula (2.2), we can build the matrix

P = {pij}i,j∈M with m2 elements, that is the transition probability matrix of the

9



Figure 2.1: Example of a Transition Graph for a 3-state Markov chain. Nodes
represent the states and edges have weights representing probabilities pij of the
transition matrix.

HMC,

P =

St

St−1 1 2 . . . m



1 p11 p12 · · · p1m

2 p21 p22 · · · p2m

...
...

...
. . .

...

m pm1 pm2 · · · pmm

, (2.3)

subject to

0 ≤ pij ≤ 1, ∀i, j ∈M, (2.4a)

m∑
j=1

pij = 1, ∀i ∈M. (2.4b)

The matrix (2.3) is called a stochastic matrix because each element is a proba-

bility and every change from a state i must end in a state j.

A transition matrix can also be represented by a Transition Graph. The graph

has each state represented by a node, and each probability by a link (or edge) that

is oriented from state i to state j, according to the respective probability pij. Figure

2.1 is an example of a 3-state Markov chain with {pij}i,j∈M transition probabilities.

A Markov chain is fully defined when we know the initial state with its probability

distribution and the transition probability matrix.

10



Let

vt := [vt,1, . . . , vt,m], (2.5)

be the probability vector where vt,i := P
(
St = i

)
is the probability of being in state

i at time t, with i ∈M, then

vt+1 = vtP, (2.6a)

vt = v0P
t, (2.6b)

where v0 is the initial distribution and Pt is the t-step transition matrix, and in

general, it is the t-th power of P.

If the Markov property (2.1) is not independent of time, the Markov chain is

called an inhomogeneous Markov chain, and there will be a transition matrix for

each time step, P1,P2, . . . ,Pt. Thus, relations (2.6) become

vt+1 = vtPt+1, (2.7a)

vt = v0P1P2 . . .Pt. (2.7b)

To study the asymptotic behaviour of the Markov chain, it is worth mentioning

some useful concepts, that are irreducibility, aperiodicity, and stationary distribu-

tion.

A Markov chain, with its transition matrix, is said to be irreducible if every state

communicates with all other states. If the Markov chain is homogeneous, a state i

communicates with state j, if there exists t ∈ N such that

p
(t)
ij > 0, (2.8)

where p
(t)
ij is the element of the i-th row and j-th column of the matrix Pt.

The communication property expressed in (2.8) can be denoted by i → j if the

communication is bi-directional, then it is denoted by i↔ j.

In general, if for all i, j ∈M we have i↔ j, then the Markov chain is irreducible,

11



otherwise is said to be reducible.

Let us define the period di of a state i ∈M as

di = gcd{t ≥ 1; p
(t)
ii > 0}, (2.9)

where gcd{a1, a2, . . .} is the greatest common divisor of a1, a2, . . ., and with di = +∞

if there is no t ≥ 0 with p
(t)
ii > 0.

Equation (2.9) indicates that the period is the greatest common divisor of the set

of times that the model returns to state i, i.e., there is a probability of returning to

state i. Then, if di = 1, then the state i is aperiodic, and if all states are aperiodic,

then the Markov chain is aperiodic.

A row vector π = (π1, . . . , πm) is called a stationary distribution of the Markov

chain, if

(i) πi ≥ 0 for i = 1, . . . ,m and
∑m

i=1 πi = 1, and

(ii) πP = π.

The last conditions mean that π is a left-eigenvector of the matrix P with eigenvalue

equal to 1.

In general, if (S0, S1, . . .) is a Markov chain, it is interesting to study its asymp-

totic behaviour, or more specifically understand what happens to the distribution

of St when t→∞. Therefore, the analysis of the asymptotic behaviour is based on

(i) the existence of the stationary distribution, (ii) the uniqueness of the station-

ary distribution, and (iii) the convergence to stationarity starting from an initial

distribution.

If a Markov chain is irreducible and aperiodic, then it admits only one stationary

distribution π, and the distribution vt of the chain at time t approaches π as t→∞,

regardless of the initial distribution v0,

lim
t→∞

p
(t)
ij = πj ∀i, j ∈M. (2.10)
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2.1.2 Multivariate Discrete-Time Markov chain model

The previous model can be extended to a multivariate setting, with more than one

time series.

For every series in Γ = {1, 2, ..., γ}, the probability of being in state j depends

on the state i1, ..., iγ occupied by all the available series one time step before. The

Markov Property in (2.1) becomes:

P[S
(α)
t+1 = j|(S(1)

t = i
(1)
t , S

(1)
t−1 = i

(1)
t−1, ..., S

(1)
0 = i

(1)
0 ), ...,

(S
(γ)
t = i

(γ)
t , S

(γ)
t−1 = i

(γ)
t−1, ..., S

(γ)
0 = i

(γ)
0 )] = (2.11)

P(S
(α)
t+1 = j|S(1)

t = i
(1)
t , ..., S

(γ)
t = i

(γ)
t ),

where α ∈ Γ.

The new Property (2.11) shows that there are multiple dependencies between

the series. Therefore, the transition probability matrix of the multivariate model

must include each possible combination, mγ, for the initial states, and every initial

state must end in one of the possible final combinations. The result is mγ(mγ − 1)

total parameters to estimate for the multivariate Markov model, given that there

are mγ − 1 independent probabilities in each row. Such a configuration is not

practical in a real-world application because the number of parameters will increase

exponentially when the number of series and states increase.

Raftery (1985) proposed the Mixture Distribution Model (MTD) to reduce the

number of parameters to estimate for high order Markov chains, and Ching et al.

(2002) applied it to the multivariate Markov chains. A review of the MTD model

and its application is available in Berchtold and Raftery (2002). Applying the MTD

model the probability vector for series α at time t+ 1 becomes

A(α)(t+ 1) =

γ∑
β=1

A(β)(t) · λβ,α ·P(β,α), (2.12)
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where Aα(t) := [A
(α)
1 , . . . , A

(α)
m ] and A

(α)
i (t) := Pr(S

(α)
t = i).

According to this condition, we can build γ2 transitions probability matrices

P(β,α), each one containing the transition probabilities from state i in series β to

state j in series α, with α, β ∈ Γ,

P(β,α) =

S
(α)
t

S
(β)
t−1 1 2 . . . m



1 p
(β,α)
11 p

(β,α)
12 · · · p

(β,α)
1m

2 p
(β,α)
21 p

(β,α)
22 · · · p

(β,α)
2m

...
...

...
. . .

...

m p
(β,α)
m1 p

(β,α)
m2 · · · p

(β,α)
mm

. (2.13)

Parameters λβ,α are the scalar weights that combine all the series, and are subject

to:

γ∑
β=1

λβ,α = 1, (2.14)

λβ,α ≥ 0. (2.15)

The MTD model permits to reduce the total parameters to estimate frommγ(mγ−

1) to γ2m(m− 1) + γ(γ− 1), the first addend being the number of p
(β,α)
mm parameters

and the second the number of weights λβ,α.

2.2 Dividend Discount Models

This section presents a review of the dividend discount models starting from basic

models (Williams, 1938, Gordon and Shapiro, 1956) to more complex models (Brooks

and Helms, 1990, Barsky and De Long, 1993). Extensive reviews of stock valuation

methods can be found in Damodaran (2012) and Kamstra (2003). A particular

focus is given to models that make use of the Markov chain (Hurley and Johnson,

1994, 1998, Yao, 1997, Ghezzi and Piccardi, 2003), as they represent the base of this
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research. The section concludes with the identification of the open problems that,

eventually, are addressed in Chapters 3 and 4. In the remainder of this section, the

mathematical notation is slightly different from the previous analysis. The time is

reported in parenthesis, for example, a price at time t is indicated as P(t) instead

of Pt.

2.2.1 General Model

Stock valuation is one the basic aspects of financial markets. Discussions about

the fair price of a stock, or its overpricing and underpricing, have always been of

paramount importance to investors. Williams (1938) was the first to recognise that

market prices and fundamental values are “separate and distinct things not to be

confused”. In his work, he states that an asset’s intrinsic long-term value is the

present value of all future cash flows, i.e., dividends and future selling price.

Let P (t) be the random variable giving the fundamental value of a stock at time

t ∈ N. Let D(t) be the dividend at time t ∈ N, also assumed to be a random

variable, and denote by ke(t) the required rate of return on the stock at time t. If

we buy a stock at time t and plan to sell it at time t+ 1, the price p(t) := E(t)[P (t)]

that we pay is the expected value of the stock price at time t+ 1 plus the cash flows

distributed by the company, all discounted at the appropriate measure of risk ke(t),

p(t) = E(t)

[
P (t+ 1) +D(t+ 1)

1 + ke(t)

]
, (2.16)

If we buy and hold the stock indefinitely, and assuming (see, e.g., Samuelson,

1973)

lim
i→+∞

E(t)

[
P (t+ i)∏i

j=0

[
1 + ke(t+ j)

]] = 0, (2.17)

then the price we pay is the expected value of all future cash flows in the form of

dividends,
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p(t) =
+∞∑
i=0

E(t)

[
D(t+ i+ 1)∏i

j=0

[
1 + ke(t+ j)

]]. (2.18)

If condition (2.17) is not assumed, then Blanchard and Watson (1982) proved

that there could exist different solutions of the fundamental equation, i.e., there is

the presence of bubbles in the stock market.

To solve equation (2.18), we have to identify the first input, namely future div-

idends. Because of the impossibility of making predictions of dividends through to

infinity, many models make assumptions about the dividend growth, based on the

expectation of growth rate of earnings and payout ratios, or apply specific stochas-

tic processes to forecast dividends. The next two sections explain how the various

models make assumptions about the dividend growth.

The other input of the equation is the discount factor ke(t), or cost of equity, that

represents a measure of the asset’s riskiness, that in most of the dividend discount

models is assumed to be constant ke. Traditionally, the estimation of ke has been

performed using the Capital Asset Pricing Model (CAPM). The model originates

from the idea of mean-variance efficient portfolio of Markowitz (1952), and it is

formalised by Sharpe (1964) and Lintner (1965) and extended by Black (1972). The

rationale of the model is that risky investments Ri, for example, stocks in financial

markets, are expected to be more remunerating than the risk-free assets

E[Ri] = Rf + βim(E[Rm]−Rf ), (2.19)

βim =
Cov[Ri, Rm]

V ar[Rm]
, (2.20)

where Rm is the return on the market portfolio, and Rf is the return on the risk-

free asset. The Black (1972) version substitutes the risk-free rate with a zero-beta

portfolio uncorrelated with the market. The coefficient βim represents the correlation

of the stock with the market, and can be estimated as slope coefficient of the OLS

regression

Zit = αim + βimZmt + εit, (2.21)
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where Zit is the excess return of the stock on the risk-free asset, or equity premium,

and Zmt is the market risk premium, E[Ri]−Rf . In practice, the market return and

the risk-free rate are proxied by a market index, e.g., S&P 500 Index, and government

treasury bonds, respectively, over a period of time that generally extends to about

five years of historical data (Campbell et al., 1997). Many authors provides empirical

evidence on the CAPM application (see, e.g., Jensen et al., 1972, Fama and MacBeth,

1973, Blume and Friend, 1973, Basu, 1977, Fama and French, 1992, 1993), while Roll

(1977) criticise it because the market portfolio is not observable and therefore the

model is not testable. For a comprehensive description of the CAPM models and

its variations with econometrics analysis see, e.g., Campbell et al. (1997), Cochrane

(2009).

In general, the dividend discount model is very attractive because it is intuitive

and easy to implement. Nevertheless, it encounters much criticism because of the

limits it poses. The main argument is the applicability of the model only to certain

firms with stable, high-paying dividend policy. Moreover, firms recent practice is

to perform share buybacks instead of paying dividends, for obvious tax reasons,

reducing the dividend cash flow and resulting in an underestimation of the value of

the firm. The same principle applies to other assets that are ignored in the model,

e.g., the value of brand names. However, share buybacks and values of other assets

can be included in the dividends flow and treated as such with adequate adjustments

(see, e.g., Damodaran, 2012).

2.2.2 Gordon Growth Model and Extensions

Equation (2.18) can be rewritten in terms of dividend growth, defining

g(t) =
D(t+ 1)−D(t)

D(t)
, (2.22)

as the growth rate of dividends from time t to time t + 1, so that D(t + 1) =

D(t)(1 + g(t)) and D(t+ 2) = D(t)(1 + g(t))(1 + g(t+ 1)). Then, the price becomes,
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p(t) = D(t)
+∞∑
i=0

E(t)

[
i∏

j=0

1 + g(t+ j)

1 + ke(t+ j)

]
. (2.23)

Assuming a constant dividend growth rate g(t+j) = g and a constant discounting

factor ke(t+ j) = ke, equation (2.23) becomes

p(t) = D(t)
+∞∑
i=0

(1 + g)i

(1 + ke)i
, (2.24)

and summing the geometric progression, we obtain the Gordon fundamental price

estimate (Gordon, 1962)

pG(t) = D(t)
1 + g

ke − g
, or pG(t) =

D(t+ 1)

ke − g
, (2.25)

with the constraint g < ke to obtain a finite price.

The Gordon model is straightforward because it requires only estimates of the

dividend growth rate and discount rate, that are both easily obtained from a com-

pany’s historical data. Nevertheless, it has some limitations. The model can result

in incorrect estimations of the price when the growth rate approaches the discount

rate, as the price tends to grow up to infinity. Therefore, this model is more suit-

able for companies with a stable dividend policy with a growth that is less than the

growth of the economy. Moreover, empirical applications of the Gordon model show

that dividends tend to grow exponentially, meaning that a linear growth model is

not suitable for the stock valuation (see, e.g., Campbell and Shiller, 1987, West,

1988).

The assumption of constant growth of the dividends forever is not realistic. To

relax this assumption, Malkiel (1963) introduces a 2-stage model, with the first

period of n years of extraordinary growth followed by a stable growth forever. The

value of a stock can be obtained as the sum of first years values, calculated from the

general model plus a discounted value of the Gordon growth model at year n:

p2st(t) = E(t)

[
n∑
i=0

D(t+ i+ 1)∏i
j=0

[
1 + ke(t+ j)

] +
PG(n)∏n

j=0

[
1 + ke(t+ j)

]], (2.26)
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where PG(n) is the Gordon growth fundamental price estimate (2.25) at year n.

A further assumption of constant growth in the first phase, gh, and constant

discount rate ke,h, simplifies equation (2.26) to

p2st(t) =

D(t)(1 + gh)

[
1− (1+gh)n

(1+ke,h)n

]
ke,h − g

+
PG(n)

(1 + ke,h)n
, (2.27)

This model is suitable for valuing companies that expect to have an initial growth

period higher than normal, because of a specific investment or a patent right, that

will result in higher profits. At the same time, it presents some limits. First, the

growth rate is expected to drop drastically from high to normal level, and second,

it is hard to define the length of the high growth period in practical terms.

To avoid the sharp drop from high to stable growth rate, Fuller and Hsia (1984)

propose a linear decline of the growth in their “H” model. The high growth phase

with decline is assumed to last 2H periods up to the stable growth phase gn, with

an initial growth rate ga. The model assumes that the discount rate ke is constant

over time, as well as the dividend payout ratio.

pH(t) =
D(t)(1 + ga)

ke − gn
+
D(t)H(ga − gn)

ke − gn
, (2.28)

A constant payout ratio assumption poses some limits to this model. Generally,

a company is expected to have lower payout ratios in high growth phases and higher

payout ratios in the stable growth phase, as shown in Figure 2.2.

A 3-stage model, initially formulated by Molodovsky et al. (1965) and derived

from a combination of the H model and the 2-stage model, with the inclusion of a

variable payout policy and different discount factors for the various phases, over-

comes the limits of previous models, but it requires a larger number of inputs. Let

ke,h, ke,d, and ke,st be the discount factors for high, declining, and stable phases,

respectively. Let ga and gn be the growth rate at the beginning and the end of the

period. Let EPS be the earnings per share, and Πa and Πn the payout ratios at the

beginning and end of the period, respectively. The stock valuation for the 3-stage
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Figure 2.2: Expected growth in a 3-stage dividend discount model (Figure from
Damodaran, 2012)

model is

p3st(t) =
n1∑
i=0

EPS(t)Πa(1 + ga)
i

(1 + ke,h)i
+

n2∑
i=n1+1

D(t+ i)

(1 + ke,d)i

+
EPS(t+ n2)Πn(1 + gn)

(ke,st − gn)(1 + ke,h)n1(1 + ke,d)n2−n1
,

(2.29)

An empirical comparison of the Gordon model and its variations is in Sorensen

and Williamson (1985). The authors analyse the intrinsic value of a random sample

of 150 firms from the S&P 400 using data available in 1981, from four different

valuation models, price/earning model, constant growth model, two-period, and

three-period model. They base the analysis on normalised earnings and a dividend

payout ratio of approximately 45 per cent. The discount factor is calculated using

the CAPM model for the growth period, according to the beta of the stock and the

high growth period is assumed to last five years for all the stock. Then, based on

the assumption that all mature firms look alike, an equal risk measure of 8% among

all the stocks is adopted for the stable phase.

For every model, the authors generate five portfolios of 30 stocks each, ordered
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from undervalued to overvalued securities, estimating returns for two years. Results

show that the increased complexity of the model improves the annualised returns.

As well as looking at the risk characteristics of the portfolios, the 3-stage model

outperforms the other model.

Brooks and Helms (1990) generalise the 2-stage model from Malkiel (1963). They

propose an N-stage model, with quarterly dividends and fractional periods. Within

each stage, dividends growth is assumed constant, and the discount rate is based

on quarterly compounding re = (1 − ke)
1
4 − 1. They test the model on the case

of Commonwealth Edison Company (CWE), an electricity supplier, estimating the

required rate of return for three cases: (a) annual dividends, no fractional period;

(b) quarterly dividends, no fractional periods; and (c) quarterly dividends, fractional

periods. They show that ignoring quarterly compounding and fractional periods the

results present a downward bias.

Another extension of the Gordon growth models is given in Barsky and De Long

(1993). The authors propose to model the permanent dividend growth as a geometric

average of past dividend changes:

g(t) = (1− θ)
t∑
i=0

θi∆D(t− i) + θtg(0) (2.30)

with g(t) following a random walk process and, thus, change in dividends following

an IMA(1,1).

Donaldson and Kamstra (1996) generalise the Gordon growth model allowing for

arbitrary dividend growth and discount rates. Their methodology involves a Monte

Carlo simulation and numerical integration of the random joint process of dividend

growth and discount rates

y(t+ 1) =
1 + g(t+ j)

1 + ke(t+ j)
. (2.31)

They forecast a range of possible evolution of the process y(t+1) up to a certain

point in the future, t + I, and calculate the average of several estimations of the
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present stock value

p(t) = D(t)
I∑
i=0

i∏
j=0

y(t+ 1). (2.32)

2.2.3 Markov chain stock models

According to equation (2.23), the stock valuation is obtained through two inputs,

namely the dividend growth and the discount factor. The idea of the Markov chain

stock models is to describe the dividend growth rate as a sequence of independent,

identically distributed, discrete random variables, and model it as a Markov process.

In all these models, the discount factor ke is kept constant.

Hurley and Johnson (1994) model the dividend growth as a Markov dividend

stream. They assume that in each period the dividend can increase with probability

q, be the same with probability 1− q, to resemble a step pattern in the long term.

Moreover, they include the possibility for the firm to go bankrupt, with probability

qB. They propose two variations of the model, an additive model and a geometric

model, both giving an estimation of the value, along with a lower bound estimation

for each of these values.

In the additive model, the dividend at time t+ 1 increase by the amount ∆ with

probability q, and assuming a constant discount rate ke, the value of the firm is

p(t) =


D(t) + ∆ + p(t+ 1)D(t)+∆

1+ke
with prob q

D(t) + p(t+ 1) D(t)
1+ke

with prob 1− q − qB

0 with prob qB

, (2.33)

and the closed form solutions for the value and the lower bound are

pA(t) =
D(t)

ke
+

[
1

ke
+

1

k2
e

]
q∆, (2.34)

and
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pAlow(t) =
D(t)(1− qB)

k + qB
+

[
1

k + qB
+

1

(k + qB)2

]
q∆. (2.35)

Note that, when qb = 0, pAlow = pA.

The geometric model assumes that the dividend increases with a growth rate g

and with a probability q

D(t+ 1) =


D(t)(1 + g) with prob q

D(t) with prob 1− q − qB
. (2.36)

The closed form solutions for the value and the lower bound become

pG(t) =
D(t)(1 + qg)

ke − qg
, (2.37)

and

pGlow(t) = D(t)

[
1 + qg − qB
ke − (qg − qB)

]
. (2.38)

It is worth noting that the geometric model reduces to the Gordon model, setting

the expected growth rate to qg− qB, or, if we exclude the possibility of bankruptcy,

setting the expected growth rate to qg.

An empirical application to three stocks, provided in Hurley and Johnson (1994),

shows that the geometric method performs well when the dividend series is erratic

and does not always show increases. The model gives an estimation that is very

close to the actual stock prices.

Hurley and Johnson (1998) formulate a generalised version of their model to

include the possibility of a decrease in the dividends, so the dividend at time t is

D(t) = D(t − 1) + ∆i for the additive model, and D(t) = D(t − 1)(1 + gi) with

probability qi for the geometric model. Both ∆i and gi include the possibility of

dividends reduction, or suspensions. Under the condition q0 +
∑n

i=1 qi = 1, the

closed form solution for both models are
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pA(t) =
D(t)

ke
+

[
1

ke
+

1

k2
e

] n∑
i=1

qi∆i, (2.39)

and

pG(t) = D(t)
1 +

∑n
i=1 qigi

ke −
∑n

i=1 qigi
. (2.40)

When n = 1, the models reduces to Hurley and Johnson (1994) models.

The same proposal for dividend reduction to extend Hurley and Johnson (1994)

models is advanced by Yao (1997). The author introduces a trinomial dividend

valuation model and extends the additive model, where the dividend at time t + 1

is

D(t+ 1) =


D(t) + ∆ with prob qu

D(t)−∆ with prob qd

D(t) with prob qc = 1− qu − qd

, (2.41)

with closed solution for the stock value

pA(t) =
D(t)

ke
+

[
1

ke
+

1

k2
e

]
(qu − qd)∆. (2.42)

Then, the geometric model, with

D(t+ 1) =


D(t)(1 + g) with prob qu

D(t)(1− g) with prob qd

D(t) with prob qc = 1− qu − qd

, (2.43)

and closed solution

pG(t) = D(t)
1 + (qu − qd)g
ke − (qu − qd)g

. (2.44)

Lower bounds for both models are also given by the author. Moreover, a practical
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application on five firms, provided in Yao (1997), shows that the model produces

better estimates than Hurley and Johnson (1994).

Ghezzi and Piccardi (2003) start from the previous Markov models to formulate

a Markov chain stock model. The authors begin with a description of the simple

model for the dividend growth rate using a 2-state discrete Markov chain, and a

constant discount rate r = 1 + ke. Finally, they extend the model to an n-state

Markov chain and define a vector of price-dividend ratios as the solution of a system

of linear equations.

In previous models, Hurley and Johnson (1994, 1998) and Yao (1997) assume that

the dividend growth rates are independent, identically distributed, discrete random

variables, thus obtaining one closed form solution irrespective of the state of the

dividend. On the contrary, Ghezzi and Piccardi (2003) relax the i.i.d. assumption

and obtain a different price-dividend solution for each state of the dividends. This

variety allows the Markov chain stock model to be closer to reality.

The dividend series obeys the difference equation

D(k + 1) = G(k + 1)D(k), k = t, t+ 1, . . . , (2.45)

where G(k + 1) is the dividend growth factor described by a Markov chain.

Relation (2.45) asserts that given an initial and known value of the dividend

D(0) = d ∈ R, we can obtain next random dividend D(1) by multiplication with

the random growth factor from time zero to time one, that is D(1) = G(1)D(0) =

G(1)d. A repetition of this operation gives D(2) = G(2)D(1) = G(2)G(1)d and

more generally D(n) =
∏n

i=1G(i)d.

The combination of the dividend discount model equation (2.23) and (2.45), with

a constant discount factor r, i.e., one plus the required rate of return, yields

p(k) = d(k)
+∞∑
i=1

E(k)[
∏i

j=1G(k + j)]

ri
=: d(k)ψ1(g(k)), (2.46)

where d(k) and g(k) are the values at time k of the dividend process and of the
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growth dividend process, respectively. It should be noticed that they are known

quantities given the information available up to time k. The quantity ψ1(g(k)) is

the so called price-dividend ratio.

The simple case is modelled with a 2-state Markov chain taking values in the

state space E = {g1, g2}. Let P = (pij)i,j∈E be the one-step transition probability

matrix of this Markov chain, and let

A1 : g := max(p11g1 + p12g2, p21g1 + p22g2) < r, (2.47)

be the largest one step conditional expectation on the dividend growth rate.

If A1 holds true, then the series p(k) =
∑+∞

i=1

E(k)[D(k+i)]

ri
converges and satisfies

the asymptotic condition in (2.17), and the pair (ψ1(g1), ψ1(g2)) is the unique and

non-negative solution of the linear system

ψ1(g1) = p11
ψ1(g1)g1 + g1

r
+ p12

ψ1(g2)g2 + g2

r

ψ1(g2) = p21
ψ1(g1)g1 + g1

r
+ p22

ψ1(g2)g2 + g2

r
.

(2.48)

Assuming that for any given D(k) we obtain the same E[D(t + 1)], irrespective

of the initial states g1, g2, then p11 = q and p22 = 1 − q so the solution to (2.48)

becomes

ψ1(g1) = ψ1(g2) =
qg1 + (1− q)g2

r − 1g1 − (1− q)g2

, (2.49)

thus implying that the same price-dividend ratio is attached to each state, sharing

the same results as Hurley and Johnson (1994, 1998) and Yao (1997).

The results have a straightforward extension to the case of an s-state Markov

chain with state space E = {g1, g2, . . . , gs}. Assumption A1 becomes,

g := max
i∈E

( s∑
j=1

pijgj

)
< r. (2.50)

If g < r the series (2.46) converges and the unique and non-negative solution to
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the linear system is

ψ(gi) =
s∑
j=1

pij
ψ(gj)gj + gj

r
, i = 1, 2, . . . , s. (2.51)

This model has the advantage of assigning a different price-dividend ratio to each

value of the states. Forecasts on the dividend growth rate are updated based on the

previous value of the state, according to the Markov property. On the contrary, all

previous models make assumptions on forecasts once and for all, thus obtaining a

unique valuation.

Agosto and Moretto (2015) complement the model calculating a closed-form

expression for the variance of random stock prices in a multinomial setting. The

authors argue that for proper investment decisions a measure of risk should be taken

into consideration. Thus applying the standard mean-variance analysis, an investor

can deal with financial decisions under uncertainty. In their model, they relate the

variance of stock prices with the variance of the dividend rate of growth, obtaining

a measure of the stock riskiness. Nevertheless, in the case of portfolio selection,

the variance itself is not enough, but the covariance is needed. Agosto et al. (2018)

provide an explicit formula for the covariance between random stock prices with

correlated random growth rates.

A further generalisation of Ghezzi and Piccardi (2003) is available in D’Amico

(2013). The author models the dividend growth rate as a semi-Markov chain. In this

setting, prices become duration dependent. Therefore, they are influenced by the

current state of the dividend growth process and by the elapsed time in the state.

The same author proposes another extension of the model describing the dividend

growth series via a continuous state space semi-Markov model (D’Amico, 2017).

2.2.4 Research questions

The review of the Markov chain stock model shows many advancements in the liter-

ature on stock valuation. However, some problems remain open. While Ghezzi and

Piccardi (2003) introduce the Markov chain stock model along with the computa-
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tion of the first moment, and Agosto and Moretto (2015) calculate the variance or

random stock prices in a multinomial setting, there is a lack of a unified framework

that effectively describes the Markov chain stock model. Surprisingly, a statistical

analysis of the dividend discount model is missing as well, as too is an application

to real data. Moreover, Agosto et al. (2018) provide a formula for the covariance,

but the existent literature is missing a proper formalisation of the dividend discount

model in a multivariate setting.

This thesis aims to contribute to the literature on Markov chain stock model,

proposing general frameworks for both univariate and multivariate stock valuation,

providing estimators of the first and second moments. Chapters 3 and 5 describe

the two approaches and provide empirical applications.

Chapter 3 is based on the work of Barbu, D’Amico, and De Blasis (2017) that

extends Ghezzi and Piccardi (2003) and includes the computation of the risk of the

Markov chain model integrating the multinomial setting from Agosto and Moretto

(2015). The paper answers the following questions:

(i). How to determine a specific assumption that guarantees that the risk can be

computed by means of a convergent series?

(ii). Under which hypothesis are the transversality conditions satisfied?

(iii). How is it possible to compute the first and second moments of the price pro-

cess?

(iv). Are the moment estimators consistent? What is their asymptotic distribution?

Chapter 4 is based on the work of D’Amico and De Blasis (2018) that extends the

model in Barbu, D’Amico, and De Blasis (2017) proposing a multivariate Markov

chain stock model. The paper answers the following questions:

(i). How to define an effective multivariate model?

(ii). Under which hypothesis are the transversality conditions of the multivariate

model satisfied?
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(iii). How is it possible to compute the first and second moments (variances and

covariances) of the price processes?

2.3 Price Discovery

According to Lehmann (2002, p. 259), price discovery is “the efficient and timely

incorporation of the information implicit in investor trading into market prices” and

is one of the main functions of secondary markets. Therefore, it is essential to study

how new information is impounded into prices of securities, and with the increasing

market fragmentation, determine “where the price information and price discovery

are being produced” (Hasbrouck, 1995, p. 1175).

In this section, we first review the Efficient Markets Hypothesis and how some

high-frequency metrics can measure informational efficiency. Then, we describe

three common measures of contribution to price discovery, namely Information Share

(IS) by Hasbrouck (1995), Component Share (CS) by Gonzalo and Granger (1995),

and Information Leadership Share introduced by Putniņš (2013) based on the work

of Yan and Zivot (2010). The section ends with a formalisation of the research

questions with the proposal of a new measure for price discovery based on the Mul-

tivariate Markov Chain Model, that is developed in Chapter 5, based on De Blasis

(2018).

2.3.1 Informational efficiency

The general idea of the price discovery process stems from the Efficient Markets

Hypothesis, originated by the seminal work of Fama (1963, 1965a,b). Under the

Efficient Markets Hypothesis, prices fully reflect all available information and should

follow a random walk trajectory. It means that in a perfectly efficient market, price

changes are completely random, and prices do not deviate from fundamental value

to a sufficient extent to allow excess returns to be obtained from trading on available

information. Deviations from these three conditions, measured by low- and high-
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frequency market microstructure metrics, demonstrate a certain level of inefficiency.

In recent analysis, high-frequency measures are preferred over the low-frequency

ones, because they allow for a better understanding of the dynamics of market

efficiency and, at the same time, they correlate with the low-frequency metrics

(Rösch et al., 2016).

The Random Walk Hypothesis (RWH), developed by Cowles and Jones (1937)

in their analysis of sequences and reversals in historical stock returns, finds some

early empirical confirmation in Cootner (1962, 1964), Fama (1963, 1965a), Fama

and Blume (1966), and Osborne (1959). The test of the RWH is performed observ-

ing deviations from the expected results (under the hypothesis) of return variances

or serial correlations. Under the RWH, the variance should increase linearly with

increases of the time horizon analysed, i.e., σ2
kT = kσ2

T , and there should be no se-

rial correlation. Positive or negative autocorrelations demonstrate deviations from

RWH and allow for short-term predictability, both inconsistent with the Efficient

Market Hypothesis.

The variance ratio test is defined by Lo and MacKinlay (1988)

V arianceRatiokI =

∣∣∣∣ σ2
kI

kσ2
I

− 1

∣∣∣∣, (2.52)

σ2
I is the variance of midquote returns sampled at interval I. The authors analyse

US stock returns indexes from 1962 to 1985 and find that variances grow more than

linearly, thus rejecting the hypothesis of random walk and also implying positive

serial correlation. At high-frequency level, the variance ratio can be analysed in

combinations of one second to ten seconds, ten seconds to 60 seconds, and one

minute to five minutes sampling intervals (see, e.g., O’Hara and Ye, 2011). Large

values of variance ratio indicate a greater inefficiency.

Analysing US indexes returns from 1926 to 1986, Fama and French (1988) and

Poterba and Summers (1988) show a negative serial correlation in returns. Serial
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correlation is measured by first order autocorrelation

Autocorrelationk,t = Corr(rk,t, rk,t−1), (2.53)

where rk,t is the t-th midquote return of length k for one stock. At high-frequency

level, it is measured at different intraday frequencies, e.g., k ∈ {15sec, 30sec, 60sec}

(see, e.g., Hendershott and Jones, 2005). Because, both positive and negative value

signal a deviation from the RWH, the test uses absolute values of autocorrelations,

with large values showing informational inefficiency (see, e.g., Boehmer et al., 2013).

Excessive fluctuations from the fundamental value due to trading frictions are

another signal of informational inefficiency. They are proxied using the short-term

midquote volatility, that is the first principal component of the combination intraday

midquote returns standard deviations taken at different intervals (O’Hara and Ye,

2011).

Finally, the predictability is assessed through delay in impounding market-wide

information and lagged order imbalance. The delay measure from Hou and Moskowitz

(2005) can be adapted to intraday data, taking the R2 of the regression of 1-minute

midquote returns for stock i on the index returns with ten lags of index returns

ri,t = αi + βirm,t +
10∑
k=1

δi,krm,t−k + εi,t, (2.54)

and the R2 of the constrained regression without lags. The Delay metric is obtained

as

Delay = 1− R2
Constrained

R2
Unconstrained

. (2.55)

When variations in stock returns are explained by the lagged market returns, the

delay measure is close to 1, and this means that there is lower informational effi-

ciency.

Also, predictability of returns can be tested using lagged order imbalance (see,

e.g., Chordia et al., 2005, 2008). The idea is based on over-reactions and under-
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reactions to information released by order flows. The informational inefficiency is

tested analysing the R2 of the regression of midquote returns of stock i on lagged

order imbalances

ri,t = αi +
10∑
k=1

βi,kOIBi,t−k + εi,t, (2.56)

where OIBt is buyer-initiated less seller-initiated dollar volumes or trades. Higher

values of R2 measure higher inefficiency.

Price discovery measures reviewed in this section are a good proxy for testing

the Efficient Markets Hypothesis, especially at a high-frequency level because they

provide more granularity and a better description of the markets dynamics. How-

ever, they present a limitation. Together with informational efficiency, they also

measure liquidity in the market. Therefore, it is difficult to separate the measure of

informational efficiency from the measure of liquidity.

2.3.2 Measures of contribution to price discovery

Market fragmentation is gaining great relevance in the studies of financial markets.

Initial evidence can be found in Garbade and Silber (1979) in which the authors

study the NYSE and regional exchange trading patterns. Many other authors anal-

yse this aspect as well (see, e.g., Garbade et al., 1979, Grünbichler et al., 1994,

Werner and Kleidon, 1996). The rationale of these studies is that different mar-

ket prices follow a common efficient price. Therefore, there is the possibility of

short-term arbitrage if small deviations from the efficient price occur.

Initially, the focus of the researchers has been on the relationship between futures

and spot markets, with the conclusion that futures prices incorporate most of new

information (see, e.g., Garbade and Silber, 1983). The main tool used for the analysis

was the lead-lag methodology (see, e.g., Chan, 1992, Quan, 1992, Tse, 1995, Fleming

et al., 1996, Frino et al., 2000). This technique is based on the regression of one
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stock’s returns on leads and lags of another stock’s returns

rA,t = α +
+n∑

k=−n

βkrB,t+k + εt. (2.57)

Although this methodology gives reasonable outcomes, it can also result in misspec-

ifications and produce spurious relations (Hasbrouck, 1995). On the contrary, most

recent literature focuses on three measures of price discovery, (i) Information Share,

(ii) Component Share, and (iii) Information Leadership Share, based on price dy-

namics described by structural equation models. Hasbrouck (1995) claims that this

approach is able to replicate the lead-lag results, without incurring the problems of

this earlier methodology.

For simplicity, we now consider a structural equation model with two stocks that

trade in different markets and follow a common efficient price like in Harris et al.

(2002) however, this analysis can be extended to n stocks.

The common efficient price mt can be expressed by a random walk process

mt = mt−1 + ηPt , ηPt
iid∼ N(0, σ2

ηP ), (2.58)

where ηPt is the random new information representing the permanent shock to the

efficient price.

Stock prices of different markets follow the efficient price but will be different by

a random disturbance with mean equal to zero and stationary covariance

p1,t = mt + e1,t, and p2,t = mt + e2,t, (2.59)

where e1,t and e2,t are transitory disturbances due to microstructure frictions that

do not affect the dynamic of ηPt .
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If we rewrite equations (2.59) in terms of price changes

∆p1,t = ∆mt + ∆e1,t = ηPt + ∆e1,t,

∆p2,t = ∆mt + ∆e2,t = ηPt + ∆e2,t,

then we can express the two prices as

p1,t = p1,t−1 + ηPt + ∆e1,t, and p2,t = p2,t−1 + ηPt + ∆e2,t. (2.60)

Considering a realisation of the two prices at time t = T , both prices impound

a common factor, that is the common efficient price,

p1,T = p1,0 +
T∑
t=1

ηPt + e1,T , and p2,T = p2,0 +
T∑
t=1

ηPt + e2,T . (2.61)

Therefore, each price is the sum of:

(i). an initial non-stochastic value such that p1,0 = p2,0,

(ii). the cumulated new information deriving from the efficient price,

(iii). a market specific transitory disturbance.

Considering that the difference between the two prices is the difference between

the transitory disturbances p1,t − p2,t = e1,t − e2,t, and this difference being a sta-

tionary time series, then the two prices are cointegrated. Therefore, ∆p1,t and ∆p2,t

can be estimated as a vector error correction model (VECM) explained in a general

form in the remainder of the discussion where we follow the notation from Yan and

Zivot (2010).

Let pt = (p1,t, p2,t, . . .)
′ be the vector of two log prices of two stocks from different

markets1. Let us assume that pt is an integrated process of order 1, I(1), in other

words, contains a random walk component, and ∆pt is stationary process I(0).

1Prices can be futures and spot prices, or they could be related to the same stock traded in
different venues, linked by arbitrage.
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Thus, the price changes, ∆pt, can be expressed with a Wold representation as

∆pt = Ψ(L)et = et + Ψ1et−1 + Ψ2et−2 + . . . , (2.62)

where Ψ(L) =
∑∞

k=0 ΨkL
k is the lag polynomial operator with Ψ0 = I2, and et =

(e1,t, e2,t, . . .)
′ is the vector of serially uncorrelated errors with E[et] = 0 and

E[ete
′
s] =


0 if t 6= s

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 otherwise,

where Σ is a time-invariant covariance matrix with ρ being the correlation between

the error terms.

If prices follow the same efficient price, then pt is cointegrated and we can assume

that the cointegrating vector is β = (1,−1)′ so that β′pt−1 = p1,t−p2,t is I(0). With

cointegration, pt can be described with a VECM(K-1) model of the form

∆pt = α(β′pt−1 − E[β′pt−1]) +
K−1∑
k=1

Γk∆pt−k + et, (2.63)

where α is the vector of the error correction coefficients measuring how fast each

price eliminates differences from the efficient price, and Γk is a matrix with price

changes coefficients. The term E[β′pt−1] represents the systematic differences in

prices, e.g., differences between a bid and offer quote.

Applying the permanent-transitory decomposition of Beveridge and Nelson (1981)

to the VMA in (2.62) we obtain

pt = p0 + Ψ(1)
t∑

j=1

ej + st, (2.64)

where Ψ(1) =
∑∞

k=0 Ψk, st = Ψ∗(L)et, and Ψ∗k = −
∑∞

j=k+1 Ψj, k = 0, . . . ,∞.

Hasbrouck (1995) shows that the first term of the r.h.s of equation (2.64) is constant
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and reflects non-stochastic differences between price variables. In the second term,

the matrix Ψ(1) is the sum of the moving average coefficients and it is a measure of

the impact of innovations et, i.e., the long-run impact of innovations on prices. The

full term, Ψ(1)
∑t

j=1 ej, captures the random walk component that belongs to the

efficient price. The third term is a zero-mean covariance stationary process.

Because of the cointegrating vector β = (1,−1)′, the rows of the impact matrix,

Ψ(1), are all the same, therefore we can define one impact vector ψ and describe

the permanent innovation as

ηPt = ψet. (2.65)

Considering the efficient price in (2.58), and assuming p0 = 0, then we can

rewrite equation (2.64) as

pt = 1mt + st, (2.66)

where 1 = (1, 1)′. Equation (2.66) expresses that prices pi,t share the common

underlying asset that incorporate the full permanent information, but have different

transitory effects, st, capturing deviations from the efficient price. This last term

can be a consequence of many market microstructure frictions, e.g., bid-ask bounce,

price discreteness, or illiquidity effects.

In this setting, where multiple cointegrated prices follow a common efficient price

and each market produces its variations, Hasbrouck (1995) develops the Information

Share (IS), that is a measure of the contribution to price discovery from each market.

IS measures how much of the variation in the efficient price, V ar(ψet) = ψ′Σψ,

can be attributed to one market.

If Σ is diagonal, the Information Share is

ISi =
ψ2
i σ

2
i

ψ′Σψ
=

ψ2
i σ

2
i

ψ2
1σ

2
1 + ψ2

2σ
2
2

, i = 1, 2, (2.67)

with IS1 + IS2 = 1. On the contrary, if the price innovations are correlated across

markets, i.e., Σ is not diagonal, the IS does not produce the proper results. Using
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the Cholesky factorization,

Σ = MM′, (2.68)

where M is a lower triangular matrix, we can rewrite equation (2.67) as

ISi =
([ψM]i)

2

ψ′Σψ
. (2.69)

Equation (2.69) produces different results according to the ordering of prices.

In the case of two prices Hasbrouck (1995) proposes to define a low (high) bound

with i-th price ordered first (last), and to sample at high frequencies to reduce

contemporaneous correlation. He reports that in his application to price discovery

between NYSE market and other exchanges with prices sampled at one second, the

range of the bounds is very narrow and prices have a low contemporaneous residual

correlations. Similar results are shown in Hendershott and Jones (2005) and Tse

(1995). However, the sampling frequency is data dependent and IS produces different

results at different sampling frequencies, as well as extensive ranges for the bounds,

thus creating some difficulties in the interpretation of results (see, e.e., Grammig

et al., 2005, Theissen, 2002, Sapp, 2002, Huang, 2002).

Booth et al. (2002), Chu et al. (1999) and Harris et al. (2002) propose to measure

the contribution to price discovery using the Permanent-Transitory decomposition

of Gonzalo and Granger (1995) of the type

pt = A1ft + A2zt. (2.70)

Equation (2.70) expresses cointegrated prices as a sum of common factors ft =

γ ′pt ∼ I(1), indicating a permanent component, plus stationary error correction

terms zt = α′pt−1 ∼ I(0), that is the transitory component that does not Granger-

cause ft in the long run. Gonzalo and Granger show that γ = (α′⊥β⊥)−1α′⊥ is

orthogonal to the error correction coefficient vector in the VECM model (2.63).

Since the cointegrating vector is β = (1,−1)′, we can choose β⊥ = 1 = (1, 1)′,

so that β′⊥β = 0, and thus γ = (α′⊥1)−1α′⊥, that means that the permanent
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component can be interpreted as weighted average of observed prices with weights

γi with i = 1, 2.

Booth et al. (2002), Chu et al. (1999) and Harris et al. (2002) interpret the

weights γi as a measure of the contribution of one market to the permanent com-

ponent of prices. This contribution to price discovery is called Component Share

(CS)

CSi = γi =
α⊥,i

α⊥,1 + α⊥,2
, i = 1, 2. (2.71)

Both the IS and CS rely on the decomposition of innovations. The former is based

on the attribution of the shares of the common factor variance V ar(ψet) = ψ′Σψ to

each market, while the latter is based on the distribution of shares of the common

factor price to each market. CS metric presents the advantage of measuring the

market’s price discovery contribution directly. However, there is considerable debate

in the literature on what these metrics really measure.

Baillie et al. (2002) reconcile the two measures. Starting from the work of Jo-

hansen (1991), they state that both models derive from α⊥, and prove that

Ψ(1) =

ψ
ψ

 = Π

γ1 γ2

γ1 γ2

 , (2.72)

where Π =
(
α′⊥
(
I−

∑K−1
k=1 Γk

)
β⊥
)−1

, with I being the identity matrix.

Therefore, there exist the relationship

ψ1

ψ2

=
γ1

γ2

, (2.73)

so the measures CS and IS can be expressed in relative values.

Substituting (2.73) into (2.67), when Σ is diagonal, we obtain

ISi =
γ2
i σ

2
i

γ2
1σ

2
1 + γ2

2σ
2
2

, i = 1, 2. (2.74)
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In the same way, it is possible to express CS in terms of ψi

CSi =
ψi

ψ1 + ψ2

, i = 1, 2, (2.75)

or directly in terms of elements of the error correction coefficient vector α

CS1 =
α2

α2 − α1

, CS2 =
−α1

α2 − α1

. (2.76)

In the case of correlated errors across markets, using the Cholesky factorisation

(2.68) with the lower triangular matrix

M =

 σ1 0

ρσ2 σ2(1− ρ2)
1
2

 =

m11 0

m12 m22

 ,

and substituting (2.73) into (2.69), we obtain

IS1 =
(ψ1m11 + ψ2m12)2

(ψ1m11 + ψ2m12)2 + (ψ2m22)2
, (2.77a)

IS2 =
(ψ2m22)2

(ψ1m11 + ψ2m12)2 + (ψ2m22)2
. (2.77b)

Yan and Zivot (2010) advance the discussion about the interpretation of the two

measures. They argue that Information Share, when the errors are uncorrelated, is

more appropriate to measure the contribution to price discovery, as it measures the

response of one market to innovations. However, if the errors are serially correlated,

i.e., there is the presence of microstructure frictions, IS becomes ambiguous, requir-

ing one to calculate the upper-lower bounds. In fact, a high IS can be attributed to

a strong response to either new information or frictions. On the contrary, Compo-

nent Share can measure the response to transitory frictions. Therefore, the authors

propose to combine the two metrics to compensate the ambiguity of the IS, in a way

that a high IS with a low CS shows a very good response to innovations, while this

is not true for a high IS with a high CS.
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Putniņš (2013) formalises the intuition of Yan and Zivot (2010) into a new mea-

sure, the Informational Leadership Share (ILS)

ILS1 =
IL1

IL1 + IL2

, ILS2 =
IL2

IL1 + IL2

, (2.78)

where

IL1 =

∣∣∣∣IS1

IS2

CS2

CS1

∣∣∣∣, and IL2 =

∣∣∣∣IS2

IS1

CS1

CS2

∣∣∣∣.
The author argues that IS and CS are proper measures when the prices share

the same level of noise. However, when price errors are different, “IS and CS both

measure a combination of leadership (relative speed) in impounding new informa-

tion and relative avoidance of noise, to different extents” (Putniņš, 2013, p. 81).

Conversely, ILS helps to cancel the noise component to identify the price leadership

if the following conditions are respected:

(i). the analysis involves only two price series,

(ii). there is only one permanent and one transitory shock,

(iii). the errors are uncorrelated.

2.3.3 Research questions

The review of the price discovery literature shows that researchers have dedicated

much effort in understanding the price discovery dynamics. Many measures have

been created, from low frequency to high frequency for a general understanding,

and more complex ones to define one market’s contribution to price discovery in the

scenario of cointegrated prices.

The three common measures from the literature are the Information Share (IS),

the Component Share (CS), and the Informational Leadership Share (ILS). They

are all based on structural equation systems to model the prices dynamics, with the

idea that prices in different markets follow a common efficient price. They rely on
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the permanent-transitory decomposition of new information and try to understand

how much of the long-run information is due to one market or another.

However, all proposed metrics present several limitations due to assumptions in

the models’ definitions, and there is no precise specification on what they really

measure when the assumptions are relaxed. In trying to balance the IS and CS, the

ILS finds a compromise between the two metrics, but its results are limited to two

price series with uncorrelated errors. In conclusion, many questions are still open.

In this thesis, we address these problems establishing a new measure for price

discovery that does not rely on the definition of the structural models, typical of

the other measures. On the contrary, we use a multivariate Markov chain model

to establish the contribution to price discovery. We still assume that prices are

cointegrated, following a common efficient price, but since we cannot observe the

common price, we have to rely entirely on what we directly observe.

As noted in previous sections, the timing of incorporation of new information

is of primary importance in defining the contribution to price discovery. It means

that some prices update faster than others when there is new information, and these

new prices are observable in the market. Thus, a price change is a signal to other

markets that, in turn, can adapt their prices based on the common efficient price

plus the signalled price change.

Because we can directly observe the dynamics of the price change series from

multiple markets, we develop a metric that models the price changes in terms of

dependencies between markets. For this purpose, the multivariate Markov chain

represents an optimal tool to understand these dynamics and, hence, the contribu-

tion to price discovery.

In this thesis, we answer the following question:

(i). How to integrate the Markov chain model into the framework of price discov-

ery?

(ii). How to define a new measure of price discovery based on the Markov chain

model?
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(iii). Is it possible to have a summary measure that is comparable with the others?

(iv). Is it possible to overcome the limitation of the number of markets in the

analysis?

(v). Can we overcome the limits due to the serial correlation of the errors?

Chapter 5, based on the work of De Blasis (2018) answers these questions and

presents the formulation of a new measure of price discovery based on a multivariate

Markov chain.

2.4 Summary

This chapter presented an overview of the Markov chain model, in both its univariate

and multivariate aspects, followed by reviews of two important topics in finance,

stock valuation and price discovery. The first topic is addressed in terms of the

dividend discount model and presents many valuations procedures that are present

in literature, starting from the basic Gordon model to more complex methodologies,

based on the Markov chain model. The second topic is more related to financial

markets and market microstructure. The review discusses why price discovery is

important and how it is measured.

Both reviews highlight that some problems are still open and not entirely ad-

dressed by the literature. Therefore, some research questions are posed and the

following chapters propose solutions based on the application of Markov chain mod-

els.

Chapter 3 and 4 address questions on the dividend discount model and formalise

two frameworks, univariate and multivariate, for stock valuation when the dividend

growth is modelled through a Markov chain. Empirical applications with algorithmic

implementations complete the research and demonstrate the validity of the model.

Chapter 5 proposes a new measure of price discovery based on a multivariate

Markov chain model, to overcome other measures’ limitations. The new measure is

tested and compared with existent measures.
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The algorithmic implementation of the methods presented in this thesis is re-

ported in Chapter 6.
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3 Novel advancements in the

Markov chain stock model

This chapter presents further advancements in the Markov chain stock model propos-

ing a general framework for valuation and provides estimators for the first and sec-

ond moments of the price process, as well as an application to real dividend data to

demonstrate the practical implementation of these methods. The chapter is organ-

ised as follows: first, in Section 3.1, we present the Markov chain dividend valuation

model and we derive the results relating to the risk process. Next, Section 3.2

presents results on the statistical estimation of the price-dividend ratio of the first

and second order. In Section 3.3 we present an application to real dividend data

and discuss some practical problems to be dealt with when executing an application

to real data. All proofs are deferred to the Appendix.

3.1 The Markov chain dividend valuation model

Let P (k) be the random variable giving the fundamental value of a stock at time

k ∈ N. Let D(k) be the dividend at time k ∈ N, also assumed to be a random

variable, and denote by r one plus the required rate of return on the stock, assumed

to be constant. The fundamental valuation analysis states that p(k) := Ek [P (k)]

obeys the equation

p(k) =
Ek [D(k + 1) + P (k + 1)]

r
, (3.1)
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where Ek is the conditional expectation given the information available up to time

k. As it is well known, see for example Samuelson (1973), if we assume that

lim
i→+∞

Ek[P (k + i)]

ri
= 0, (3.2)

then the solution of (3.1) is expressed by the series

p(k) =
+∞∑
i=1

Ek[D(k + i)]

ri
. (3.3)

If condition (3.2) is not assumed, then Blanchard and Watson (1982) proved

that there can exist different solutions of the fundamental equation, i.e., in the

stock market there is the presence of bubbles.

Note that the uncertainty in the dividend process propagates into the price

process. In order to have a quantification of this effect, we analyse the second

order moment of the price process. To this end, according to D’Amico (2017), if we

set

P 2(k) :=

(
D(k + 1) + P (k + 1)

r

)2

, (3.4)

then, by means of successive substitutions we get

P 2(k) =
N∑
i=1

D2(k + i)

r2i
+ 2

N∑
i=1

N∑
j>i

D(k + i)D(k + j)

ri+j

+2
N∑
i=1

D(k + i)P (k +N)

ri+N
+
P 2(k +N)

r2N
.

Therefore, applying the conditional expectation Ek we obtain

p(2)(k) := Ek[P 2(k)] =
N∑
i=1

Ek[D2(k + i)]

r2i
+ 2

N∑
i=1

N∑
j>i

Ek[D(k + i)D(k + j)]

ri+j

+2
N∑
i=1

Ek[D(k + i)P (k +N)]

ri+N
+

Ek[P 2(k +N)]

r2N
. (3.5)

Equation (3.5) explains that to guarantee the dependence of the risk measure

45



(p(2)(k)) only on the dividend process, it is necessary that both limN→+∞
Ek[P 2(k+N)]

r2N
=

0 and limN→+∞
∑N

i=1
Ek[D(k+i)P (k+N)]

ri+N
= 0. In this case, the solution of (3.5) would

be

p(2)(k) =
+∞∑
i=1

Ek[D2(k + i)]

r2i
+ 2

+∞∑
i=1

∑
j>i

Ek[D(k + i)D(k + j)]

ri+j
. (3.6)

Formula (3.6) is the fundamental formula for the risk of the price process.

In order to be able to evaluate (3.3) and (3.6), we need to specify a model for

the dividend process. For example, in the paper of Gordon and Shapiro (1956) is

assumed a constant growth rate of dividends. Many variants of the Gordon and

Shapiro (1956) model have been suggested in the finance literature. These variants

come from a common need of imposing less restrictive assumptions on the dividend

process. For example, Brooks and Helms (1990) and Barsky and De Long (1993)

consider a multistage model with dividend growth rates changing deterministically

among stages. Models based on Markov chains were proposed by Hurley and John-

son (1994, 1998) and by Yao (1997). In a more recent paper of Ghezzi and Piccardi

(2003) it is assumed that dividends satisfy the difference equation

D(k + 1) = G(k + 1)D(k), (3.7)

where {G(k)} is the dividend growth factor described by a Markov chain.

Relation (3.7) asserts that given an initial and known value of the dividend

D(0) = d ∈ R, we can obtain next random dividend D(1) by multiplication with

the random growth factor from time zero to time one, that is D(1) = G(1)D(0) =

G(1)d. A repetition of this operation gives D(2) = G(2)D(1) = G(2)G(1)d and

more generally D(n) =
∏n

i=1G(i)d.

3.1.1 The computation of the moments

For clarity of exposition, we limit ourselves for the moment to the simplest case of

a two state Markov chain with state space E = {g1, g2}. The generalisation to a

general finite state space Markov chain is straightforward and will be discussed at
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the end of this section. Let P = (pij)i,j∈E be the one step transition probability

matrix of this Markov chain. The combination of Equations (3.3) and (3.7) yields

p(k) = d(k)
+∞∑
i=1

Ek[
∏i

j=1 G(k + j)]

ri
=: d(k)ψ1(g(k)), (3.8)

where d(k) and g(k) are the values at time k of the dividend process and of the

growth dividend process, respectively. It should be noticed that they are known

quantities given the information available up to time k. The quantity ψ1(g(k)) is

the so called price-dividend ratio.

It should be noted that, where needed in the following, we will use the notation

p(d(k), g(k)) to denote the price at time k in order to stress the dependence on the

value of the dividend process and of the growth dividend process at that time.

The following assumption will be needed in the sequel

A1 : g := max(p11g1 + p12g2, p21g1 + p22g2) < r. (3.9)

Note that g is the largest one step expectation of the dividend growth rate.

Proposition 3.1. (see Ghezzi and Piccardi, 2003) If A1 holds true, then the series

p(k) =
∑+∞

i=1
Ek[D(k+i)]

ri
converges and satisfies the asymptotic condition

lim
i→+∞

Ek[P (k + i)]

ri
= 0.

Proposition 3.2. (see Ghezzi and Piccardi, 2003) If A1 holds true, the pair

(ψ1(g1), ψ1(g2)) is the unique and nonnegative solution of the linear system

ψ1(g1) = p11
ψ1(g1)g1 + g1

r
+ p12

ψ1(g2)g2 + g2

r

ψ1(g2) = p21
ψ1(g1)g1 + g1

r
+ p22

ψ1(g2)g2 + g2

r
.

(3.10)

In order to compute p(2)(k), we need an additional assumption

A2 : g(2) := max(p11g
2
1 + p12g

2
2, p21g

2
1 + p22g

2
2) < r2. (3.11)
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g(2) is the largest one step second order moment of the dividend growth rate.

Proposition 3.3. Assume that hypotheses A1 and A2 hold true. Then, the series

p(2)(k) =
+∞∑
i=1

Ek[D2(k + i)]

r2i
+ 2

+∞∑
i=1

∑
j>i

Ek[D(k + i)D(k + j)]

ri+j
(3.12)

converges and the following asymptotic conditions are satisfied:

lim
N→+∞

E(k)[P
2(k +N)]

r2N
= 0, lim

N→+∞

N∑
i=1

Ek[D(k + i)P (k +N)]

ri+N
= 0.

Proof. See appendix.

Proposition 3.4. Assume that hypotheses A1 and A2 hold true. Then, the pair

(ψ2(g1), ψ2(g2)) is the unique and nonnegative solution of the linear system

ψ2(g1)
(
r2 − p11g

2
1

)
− ψ2(g2)p12g

2
2 = p11g

2
1

(
1 + 2ψ1(g1)

)
+ p12g

2
2

(
1 + 2ψ1(g2)

)
ψ2(g2)

(
r2 − p22g

2
2

)
− ψ2(g1)p21g

2
1 = p21g

2
1

(
1 + 2ψ1(g1)

)
+ p22g

2
2

(
1 + 2ψ1(g2)

)
.

(3.13)

Proof. See appendix.

The results have a straightforward extension to the case of an s-state Markov

chain with state space E = {g1, g2, . . . , gs}. Note that the assumptions A1 and A2

should be formulated as follows:

g := max
i∈E

( s∑
j=1

pijgj

)
< r (3.14)

g(2) := max
i∈E

( s∑
j=1

pijg
2
j

)
< r2. (3.15)

In this more general case, Propositions 3.2, 3.3 and 3.4 remain valid and the

systems (3.10) and (3.13) can be conveniently represented in matrix form. To this

end let us introduce some matrix notation. Let I be the identity matrix of dimension

s× s. For any r ∈ R∗ := R− {0}, we define Ir := rI and, more generally, Inr = Irn
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and I−1
r = Ir−1 . Moreover, for any g = (g1, . . . , gs)

>, gn = (gn1 , . . . , g
n
s )> ∈ (R∗)s

with ( )> denoting the transpose of a vector, we denote by

Ig = (Ig(i, j))i,j∈E, Ig(i, j) =

 gi, if i = j,

0, if i 6= j.
(3.16)

More generally, it results that Ing = Ign and I−1
g = Ig−1 .

Finally let Ψ1 = (ψ1(g1), . . . , ψ1(gn))> and Ψ2 = (ψ2(g1), . . . , ψ2(gn))> be the

vectors of the price-dividend ratio of first and second order. Then, the systems

(3.10) and (3.13) have the following matrix representation:

(Ir −P · Ig) ·Ψ1 = P · g, (3.17)

(
I2
r −P · I2

g

)
·Ψ2 = P ·

((
g � g

)
+ 2Ψ1 �

(
g � g

))
, (3.18)

where · denotes the usual row by column matrix product and � denotes the Hadamard

element by element product. When no confusion is possible, we will omit writing ·

for the usual row by column matrix product.

Note that, according to Proposition 3.2, the system (3.10) (or equivalently (3.17))

has a unique solution. Consequently, the matrix (Ir −P · Ig) is invertible and the

solution is given by

Ψ1 = (Ir −P · Ig)−1 ·P · g. (3.19)

Similarly, according to Proposition 3.4, the system (3.13) (or equivalently (3.18))

has a unique solution. Consequently, the matrix
(
I2
r −P · I2

g

)
is invertible and the

solution is given by

Ψ2 =
(
I2
r −P · I2

g

)−1 ·P ·
((

g � g
)

+ 2Ψ1 � (g � g)
)

= (Ir2 −P · Ig2)−1 ·P ·
((

g � g
)

+ 2Ψ1 �
(
g � g

))
, (3.20)

49



where we used the fact that I2
g = Ig2 and I2

r = Ir2 . It should be remarked that

relation (3.20) gives an explicit formula for the second-order price-dividend ratio

that in turn, after multiplication with d2(t) gives a formula for the second moment

of the price process that is expressed in function of the model parameters P and g.

The last point we have to deal with is about the forecasting of future fundamental

prices. To this end, let us denote by E(n)p(d(k), ga) := E(d(k),ga)[P (D(k + n), G(k +

n))] the forecasted fundamental price within n units of time given that at current

time k the dividend is D(k) = d(k) and the growth dividend process is in state

G(k) = ga. The following proposition gives an explicit formula for E(n)p(d(k), ga).

Proposition 3.5. The expected forecast of fundamental price, given that D(k) = dk

and g(k) = ga, is given by

E(n)p(dk, ga) =
∑

j1,...,jn∈E

n∏
i=1

(
pji−1jigji

)
p(dk, gjn), (3.21)

where gi0 = ga. Note that we can write formula (3.21) in the following matrix form:


E(n)p(dk, g1)

...

E(n)p(dk, gs)

 = dkP
nIgn


ψ1(g1)

...

ψ1(gs)

 . (3.22)

Proof. See appendix.

3.2 The inferential analysis

3.2.1 Estimation of a Markov chain

Let X = (Xn, n ∈ N) be an homogeneous ergodic Markov chain (see e.g., Brémaud,

1999) defined on a probability space (Ω,F ,P) with a finite state space E = {g1, g2, . . .

, gs} and transition probability matrix P = (pij)i,j∈E. By α = (αi)i∈E we denote

the initial distribution, αi := P(X0 = gi), i ∈ E, and by π = (πi)i∈E, the unique

stationary distribution (assumed to exist, due to the ergodicity of the chain). The
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stationary distribution is determined by the equations πj =
∑

i∈E πipij, for all j ∈ E.

Note that, for notational convenience, for any i, j ∈ {1, . . . , s} we set pij, αi and

πi instead of pgigj , αgi and πgi , respectively.

In this paper we consider the estimation problem when only one trajectory of

the Markov chain is observed. This is in agreement with the data used in the

application where a time series of dividend constitutes the sample. The case when

the analyst observes several sample paths of the dividend process can be dealt with

using similar techniques. These two different sampling schemes have been deeply

studied by Anderson and Goodman (1957), Billingsley (1961a,b) and Sadek and

Limnios (2002).

Assume that x = (x0, x1, . . . , xm) is a sample path of the Markov chain observed

up to time m, i.e. a realisation of X = (X0, X1, . . . , Xm). Let us define the counting

processes

Nij(m) :=
m∑
u=1

1{Xu−1=i,Xu=j}, Ni(m) :=
m−1∑
u=0

1{Xu=i}.

They represent the number of transitions from i to j observed up to time m and the

number of visits to state i observed up to time m, respectively.

The maximum likelihood estimator of pij (see, e.g., Billingsley, 1961a,b) is

p̂ij(m) =
Nij(m)

Ni(m)
. (3.23)

We will recall now some asymptotic results related to the estimators of Markov

chains.

Proposition 3.6. (see, e.g., Billingsley, 1961a) Let (Xn)n∈N be an ergodic Markov

chain defined on a probability space (Ω,F ,P) with finite state space E = {g1, g2, . . . , gs},

transition probability matrix P = (pij)i,j∈E and stationary distribution π = (πi)i∈E.

Then:

1. p̂ij(m)
a.s.−−−→

m→∞
pij.
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2. The s2 dimensional random vector (
√
m (p̂ij(m)− pij))i,j∈E converges in dis-

tribution, as m tends to infinity, to a normally distributed random variable

Z ∼ Ns2(0, Γ̃), where Γ̃ ∈ Ms2×s2 is the covariance matrix of dimension

s2 × s2 defined under diagonal form by blocks as follows:

Γ̃ := diag

(
Λi

πi
| i ∈ E

)
=



1
π1

Λ1 0 · · · 0

0 1
π2

Λ2 · · · 0

...
...

. . .
...

0 0 · · · 1
πs

Λs


, (3.24)

where, for any i ∈ E, the matrix Λi is given by Λi = (δjlpij − pijpil)j,l∈E, with

δij the Kronecker symbol, i.e., δij = 1 if i = j, δij = 0 if i 6= j.

3.2.2 Estimation of the financial quantities

Here, using the results listed in Proposition 3.6 we propose estimators of the financial

quantities computed in Section 3.1 and we also derive their asymptotic properties

when the length of the sample path goes to infinity. It is to be remarked again that

the results of this section have a direct extension to the case when several trajectories

of the growth dividend process are observed.

Estimation of the price-dividend ratio

As the price-dividend ratio is a function of the transition probability matrix P cf.

formula (3.19), the general idea is to use this expression in order to: (i) build a

plug-in estimator of the price-dividend ratio using the estimator of the transition

matrix p̂ij(m) given in (3.23); (ii) use the asymptotic results given in Proposition

3.6 in order to derive the consistency of the estimator of the price-dividend ratio (by

means of the continuous mapping theorem) and the asymptotic normality (applying

the delta method, see e.g. Van der Vaart (1998)).

The application of the continuous mapping (respectively of the delta method)

requires that the objective function be a continuous (respectively differentiable)
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function of the parameters. In our model the parameter space is given by {pij :

0 ≤ pij ≤ 1,
∑

j∈E pij = 1,∀i ∈ E}i,j∈E. As the variables pij are not independent

because each row of the matrix P sums to one, it will be convenient to express Ψ1

as a function of independent variables. Consequently, let us consider the function

Φ1 = (Φ1
1, . . . ,Φ

s
1) : Rs(s−1) → Rs

defined by

Φ1(pij, i = 1, . . . , s, j = 1, . . . , s− 1) = (Ir −PIg)−1 Pg = Ψ1, (3.25)

where, for any i ∈ E, we express pis as a function of the arguments of Φ1 in the

obvious way, pis = 1−
∑s−1

j=1 pij. In this way we reduce the parameter space deleting

the variables pis,∀i ∈ E that are constrained by the values of the others parameters;

thus we can proceed to apply our methodology on the reduced parameter space, i.e.,

{pij, i = 1, . . . , s, j = 1, . . . , s− 1}.

First, we will give some preliminary results, useful for obtaining the asymptotic

normality of the estimators; in all these results, P0 := I.

Lemma 3.7. (see, e.g., Sadek and Limnios, 2002) For any i, j ∈ E we have

∂Pn

∂pij
=

n∑
k=1

Pk−1 ∂P

∂pij
Pn−k, (3.26)

where

∂P

∂pij
= (alk)l,k∈E,with alk :=


1, if l = i, k = j,

−1, if l = i, k = s,

0, otherwise.

(3.27)

Lemma 3.8. Let n ∈ N and assume that the inverse
(
Inr −PIng

)−1
exists. Then,

for any i, j ∈ E, we have

∂
(
Inr −PIng

)−1

∂pij
= Ing

(
Inr −PIng

)−1 · ∂P

∂pij
·
(
Inr −PIng

)−1
. (3.28)
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Proof. See appendix.

We are able now to propose an estimator of the price-dividend ratio. The esti-

mator of the price-dividend ratio is obtained by plug-in of the transition probability

matrix estimator in (3.19). Thus we have

Ψ̂1(m) = (ψ̂1(g1;m), . . . , ψ̂1(gn;m))> :=
(
Ir − P̂(m)Ig

)−1

P̂(m)g

=

(
I−1
r

∞∑
n=0

P̂n(m)IngI−nr

)
P̂(m)g, (3.29)

where P̂(m) = (p̂ij(m))i,j∈E, with p̂ij(m) the classical MLE given in (3.23).

Remark 3.9. Note that it is possible that the inverse
(
Ir − P̂(m)Ig

)−1

does not

exist for some m; nonetheless, taking into account that the inverse (Ir −PIg)−1

exists (this is equivalent to the fact that the system (3.10) has a unique solution,

cf. Proposition 3.2) and that P̂(m) is a.s. convergent to P(m), as m goes to infinity

(cf. Proposition 3.6 ), we get that
(
Ir − P̂(m)Ig

)−1

exists starting from a certain

m∗.

Let Ms×s be the set of real matrices of order s × s. The following asymptotic

results hold true.

Theorem 3.10. The estimator of the price-dividend ratio proposed in (3.29) is:

1. strongly consistent, as m goes to infinity, i.e.,

Ψ̂1(m)
a.s.−−−→

m→∞
Ψ1; (3.30)

2. asymptotically normal, as m goes to infinity, i.e.,

√
m
(
Ψ̂1(m)−Ψ1

)
D−−−→

m→∞
Ns(0,Σ1), (3.31)

where the covariance matrix Σ1 has the form

Σ1 = Φ′1Γ(Φ′1)> ∈Ms×s, (3.32)
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where:

• Γ ∈ Ms(s−1)×s(s−1) is the restriction of Γ̃ given in (3.24) to s(s − 1) ×

s(s − 1), in the sense that Γ is the asymptotic covariance matrix of the

vector (
√
m (p̂ij(m)− pij))i=1,...,s,j=1,...,s−1;

• Φ′1 =
(
∂Φi1
∂plk

)
i,l=1,...,s,k=1,...,s−1

∈ Ms×s(s−1) is the partial derivative matrix

of Φ1 with respect to (pij, i = 1, . . . , s, j = 1, . . . , s−1); detailed expression

of this matrix will be given later in (A.18) and (A.19).

Proof. See appendix.

Estimation of the second-order price-dividend ratio

The estimation of the second order price-dividend ratio is obtained by plug-in of

the transition probability matrix estimator and of the estimator of the first-order

price-dividend ratio in (3.20). Thus we have

Ψ̂2(m) = (ψ̂2(g1;m), . . . , ψ̂2(gn;m))>

:=
(
I2
r − P̂(m) · I2

g

)−1

· P̂(m) ·
(
g � g + 2Ψ̂1(m) � g � g

)
=

(
I−1
r2

∞∑
n=0

P̂n(m)Ing2I−nr2

)
P̂(m) ·

(
g � g + 2Ψ̂1(m) � g � g

)
, (3.33)

where P̂(m) = (p̂ij(m))i,j∈E, with p̂ij(m) the classical MLE given in (3.23) and

Ψ̂1(m) given in (3.29).

We will state here a remark similar to Remark 3.9.

Remark 3.11. Note that it is possible that the inverse
(
I2
r − P̂(m) · I2

g

)−1

does not

exist for some m; nonetheless, taking into account that the inverse
(
I2
r −P · I2

g

)−1

exists (this is equivalent to the fact that the system (3.13) has unique solution, cf.

Proposition 3.4) and that P̂(m) is a.s. convergent to P(m), as m goes to infinity

(cf. Proposition 3.6), we get that
(
I2
r − P̂(m) · I2

g

)−1

exists starting from a certain

m∗.
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In order to investigate the asymptotic properties of Ψ̂2(m) as m goes to infinity,

note that, according to (3.20), Ψ2 is expressed as a continuous and differentiable

function of P. Nonetheless, it will be convenient to express Ψ2 as a function of

independent variables. Consequently, let us consider

Φ2 = (Φ1
2, . . . ,Φ

s
2) : Rs(s−1) → Rs

defined by

Φ2(pij, i = 1, . . . , s, j = 1, . . . , s− 1)

=
(
I2
r −P · I2

g

)−1 ·P · (g � g + 2Ψ1 � g � g) = Ψ2, (3.34)

where, for any i ∈ E, we express pis as a function of the arguments of Φ2, pis =∑s−1
j=1 pij. Let us now give the analogous of Theorem 3.10 for the second order price-

dividend ratio.

Theorem 3.12. The estimator of the second order price-dividend ratio proposed in

(3.33) is:

1. strongly consistent, as m goes to infinity, i.e.,

Ψ̂2(m)
a.s.−−−→

m→∞
Ψ2; (3.35)

2. asymptotically normal, as m goes to infinity, i.e.,

√
m
(
Ψ̂2(m)−Ψ2

)
D−−−→

m→∞
Ns(0,Σ2), (3.36)

where the covariance matrix Σ2 has the form

Σ2 = Φ′2Γ(Φ′2)> ∈Ms×s, (3.37)

where:
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• Γ ∈ Ms(s−1)×s(s−1) is the restriction of Γ̃ given in (3.24) to s(s − 1) ×

s(s − 1), in the sense that Γ is the asymptotic covariance matrix of the

vector (
√
m (p̂ij(m)− pij))i=1,...,s,j=1,...,s−1;

• Φ′2 =
(
∂Φi2
∂plk

)
i,l=1,...,s,k=1,...,s−1

∈ Ms×s(s−1) is the partial derivative matrix

of Φ2 with respect to (pij, i = 1, . . . , s, j = 1, . . . , s−1); detailed expression

of this matrix will be given later in (A.21) and (A.22).

Proof. See appendix.

Estimation of the forecasted fundamental prices

Using similar techniques it is possible to give an estimator of the forecasted funda-

mental prices obtained in (3.22). This estimator is given by


Ê(n)(m)p(dk, g1)

...

Ê(n)(m)p(dk, gs)

 = dkP̂
n(m)Ign


ψ̂1(g1;m)

...

ψ̂1(gs;m)

 , (3.38)

where P̂(m) = (p̂ij(m))i,j∈E, with p̂ij(m) the classical MLE given in (3.23) and

Ψ̂1(m) given in (3.29).

For any n ∈ N∗,
(
E(n)p(dk, g1), . . . , E(n)p(dk, gs)

)>
can be expressed as a differ-

entiable function of P. Nonetheless, it is convenient to express it as a function of

independent variables. Consequently, let us consider

Θ = (Θ1, . . . ,Θs) : Rs(s−1) → Rs

defined by

Θ(pij, i = 1, . . . , s, j = 1, . . . , s− 1) = dkP
n(m)IgnΨ1

=
(
E(n)p(dk, g1), . . . , E(n)p(dk, gs)

)>
, (3.39)

where, for any i ∈ E, we express pis as a function of the arguments of Θ, pis =
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∑s−1
j=1 pij.

Theorem 3.13. The estimator of the forecasted fundamental prices given in (3.38)

is:

1. strongly consistent, as m goes to infinity, i.e.,


Ê(n)(m)p(dk, g1)

...

Ê(n)(m)p(dk, gs)

 a.s.−−−→
m→∞


E(n)p(dk, g1)

...

E(n)p(dk, gs)

 ; (3.40)

2. asymptotically normal, as m goes to infinity, i.e.,

√
m




Ê(n)(m)p(dk, g1)

...

Ê(n)(m)p(dk, gs)

−


E(n)p(dk, g1)

...

E(n)p(dk, gs)


 D−−−→

m→∞
Ns(0,ΣΘ), (3.41)

where the covariance matrix ΣΘ has the form

ΣΘ = Θ′Γ(Θ′)> ∈Ms×s, (3.42)

where:

• Γ ∈ Ms(s−1)×s(s−1) is the restriction of Γ̃ given in (3.24) to s(s − 1) ×

s(s − 1), in the sense that Γ is the asymptotic covariance matrix of the

vector (
√
m (p̂ij(m)− pij))i=1,...,s,j=1,...,s−1;

• Θ′ =
(
∂Θi

∂plk

)
i,l=1,...,s,k=1,...,s−1

∈ Ms×s(s−1) is the partial derivative matrix

of Θ with respect to (pij, i = 1, . . . , s, j = 1, . . . , s−1); detailed expression

of this matrix will be given later in (A.24) and (A.25).

Proof. See appendix.

58



Obs Mean Median Min Max Std
1739 13.9200 11.9105 4.7315 43.5155 7.1223

Table 3.1: Descriptive statistics of the dividend series

3.3 Application to real dividend data

The Markov stock model developed in this paper is illustrated by analysing a sample

of Stock Market Data given in Shiller (2005). The data can be downloaded from

http://www.econ.yale.edu/˜shiller/data.htm. It has been updated by Robert J.

Shiller in order to cover S&P 500 index data on composite stock prices, dividends

and earnings on a monthly basis since January 18711. The values of the nominal

dividends included in the data represent 12 months moving sums adjusted to index

for the last quarter of the year. For our purpose, we use the real dividends computed

from the nominal ones adjusted for inflation. The Table 3.1 shows some descriptive

statistics of the dataset.

The dividend growth sequence has been calculated according to the equation

(3.7).

To apply the Markov model it is necessary to discretize the dividend growth

distribution in as many bins as the desired number of states. We fix the width of

the discretization intervals to a value that we identify with the standard deviation

of the dividend growth σ, centering the discretization around the value 1, that is

the absence of growth. Indeed, using this approach of discretization makes evident

that the maximum allowable states with the available data is max(g)−min(g)
σ

where

g is the dividend growth sequence; in our dataset this ratio is ∼= 11. Moreover, in

order to include all the data, the width of the external bins will be different from σ.

The discretization result for a five states model is shown if Figure 3.1.

Once the number of states has been selected, we can calculate their values

through the median value of the dividend growth in every interval and also the

1“Monthly dividend and earnings data are computed from the S&P four-quarter totals for
the quarter since 1926, with linear interpolation to monthly figures. Dividend and earnings data
before 1926 are from Cowles and associates (Common Stock Indexes, 2nd ed. [Bloomington, Ind.:
Principia Press, 1939]), interpolated from annual data”
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Figure 3.1: Discretization result for five states

State Dividend growth range State value
1 0.911 - 0.978 0.969
2 0.979 - 0.993 0.990
3 0.994 - 1.007 1.001
4 1.008 - 1.022 1.011
5 1.023 - 1.080 1.030

Table 3.2: Dividend growth discretization with five states

one step transition probabilities matrix using the MLE given in (3.23).

Setting, for example, the number of states equal to 5, the edges of the intervals

identifying the dividend growth range and the value of the states are indicated in

Table 3.2 and the estimated transition probability matrix, with the log-likelihood

value of −1776.733, is shown in Table 3.3.

From the transition probabilities we calculate the one step ahead forecast starting

from January 1871 to the end of the series. Considering that the first rate of growth

g = 0.9704 falls into the first state, we can use the first row of the matrix to predict

Pij j = 1 2 3 4 5
i = 1 0.495 0.267 0.152 0.057 0.029

2 0.134 0.424 0.335 0.067 0.040
3 0.015 0.076 0.740 0.144 0.024
4 0.016 0.066 0.368 0.484 0.066
5 0.019 0.049 0.194 0.311 0.427

Table 3.3: Transition probability matrix with five states
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the following growth rate, thus the next dividend value. In general, if at current

time t the growth value of dividend is in state i ∈ E, then next dividend growth is

calculated as:

g(t+ 1) = pi1g1 + pi2g2 + pi3g3 + pi4g4 + pi5g5 (3.43)

and the dividend value by

Done
f (t+ 1) = Dr(t)g(t+ 1) (3.44)

where Dr(t) represents the real dividend observed from the data at time t and

Done
f (t+ 1) is the one step forecasted dividend at time t+ 1 using the Markov chain

model.

We also computed the all steps forecast Dall
f (t + 1) at time t + 1 using the

forecasted dividend Dall
f (t) at time t through the relation

Dall
f (t+ 1) = Dall

f (t)g(t+ 1), (3.45)

where Dall
f (0) is Dr(0).

The results are shown in Figure 3.2. The right panel represents the same data

as the left panel, zoomed from time 925 to 975, in order to show the extremely good

predictability of the model using the one step ahead forecasting.

Then, in order to obtain an indicator of the quality of the prediction we calculated

the Root Mean Square Error (RMSE) which is a measure of the distance between

the forecasted data and the real data:

RMSE =

√√√√ 1

N

N∑
t=1

(Dr(t)−Df (t))2, (3.46)

where N is the length of the series, Dr(t) represents the real dividend, while Df (t)

represents either the one step forecasted dividend at time t, Done
f (t), or the all step

forecasted dividend at time t, Dall
f (t). In the model with five states the value of the

RMSE is 0.095 for the one step analysis and 4.325 for the all step analysis.
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Figure 3.2: Dividend forecast

A repetition of the computation for different values of the number of states allows

us to set the optimal number of states for the model as the value that minimize the

RMSE. The values are represented in Figure 3.3.

The figure shows a decreasing trend for the one step forecast that suggests that

the prediction becomes more accurate when increasing the numbers of states of the

model. In this way, we decided to work with a five state model because models with

a higher number of states improve the results very modestly and, at the same time,

could make the estimation results worse due to increasing the parameter space of

the model.

Once the optimal number of states for these available data has been chosen, the

next step is the computation of the price dividend ratio ψ1(gk)k∈E and of the second

order moment of the price ψ2(gk)k∈E. To this end, it is necessary to consider the

proper value of the rate of return of the analyzed data. Therefore, we calculate the

proper discount factor that coincides with the rate of return of the S&P 500. For our

analysis, we calculated the historical rate of return of the S&P 500 since January

1871, as Compound Annual Growth Rate, corresponding to the geometric mean of

the annual market returns. Its value, adjusted for the inflation, is 6.3264%. This

value verifies both assumptions A1 and A2.

The computation of the estimators of the price-dividend ratio and of the second-
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Figure 3.3: RMSE values for one step forecast

State Price dividend ratio ψ1(g) 2nd order Price dividend ratio ψ2(g)
1 15.516 ± 0.190 242.028 ± 5.742
2 15.856 ± 0.163 252.559 ± 5.010
3 16.155 ± 0.140 261.893 ± 4.348
4 16.300 ± 0.149 266.662 ± 4.659
5 16.560 ± 0.177 275.403 ± 5.564

Table 3.4: Price dividend ratio and second order moment values for the five states
(Intervals at confidence level α = 5%)

order moment is done by means of formulas (3.29) and (3.33) and the values are

shown in Table 3.4, with the lower values associated to state 1 and the greater values

to state 5. In the same table there are also reported the confidence intervals for the

first and second-order price-dividend ratios that are evaluated using the asymptotic

covariance matrices calculated in Theorems 3.10 and 3.12. As a matter of example,

the confidence interval for ψ1(gi) at a confidence level (1− α) is:

ψ̂1(gi;m)− z1−α
2

√
Σ1(1, 1)√
m

< ψ1(gi) < ψ̂1(gi;m) + z1−α
2

√
Σ1(1, 1)√
m

,

where zα is the quantile of order α of the standard normal distribution.

To assess the stability of this model we undertook a test on the width of the

discretization bins, that is on the sensitivity of the model with respect to the edges

that denote the state space. This test consists in modifying the widths of the bin
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Figure 3.4: Stability test for every state.

State min(ψ1(g)) max(ψ1(g)) mean(ψ1(g)) std(ψ1(g)) ψ1(g), ε = 0
1 15.4845 15.5306 15.5114 0.0125 15.5157
2 15.8304 15.8563 15.8478 0.0076 15.8563
3 16.1273 16.1600 16.1506 0.0084 16.1551
4 16.2761 16.3061 16.2970 0.0075 16.2996
5 16.5379 16.5644 16.5573 0.0075 16.5600

Table 3.5: Statistics related to the stability test.

with values σ± ε. For the computation, we took 100 values of ε ranging from −10−4

and 10−4 at fixed intervals to have the corresponding price dividend ratio ψ1(g(k))

for every state. The results of the test show that the model is quite stable to little

variation of σ. Figure 3.4 shows the distribution of the values of the price-dividend

ratio for all the five states. The red striped vertical line represents the price-dividend

ratio when ε = 0. The statistics for the stability test, shown in Table 3.5, clearly

states the effectiveness of the discretization method based on the σ value.

The tested model shows a good predictability of future dividend, hence of future

prices when analyzing all the dividend series from 1871. To make the test more

realistic we now apply the model considering a limited amount of historical data of

different time ranges in order to predict future values. First we fix the time interval

of prediction, as a typical application would suggest, around 40 periods. Hence we

chose the threshold date. From this threshold, going backward, we can calculate the
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transition probabilities matrices based on the last 100 observations, the last 200 up

to the last 500 past observations. Then we calculate the RMSE variations for the

different time ranges in order to asses the effect of the inclusion of more historical

data in the model. The RMSE values are then compared and plotted in Figure 3.5.

Depending on the growth values included in the restricted dataset, the constrain

given from max(g)−min(g)
σ

puts a limit to the maximum states allowed, like the 100,

200 and 300 periods cases. For every chosen period, the RMSE values decrease when

increasing the number of states, especially for the one-step analysis, following the

behavior that we have already analyzed. Moreover, the results reveal that small

periods of analysis have approximately the same level of predictability as bigger

periods.

3.4 Conclusion

In this chapter, we extended the Markov chain based dividend discount model intro-

duced in Ghezzi and Piccardi (2003) by computing the second-order price-dividend

ratio, that is a measure of risk to attach to the price-dividend ratio for measuring

the profitability of an investment in a stock. In the second section, we developed

non-parametric statistical techniques to estimate the financial quantities and the

corresponding confidence interval starting from a time series of dividend data. Also,

along with the estimators, we proposed their asymptotic properties. The chapter

concludes with a real problem application where we analysed many practical prob-

lems that an analyst can face when applying the model, e.g. the determination of

the number of states for the Markov chain, the determination of the states and of

their values, the stability of the results with respect to the choice of the state space

and the forecasting of dividend and fundamental value and risk.

65



Figure 3.5: RMSE values for one-step and all step prediction for different time ranges
of analysis
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4 A multivariate Markov chain

stock model

In this chapter we present a dividend stock valuation model where multiple dividend

growth series and their dependencies are modelled using a multivariate Markov

chain, and extend the model proposed in previous chapter to a multivariate setting.

Like in previous model, we compute the first and second order price-dividend ratios

by solving corresponding linear systems of equations and show that a different price-

dividend ratio is attached to each combination of states of the dividend growth

process of each stock. Subsequently, we provide a formula for the computation of

the variances and covariances between stocks in a portfolio. Finally, we apply the

theoretical model to the dividend series of three US stocks and perform comparisons

with existing models.

This chapter is organised as follows: in Section 4.1 we review the basic dividend

valuation model and then we define the multivariate Markov model. Then, Section

4.2 presents an application of the theoretical model to three US stocks and discusses

the validity of the results in a comparison with other dividend valuation models. All

proofs are left in the Appendix.

4.1 Model

In this section we first present general information on fundamental analysis, i.e.

how to price firms on the basis of fundamentals and successively we advance a

multivariate Markov chain model as a suitable environment for the valuation of the
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returns and risk of a firm. The multivariate model allows us to consider a dependence

structure between a pool of stocks in the pricing mechanism in order to measure the

influence of each stock on the other stocks.

4.1.1 The Basic Dividend Valuation Model

Suppose a stock is paying dividends in time. The value of the dividends is not known

in advance and then a common choice is to consider it as generated by a discrete

time random process {D(k)}k∈N. Since dividends are a measure of profitability of the

firm, the value of the corresponding stock can be expressed in terms of discounted

future dividends and therefore is a realisation of a discrete time stochastic process

{P(k)}k∈N. In an efficient market, price and dividend obey the relation

P(k) =
D(k + 1) + P(k + 1)

r
, (4.1)

where r is one plus the required rate of return on the stock. Relation (4.1) suggests

that at time k the stock is valued after the dividend D(k) = d(k) has been paid.

This formula equates the value at time k to the dividend at k + 1, which is due

to the ownership of the stock during the interval [k, k + 1), plus the value of the

stock at time k+ 1. These two quantities are divided by r in order to discount them

at time k.

Let p(k) := E(k)[P(k)] be the fundamental price at time k. From relation (4.1)

we get

p(k) =
E(k)[D(k + 1) + P(k + 1)]

r
, (4.2)

which expresses the value of the stock in a dividend based present value model. As

it is well known, see for example Samuelson (1973), if we assume as transversality

condition that

lim
i→+∞

E(k)[P(k + i)]

ri
= 0, (4.3)
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the unique solution of (4.2) is expressed by the series

p(k) =
+∞∑
i=1

E(k)[D(k + i)]

ri
. (4.4)

Formula (4.4) evaluates the stock as a function of expected future dividend

stream and discount rates.

If condition (4.3) is not assumed, Blanchard and Watson (1982) proved that

different solutions of the fundamental equation can exist, thus revealing the presence

of bubbles.

Since dividends are random, they are uncertain and accordingly prices will show

deviations from their expected value. For this reason it is important to introduce a

risk measure able to express the effects of dividends uncertainty into fundamental

prices. This problem has been recently investigated in a multinomial model and in

Markov and semi-Markov chain model by Agosto and Moretto (2015), Barbu et al.

(2017), D’Amico (2017). To quantify this effect, according to Barbu et al. (2017)

we introduce a risk measure:

P2(k) := (P(k))2 =

(
D(k + 1) + P(k + 1)

r

)2

. (4.5)

Successive substitutions in future prices P(k +N) of relation (4.1) yield

P2(k) =
N∑
i=1

D2(k + i)

r2i
+ 2

N∑
i=1

N∑
j>i

D(k + i)D(k + j)

ri+j

+ 2
N∑
i=1

D(k + i)P(k +N)

ri+N
+
P2(k +N)

r2N
.

(4.6)

Now, set p2(k) := E(k)[P2(k)] and assume that

lim
N→+∞

E(k)[P2(k +N)]

r2N
= 0, (4.7)

and
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lim
N→+∞

N∑
i=1

E(k)[D(k + i)P(k +N)]

ri+N
= 0, (4.8)

hold true, then we can deduce that:

p2(k) =
+∞∑
i=1

E(k)[D
2(k + i)]

r2i
+ 2

+∞∑
i=1

∑
j>i

E(k)[D(k + i)D(k + j)]

ri+j
. (4.9)

Expression (4.9) is called the fundamental formula of the risk. It expresses the

risk in term of the second order moment of the value process, see Barbu et al. (2017),

D’Amico (2017). From the formula it is possible to recognise risk as a function of

the second order and product moments of the dividend process.

In a recent paper, Agosto et al. (2018) considered the problem of computing the

covariance between two stocks that may be held in a portfolio by an investor. In

general the two stocks may be correlated and it is important to be able to consider

this effect in the financial evaluation of a stock or of a portfolio. In this respect, let

us denote by M(α,β)(k) the price product between stocks α and β, i.e.

M(α,β)(k) := P(α)(k) · P(β)(k) =
∏

a∈{α,β}

(
D(a)(k + 1) + P(a)(k + 1)

ra

)
,

where ra denotes one plus the required rate of return for stock a. Successive sub-

stitutions of relation (4.1) for each stock into future prices Pa(k + N), a ∈ {α, β}

together with the fulfilment of condition

lim
N→+∞

E(k)[P(α)(k +N)P(β)(k +N)]

rNα · rNβ
= 0,

and condition

lim
N→+∞

N∑
i=1

E(k)

[D(α)(k + i)P(β)(k +N)

riα · rNβ

]
= lim

N→+∞

N∑
i=1

E(k)[
D(β)(k + i)P(α)(k +N)

rNα · riβ
] = 0,
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yield

p
(α,β)
2 (k) := E(k)[M(α,β)(k)]

=
+∞∑
i=1

E(k)

[D(α)(k + i)D(β)(k + i)

riα · riβ

]
+

+∞∑
i=1

∑
j>i

E(k)

[D(α)(k + i)D(β)(k + j)

riα · r
j
β

]
+

+∞∑
i=1

∑
j>i

E(k)

[D(α)(k + j)D(β)(k + i)

rjα · rjβ

]
.

(4.10)

We call this expression the fundamental formula of the price-product . The com-

putation of formula (4.10) depends on the joint dynamics of the two stocks. A first

attempt in this direction was done by Agosto et al. (2018) where a Markov chain

with state space equal to the set of possible couples of growth-dividend values for

both stocks is considered. We know, however, that this simple strategy cannot be

implemented in real applications especially when multiple stocks are considered as

dependent because there is a dramatic increase in the number of parameters to be

estimated. As a matter of example, if we consider a portfolio of m stocks and each

one may assume d different values of the growth-dividend process then a total of

dm · (dm − 1) transition probabilities have to be estimated.

4.1.2 A Multivariate Markov Model of Value

In this section, we propose a multivariate Markov chain model for stock valuation.

The model belongs to the class of mixture transition distribution models which go

back to the pioneering work of Raftery (1985). The idea of creating a mixture of

Markov transition probabilities to represent a multivariate Markov model has found

a detailed theoretical and applied description in the book by Ching and Ng (2006)

where an almost complete list of then available references to this class of stochastic

processes can be recovered.

Let us consider the problem of how to price a stock when we have at our disposal

information about several stocks that may constitute our financial portfolio. As

it is well known in finance, it is important to apply a model that considers the
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dependence structure that eventually characterise the pool of stocks. Let us assume

that our portfolio is constituted of γ stocks. For each α = 1, 2, . . . , γ we denote by

{D(α)(k)}k∈N the dividend process. We assume that

D(α)(k + 1) = G(α)(k + 1) ·D(α)(k), (4.11)

where {G(α)}k∈N is the growth-dividend random process for stock α. Relation (4.11)

affirms that we are considering a geometric model of increases/decreases in the

dividends. Some recent contributions were based on the same idea of geometric

model of Markov and semi-Markov type, see e.g. Ghezzi and Piccardi (2003), Barbu

et al. (2017), D’Amico (2017). Although widely used, the Markov and semi-Markov

model are subject to an important limitation, i.e. independence of the dividend pro-

cesses of the considered stocks. For this reason, we consider a generalisation where

the growth-dividend processes {G(1)(k), G(2)(k), . . . , G(γ)(k)}k∈N form a multivariate

Markov chain.

Let A
(α)
i (n) := P[G(α)(n) = i] be probability of growth-dividend of stock α to

be at time n in state i. Define the corresponding vector of probability distribution

Aα(n) := [A
(α)
1 , . . . , A

(α)
m ].

In the multivariate Markov chain model the following relationship is formulated

A(α)(n+ 1) =

γ∑
β=1

A(β)(n) · λβ,α ·P(β,α), (4.12)

where λβ,α ∈ [0, 1],
∑γ

β=1 = 1 and P(β,α) is the transition probability matrix of stock

α given the state occupied one time step before by stock β, i.e.

P
(β,α)
i,j = P[G(α)(n+ 1) = j | G(β)(n) = i]. (4.13)

According to equation (4.12) the probability distribution function of the growth-

dividend process at time n+ 1 for the α stock depends not only on the state of the

growth-dividend process of the same stock at time n, but on the set of states visited
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by every stock in the portfolio at time n.

A consequence of the adopted multivariate model is that the price of the α stock

at any time k, given all information available in the market at that time, depends

on the vector of states of the growth-dividend processes of the pool of stocks, i.e.

G(k) = g(k). Indeed, as a direct generalisation of (4.4) we have

p(α)(g(k)) =
+∞∑
i=1

E(k)[D
(α)(k + i)]

riα

=
+∞∑
i=1

(E(k)[
∏i

j=1G
(α)(k + j)]

riα

)
d(α)(k).

(4.14)

Let e(α) ∈ E be the vector denoting the state of the α-stock, i.e. e(α) =

(0, . . . , 0, 1, 0, . . . , 0) with the non zero element in the j-th position, means that

the stock α occupies a state of the growth-dividend process equal to gj. The state

of the growth-dividend process for the pool of stocks can be represented by means

of E = {e(α)
1 , e

(α)
2 , . . . , e

(α)
m }, which is the set of unit vectors in Rm.

Relation (4.14) provide a representation of prices as a series. Therefore, it is

important to determine sufficient conditions on the model parameters such that

prices are finite. To this end, let us assume that

Assumption 1. For every stock α ∈ {1, . . . , γ} we assume that the following con-

dition holds true:

g(α;1) := max
e(1),...,e(γ)

(
m∑
j=1

γ∑
β=1

m∑
h=1

e
(β)
h λβ,αP

(β,α)
h,j gj

)
< rα

Theorem 4.1. Let g(k) denotes the vector of states of the multivariate growth-

dividend process of the pool of stocks at current time k ∈ N. Let us assume that

Assumption 1 holds true. Then:

i) p(α)(g(k)) =
+∞∑
i=1

E(k)[
∏i

j=1G
(α)(k + j)]

riα
d(α)(k) < +∞

ii) lim
i→+∞

E(k)[P(α)(k + i)]

riα
= 0.
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Proof. See appendix.

Remark 4.2. The theorem gives a sufficient condition under which, first, prices are

expressed by convergent series, and second, the transversality condition avoiding the

presence of speculative bubbles is satisfied.

Definition 4.3. Define the price-dividend ratio for the α-th stock as follows:

ψ
(α)
1 (g(k)) :=

p(α)(g(k))

d(α)(k)
=

+∞∑
i=1

E(k)[
∏i

j=1G
(α)(k + i)]

riα
. (4.15)

Theorem 4.4. Let G(k) = ga(k) = (g
(1)
a1 , . . . , g

(γ)
aγ ) denotes the vector of states of

the multivariate growth-dividend process of the pool of stocks at current time k ∈ N.

Let us assume that Assumption 1 holds true. Then, for every stock α ∈ {1, . . . , γ}

we have that:

ψ
(α)
1 (g(1)

a1
, . . . , g(γ)

aγ ) =
1

rα

{ m∑
jα=1

γ∑
β=1

m∑
h=1

e
(β)
h (k)λβ,αP

(β,α)
h,jα

g
(α)
jα

+

m∑
j1,...,jγ=1

ψ
(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

) · g(α)
jα
·

γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

} (4.16)

This linear system of mγ equations in mγ unknown admits a unique solution.

Proof. See appendix.

Remark 4.5. Theorem 4.4 gives an effective way to get prices by solving a linear

system of equations and by multiplying the price-dividend ratio with the initial value

of the dividend process. It shows that a different price-dividend ratio is attached to

each vector (g
(1)
a1 , . . . , g

(γ)
aγ ) of the multivariate growth-dividend process G(k).

Remark 4.6. If λw,f = δw,f then the stocks are independent of each other and we

recover the linear system of equations established in Ghezzi and Piccardi (2003) for

the uni-dimensional Markov model, i.e.

ψ(gi)r =
m∑
h=1

pi,hgh +
m∑
h=1

ψ(gh)pgi,gh
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The evaluation of the second order moment of the price process for any stock

α ∈ {1, . . . , γ} based on the MVMC model shares a similar strategy to that used

for the computation of the first order moment. Anyway, the valuation of p
(α)
2 (g(k))

requires control for the second order moment of the growth-dividend process as well

as the first order moment as done with Assumption 1. For this reason we introduce

the following additional assumption:

Assumption 2. For every stock α ∈ {1, . . . , γ} we assume that:

g(α;2) := max
e(1),...,e(γ)

(
m∑
j=1

γ∑
β=1

m∑
h=1

e
(β)
h λβ,αP

(β,α)
h,j (gj)

2

)
< r2

α

Theorem 4.7. Let g(k) denotes the vector of states of the multivariate growth-

dividend process of the pool of stocks at current time k ∈ N. Let us assume that

Assumptions 1 and 2 hold true. Then:

p
(α)
2 (g(k)) =

+∞∑
i=1

E(k)

[(
D(α)(k + i)

)2]
r2i
α

+2
+∞∑
i=1

∑
j>i

E(k)[D
(α)(k + i)D(α)(k + j)]

ri+iα

< +∞,

lim
N→+∞

E(k)

[(
P(α)(k +N)

)2]
r2N
α

= 0, (4.17a)

lim
N→+∞

N∑
i=1

E(k)[D
(α)(k + i)P(α)(k +N)]

ri+Nα

= 0. (4.17b)

Proof. See appendix.

Remark 4.8. Theorem 4.7 presents conditions under which the transversality con-

ditions are satisfied so that the presence of speculative bubbles is avoided and the

representation of the risk as a convergent series that depends only on the the div-

idend process is permitted. This results extend the corresponding result established

for univariate Markov chain model in Barbu et al. (2017).

Definition 4.9. Define the second-order price-dividend ratio for the α-th stock as

follows:

ψ
(α)
2 (g(k)) :=

p
(α)
2 (g(k))

(d(α)(k))2
.
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Theorem 4.10. Let G(k) = ga(k) = (g
(1)
a1 , . . . , g

(γ)
aγ ) denotes the vector of states

of the multivariate growth-dividend process of the pool of stocks at current time

k ∈ N. Let us assume that Assumptions 1 and 2 hold true. Then, for every stock

α ∈ {1, . . . , γ} we have that:

r2
αψ

(α)
2 (g(1)

a1
, . . . , g(γ)

aγ )−
m∑

j1,...,jγ=1

ψ
(α)
2 (g

(1)
j1
, . . . , g

(γ)
jγ

)(g
(α)
jα

)2
( γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

)
= 2

m∑
j1,...,jγ=1

ψ
(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

) · (g(α)
jα

)2 ·
( γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

)
+

m∑
j=1

γ∑
β=1

m∑
h=1

e
(β)
h (k)λβ,αP

(β,α)
h,j (g

(α)
j )2

(4.18)

This linear system of mγ equations in mγ unknown admits a unique solution.

Proof. See appendix.

Since the stocks are possibly correlated it makes sense to compute the covariance

function between two stocks, which in turns allows us to compute the variance of

the portfolio. In this respect we can claim the following result.

Theorem 4.11. Let g(k) denotes the vector of states of the multivariate growth-

dividend process of the pool of stocks at current time k ∈ N. Let us assume that

Assumptions 1 and 2 hold true. Then:

p
(α,β)
2 (k) =

+∞∑
i=1

E(k)

[D(α)(k + i)D(β)(k + i)

riαr
i
β

]
+

+∞∑
i=1

∑
j>i

E(k)

[D(α)(k + i)D(β)(k + j)

riαr
j
β

]
+

+∞∑
i=1

∑
j>i

E(k)

[D(α)(k + j)D(β)(k + i)

rjαriβ

]
< +∞

lim
N→+∞

E(k)[P(α)(k +N)P(β)(k +N)]

rNα r
N
β

= 0 (4.19a)

lim
N→+∞

N∑
i=1

E(k)

[D(α)(k + i)P(β)(k +N)

riαr
N
β

]
= 0 (4.19b)

lim
N→+∞

N∑
i=1

E(k)[
D(β)(k + i)P(α)(k +N)

riαr
N
β

] = 0 (4.19c)

76



Proof. See appendix.

Remark 4.12. Theorem 4.11 presents conditions under which the transversality

conditions are satisfied so that the presence of speculative bubbles is avoided and the

representation of the price-product between two stocks as a convergent series that

depends only on the the dividend processes is permitted.

Definition 4.13. Define the product price-dividend ratio for the α-th and β-th stocks

as follows:

ψ
(α;β)
2 (g(k)) :=

p
(α;β)
2 (g(k))

d(α)(k) · d(β)(k)
. (4.20)

Theorem 4.14. Let G(k) = ga(k) = (g
(1)
a1 , . . . , g

(γ)
aγ ) denotes the vector of states of

the multivariate growth-dividend process of the pool of stocks at current time k ∈ N.

Let us assume that Assumptions 1 and 2 hold true. Then, for every couple of stocks

α, β ∈ {1, . . . , γ} we have that:

rαrβψ
(α,β)
2 (g(1)

a1
, . . . , g(γ)

aγ ) =
m∑

jα,jβ=1

g
(α)
jα
g

(β)
jβ

( ∏
f∈{α,β}

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

)
+

m∑
j1,...,jγ=1

ψ
(β)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)(g
(α)
jα

)(g
(β)
jβ

)
( γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

)
+

m∑
j1,...,jγ=1

ψ
(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)(g
(α)
jα

)(g
(β)
jβ

)
( γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

)
+

m∑
j1,...,jγ=1

(g
(α)
j )(g

(β)
j )ψ

(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)ψ
(β)
1 (gj1 , . . . , gjγ )

( γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

)
(4.21)

Proof. See appendix.

Once we obtain the product price-dividend ratio for any couple (α, β) of stocks,

it is simple to compute the covariance function between the prices of two stocks:

Cov(P(α)(g(k)),P(β)(g(k)))

= E(k)[P(α)(g(k)) · P(β)(g(k))]− E(k)[P(α)(g(k))] · E(k)[P(β)(g(k))]

= d(α)(k)d(β)(k)

(
ψ

(α,β)
2 (g(k))− ψ(α)

1 (g(k))ψ
(β)
1 (g(k))

)
.

(4.22)
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The knowledge of the covariance function give us the possibility to use the model

for portfolio selection purposes when prices are assumed to behave according to the

Dividend Valuation Model.

4.2 Empirical application

In this section, we propose an application of our multivariate Markov chain model

to three stocks. To perform our valuation, we have to select stocks with a stable

dividend policy, i.e. regular dividend payments, and a sufficiently long history of

dividends payments. For this purpose, our attention goes to the so called Dividend

Kings. They are firms that mostly operate in consumer and industrial goods or

utilities sectors and aim at securing stable dividend payments to investors.

We source dividends data and end-of-day stock prices for the years 1987 to 2018

from Thomson Reuters Tick History (TRTH). Data are processed within the Market

Quality Dashboard1 developed and managed by Capital Markets CRC. To perform

a consistent valuation with yearly discount rates, i.e. company’s cost of capital, we

aggregate quarterly dividends to obtain yearly dividend series.

Among the group of Dividend Kings, we select three companies with the highest

correlations between dividend series to test how results change according to correla-

tions. However, the model can also be used when the correlation between stocks is

low or zero. In our application, Genuine Parts Company (GPC), Dover Corporation

(DOV), and Parker-Hannifin Corporation (PH), all traded in NYSE market, show

the highest correlations, e.g. 0.92 between DOV and GPC, 0.94 between DOV and

PH, and 0.97 between GPC and PH. These high correlations are also observable in

Figure 4.1 that shows the yearly dividend history for the three stocks. The chart

highlights a consistent upward trend after an initial period of stable dividends for

all series. This trend reflects positive dividend growth rates for all three stocks, i.e.

about 3% for GPC and DOV, and 5% for PH, as reported in Table 4.1. Panel A

of the table shows general descriptive statistics for the dividend series, while Panel

1MQD website: http://www.mqdashboard.com
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Figure 4.1: Yearly dividend series of Genuine Parts Company (GPC), Dover Cor-
poration (DOV), and Parker-Hannifin Corporation (PH) from 1987 to 2018.

B reports the same analysis for the dividend growth rate series that are obtained

according to equation (4.11).

The required rate of returns for solving the valuation equations is calculated

using the Capital Asset Pricing Model (CAPM). The model originates from the

idea of mean-variance efficient portfolio of Markowitz (1952), formalised by Sharpe

(1964) and Lintner (1965). The rationale is that risky stocks are expected to be more

remunerating than the risk free assets. Therefore, an investor expects a premium to

be paid for purchasing a risky stock,

πe = E[R]− E[Rf ]. (4.23)

The premium πe is called the ex-ante equity risk premium and it is generally

estimated using historical data. In our analysis, market and risk free returns are

proxied by S&P 500 and US treasury bills returns, respectively. Using the full period

from 1987 to 2018, we calculate the average of yearly returns for both series, as well

as a unique value for stock’s beta, based on the entire period consistently with the

Markov chain estimation approach Thus, our discounting factor r, that is one plus
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Panel A: Yearly dividends
count mean std min 25% 50% 75% max

GPC 32 1.51 0.53 0.99 1.15 1.28 1.66 2.84
DOV 32 0.96 0.42 0.40 0.66 0.88 1.10 1.90
PH 32 1.18 0.65 0.60 0.76 0.92 1.16 2.94

Panel B: Yearly dividend returns
count mean std min 25% 50% 75% max

GPC 31 1.03 0.08 0.84 1.02 1.06 1.08 1.15
DOV 31 1.03 0.14 0.56 1.05 1.07 1.09 1.17
PH 31 1.05 0.11 0.82 1.00 1.05 1.11 1.34

Table 4.1: Descriptive statistics of yearly dividends and yearly dividend returns from
1987 to 2018.

GPC DOV PH
β 0.749 0.970 1.060
r 1.069 1.075 1.077

Table 4.2: GPC, DOV, and PH betas and CAPM estimated rate of returns based
on stock data from 1987 to 2018.

the required rate of return, can be estimated as

ri = 1 +Rf + βim(Rm −Rf ), (4.24)

βim =
Cov[Ri, Rm]

V ar[Rm]
, (4.25)

where Rm is the yearly average return of the market portfolio, and Rf is the yearly

average return of the risk free asset.

Table 4.2 shows the estimated beta and discount factors for the three stocks.

The multivariate Markov stock model produces a price-dividend ratio for each

combination of series and states. Therefore, to enhance readability in this applica-

tion, we decided to model the dividend growth series with 3-state Markov chains.

Hence, results will contain 27 different price-dividend ratios for each series.

The first step in our analysis is to discretise the dividend returns into three

categories, i.e. the states of the Markov chain. We adopt the same approach of

Barbu et al. (2017), and in this 3-state scenario, we assume that the central state
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Dividend growth range State value
State GPC DOV PH GPC DOV PH

1 0.843-0.959 0.556-0.918 0.818-0.949 0.877 0.657 0.880
2 0.960-1.041 0.919-1.088 0.950-1.051 1.036 1.058 1.000
3 1.042-1.151 1.089-1.169 1.052-1.336 1.074 1.103 1.114

Table 4.3: Dividend growth discretisation with 3 states and corresponding state
values.

is the zero dividend growth and the external states are the negative and positive

returns. Also, we allow for the zero dividend growth to include returns that are

close to the null return, both negative and positive values. Thus, the central state

includes all the observations that are within a length of σ/2 from the zero return.

The edges of the discretisation procedures for each stock are reported in Table 4.3.

Moreover, the table shows the assumed dividend growth value for each state that

corresponds to the median of the observations falling inside each interval.

From the categorised series, we calculate the transition matrices of the multivari-

ate model. According to equation (4.13), we have a matrix for each combination of

two dividend series, P
(β,α)
i,j , including the combination of a series with itself. There-

fore, with three dividend growth series modelled through a 3-state Markov chain,

there are nine transition matrices with nine elements each. Considering that each

matrix is a stochastic matrix, there are γ2m(m − 1) = 54, parameters to estimate.

The estimation of the transition probabilities can be obtained using the maximum

likelihood estimator from Billingsley (1961a)

P̂
(β,α)
ij =

n
(β,α)
ij∑m

j=1 n
(β,α)
ij

, (4.26)

where n
(β,α)
ij is the occurrences of transitions from state i in series β to state j in

series α.

Table 4.4 reports nine 3 × 3 transition matrices. Each matrix contains nine

elements, each one representing the probability of moving from state i of series β to

state j of series α. Starting states i are read by rows and arriving state j are read

by columns. For the stochastic characteristic of the matrix, each row sums to one.
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GPC→GPC 0.4 0.2 0.4
0. 0.556 0.444

0.125 0.188 0.688


GPC→DOV 0.4 0.2 0.4

0. 0.778 0.222
0.062 0.625 0.312


GPC→ PH 0.2 0.6 0.2

0. 0.333 0.667
0.188 0.312 0.5


DOV →GPC0.333 0.333 0.333

0.111 0.278 0.611
0.111 0.333 0.556


DOV →DOV 0. 0.333 0.667

0.111 0.722 0.167
0.111 0.444 0.444


DOV → PH 0. 0.333 0.667

0.111 0.5 0.389
0.222 0.111 0.667


PH→GPC0.25 0.5 0.25

0.25 0.333 0.417
0. 0.214 0.786


PH→DOV 0.25 0. 0.75

0.167 0.75 0.083
0. 0.643 0.357


PH→ PH 0.25 0.25 0.5

0.167 0.417 0.417
0.071 0.357 0.571



Table 4.4: Transition matrices of the multivariate Markov stock model. Each matrix
contains nine transition probability indicating the probability of moving from state
i for series β to state j for series α. Starting states i are on rows and arriving state
j are on columns. Each row of each matrix sums to one.

As an example, the matrix PH → GPC, at bottom-left corner of Table 4.4, shows

the transitions probabilities when β = PH and α = GPC. It shows the dependence

of GPC dividends from PH dividends. Specifically, the first top-left element of the

matrix, i.e. 0.25, is the probability of arriving in state 1 of series GPC leaving state

1 of series PH.

The next step is the estimation of parameters λβ,α that represent the weights of

the dependencies between the series. We perform a maximum likelihood estimation

of the function

logL =
∑

i1,i2,...,iγ ,j

ni1,i2,...,iγ ,jlogP
MTD
α , (4.27)

where PMTD
α = λ1αP

(1,α)
i1,j

+ ...+λγ,αP
(γ,α)
iγ ,j

is the linear combination of the transition

probabilities from states iγ of series γ to state j of series α. Values ni1,i2,...,iγ ,j

represents the number of observed transition combinations of the type (i1, i2, ..., iγ)

at time t − 1 to state j of series α at time t. The maximisation is constrained by

the conditions
γ∑

β=1

λβ,α = 1, and λβ,α ≥ 0.

Computationally, the maximum likelihood estimation is obtained by minimising
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GPC DOV PH
GPC 0.45 0 0.55
DOV 0.15 0 0.85
PH 0.49 0.51 0

Table 4.5: Estimation of λβ,α. Values indicate the influence of stock β (read by
columns) to stock α (read by rows). Each row sums to one.

the negative likelihood function, using a minimisation algorithm under constraints,

namely Sequential Least SQuares Programming (SLSQP) optimisation subroutine

originally implemented by Kraft (1988). Table 4.5 reports the estimation of λβ,α for

the dividend growth series of GPC, DOC, and PH.

After calculating the transition matrices and the values of λβ,α and the required

discount factor, we can solve the system of linear equations in formula (4.16). In

our example, after verifying Assumption 1, we obtain a price-dividend ratio for each

combination of starting states and for each destination series, for a total of 81 values,

as reported in Table 4.6.

Finally, after verifying Assumption 2, we can solve the system of equations in

(4.18) to obtain the second order moment of the price dividend ratio for all three

series. Then, we solve equation (4.21) to calculate the second order moment of the

price-dividend ratio for the mixed combinations of the stock. Results are in Table

4.7.

After observing the state occupied from last dividend growth rates, i.e. state 3

for GPC, state 2 for DOV, and state 3 for PH, we calculate the variance-covariance

matrix for the three stocks according to equation (4.22). Results are reported in

Table 4.8 and can be used for portfolio selection purposes. Figure 4.2 shows a

simulation of the variance of portfolio that includes all three stock with different

weights. The portfolio variance is reported on z axis and weights of GPC and DOV

on x and y axis respectively. The weight of PH is not reported as the sum of the

three weights is one. From the figures, at different angles, it is evident that there

exists a specific combination of weights that minimises the portfolio variance. While,

including only one of the stocks in the portfolio will result in a higher variance.
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States ψ1

GPC DOV PH GPC DOV PH
1 1 1 32.8693 24.3190 29.1173

2 32.8649 24.2142 28.8670
3 33.9509 25.9960 28.8668

2 1 32.7255 24.0914 28.4871
2 32.7211 23.9876 28.2423
3 33.8027 25.7532 28.2421

3 1 32.8699 24.3300 28.7594
2 32.8656 24.2251 28.5123
3 33.9516 26.0077 28.5120

2 1 1 34.2770 25.4251 30.3092
2 34.2697 25.3181 30.0499
3 35.3628 27.1403 30.0496

2 1 34.1290 25.1915 29.6758
2 34.1216 25.0854 29.4219
3 35.2103 26.8914 29.4217

3 1 34.2778 25.4364 29.9495
2 34.2705 25.3293 29.6933
3 35.3636 27.1523 29.6930

3 1 1 33.9322 25.1327 29.6280
2 33.9255 25.0264 29.3735
3 35.0161 26.8333 29.3733

2 1 33.7849 24.9003 28.9973
2 33.7781 24.7949 28.7483
3 34.8644 26.5857 28.7481

3 1 33.9329 25.1439 29.2698
2 33.9262 25.0375 29.0185
3 35.0169 26.8453 29.0183

Table 4.6: Price-dividend ratios ψ1. Each combination of starting states for the
three series and each destination series produces a different price-dividend ratio.
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States ψ2

GPC DOV PH GPC DOV PH GPC:DOV GPC:PH DOV:PH
1 1 1 1179.55 749.42 931.79 801.05 959.14 709.00

2 1180.36 734.69 915.26 797.30 950.69 699.76
3 1255.18 830.86 915.82 883.91 981.61 751.88

2 1 1169.89 737.68 892.15 790.03 934.20 687.02
2 1170.69 723.17 876.33 786.33 925.96 678.06
3 1244.94 817.88 876.86 871.77 956.09 728.58

3 1 1179.50 750.92 911.14 801.42 947.55 700.84
2 1180.31 736.16 894.98 797.67 939.19 691.70
3 1255.13 832.52 895.53 884.32 969.74 743.22

2 1 1 1274.34 806.45 1006.88 872.59 1040.28 771.26
2 1274.79 791.19 989.17 868.59 1031.11 761.43
3 1350.53 891.00 989.77 960.17 1063.26 816.96

2 1 1264.13 794.19 966.84 860.89 1014.35 748.52
2 1264.57 779.16 949.84 856.94 1005.41 738.98
3 1339.74 877.50 950.41 947.32 1036.77 792.88

3 1 1274.28 808.01 986.02 872.98 1028.21 762.80
2 1274.74 792.72 968.68 868.99 1019.15 753.08
3 1350.48 892.72 969.27 960.61 1050.93 808.00

3 1 1 1252.34 791.96 964.88 854.14 1007.07 745.62
2 1252.86 776.87 947.80 850.22 998.18 736.06
3 1328.28 875.37 948.37 940.39 1029.70 789.91

2 1 1242.22 779.80 925.18 842.58 981.43 723.12
2 1242.72 764.94 908.80 838.71 972.77 713.84
3 1317.57 861.97 909.35 927.69 1003.49 766.08

3 1 1252.29 793.51 944.20 854.53 995.15 737.26
2 1252.81 778.39 927.48 850.61 986.36 727.81
3 1328.22 877.08 928.05 940.82 1017.50 781.05

Table 4.7: Second order price-dividend ratio ψ2. Values represents a measure of the
risk. Each combination of starting states for the three series and each destination
series produces a different value for the second order price-dividend ratio.

GPC DOV PH
GPC 820.16
DOV 4.28 560.18
PH 10.06 10.02 716.54

Table 4.8: Variance-covariance matrix for GPC, DOV, and PH.
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(a) (b)

Figure 4.2: Simulation of the variance of a hypothetical portfolio with different
weights of the three stocks. GPC and DOV weights are reported in x and y axis
respectively. PH weight is not shown as the three weights sum to one. The portfolio
variance is reported on z axis. Both subfigures shows the portfolio variance from
different angles. From the figures, it is clear that there is a specific combination of
weights that minimises the variance of the portfolio.

ψ1

State GPC DOV PH
1 33.08 23.78 30.19
2 36.41 22.24 30.11
3 35.47 22.62 31.10

Table 4.9: Price-dividend ratio calculated with the univariate Markov stock model
in Barbu et al. (2017).

Finally, we perform a comparison of our multivariate Markov stock model with

the univariate model proposed in Barbu et al. (2017). The univariate model yields

price-dividend ratios shown in Table 4.9. Performing the calculation for single divi-

dend growth series, we obtain only three price-dividend ratios for each series, corre-

sponding to each state of the Markov chain. Then, we calculate the estimated price

for the three companies, using both the multivariate and univariate models, and we

compare these values with the actual stock price. Table 4.10 reports the comparison

results.

It is interesting to note how dependencies between series tend to reduce the

variability in the stock valuation compared to the univariate analysis. For example,

GPC value reduces from the univariate model to the multivariate as well as PH, while

DOV increases its value. Comparing the stock price at 31 October 2018, GPC stock

price appears to be almost in line with the fundamental valuation performed with
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GPC DOV PH
Multivariate 98.84 50.51 84.52
Univariate 100.55 42.26 91.44
Stock price 97.92 82.84 151.63

Table 4.10: Estimated firms prices using the proposed multivariate Markov chain
model compared with univariate model estimations, and with the actual stock prices
at 31 October 2018.

the multivariate model, while DOV and PH are considerably overpriced, even though

DOV reduces its overpricing in the multivariate model. In general, the multivariate

model offers a wider range of valuations, depending on the combination of states

occupied by the dividend growth rates of all series, thus it allows for more dynamics,

including dependencies between series, and results in a better valuation.

4.3 Conclusion

This chapter presented a multivariate extension of the Markov chain stock model

introduced in Chapter 3. We focused on how dividend forecasts are updated taking

into account the possible dependencies between the state of the dividend processes

for each stock. In this model, each update of a state depends on a vector of states

of all the growth series. The model introduces a linear system of equations for the

first and second order price-dividend ratios that are attached to the vector of states.

Further, we proposed a formula for the computation of the variances and covariances

between stocks for portfolio selection and valuation purposes. The chapter closes

with an application to dividend growth series from three US stocks with a long

history of dividend payments and correlation between the series. The application

shows how to practically implement the model and how our proposed multivariate

model performs better than other dividend valuation models.
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5 A new measure of price

discovery in financial markets

In this chapter, we propose a new measure to establish price leadership among mul-

tiple related price series using a Multivariate Markov Chain. This new measure, the

Price Leadership Share (PLS), can easily calculated with more than two price series

simultaneously, offering an advantage over the existing price discovery measures. We

test our model to six gold contracts, including spot, futures, and ETF, over a 2-year

period, shows that gold futures contracts, mainly CME contract, have a major role

in price discovery confirming previous literature’s findings.

This chapter is organised as follows: Section 5.1 briefly reviews the multivariate

Markov chain model. Section 5.2 defines the Price Leadership Share measure. Fi-

nally, the empirical application on gold contracts is presented in section 5.3 along

with procedures on how to estimate the parameters of the model.

5.1 The Multivariate Markov Chain model

This section presents a brief review of the multivariate Markov chain model. The

first part describes a simple model with a single time series, followed by an analysis

of the multivariate setting, modelled via a Mixture Transition Distribution (MTD)

model that was first introduced by Raftery (1985) for high-order Markov chains to

reduce the number of parameters. For a comprehensive review on Markov chain

models see, e.g. Brémaud (1999).
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5.1.1 Discrete-time Markov chain

A categorical time series1 can be described as a sequence of random variables {St}t≥0

taking values in the setM = {1, 2, 3, ...,m}, that is the set of the possible states of

our sequence. This discrete-time stochastic process is called a Markov Chain when

it satisfies the following Markov Property :

Pr(St+1 = j|St = i, St−1 = it−1, ..., S0 = i0) = Pr(St+1 = j|St = i). (5.1)

Property (5.1) indicates that the probability of being in the state j at time t+ 1

depends only on the state i occupied by the series at time t, regardless of the previous

history. When this condition is independent of the time t, then the process is called

a Homogeneous Markov Chain (HMC), and the probability

Pr(St+1 = j|St = i) = pij, (5.2)

represents the probability to move from state i to state j at any point in time.

Considering all the possible combinations of changing from one state to another,

in the set of statesM, we can build the matrix P = {pij}i,j∈M with m2 elements, in

accordance to Formula (5.1), that is the transition probability matrix of the HMC:

P =

St

St−1 1 2 . . . m



1 p11 p12 · · · p1m

2 p21 p22 · · · p2m

...
...

...
. . .

...

m pm1 pm2 · · · pmm

, (5.3)

1In Section 5.3 we show how to model a price series using a Markov chain, after performing a
discretisation procedure.
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subject to 0 ≤ pij ≤ 1, ∀i, j ∈ M and
∑m

j=1 pij = 1, ∀j ∈ M. Each element of

the matrix is a probability and every change from a state i must end in a state j,

therefore the matrix is a stochastic matrix.

A Markov chain is fully defined when we know the initial probability distribution

and the transition probability matrix.

Let

A(t) := [A1, . . . , Am], (5.4)

be the probability vector where Ai(t) := Pr
(
St = i

)
is the probability of being in

state i at time t, with i ∈M, then

A(t+ 1) = A(t)P, (5.5)

A(t+ 1) = A(0)Pt. (5.6)

5.1.2 The Multivariate Markov process

The previous model can be extended to a multivariate setting, with more than one

time series. For every series α in Γ = {1, 2, ..., γ}, the probability of being in state

j depends on the state i1, ..., iγ occupied by all the available series one time step

before. The Markov Property in (5.1) becomes:

Pr[S
(α)
t+1 = j|(S(1)

t = i
(1)
t , S

(1)
t−1 = i

(1)
t−1, ..., S

(1)
0 = i

(1)
0 ), ...,

(S
(γ)
t = i

(γ)
t , S

(γ)
t−1 = i

(γ)
t−1, ..., S

(γ)
0 = i

(γ)
0 )] = (5.7)

Pr(S
(α)
t+1 = j|S(1)

t = i
(1)
t , ..., S

(γ)
t = i

(γ)
t ),

where α ∈ Γ. The new Property (5.7) shows that there are multiple dependencies

between the series. Therefore, the transition probability matrix of the multivariate

model must include each possible combination, mγ, for the initial states, and every
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initial state must end in one of the possible final combinations. The result ismγ(mγ−

1) total parameters to estimate for the multivariate Markov model, given that there

are mγ − 1 independent probabilities in each row. Such a configuration is not

practical in a real-world application because the number of parameters will increase

exponentially when the number of series and states increase.

Raftery (1985) proposed the Mixture Distribution Model (MTD) to reduce the

number of parameters to estimate for high order Markov chains, and Ching et al.

(2002) applied it to the multivariate Markov chains. A review of the MTD model

and its application is available in Berchtold and Raftery (2002). Applying the MTD

model the probability vector for series α at time t+ 1 becomes

A(α)(t+ 1) =

γ∑
β=1

A(β)(t) · λβ,α ·P(β,α), (5.8)

where Aα(t) := [A
(α)
1 , . . . , A

(α)
m ] and A

(α)
i (t) := Pr(S

(α)
t = i).

According to this condition, we can build γ2 transitions probability matrices

P(β,α), each one containing the transition probabilities from state i in series β to

state j in series α, with α, β ∈ Γ,

P(β,α) =

S
(α)
t

S
(β)
t−1 1 2 . . . m



1 p
(β,α)
11 p

(β,α)
12 · · · p

(β,α)
1m

2 p
(β,α)
21 p

(β,α)
22 · · · p

(β,α)
2m

...
...

...
. . .

...

m p
(β,α)
m1 p

(β,α)
m2 · · · p

(β,α)
mm

. (5.9)

Parameters λβ,α are the scalar weights that combine all the series, and are subject

to:

γ∑
β=1

λβ,α = 1, (5.10)
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λβ,α ≥ 0. (5.11)

The MTD model permits to reduce the total parameters to estimate frommγ(mγ−

1) to γ2m(m− 1) + γ(γ− 1), the first addend being the number of p
(β,α)
mm parameters

and the second the number of weights λβ,α.

5.2 Price Leadership Share

To overcome the limits of existing price discovery measures, we rely entirely on

our direct observations of stock prices, specifically on dependencies between price

changes. We notice that some prices update faster than others when there is new

information, and these changes are directly observable in the market. Thus, a price

change can be interpreted as a signal to other markets that, in turn, update their

prices based on that signal. In general, we argue that price changes dependencies

exist between price series in related markets.

If we assume that price changes from dependent price series are expressed as

sequences of random variables that satisfy the multivariate Markov property in (5.7),

then the realisation of a price change series α at time t+1 depends on price changes

at time t from all the related series, 1, . . . , γ. More specifically, equation (5.8) tells

us that the probability for a price change in series α of being in a specific state

(e.g., negative, positive or null) is a linear combination of all γ series of weighted

transition probabilities from each series initial states to the arrival state in series α.

In other words, the λβ,α weights indicate how much a series influences other series

in changing the price.

In general, there are γ2 values of λβ,α subject to condition (5.10) that can be

organised in a matrix form,
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Series β

Series α 1 2 . . . γ


1 λ1,1 λ2,1 . . . λγ,1

2 λ1,2 λ2,2 . . . λγ,2
...

...
...

. . .
...

γ λ1,γ λ2,γ . . . λγ,γ

. (5.12)

Each element of the matrix (5.12) measures the price change influence that series

β has on series α. For example, element λ1,1 is the portion of influence of series 1

on series 1, element λ2,1 is the portion of influence of series 2 on series 1, and so

on. Each row of the matrix contains the influence shares from all series to a specific

series α, including the self-influence, and the sum of all row’s elements is equal to

one.

To understand which price series is leading the others and to what extent, we

have to summarise values in the matrix (5.12). First, we exclude the self-influence

and focus only on the external influence, setting the diagonal elements of the matrix

to zero and, if γ > 2, normalising the row elements to sum to one,

Series β

Series α 1 2 . . . γ


1 0 λ∗2,1 . . . λ∗γ,1

2 λ∗1,2 0 . . . λ∗γ,2
...

...
...

. . .
...

γ λ∗1,γ λ∗2,γ . . . 0

, (5.13)

where

λ∗β,α =


λβ,α∑γ

β=1,β 6=α λβ,α
if γ > 2

λβ,α if γ = 2

. (5.14)
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Then, summing the elements of the matrix (5.13) by columns and normalising

the results to one, we obtain a probability distribution of external price change

influences, that we define Price Leadership Share (PLS),

PLS =

[ ∑γ
α=1 λ

∗
1,α∑γ

α=1

∑γ
β=1 λ

∗
β,α

, . . . ,

∑γ
α=1 λ

∗
γ,α∑γ

α=1

∑γ
β=1 λ

∗
β,α

]
, (5.15)

where
∑γ

α=1

∑γ
β=1 λ

∗
β,α = γ if all series have at least one external influence.

From the PLS distribution, we can identify the price series that is the leader

in impounding new information by simply calculating the mode of the distribution.

Moreover, we can measure the quantity of information that is carried by the prob-

ability distribution, and understand how the leadership is concentrated. We adopt

the entropy measure proposed by Theil (1967) and derived from the mathematical

theory of communication by Shannon (1948). The entropy of the price leadership

share can be expressed as

T =

γ∑
i=1

PLSilog(γPLSi), (5.16)

where PLSi are the elements of the price leadership share distribution (5.15), and

0 ≤ T ≤ log(γ). If one element of the PLS vector has probability equal to one

and all others zero, then the full information is conveyed by that element, i.e. it is

the sole leader, and the entropy value is equal to its highest value, log(γ). On the

contrary, when all elements of PLS have the same probability 1/γ, it means that

the information is equally distributed and there is no price leader. In this last case,

the entropy value is equal to zero.

We can generalise the entropy indicator to compare PLS distributions with dif-

ferent lengths. For example, if we apply our methodology to several contexts with

different numbers of price series and want to understand whether the price lead-

ership is stronger in one setting or another, we can compute a price leadership
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concentration index, that is the ratio of the entropy and its maximum value

L =
T

log(γ)
. (5.17)

Higher values of the index L mean higher price leadership concentration.

5.3 Empirical application

5.3.1 Data

We test our Price Leadership Share on six gold contracts across the world. Although

the major venue for trading physical gold is the London OTC market, we focus on

international exchange-traded contracts for the availability of high-frequency price

quotes. The data include one spot contract, from the Shanghai Gold Exchange

(SGE) matching market, four futures contracts from the Chicago Mercantile Ex-

change (CME), Shanghai Futures Exchange (SHFE), Tokyo Commodity Exchange

(TOCOM), and Dubai Gold & Commodities Exchange (DGCX), and one Exchange

Traded Fund, the SPDR gold shares (GLD) traded in NYSE Arca. The choice of

comparing the futures against the spot market is a common practice in price dis-

covery studies, with a major role attributed to futures contracts (Bohl et al., 2011,

Rosenberg and Traub, 2009). Specifically, Hauptfleisch et al. (2016) find that the

gold futures contract has a more important role in incorporating new information

about the value of gold than the London OTC market, despite the huge difference in

market share, 8% against 78% respectively. Moreover, we include the ETF because

some studies suggest that ETFs might have a role in the price discovery process

(see, e.g., Marshall et al., 2013).

Because of the discrete-time setting and consistent with other price discovery

measures, we use intraday prices series at different sampling intervals2 and perform

the analysis on a daily basis. For example, a price series of a 9-hour trading day,

2A common procedure includes the use of a 1-second interval midquote returns
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with sampling at a 1-second interval, would result in 32,400 observations, allowing

for extensive possibilities in setting the model parameters, number of series and

number of states, without incurring any estimation limitations. The estimation of

the measure on a daily basis permits us to understand the dynamics of the price

influence over time and avoid the effect of potential seasonal patterns in the price

series. Moreover, like other measures, we use midquote prices to capture the price

adjustment dynamics (Goettler et al., 2009).

In this application, we use intraday midquote log returns sampled at a 1-second

interval from January 2016 to December 2017. The data are sourced from Thom-

son Reuters Tick History (TRTH) and processed by the Market Quality Dashboard3

developed and managed by Capital Markets CRC. The Price Leadership Share mea-

sure is obtained on a daily basis from intraday returns, for the complete overlapping

trading hours of all contracts, that is between 1.30 pm and 6.30 pm UTC. Days of

holidays in any of the markets are excluded from the computation. The final sample

consists of 424 trading days.

For a better comprehension of markets analysed in this application, we compute

some market quality and efficiency metrics. Table 5.1 gives a summary of basic

metrics for all contracts. Total volume is the aggregated volume over the entire pe-

riod, expressed in millions of ounces. CME gold futures shows the highest activity

followed by SHFE. All other contracts have a very low trading activity. It is impor-

tant to keep in mind that the spot contract includes only quotes in the matching

market and not those from the OTC market. Other metrics are averages of the daily

weighted average across all trades and quotes. The effective spread is calculated as

the difference between midquote and actual transaction price, and it measures the

liquidity of the market. The lower the spread, the more liquid is the market. On

average, the ETF appears to be the most liquid contract, followed by CME. On the

contrary, DGCX and TOCOM futures contracts are the least liquid.

In addition, we use the variance ratio as a proxy for market efficiency (Lo and

3MQD website: http://www.mqdashboard.com
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Total Volume
(Mil oz)

Effective
Spread (bps)

Variance
Ratio

Order
Imbalance

Tick Size

CME 21.18 1.29 0.12 0.12 0.1 USD/oz
DGCX 0.04 2.71 0.15 -1.22 0.1 USD/oz
GLD 0.21 0.74 0.18 -0.34 0.1 USD/oz
TOCOM 0.87 2.55 0.23 -0.40 1 JPY/g
SGE 0.60 1.82 0.29 -2.59 0.01 CNY/g
SHFE 3.57 2.38 0.15 -0.03 0.05 CNY/g

Table 5.1: Market quality and efficiency metrics for six gold contracts for the period
January 2016 - December 2017. Figure are averages of daily metrics. Total volume
is aggregated over the entire period. All other metrics are the averages of the daily
weighted averages across all trades and quotes for the day.

MacKinlay, 1988, O’Hara and Ye, 2011). If a stock follows a random walk, returns

variance is a linear function of the measurement frequency. The variance ratio mea-

sures deviations from efficiency, meaning that lower numbers correspond to more

efficient markets. Overall, all contracts show low values of variance ratio. How-

ever, CME contract has a slightly higher efficiency. Finally, the order imbalance,

calculated as the volume difference between buyer and seller initiated trades, is a

measure of information asymmetry and it has effects on returns and liquidity. An

order imbalance close to zero is an optimal value. Again, in this case, SHFE shows

a value closer to zero, followed by CME.

From the analysis of Table 5.1, CME contract appears to be the ideal candidate

as the price leader, as the market quality and efficiency metrics are the best among

all contracts. It is followed by the gold ETF, while the Asian contracts show some

level of inefficiency and we do not expect them to have a significant share of price

leadership. However, we have to take into account the minimum tick size allowed in

each market for a fair comparison of price changes. For example, the US and Dubai

contracts share the same tick size, while the Asian contracts have different sizes,

that are bigger, in absolute terms, compared to the others. This difference will be

reflected in the price change dynamics. In fact, a slight change in the US market

cannot always be followed by a similarly small change in markets with higher tick

size because of the constrained minimum step for the price change. Nevertheless,

we can address this issue in the discretisation of price changes in case it turns to be
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a limit to the application of the model.

5.3.2 Parameters estimation

In the discrete-time multivariate Markov chain model, the series take values in the set

M = {1, 2, 3, ...,m}, therefore we have to accurately categorise every price change

into a possible state of the Markov Chain. This discretisation process can be per-

formed by identifying some critical thresholds, according to the number of states,

in a way that it is possible to describe the dynamics of the returns entirely. For

example, in a 3-state scenario with log-returns, we can assume that the central state

is the zero return and the external states are the negative and positive returns.

Moreover, following Barbu et al. (2017), to make the discretisation more realistic,

we can also assume that the price variations around the zero can be all considered

as null returns. In our setting, we include in the zero return all the observations

that are within a length of σ/2 from the null return and all the remaining returns

are associated to the external states. If the data are normally distributed, there will

be a 38% probability that a random observation will fall in the zero return area.

Successive thresholds can be set at σ distance from the others, in both directions,

up to the limit of the distribution to increase the number of states. We use an even

number of states always including the null return to better represent the stationary

series of price returns.

This discretisation technique is well suited for approximately normally distributed

time series of price returns and performs well when tested on market data. How-

ever, it can be easily adapted with the modification of the bin width according to

the distribution of the observed data. For example, when comparing multiple in-

struments with very different tick sizes, we can adapt the central bin size to include

small changes that happen in one market but cannot be reflected in the market with

wider tick size. A simulation of this simple discretisation method applied to the

CME gold futures returns is provided in Figure 5.1. A 3-state categorisation with a

central bin width equal to σ has been applied to the time series of price log returns.
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Figure 5.1: This figure shows how to model a price series with a Markov chain
model. The price log returns of the CME gold futures contract are categorised into
three states: the central state coincides with the null return, while the external
states represent the positive and negative returns. The central state includes all the
price returns that are within a σ \2 distance from the zero return, to allow for small
variations around the null return.

Once a categorical time series from the price returns is obtained, we estimate

the probabilities matrices. The probabilities pij for a simple Markov chain can

be estimated from the data using the Maximum Likelihood Estimation (see, e.g.,

Billingsley (1961a,b)). Given the stochastic nature of the matrix, we have to estimate

m(m− 1) probabilities.

If we consider an observed time series sn1 = s1, s2, ..., sn with n observations as

an outcome of the random process Sn, the probability of its realisation is:

Pr(Sn = sn) = Pr(S1 = s1)
n∏
t=2

Pr(St = st|St−1 = st−1). (5.18)

We can rewrite this probability in terms of transition probabilities to obtain the

likelihood function of a sample given the Markov chain model:

L(p) = Pr(S1 = s1)
m∏
i=1

m∏
j=1

p
nij
ij , (5.19)

where nij is the occurrences of transitions from state i to state j. Maximising the

logarithm of the likelihood function,
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L(p) = logL(p) = logPr(S1 = s1) +
∑
i,j

nijlogpij, (5.20)

we obtain the maximum likelihood estimator for the transition probabilities

p̂ij =
nij∑m
j=1 nij

. (5.21)

The extension to the multivariate Markov chain is straightforward. The estima-

tor in (5.21) becomes

p̂ij
(β,α) =

n
(β,α)
ij∑m

j=1 n
(β,α)
ij

, (5.22)

where i is the initial state of series β, and j is the arrival state of series α.

In this application with six series, modelled with a 3-state Markov chain, we

have 36 matrices of nine elements each for each day of the analysed period. Because

every matrix is a stochastic matrix of the type in (5.3), we have to estimate six

elements in each matrix with the estimator (5.22). Every price change series will

have six transition matrices, where each element is the probability of transitioning

from state i of series α at time t to state j of series β at time t+1. For every matrix,

states i are read by rows and states j are read by columns, therefore each row sums

to one. An example of transition probability matrices for the price influence of all

series on CME contract, for the data relative to 23 February 2016, is presented in

Table 5.2. In each matrix, we note a higher probability of arriving in a central state

from external states, showing a mean reversion pattern of the return series.

According to Equation (5.8), the probability of being in one of the states of a

specific price series is given by a linear combination of the vector of initial states

of all series, price influence weights λβ,α and transition probabilities. Therefore,

the next step is to estimate the portions of price influence. The estimation of the

parameters λβ,α is obtained maximising the likelihood function of the MTD model

(see Berchtold and Raftery (2002)),
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CME→ CME0.221 0.501 0.279
0.183 0.629 0.189
0.281 0.488 0.231


DGCX→ CME 0.23 0.506 0.264

0.204 0.592 0.204
0.25 0.492 0.257


GLD→ CME0.261 0.486 0.252

0.195 0.604 0.201
0.256 0.48 0.265


TOCOM → CME0.255 0.506 0.239

0.207 0.581 0.212
0.23 0.514 0.256


SGE→ CME0.352 0.5 0.148

0.211 0.572 0.217
0.217 0.478 0.304


SHFE→ CME0.245 0.507 0.247

0.209 0.58 0.212
0.226 0.508 0.266



Table 5.2: Example of transition probability matrices for the CME gold futures
price series for 23 February 2016, picked at random. All the contracts are modelled
with a 3-state Markov chain, with the central state being the zero log return, and
the external states the positive and negative log return. Every matrix represents
the transition probabilities of being in a state i in a specific contract at time t − 1
and ending in a state j of the CME contract at time t. For every matrix, states i
are read by rows and states j are read by columns. Each row sums to one.

logL(MTD) =
m∑

i1,...,iγ ,j=1

ni1,...,iγ ,j log(

γ∑
β=1

λβ,αP
(β,α)
iβ ,j

), (5.23)

where ni1,...,iγ ,j is the observed number of sequences of the type S
(1)
t−1 = i1, ..., S

(γ)
t−1 =

iγ, S
(α)
t = j, respecting constraints (5.10) and (5.11).

The software implementation performs a minimisation of the negative likelihood

function, using a minimisation algorithm under constraints, namely Sequential Least

SQuares Programming (SLSQP) optimisation subroutine originally implemented by

Kraft (1988).

The maximisation of the log-likelihood of the MTD function for the gold con-

tracts results in a matrix of price influence shares for each day of the analysis, like

the matrix in (5.12). Averaging the lambda matrices across the whole period, we

obtain a summary measure of price influence, as shown in Table 5.3. The first row

indicates that the CME price series is influenced on average by CME itself for 81%,

DGX for 12%, GLD for 6%, and SHFE for 1%. The second row represents the

influence on DGX price change series from all the series, and so on. Elements on

the diagonal represent the self-influence, and they are generally the highest values,

showing that most of the price update comes from the previous time price change
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CME DGCX GLD TOCOM SGE SHFE
CME 0.81 0.12 0.06 0.00 0.00 0.01

DGCX 0.45 0.38 0.15 0.00 0.00 0.02
GLD 0.31 0.13 0.55 0.00 0.00 0.01

TOCOM 0.22 0.00 0.13 0.65 0.00 0.00
SGE 0.11 0.12 0.13 0.08 0.43 0.13

SHFE 0.23 0.02 0.26 0.00 0.00 0.49

Table 5.3: Matrix of price influences for six gold contracts traded in different markets
and averaged across the period January 2016 to December 2017. The selected time
range is from 1.30PM to 6.30PM UTC time to allow for full overlap of all price
series. Days of holidays in any of the markets are excluded from the computation
for a total of 424 trading days. Each row represents the share of price influence for
each contract (in top row) on a specific price change series (in first column). The
sum of each row is equal to 1. Results show a general strong price change influence
from CME gold futures contract on all the other contracts, and a weak influence of
the SGE spot contracts.

of the same series.

Finally, from the daily price influence matrices, we can derive the Price Leader-

ship Share measure according to equation (5.15). Recall that the PLS is the total

external price change influence. Thus we have to exclude the self-influence, and it

represents the probability that a series is the price leader. Figure 5.2 shows the

dynamic of the PLS measure, averaged at monthly sampling, over the two years.

Results are reasonably stable across the period, with CME maintaining its leader-

ship position and DGCX gaining almost the same share as GLD after October 2017.

The other series are quite stable and close to zero price leadership. SGE share is

zero most of the period except for July 2017.

Averaging the daily PLS vectors across all period, we obtain a further summary

measure for the PLS as reported in Table 5.4. Similarly to Figure 5.2, results show

a stronger price leadership role from the CME gold futures contract, CME series

being the mode of the probability distribution of PLS. The ETF contract, i.e. GLD,

appears to have a quite important position in the leadership together with DGCX.

On the contrary, SHFE, TCE, and SGE occupy the lowest position, demonstrating

an almost total absence of leadership. Overall, all futures contracts lead the SGE

spot market, confirming previous literature findings on price discovery.
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Figure 5.2: Price Leadership Share over the period January 2016 to December 2017,
for the time range from 1.30PM to 6.30PM UTC to allow for full overlap of all price
series. PLS are sampled monthly. CME series appears to lead all other series for
the entire period. After an initial difference, DGXCX and GLD are almost aligned
in term of price leadership, while the other series do not show relevant PLS values.

Contract PLS
CME 0.447
GLD 0.274

DGCX 0.205
SHFE 0.051

TOCOM 0.023
SGE 0.000

Table 5.4: Price Leadership Share for the seven gold contracts traded in different
markets across the period January 2016 - December 2017. The selected time range
is from 1.30PM to 6.30PM UTC time to allow for full overlap of all price series.
On average, there is a strong price leadership from the CME gold futures contract,
followed by the ETF contract. Overall, all the futures contract lead the spot markets,
SGE and LME
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Figure 5.3: Weekly leadership concentration over the period January 2016 to De-
cember 2017, for the time range from 1.30PM to 6.30PM UTC to allow for full
overlap of all price series. The value of the concentration L can range between zero,
i.e. absence of leadership, and 1, i.e. leadership fully concentrated in one series.

Furthermore, we can compute a single indicator that indicates how concentrated

is the leadership, using formula (5.17), with 0 ≤ L ≤ 1. Zero means total ab-

sence of leadership when all series have 1/6 probability of being the leader, and one

means that the leadership is entirely concentrated in one series. The evolution of

the concentration index for six gold contracts is shown in Figure 5.3. The price

leadership concentration is calculated as a monthly average of the concentration se-

ries and shows a slight downward trend, signalling that the leadership becomes less

concentrated towards the end of the period, due to an increase of leadership share

of DGCX, this being observable from Figure 5.2.

The analysis on six gold contracts shows a strong price leadership from CME

with a weaker, almost close to zero, share of leadership for the Asian contracts. One

of the reasons for this high difference is the selected time range for the analysis, i.e.

13:30 to 18:30 UTC. During these hours, in the all US markets are open for the day

session, while in the Asian markets there is the night session open and in Dubai the

evening one. Therefore, it quite natural to expect a higher activity and a higher

efficiency in the US contracts.

In the remainder of this section, we analyse how price leadership shares change

if we perform the estimation selecting a time range in which the Asian markets are
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PLS
Contract 13:30-18:30 5:30-6:15 1:00-3:30

CME 0.447 0.507 0.348
GLD 0.274 n/a n/a

DGCX 0.205 0.237 n/a
SHFE 0.051 0.143 0.257

TOCOM 0.023 0.076 0.198
SGE 0.000 0.036 0.197
L 0.286 0.204 0.021
L 0.366 0.360 0.071

Table 5.5: PLS comparison for three different time ranges. All hours in UTC time.
Some of the contracts are not available because they care closed during selected time
range

open for the day session, and the US is in the night session. We first select a time

range between 5:30 and 6:15 UTC, that corresponds to the second morning session

of SGE and SHFE. For this selection, we have to drop the ETF contract because it is

closed. Then, we select the first session of the morning for SGE and SHFE, between

1:00 and 3:30 UTC, and in this case, we have to drop also the Dubai contract.

Table 5.5 reports a comparison of PLS calculated for the three selected time

ranges, along with the concentration index in two versions, (i) as a measure of

the summarised PLS vector over the period, and (ii) as the average of the daily

concentration measures.

Results from Table 5.5 evidence a confirmed price leadership from CME contracts

when considering the time range 5:30-6:15, instead we observe a slight reduction

in its share in the third interval analysed. It is also noticeable the increase in

price leadership share for the Asian contracts, especially when we consider the first

session of the morning (third column), where SHFE, TOCOM, and SGE gain a

consistent share. Also, looking at the concentration index, we notice a considerable

redistribution of the leadership for the same session.

Analysing the PLS for the morning session of SHFE and SGE, we cannot at-

tribute a clear leadership to CME, especially if we take into account that the tick

size of the Asian contract is slightly bigger than the CME contract.
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PLS
1-second 1-second 10-second 1-minute

Contract 3-state 5-state 3-state 3-state
CME 0.447 0.519 0.354 0.119
GLD 0.274 0.211 0.119 0.131

DGCX 0.205 0.227 0.120 0.131
SHFE 0.051 0.033 0.177 0.181

TOCOM 0.023 0.001 0.103 0.187
SGE 0.000 0.000 0.058 0.251
L 0.286 0.350 0.084 0.020
L 0.366 0.418 0.286 0.236

Table 5.6: Robustness analysis of the PLS measure over different sampling intervals,
i.e. 10 seconds and one minute, and modelling the price change series with a 5-state
Markov chain.

5.3.3 Robustness tests

In addition to the previous estimation, we perform a further analysis estimating the

PLS and respective concentration index values at different sampling intervals, i.e.

10 seconds and one minute, and with a 5-state Markov chain. Results reported in

Table 5.6 highlight that increasing the number of states from three to five produces

better results in term of price leadership share, even though we note a swap of

positions between GLD and DGX, possibly due to the averaging of the measure

over the period. In fact, looking at Figure 5.2, the PLS evolution between these

two series appears to converge to similar values. This trend is better defined when

modelling price changes with a 5-state chain. Also, the concentration index registers

a slight increase denoting a more concentrated leadership. However, because the

calculation with five states requires more transitions probabilities to estimate and

more computational time, there is a trade-off between computational effort and

precision of the measure. Therefore, we suggest performing the analysis with a

3-state Markov chain.

On the contrary, looking at different sampling frequencies, we note a complete

reversal of the leadership when we sample price changes with 1-minute interval and a

small change when sampling at a 10-second interval. At first sight, these figures seem

to show a general instability of the model. However, if we observe the concentration
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values for both frequencies, we cannot consider the PLS results as being valid as the

1-second interval ones. The leadership concentration of the PLS vector, i.e. 0.02,

is a value close to zero and expresses a complete lack of concentration and a signal

of an absence of clear price leadership. Instead, the average of the concentration

indices seems to propose a leadership concentration similar to 1-second sampling

interval. Nevertheless, this is a consequence of the increased variability in the PLS

measure when sampling at lower frequencies as reported in Figure 5.4(c).

A reason for this high discrepancy of the PLS results sampled at a lower frequency

is due to loss of information about price changes that occur within the interval.

Time aggregation generally produces a contemporaneous correlation between price

innovations. The rationale of our model is that once a market updates its price,

the other market responds to that signal with a price change. If the interval is

too long, all changes in the same interval appear to be contemporaneous, and the

model loses the ability to capture the price change dynamics (see, e.g. Hasbrouck,

1995). Therefore, our model performs better at a shorter sampling interval, ideally

up to event time. However, because we model the price changes with a discrete-time

homogeneous Markov chain we have to limit our analysis to fixed time intervals.

5.4 Conclusion

In this chapter we proposed a new measure of price discovery using a multivariate

Markov chain model. This new measure, that we called the price leadership share, is

based on the observation of the dependencies between price changes of cointegrated

price series. It captures the dynamics of price change and, therefore, the timing of

incorporating new information. Further, along with the price leadership share, we

proposed a concentration index that measures the concentration of price leadership

and it is useful to make a comparison between different PLS outcomes.

The model is tested with an empirical application using six gold contracts across

the world, such as spot, futures and ETF contracts. The test confirms results that

were expected from the simple microstructure analysis, as well as previous literature

107



(a) 5 states, 1 second interval

(b) 3 states, 10 second interval

(c) 3 states, 1 minute interval

Figure 5.4: Price Leadership Share sampled monthly over the period January 2016
- December 2017, time range 1.30PM to 6.30PM UTC time. (a) Price changes
modelled with a 5-state Markov chain and midquote sampled at 1-second interval.
(b) Price changes modelled with a 3-state Markov chain and midquote sampled at
10-second interval. (c) Price changes modelled with a 3-state Markov chain and
midquote sampled at 1-minute interval.
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findings on price discovery. Moreover, we show that the PLS offers advantages over

the existent measures, i.e. information share, component share, and informational

leadership share, because it can easily process more than two price series simulta-

neously and produces a ranking of the price leadership and a model of the price

change dependencies between series. Also, the price leadership share measure does

not require us to include lagged observations in the model, in contrast to what hap-

pens with other measures. Hence, our model can benefit from a bigger sample for

the analysis that proves to be a strength in the case of illiquid stocks with a small

set of observations.
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6 Algorithmic implementation

6.1 Introduction

In this chapter, we present a computational implementation of the models proposed

in this thesis. First, we analyse how to estimate the parameters of a multivariate

Markov chain. We skip the univariate case as it is straightforward and a special case

of the multivariate one. Then, we describe the stock valuation problem, from the

multivariate perspective. Again, the univariate case can be solved inputting only

one series to the multivariate model. Finally, we discuss the computation of the

price leadership share measure.

All procedures are introduced in Python1 programming language because it is

an open source language and permits an easy readability and reusability of the

code. Besides, we use dedicated packages for an efficient implementation of our

algorithms, such as Numpy2 and Scipy3 for scientific computations, and Pandas4

for data analysis and manipulation. The import routine of mentioned packages is

descirbe in Listing 1.

1 import pandas as pd

2 import numpy as np

3 from scipy.optimize import Bounds

4 from scipy.optimize import minimize

Listing 1: Preliminary imports.

1https://www.python.org/
2http://www.numpy.org/
3https://www.scipy.org/
4https://pandas.pydata.org/
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6.2 Markov chain parameters estimation

When modelling financial series with a Markov chain, the first step to perform the

computation is to create a correspondence between returns of the series and states

of the chain. This discretisation procedure is explained in Listing 2. After importing

the return series5 into a Pandas dataframe, identified in listings as df, we have to

identify the categories’ edges. The function get edges accepts two inputs, namely

the dataframe and the number of states. First, it initialises a dictionary to store

the edges by series, then it loops over the series to find specific edges for each series

α. The function calculates m + 1 edges, with m being the number of states of the

Markov chain. Each edges has a width of size σ, and it is centred around the zero.

Finally, the external edges are changed according to the minimum and maximum of

the distribution. Once the edges are ready, we can use the cut function from Pandas

to assign each return to the corresponding state for each series.

1 def get_edges(df, m):

2 edges = {}

3 series = df.columns

4 for alpha in series:

5 std = df[alpha].std()

6 edges[alpha] = [std*(-m/2+x) for x in range(m+1)][1:-1]

7 edges[alpha].append(df[alpha].max())

8 edges[alpha].insert(0,df[alpha].min())

9 return edges

10

11 edges = get_edges(df, m)

12 g = pd.DataFrame()

13 for key, value in edges.items():

14 g[key] = pd.cut(df[key],value,labels=False, include_lowest=True)

Listing 2: Discretisation procedure.

From the categorised returns, we can estimate the parameters of the multivariate

Markov chain. First, we estimate the transition probabilities of equation (2.13). We

5The series has to be sorted from the oldest observation to the most recent one to run the code
correctly.
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recall that the estimator for the transition probabilities is

p̂ij
(β,α) =

n
(β,α)
ij∑m

j=1 n
(β,α)
ij

, (6.1)

where n
(β,α)
ij is the occurrences of transitions from state i of series β to state j of

series α.

Because these probabilities are generally presented in form of a matrix, an easy

way to build an estimation routine is to create nested loops with a counter of the

observations’ frequencies. However, considering that Pandas has extremely efficient

management of the indices, we found useful to build the transition probabilities in

a columnar form instead than a matrix one. To this extent, we create a dataframe

with a double index containing all combinations of starting-ending states of the

transitions, i.e. i → j. The probability dataframe contains as many columns as all

combinations of series β and α, i.e. γ2 according to condition (2.12). In the case of

the univariate model, the dataframe will have only one column.

1 def get_p(g, m):

2 list_ = []

3 for i in range(m):

4 for j in range(m):

5 list_.append([i,j])

6 index_col = ['i','j']

7 p_index = pd.DataFrame(list_, columns=index_col)

8

9 series = g.columns

10 f = lambda x: x/x.sum()

11 list_ = []

12 for beta in series:

13 for alpha in series:

14 p = pd.concat([g[beta],g[alpha].shift(-1)],

15 axis=1)[:-1].astype(dtype='int')

16 p.columns = index_col

17 p = pd.DataFrame(p.groupby(index_col).size(),

18 columns=['freq']).reset_index()

19 p = p.merge(p_index, on=index_col, how='right').fillna(0)

20 p[f'p{beta}_{alpha}'] = p['freq'].groupby(p['i']).transform(f)

21 p = p.drop('freq', axis=1).set_index(index_col)

22 list_.append(p)

23 return pd.concat(list_, axis=1)

Listing 3: Transition probabilities.

For example, applying the function get p to the same gold data of Chapter 5, we

112



pCME CME pCME DGX pCME GLD pCME TCE pCME SGE ...
i j
0 0 0.221 0.222 0.190 0.150 0.008 ...

1 0.501 0.701 0.677 0.796 0.985 ...
2 0.279 0.078 0.133 0.055 0.007 ...

1 0 0.183 0.080 0.114 0.057 0.005 ...
1 0.629 0.838 0.765 0.886 0.990 ...
2 0.189 0.082 0.121 0.057 0.005 ...

2 0 0.281 0.081 0.138 0.046 0.007 ...
1 0.488 0.694 0.667 0.818 0.985 ...
2 0.231 0.225 0.196 0.135 0.008 ...

Table 6.1: Example of transition probabilities as output of the function in Listing 3

obtain an output similar to Table 6.1. It is worth mentioning that Python counters

always start from zero, thus, in the remainder of this chapter, the states of the

Markov chain will be considered starting from zero as well, e.g. a 3-state Markov

chain will have states 0, 1, and 2. This does not affect the final results as it is an

internal computation that can be adapted at the end adding one to all states values.

Next step is the estimation of the weights λβ,α of the mixture transition distri-

bution model. This estimation is performed maximising the log likelihood function

of the MTD model

logL(MTD) =
m∑

i1,...,iγ ,j=1

ni1,...,iγ ,j log(

γ∑
β=1

λβ,αP
(β,α)
iβ ,j

), (6.2)

where ni1,...,iγ ,j is the observed number of sequences of the type S
(1)
t−1 = i1, ..., S

(γ)
t−1 =

iγ, S
(α)
t = j, respecting constraints (2.14) and (2.14).

Listing 4 presents a function to obtain frequencies ni1,...,iγ ,j, along with transition

probabilities p
(β,α)
iγ ,j

that will be used in the MLE function.

The function get frequencies accepts the returns series g and the transition prob-

abilities as inputs, and creates a dictionary of dataframes, one for each return series

(first loop of the function). Each dataframe contains a left section with γ columns

of starting states iγ, one for each series, plus a column for the arrival state j in the

specific series α, named for example CME+1 if we consider CME series. Then, the

dataframe contains a column with frequencies of the combinations i1, ..., iγ, j. Fre-

quencies are computed grouping the observations by combinations, and calculating
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1 def get_frequencies(g, p):

2 f = {}

3 series = g.columns.tolist()

4 for alpha in series:

5 temp = g[series]

6 temp[alpha+'+1'] = temp[alpha].shift(-1)

7 temp = temp[:-1].astype(dtype='int')

8 series_plus = temp.columns.tolist()

9 temp = pd.DataFrame(temp.groupby(series_plus).size(),

10 columns=['freq']).reset_index()

11 for beta in series:

12 p_ba = p[f'p{beta}_{alpha}'].reset_index()

13 p_ba = p_ba.rename(columns={'i':beta,

14 'j':alpha+'+1'})

15 temp = temp.merge(p_ba,

16 on=[beta,alpha+'+1'],

17 how='left')

18 f[alpha] = temp

19 return f

Listing 4: Computation of the frequencies for the λβ,α estimation.

CME DGX GLD TCE SGE SFE CME+1 freq pCME CME pDGX CME pGLD CME pTCE CME pSGE CME pSFE CME
0 0 0 0 0 1 0 1 0.220592 0.230071 0.261424 0.254682 0.351852 0.208820
0 0 0 0 0 1 1 1 0.500655 0.505550 0.486208 0.506367 0.500000 0.579642
0 0 0 0 1 0 0 22 0.220592 0.230071 0.261424 0.254682 0.211228 0.245455
0 0 0 0 1 0 1 30 0.500655 0.505550 0.486208 0.506367 0.571975 0.507273
0 0 0 0 1 0 2 19 0.278753 0.264379 0.252367 0.238951 0.216797 0.247273
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Table 6.2: Example of frequencies dataframe as element of the output dictionary
from function in Listing 4

the size of each the group. Eventually, the function attaches to each dataframe γ

values of transition probabilities that are specific to each combination iγ, j (second

loop of the function).

Considering the data from Chapter 5 and specifically CME series, the outcome

of the function is reported in Table 6.2.

The frequency dataframe serves as input of the routine that maximises the log

likelihood function in (6.2). In practice, the procedure performs a minimisation of

the negative log likelihood function using the minimize routine of the package Scipy

with the method SLSQP, i.e. Sequential Least SQuares Programming algorithm to

minimize a function of multiple variables with different combinations of bounds or

constraints (Kraft, 1988). Listing 5 describes the MLE function that reproduces the

equation in (6.2) using as inputs an initial lambda vector, a frequency dataframe,

and the targeted series. Then, the get lambda function, looping over the series,
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uses the MLE routine as objective function of the minimisation procedure for each

specific destination series α, after setting the initial bounds (2.14), initial lambda

vector, e.g. [0,0,0,0,0,1], and constraint (2.15). Finally, results are aggregated into

a matrix form. In the case of the univariate Markov chain model, the routing will

output a single value of lambda equal to one.

1 def MLE(lambda0, f, alpha):

2 L = f[f.columns]

3 gamma = len(lambda0)

4 series = L.columns[:gamma].tolist()

5 L['p'] = 0

6 for i, beta in enumerate(series):

7 L['p'] += lambda0[i]*L[f'p{beta}_{alpha}']

8 L['MLE'] = L['freq']*np.log(L['p']+.0000001)

9 return -L['MLE'].sum()

10

11 def get_lambda(series, f):

12 gamma = len(series)

13 # setup of bounds (2.14) and initial vetor lambda

14 lambda0 = []

15 bounds = ((0,None),)

16 for beta in range(gamma-1):

17 lambda0.append(0)

18 bounds += ((0,None),)

19 lambda0.append(1)

20 lambda0 = np.array(lambda0)

21

22 # setup of condition (2.15)

23 cond = "lambda x: np.array(["

24 cond += ' + '.join(['x[' + str(beta) + ']'

25 for beta in range(gamma)]) + ' - 1])'

26 cond = eval(cond)

27

28 # minimisation function

29 lambda_mat = []

30 for alpha in series:

31 eq_cons = {'type': 'eq','fun' : cond}

32 logL = minimize(MLE, lambda0,

33 args=(f[alpha], alpha),

34 jac="2-point",

35 method='SLSQP',

36 constraints=eq_cons, bounds=bounds)

37 lambda_row = []

38 for beta in range(gamma):

39 lambda_row.append(round(logL.x[beta],3))

40 lambda_mat.append(lambda_row)

41 return pd.DataFrame(lambda_mat, index=series, columns=series)

Listing 5: Estimation of λβ,α through MLE.

115



6.3 Markov stock model implementation

In this section we propose an implementation of the Markov stock model from Chap-

ters 3 and 4. As previous section, we discuss only the multivariate implementation

as the univariate one is a special case of the multivariate with one dividend series.

First, we have to adapt the discretisation procedure to calculate the edges ac-

cording to the dividend growth process in (3.7). The get edges function in Listing 2

is useful for log returns. Therefore, for this application of the Markov stock model,

we convert our dividend returns in log returns, get the edges and take the exponen-

tial of the results. In the same function, we include the calculation of the values

of the growth for each state of the Markov chain and for every series α, using the

median of observed growths for each category.

1 def get_edges(df, m):

2 # get the logarithm of the process

3 df = df.apply(lambda x: np.log(x))

4 edges = {}

5 state_value = {}

6 series = df.columns

7 for alpha in series:

8 std = df[alpha].std()

9 edges[alpha] = [std*(-m/2+x) for x in range(m+1)][1:-1]

10 edges[alpha].insert(0,df[alpha].min())

11 edges[alpha].append(df[alpha].max())

12 # compute growth value of the state

13 state_value[alpha] = []

14 for i in range(m):

15 median = df[(df[alpha]>edges[alpha][i]) &

16 (df[alpha]<=edges[alpha][i+1])][alpha].median()

17 state_value[alpha].append(median)

18 # get the exponential value

19 edges[alpha] = [np.exp(x) for x in edges[alpha]]

20 state_value[alpha] = [np.exp(x) for x in state_value[alpha]]

21 return edges, state_value

Listing 6: Function get edges adapted for the dividend growth series.

After obtained the transition probabilities and the lambda values using routines

in previous section, we define algorithms for implementing Theorem 4.4, 4.10, and

4.14 to obtain first- and second-order price-dividend ratios.

For computing the price-dividend ratios, we solve linear systems of equations
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of the type B = xA, where B is a vector of known terms and A is a matrix of

coefficients of the unknown terms.

We start rewriting equation from Theorem 4.4 and identify the blocks that we

need to compute in the algorithm

m∑
jα=1

γ∑
β=1

m∑
h=1

e
(β)
h (k)λβ,αP
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(6.3)

The same applies to equation of Theorem 4.10 for the second-order price-dividend

ratios.
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(6.4)

It is worth noting that the matrix prodP is constant for every series α and it

reduces to matrix P if we consider the univariate case, and both systems have mγ

equations in mγ unknown. To solve these systems, we start computing the known

term Pg at the left side of equation (6.3) and the term Pg sq from left side of
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equation (6.4).

1 def get_combiP(m, p, state_value, lambda_values, series):

2 gamma = len(series)

3 # create a list of ranges

4 # for example: s=3 and m=5 ->

5 # [range(0, 5), range(0, 5), range(0, 5), range(0, 5)]

6 ranges = [range(m) for x in range(gamma+1)]

7 # dataframe with all combinations of states and series

8 combinations = list(itertools.product(*ranges))

9

10 combiP = {}

11 Pg = {}

12 Pg_sq = {}

13 for alpha in series:

14 df = pd.DataFrame(combinations, columns=series+[alpha+'+1'])

15 # attach transition probabilities and lambda values

16 for beta in series:

17 p_tmp = p[f'p{beta}_{alpha}'].reset_index()

18 p_tmp = p_tmp.rename(columns={'start':beta,'end':alpha+'+1'})

19 df = df.merge(p_tmp, on=[beta,alpha+'+1'], how='left')

20 df['lambda '+beta+'_'+alpha] = lambda_values.loc[alpha,beta]

21 # compute P looping over beta series

22 df['P'] = 0

23 for beta in series:

24 df['P'] += df['p'+beta+'_'+alpha]*df['lambda '+beta+'_'+alpha]

25 # attach states values g

26 g = pd.DataFrame(state_value[alpha], columns=['g'])

27 df = df.merge(g, how='left', left_on=alpha+'+1', right_index=True)

28 # compute Pg and Pg_sq

29 df['Pg'] = df['P']*df['g']

30 df['Pg_sq'] = df['P']*df['g']**2

31 Pg[alpha] = df.groupby(series)['Pg'].sum().values

32 Pg_sq[alpha] = df.groupby(series)['Pg_sq'].sum().values

33 combiP[alpha] = df

34 return combiP, Pg, Pg_sq

Listing 7: Computation of P, Pg, and Pg sq.

Function get pg in Listing 7 generates a dataframe (combiP) that includes all

combinations of starting states i and ending states j. The function attaches to each

series α and to each combination specific transition probabilities and lambda values

corresponding to the combination. Finally, it computes the probability P looping

over the β series and multiplies results by the states values and their squared values.

From the combiP dataframe, grouping by starting states and summing the group

results, the function computes the blocks Pg and Pg sq.

Table 6.3 presents a sample of the output of combiP when α = GPC from

application in Chapter 4. Columns Pg and Pg sq from the dataframe corresponds
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pGPC GPC
lambda

GPC GPC
pDOV GPC

lambda
DOV GPC

pPH GPC
lambda

PH GPC
P g Pg Pg sq

GPC DOV PH GPC+1
0 0 0 0 0.4 0.45 0.333333 0.0 0.250000 0.55 0.317500 0.876915 0.278420 0.244151

1 0.2 0.45 0.333333 0.0 0.500000 0.55 0.365000 1.035565 0.377981 0.391424
2 0.4 0.45 0.333333 0.0 0.250000 0.55 0.317500 1.073547 0.340851 0.365920

1 0 0.4 0.45 0.333333 0.0 0.250000 0.55 0.317500 0.876915 0.278420 0.244151
1 0.2 0.45 0.333333 0.0 0.333333 0.55 0.273333 1.035565 0.283054 0.293121
2 0.4 0.45 0.333333 0.0 0.416667 0.55 0.409167 1.073547 0.439260 0.471566

2 0 0.4 0.45 0.333333 0.0 0.000000 0.55 0.180000 0.876915 0.157845 0.138416
1 0.2 0.45 0.333333 0.0 0.214286 0.55 0.207857 1.035565 0.215250 0.222905
2 0.4 0.45 0.333333 0.0 0.785714 0.55 0.612143 1.073547 0.657164 0.705496

1 0 0 0.4 0.45 0.111111 0.0 0.250000 0.55 0.317500 0.876915 0.278420 0.244151
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Table 6.3: Sample of the combiP output.

to single values before the grouping function.

Next step is to compute blocks prodP, prodPg, and prodPg sq from equations

(6.3) and (6.4). The function get prodP is based on the calculation of the prod-

uct between transition probabilities weighted with lambda values across all series.

Initially, we create a matrix of products of transition probabilities calculating all pos-

sible combinations of states for all series using the Python routine itertools.product.

Then, we loop over all combinations and multiply the elements from combinations

of probabilities P. Therefore, we produce a matrix with mγ ×mγ elements.

1 def get_prodP(m, series, combiP):

2 ranges = [range(m) for x in range(len(series))]

3 list_prod = []

4 for i in itertools.product(*ranges):

5 list_p = []

6 for alpha in series:

7 list_p.append(combiP[alpha].set_index(series).loc[i]['P'].tolist())

8 product = list(itertools.product(*list_p))

9 list_ = []

10 for item in product:

11 list_.append(np.prod(item))

12 list_prod.append(list_)

13 prodP = np.asarray(list_prod)

14

15 prodPg = {}

16 prodPg_sq = {}

17 for j, alpha in enumerate(series):

18 g = []

19 g = []

20 for i in itertools.product(*ranges):

21 g1.append(state_value[alpha][i[j]])

22 g2.append(state_value[alpha][i[j]]**2)

23 prodPg[alpha] = prodP*g1

24 prodPg_sq[alpha] = prodP*g2

25 return prodP, prodPg, prodPg_sq

Listing 8: Computation of prodP, prodPg, and prodPg sq.
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For example, analysing the output in Table 6.3, for every combination i in the

first loop of function get prodP, the routine select three probabilities P for each

series (i.e. from each dataframe combiP corresponding to a specific series). In this

particular case, we have 3× 3 probabilities, that can be combined and multiplied to

generate 27 elements that constitute the first row of the matrix.

Finally, each row of the matrix prodP is multiplied by a vector of state values,

as well as their squared values, ordered according to the sequence of states in series

α. The sequence of states corresponds to the sequence observable in the dataframe

index for any specific series α.

1 def get_psi(series, Pg, Pg_sq, prodP, prodPg, prodPg_sq, r):

2 ranges = [range(m) for x in range(len(series))]

3 combinations = list(itertools.product(*ranges))

4 index = pd.DataFrame(combinations, columns=columns)+1

5 # check conditions A1 and A2

6 for alpha in series:

7 if r[alpha]<max(Pg[alpha]):

8 print('Condition not verified for: '+alpha)

9 if r[alpha]<np.sqrt(max(Pg_sq[alpha])):

10 print('Condition not verified for: '+alpha)

11

12 psi = []

13 for alpha in series:

14 x = np.linalg.solve((np.eye(len(prodPg[alpha]))*(r[alpha])) -

15 prodPg[alpha],Pg[alpha])

16 psi.append(pd.DataFrame(x, columns=['$\psi$ '+alpha]))

17 psi = pd.concat(psi, axis=1)

18 psi = pd.concat([index, psi], axis=1).set_index(columns)

19

20 B2, A2 = {}, {}

21 for alpha in series:

22 B2[alpha] = 2*(np.sum(psi['$\psi$ '+alpha].values*prodPg_sq[alpha],

23 axis=1))+Pg_sq[alpha]

24 A2[alpha] = np.eye(len(prodPg_sq[alpha]))*(r[alpha]**2) - prodPg_sq[alpha]

25 psi2 = []

26 for alpha in series:

27 x2 = np.linalg.solve(A2[alpha],B2[alpha])

28 psi2.append(pd.DataFrame(x2, columns=['$\psi^2$ '+alpha+' '+alpha]))

29 psi2 = pd.concat(psi2, axis=1)

30 psi2 = pd.concat([index, psi2], axis=1).set_index(columns)

31

32 return psi, psi2

Listing 9: Solution of linear systems of equations to obtain ψ1 and ψ2.

Once all blocks are obtained, we solve both linear systems of equations, creating

the vector B and the matrix A and using the Numpy routine linalg.solve. It is
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important to mention that for the second-order price-dividend ratios we include

solutions of the first equation in the computation of vector B, and the required rate

of return is stored in a Python dictionary with keys being the series names.

Function get psi from Listing 9 starts with the creation of the dataframe index

containing combinations of states for all series, and a check for conditions A1 and

A2. Then, we compute psi1 for every series α and combine the results from all series

by columns in a Pandas dataframe. The function follows with the preparation of

the vector B2 and matrix A2 and concludes with computation of psi2 with all series

combined in a single dataframe.

To compute the covariance between stock, we implement an algorithm to solve

equation (6.5) from theorem 4.14.
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(6.5)

Listing 10 shows the function get psi cov in which we first compute the block
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prodPg cov multiplying the matrix prodP by the product of the values of the states

for both series, α and β. This computation is done in the same way as for block

prodPg and prodPg sq from Listing 8. Then, we calculate all four addends from

equation (6.5) that are finally summed and divided by the required rate of returns

for both stocks. This operation is repeated for any combination of the covariance

matrix between stocks, without considering repetitions. Results are joined in a single

dataframe psi cov.

1 def get_psi_cov(series, prodP, psi, r):

2 ranges = [range(m) for x in range(len(series))]

3 combinations = list(itertools.product(*ranges))

4 index = pd.DataFrame(combinations, columns=columns)+1

5 psi_cov = []

6 # compute the combination of series for covariance

7 # ('GPC', 'DOV')

8 # ('GPC', 'PH')

9 # ('DOV', 'PH')

10 for alpha_beta in itertools.combinations(series,2):

11 alpha = alpha_beta[0]

12 beta = alpha_beta[1]

13 g = []

14 for i in combinations:

15 # get the state for series alpha and beta based on combination i

16 i_alpha = i[series.index(alpha)]

17 i_beta = i[series.index(beta)]

18 # get the value of the state corresponding to combination i

19 g_alpha = state_value[alpha][i_alpha]

20 g_beta = state_value[beta][i_beta]

21 g.append(g_alpha*g_beta)

22 prodPg_cov = prodP*g

23

24 add1 = np.sum(prodPg_cov, axis=1)

25 add2 = np.sum(psi['$\psi$ '+alpha].values*

26 prodPg_cov, axis=1)

27 add3 = np.sum(psi['$\psi$ '+beta].values*

28 prodPg_cov, axis=1)

29 add4 = np.sum(psi['$\psi$ '+alpha].values*

30 psi['$\psi$ '+beta].values*

31 prodPg_cov, axis=1)

32 cov = (add1+add2+add3+add4)/(r[alpha]*r[beta])

33 psi_cov.append(pd.DataFrame(cov, columns=['$\psi^2$ '+alpha+' '+beta]))

34 psi_cov = pd.concat(psi_cov, axis=1)

35 psi_cov = pd.concat([index, psi_cov], axis=1).set_index(series)

36 return psi_cov

Listing 10: Solution of Theorem 4.14.

The output of the dataframe psi is reported in Table 4.6, and joint output from

dataframes psi2, and psi cov is in Table 4.7.
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Eventually, we use results from psi cov to compute the covariance function in

equation (4.22).

6.4 Price Leadership Share implementation

For the PLS measure, first we have to estimate the parameters of the multivari-

ate Markov chain. Once the lambda values are calculated, we can compute the

Price Leadership Share implementing equation (5.15) and the concentration index

in (5.17).

Listing 11 includes two functions, one to obtain the PLS vector and the other

for the L index. The PLS function has the lambda matrix as input. First, we set

the diagonal values to zero, then we normalise the rows to one (see line 6). Finally,

we sum the values by columns and normalise to one. A vector of PLS is returned

by the function.

Function L index takes the PLS vector as input and compute the entropy of

the probability distribution according to equation (5.16) Then, the entropy result is

normalised to its maximum value log(γ).

1 def PLS(lambda_mat):

2 mat = lambda_mat.values.copy()

3 np.fill_diagonal(mat,0)

4 if len(mat)>2:

5 col_sum = np.sum(mat, axis=1)[:,None]

6 mat = np.nan_to_num(mat/col_sum)

7 PLS = np.sum(mat, axis=0)/np.sum(mat)

8 return pd.Series(PLS, index=lambda_mat.columns)

9

10 def L_index(PLS):

11 gamma = len(PLS)

12 entropy = 0

13 for i in PLS:

14 entropy += i*np.log(gamma*i+0.000000001)

15 L = entropy/np.log(gamma)

16 return L

Listing 11: Computation of the PLS and concentration index.

The entire implementation is optimised to produce the PLS results in a very short

time without dedicated hardware but merely using a personal computer. As demon-
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stration, the data analysed in this implementation includes one day of midquote

returns for six series sampled at a 1-second interval between 13:30 and 18:30 UTC,

for a total of 108 thousand observations and 246 parameters to estimate for the

multivariate Markov chain, and the computation time is 3.39 seconds. The speed is

due to the indexing facility from the Pandas package.
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7 Conclusion

This thesis examined three applications of Markov chain models to financial issues.

Two chapters focused on the problem of stock valuation, extending existing dividend

discount models and proposing a new framework to valuation using Markov chains

from both univariate and multivariate perspectives. The last application focused

on the proposal of a new methodology to measure price discovery to overcome the

limits of existing measures.

The review proposed in Chapter 2 illustrates the extensive research that has been

undertaken in both topics and highlights the strengths and weaknesses of existing

models with a brief formulation of questions left unanswered by academics. With this

dissertation we filled these gaps proposing solutions that further advance research

in stock valuation and market microstructure.

In Chapter 3 we extended previous results on the Markov chain stock model by

computing for the first time ever the so called second-order price-dividend ratio. This

provides the analyst with a measure of risk to juxtapose to the price-dividend ratio

for measuring the profitability of an investment in a stock. Furthermore we devel-

oped non-parametric statistical techniques useful for the estimation of the financial

quantities starting from a time series of dividend data. We proposed estimators of

the first and second-order price-dividend ratios and we established their asymptotic

properties that are fundamental for the computation of interval confidence of the

considered financial quantities. Finally, in the application we considered many prac-

tical problems the analyst would encounter when applying our model. Namely, the

determination of a suitable number of states for the Markov chain, the determina-
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tion of the states and of their values, the stability of the results with respect to the

choice of the state space and the forecasting of dividend and fundamental value and

risk.

In Chapter 4, we presented a dividend valuation model based on a multivariate

Markov chain model. Our valuation setting extends the approaches by Gordon and

Shapiro (1956), Hurley and Johnson (1994, 1998), Yao (1997), Ghezzi and Piccardi

(2003), Barbu et al. (2017) by placing more emphasis on how forecasts are updated,

accounting for possible dependencies between the state of the growth-dividend pro-

cess of each stock. In our model, future prospects are dependent on a vector of states

so that forecasts are updated whenever a stock moves from one state to another.

We proposed a linear system of equations for the first and second order price-

dividend ratios that are attached to the vector of states. Moreover, we introduced

a formula for the computation of the variances and covariances between stocks for

portfolio selection and valuation purposes. Finally, we demonstrated the validity

of the model with an application to dividend growth series from three US stocks

with a long history of dividend payments and correlation between the series. The

application shows how to practically implement the model and how our proposed

multivariate model performs better than other dividend valuation models.

Chapter 5 introduced a new measure for price discovery using a multivariate

Markov chain model. Our measure is based on the observation of the dependencies

between price changes of cointegrated price series. It represents a way to capture

the dynamics of price change and, therefore, the timing of incorporating new in-

formation, i.e. one of the main objectives of price discovery. Moreover, we can

understand the price dependencies that exist between the price series. Also, along

with the price leadership share, we proposed a concentration index that measures

the concentration of price leadership and it is useful to make a comparison between

different PLS outcomes.

An empirical application to six gold contracts across the world, such as spot,

futures and ETF contracts, confirms results expected from the simple microstructure

126



analysis, as well as previous literature findings on price discovery. Results show that

the price leadership share measure performs well under different conditions and

produces reliable results as expected from the microstructure analysis. Moreover,

it offers advantages over the existent measures, i.e. information share, component

share, and informational leadership share, because it can process more than two

price series simultaneously, thus producing a ranking of the price leadership and a

model of the price change dependencies between series. Also, the price leadership

share measure does not require us to include lagged observations in the model, in

contrast to what happens with other measures. Hence, our model can benefit from

a bigger sample for the analysis that proves to be a strength in the case of illiquid

stocks with a small set of observations.

Our results highlight that the lower the sampling frequency, the better the out-

come. Ideally, the optimal solution would be to model the price change directly at

event time, i.e. quote time. However, this is not possible with a discrete-time ho-

mogeneous Markov chain, but it leaves open possibilities to model the price change

dynamics with more complex models, e.g. semi-Markov models. Moreover, future

research can consider modelling price changes with a high-order multivariate Markov

chain to include some dependency from the past.
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A Appendix: proofs

Proof of Proposition 3.3

For k, j, i ∈ N with j > i we consider the following expectation:
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where the last inequality follows from (3.9). If we proceed to compute the expecta-

tion by conditioning up to time i+ 1 and we use at each step (3.9) we get
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(A.1)

where the last inequality follows from (3.11). If we proceed to compute the expec-

tation by conditioning up to time 1 and we use at each step (3.11) we get

Ek[
i∏

h=1

j∏
w=1

G(k + h)G(k + w)] ≤ (g(2))i(g)j−i. (A.2)
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Therefore
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ri+j
. (A.3)

Consequently, we obtain

p(2)(k) =
+∞∑
i=1

Ek[
∏i

j=1 G
2(k + j)]

r2i
d2(k)

+ 2
+∞∑
i=1

∑
j>i

Ek[
∏i

h=1 G(k + h)
∏j

w=1G(k + w)]

ri+j
d2(k)

≤
+∞∑
i=1

(g(2))i

r2i
d2(k) + 2

+∞∑
i=1

∑
j>i

(g(2))i(g)j−i

ri+j
d2(k).

(A.4)

From (A.4), A1 and A2, using the properties of geometric series, we obtain that

p(2)(k) := Ek[P 2(k)] < +∞.

Since the expected values in Formula (A.3) do depend only on g(k), the second

order moment can be expressed in the compact form p(2)(k) = ψ2(g(k))d2(k). Let

us denote the second order price-dividend ratio by

ψ2(g(k)) :=
p(2)(k)

d2(k)
. (A.5)

Let ψ2 = maxi(ψ2(gi)); then 0 ≤ Ek[P 2(k)] ≤ ψ2Ek[D2(k+i)], which is equivalent

to

Ek[P 2(k + i)]

r2i
≤ ψ2

Ek[D2(k + i)]

r2i
. (A.6)

Since p(2)(k) = Ek[P 2(k)] < +∞, we have that limi→+∞
Ek[D2(k+i)]

r2i
= 0 and hence

from (A.6) we get

lim
i→+∞

Ek[P 2(k + i)]

r2i
= 0. (A.7)

It remains to prove that limN→+∞
∑N

i=1
Ek[D(k+i)P (k+N)]

ri+N
= 0. From the Cauchy-
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Schwarz inequality we have that

lim
N→+∞

N∑
i=1

Ek[D(k + i)P (k +N)]

ri+N
≤ lim

N→+∞

N∑
i=1

(Ek[D2(k + i)]

ri+N

) 1
2
(Ek[P 2(k +N)]

r2N

) 1
2

= lim
N→+∞

(Ek[P 2(k +N)]

r2N

) 1
2

lim
N→+∞

N∑
i=1

(Ek[D2(k + i)]

ri+N

) 1
2

= 0,

where the last equality holds true because the first factor is zero using (A.7), while

the second one is finite as it follows from the finiteness of (A.3).

Proof of Proposition 3.4

Let k ∈ N be the current time. At time k the dividend process and the growth

dividend process assume two known values denoted by D(k) = d(k) ∈ R and G(k) =

g(k) ∈ E, respectively. Let us consider first the case when g(k) = g1. By combining

Equations (A.5), (3.7) and (3.4) we get

ψ2(g1)d2(k) = Ek
[

(G(k + 1)d(k) + P (k + 1))2

r2

]
= Ek

[
G2(k + 1)d2(k)

r2

]
+ Ek

[
P 2(k + 1)

r2

]
+ Ek

[
2G(k + 1)d(k)P (k + 1)

r2

]
.

(A.8)

Now, let us compute these three expectations:

Ek[G2(k + 1)d2(k)] = d2(k)(p11g
2
1 + p12g

2
2); (A.9)

Ek[P 2(k + 1)] = Ek[Ek+1[P 2(k + 1)|G(k + 1)]] = Ek[ψ2(g(k + 1))d2(k + 1)]

= Ek[ψ2(g(k + 1))G2(k + 1)d2(k)] = d2(k)(p11ψ2(g1)g2
1 + p12ψ2(g2)g2

2); (A.10)
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Ek[G(k + 1)d(k)P (k + 1)] = d(k)Ek[Ek+1[G(k + 1)P (k + 1)|G(k + 1)]]

= d(k)Ek[G(k + 1)Ek+1[P (k + 1)|G(k + 1)]] = d(k)Ek[G(k + 1)ψ1(g(k + 1))d(k + 1)]

= d(k)Ek[G(k + 1)ψ1(g(k + 1))G(k + 1)d(k)] = d2(k)(p11g1ψ1(g1)g1 + p12g2ψ1(g2)g2)

= d2(k)(p11g
2
1ψ1(g1) + p12g

2
2ψ1(g2)). (A.11)

A substitution of (A.9), (A.10) and (A.11) in (A.8) leads to

ψ2(g1)d2(k) =
1

r2

(
d2(k)(p11g

2
1 + p12g

2
2)

+ d2(k)(p11ψ2(g1)g2
1 + p12ψ2(g2)g2

2) + d2(k)(p11g
2
1ψ1(g1) + p12g

2
2ψ1(g2))

)
.

Some computations yield

ψ2(g1)
(
r2− p11g

2
1

)
−ψ2(g2)p12g

2
2 = p11g

2
1

(
1 + 2ψ1(g1)

)
+ p12g

2
2

(
1 + 2ψ1(g2)

)
. (A.12)

Symmetric arguments produce the second equation of the system (3.13). Con-

cerning the uniqueness of the solution, it is sufficient to note that the matrix of the

coefficients of the system has the form A =

 r2 − p11g
2
1 −p12g

2
2

−p21g
2
1 r2 − p22g

2
2

 and then

det(A) = (r2 − p11g
2
1)(r2 − p22g

2
2)− (−p12g

2
2)(−p21g

2
1).

Using assumption A2, we have that

det(A) > (p11g
2
1 + p12g

2
2 − p11g

2
1)(p21g

2
1 + p22g

2
2 − p22g

2
2)− (−p12g

2
2)(−p21g

2
1)

= p12g
2
2p21g

2
1 − (−p12g

2
2)(−p21g

2
1) = 0.

The non negativity of the solution is due to the fact that g1, g2 ≥ 0.
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Proof of Proposition 3.5

For n = 1 it is simple to compute the expectation

E(1)p(dk, ga) =
∑
j∈E

pajp(dkgj, gj) =
∑
j∈E

pajgjp(dk, gj). (A.13)

Consequently, we have the matrix form


E(1)p(dk, g1)

...

E(1)p(dk, gs)

 = PIg


p(dk, g1)

...

p(dk, gs)

 ,

and, taking into account (cf. (3.8)) that p(dk, ga) = p(d(k), g(k)) = d(k)ψ1(g(k)) =

dkψ1(ga), we obtain (3.22) for n = 1. For n = 2 we have

E(2)p(dk, ga) = E(d(k),ga)[P (D(k + 2), g(k + 2))]

= E(d(k),ga)[E(D(k+1),g(k+1))[P (D(k + 2), g(k + 2))]

= E(d(k),ga)[E
(1)P (D(k + 1), g(k + 1))]

=
∑
j∈E

pajE
(1)P (gjdk, gj) =

∑
j∈E

paj
∑
h∈E

pjhp(dkgjgh, gh)

=
∑
j∈E

∑
h∈E

pajpjhgjghp(dk, gh). (A.14)

As we did previously for the case n = 1, taking into account that (PIg)2 = P2Ig2

we obtain the matrix form given in (3.22) for n = 2. An iteration up to the nth step

produces the result given in (3.21) and the corresponding matrix form (3.22).
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Proof of Lemma 3.8

Note that we have

(
Inr −PIng

)−1
=

(
Inr ·

(
I−PIngI−nr

))−1

(A.15)

= I−nr
∑
s≥0

Ps
(
Ing
)s(

I−nr
)s

(A.16)

where we used the fact that matrices like Inr or Ing commute with any matrix. Taking

into account Lemma 3.7, we have

∂
(
Inr −PIng

)−1

∂pij
= I−nr

∑
l≥0

(∂Pl

∂pij

)(
Ing
)l(

I−nr
)l

= I−nr
∑
l≥0

l∑
k=1

Pk−1
( ∂P

∂pij

)
Pl−k(Ing)l(I−nr )l

= I−nr
∑
k≥1

Pk−1
( ∂P

∂pij

)∑
l≥k

Pl−k(Ing)l(I−nr )l
= I−nr

∑
k≥1

Pk−1
(
Ing
)k−1(

I−nr
)k−1

( ∂P

∂pij

)∑
l≥k

Pl−k(Ing)l−k(I−nr )l−k(Ing)(I−nr )
= Ing

(
Inr −PIng

)−1 · ∂P

∂pij
·
(
Inr −PIng

)−1
.

Proof of Theorem 3.10

First, note that we have

Ψ̂1(m) = Φ1(p̂ij(m), i = 1, . . . , s, j = 1, . . . , s− 1). (A.17)

Using the strong consistency of p̂ij(m), as m goes to infinity (cf. Proposition 3.6),

and the continuous mapping theorem, we obtain the strong consistency of Ψ̂1(m).

Second, taking into account the expressions (3.25) and (A.17) for Ψ1 and Ψ̂1(m),
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respectively, together with the asymptotic normality of the vector

(
√
m (p̂ij(m)− pij))i=1,...,s,j=1,...,s−1 (cf. Proposition 3.6) with covariance matrix Γ

defined as the restriction of Γ̃ given in (3.24) to s(s − 1) × s(s − 1), we obtain

the asymptotic normality stated in (3.31) using the delta method because Ψ1 is a

differentiable function of P.

The last point we have to deal with is to give an expression of the partial deriva-

tive matrix Φ′1. Note that we have

Φ′1 =


∂Φ1

1

∂p11
· · · ∂Φ1

1

∂p1(s−1)
· · · ∂Φ1

1

∂ps1
· · · ∂Φ1

1

∂ps(s−1)

...
...

...
...

∂Φs1
∂p11

· · · ∂Φs1
∂p1(s−1)

· · · ∂Φs1
∂ps1

· · · ∂Φs1
∂ps(s−1)

 ∈Ms×s(s−1). (A.18)

Note that in the computation of the derivative of Φ1 with respect to its argument

(pij, i = 1, . . . , s, j = 1, . . . , s − 1), this argument is ordered in the lexicographic

order: (p11, . . . , p1(s−1), p21, . . . , p2(s−1), . . . , ps1, . . . , ps(s−1)) ∈ Rs(s−1).

An arbitrary column of this matrix Φ′1 corresponding to (i, j), i = 1, . . . , s, j =

1, . . . , s− 1, is given by

∂Φ1

∂pij
=

∂

∂pij

(
(Ir −PIg)−1 Pg

)
=

∂ (Ir −PIg)−1

∂pij
Pg + (Ir −PIg)−1 ∂P

∂pij
g. (A.19)

Using the expression of ∂P
∂pij

given in (3.27), together with the computation of

∂(Ir−PIg)−1

∂pij
given in Lemma 3.8 (for n = 1), allows us to completely compute ∂Φ1

∂pij

and thus Φ′1.
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Proof of Theorem 3.12

First, note that we have

Ψ̂2(m) = Φ2(p̂ij(m), i = 1, . . . , s, j = 1, . . . , s− 1). (A.20)

Using the strong consistency of estimator Ψ̂1(m) (cf. Theorem 3.10), the strong

consistency of p̂ij(m), as m goes to infinity (cf. Proposition 3.6), and the continuous

mapping theorem, we obtain the strong consistency of Ψ̂2(m).

Second, taking into account the expressions (3.34) and (A.20) for Ψ2 and Ψ̂2(m),

respectively, together with the asymptotic normality of the vector

(
√
m (p̂ij(m)− pij))i=1,...,s,j=1,...,s−1 (cf. Proposition 3.6) with covariance matrix Γ

defined as the restriction of Γ̃ given in (3.24) to s(s − 1) × s(s − 1), we obtain

the asymptotic normality stated in (3.36) using the delta method because Ψ2 is a

differentiable function of P being Ψ1 a differentiable function of P.

The last point we have to deal with is to give an expression of the partial deriva-

tive matrix Φ′2. Note that we have

Φ′2 =


∂Φ1

2

∂p11
· · · ∂Φ1

2

∂p1(s−1)
· · · ∂Φ1

2

∂ps1
· · · ∂Φ1

2

∂ps(s−1)

...
...

...
...

∂Φs2
∂p11

· · · ∂Φs2
∂p1(s−1)

· · · ∂Φs2
∂ps1

· · · ∂Φs2
∂ps(s−1)

 ∈Ms×s(s−1). (A.21)

An arbitrary column of this matrix corresponding to (i, j), i = 1, . . . , s, j = 1, . . . , s−

1, is given by

∂Φ2

∂pij
=

∂

∂pij

((
I2
r −P · I2

g

)−1 ·P · (g � g + 2Ψ1 � g � g)
)

=
∂
(
I2
r −P · I2

g

)−1

∂pij
·P · (g � g + 2Ψ1 � g � g)

+
(
I2
r −P · I2

g

)−1 · ∂P

∂pij
· (g � g + 2Ψ1 � g � g)

+
(
I2
r −P · I2

g

)−1 ·P ·
(

g � g + 2
∂Ψ1

∂pij
� g � g

)
. (A.22)
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Using the computation of
∂(I2r−PI2g)

−1

∂pij
given in Lemma 3.8 (for n = 2), the expression

of ∂P
∂pij

given in (3.27), together with the computation of ∂Ψ1

∂pij
obtained in (A.19), we

completely compute the value of ∂Φ2

∂pij
and thus of Φ′2.

Proof of Theorem 3.13

First, note that we have

(
Ê(n)(m)p(dk, g1), . . . , Ê(n)(m)p(dk, gs)

)>
= Θ(p̂ij(m), i = 1, . . . , s, j = 1, . . . , s− 1). (A.23)

Using the strong consistency of p̂ij(m), as m goes to infinity (cf. Proposition 3.6),

and the continuous mapping theorem, we obtain the strong consistency of estimator

(3.38).

Second, taking into account the expressions (3.39) and (A.23) for the expected

forecast fundamental prices and the corresponding estimator, together with the

asymptotic normality of the vector (
√
m (p̂ij(m)− pij))i=1,...,s,j=1,...,s−1 (cf. Proposi-

tion 3.6) with covariance matrix Γ defined as the restriction of Γ̃ given in (3.24) to

s(s − 1) × s(s − 1), we obtain the asymptotic normality stated in (3.41) using the

delta method.

The last point we have to deal with is to give an expression of the partial deriva-

tive matrix Θ′. Note that we have

Θ′ =


∂Θ1

∂p11
· · · ∂Θ1

∂p1(s−1)
· · · ∂Θ1

∂ps1
· · · ∂Θ1

∂ps(s−1)

...
...

...
...

∂Θs

∂p11
· · · ∂Θs

∂p1(s−1)
· · · ∂Θs

∂ps1
· · · ∂Θs

∂ps(s−1)

 ∈Ms×s(s−1). (A.24)

An arbitrary column of this matrix corresponding to (i, j), i = 1, . . . , s, j = 1, . . . , s−

136



1, is given by

∂Θ

∂pij
=

∂

∂pij
(dkP

nIgnΨ1)

= dk
∂Pn

∂pij
IgnΨ1 + dkP

nIgn
∂Ψ1

∂pij
. (A.25)

Using the computation of ∂Pn

∂pij
given in Lemma 3.7, of ∂P

∂pij
given in (3.27) and of

∂Ψ1

∂pij
obtained in (A.19), we are able to compute the value of ∂Θ

∂pij
and thus of Θ′.

Proof of Theorem 4.1

To prove the finiteness of p(α)(g(k)), let us consider first the tower property of

conditional expectations

E(k)

[ i∏
j=1

G(α)(k + j)

]
= E(k)

[ i−1∏
j=1

G(α)(k + j) E(k+i−1)

[
G(α)(k + i)

]]
.

Now, let us proceed to bound E(k+i−1)[G
(α)(k + i)] using Assumption 1:

E(k+i−1)

[
G(α)(k + i)

]
=

m∑
j=1

g
(α)
j · P

[
G(α)(k + i) = j|F (k + i− 1)

]
,

where in general F (s) = σ(G(1)(a), G(2)(a), . . . , G(γ)(a), a ≤ s) denotes the σ-algebra

generated by the family of random variables (G(1)(a), G(2)(a), . . . , G(γ)(a), a ≤ s).

Since ∀n ∈ N

P
[
G(α)(n+ i) = j|(G(1)(n) = e(1), . . . , G(γ)(n) = e(γ)

]
=

γ∑
β=1

m∑
h=1

e
(β)
h · λβ,α ·P

(β,α)
h,j ,

note that by Assumption 1,
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E(k+i−1)

[
G(α)(k + i)

]
≤ max

e(1),...,e(γ)

(
m∑
j=1

γ∑
β=1

m∑
h=1

e
(β)
h λβ,αP

(β,α)
h,j gj

)
= g(α;1).

Thus,

E(k)

[ i∏
j=1

G(α)(k + j)

]
≤ E(k)

[ i−1∏
j=1

G(α)(k + j)

]
· g(α;1).

An iteration of previous arguments leads to

E(k)

[ i∏
j=1

G(α)(k + j)

]
≤
(
g(α;1)

)i
,

which in turn gives

p(α)(k) ≤
+∞∑
i=1

(
g(α;1)

)i
riα

d(α)(k) = d(α)(k)
+∞∑
i=1

(
g(α;1)

rα

)i

, (A.26)

which is a convergent geometric series being g(α;1) < r by Assumption 1.

As the second step in the proof, we prove the asymptotic condition

lim
i→+∞

E(k)[P(α)(k + i)]

riα
= 0.

Relation (A.26) obviously implies finiteness of the price-dividend ration for the

α-stock, i.e.

ψ
(α)
1 (g(k)) =

p(α)(g(k))

d(α)(k)
< +∞.

Consequently denote by ψ
(α)

1 = max
g(k)∈Eγ

(
ψ

(α)
1 (g(k))

)
, and observe that

p(α)(k) ≤ ψ
(α)

1 · d(α)(k),

or equivalently
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E(k)

[
P(α)(k + i)

]
≤ ψ

(α)

1 · E(k)

[
D(α)(k + i)

]
.

But, since
∑+∞

t=1

E(k)[D
(α)(k+i)]

rt
< +∞,

lim
t→+∞

E(k)[D
(α)(k + t)]

rtα
= 0.

Hence,

lim
i→+∞

E(k)[P(α)(k + i)]

riα
≤ ψ

(α)

1 · lim
i→+∞

E(k)[D
(α)(k + i)]

riα
= 0.

Proof of Theorem 4.4

We first show that equation (4.16) holds true.

In formula (4.15) we established that

p(α)(k) = ψ
(α)
1 (g(k)) · d(α)(k) =

E(k)

[
D(α)(k + 1) + P(α)(k + 1)

]
rα

=

E(k)

[
G(α)(k + 1) · d(α)(k) + ψ

(α)
1 (G(k + 1)) ·D(α)(k + 1)

]
rα

=

E(k)

[
G(α)(k + 1) · d(α)(k)

]
rα

+
E(k)

[
ψ

(α)
1 (G(k + 1)) ·D(α)(k + 1)

]
rα

(A.27)

Let us proceed to compute the expected values in Formula (A.27).

E(k)

[
G(α)(k + 1) · d(α)(k)

]
=

m∑
j=1

g
(α)
j P

[
G(α)(k + 1) = g

(α)
j |(G(1)(k) = e(1), . . . , G(γ)(k) = e(γ)

]
· d(α)(k)

=
m∑
j=1

γ∑
β=1

m∑
h=1

e
(β)
h (k)λβ,αP

(β,α)
h,j g

(α)
j

(A.28)
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E(k)

[
ψ

(α)
1 (G(k + 1)) ·D(α)(k + 1)

]
= E(k)

[
ψ

(α)
1 (G(k + 1)) ·G(α)(k + 1) · d(α)(k)

]
=

m∑
j1,...,jγ=1

ψ
(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

) · g(α)
jα
· d(α)(k)

· P
[
G(k + 1) = (g

(1)
j1
, . . . , g

(γ)
jγ

)|(G(1)(k) = e(1), . . . , G(γ)(k) = e(γ)
]

= d(α)(k) ·
m∑

j1,...,jγ=1

ψ
(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

) · g(α)
jα

·
γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

(A.29)

A substitution of (A.28) and (A.29) in (A.27) produces equation (4.16).

The existence and uniqueness of the solution of the linear system of equations

obtained from (4.16) with g(k) ∈ Eγ is a consequence of the fact that Theorem 4.1

assumes the convergence of p(α)(k), which together with d(α)(k) ∈ R implies that

ψ
(α)
1 (g(k)) should exist being equal to p(α)(k)

d(α)(k)
, and should be unique because the

series expressing p(α)(k) converge to a unique value.

Proof of Theorem 4.7

To prove the finiteness of the second-order of the price process we first observe that

from relation D(α)(k + 1) = G(α)(k) ·D(α)(k) it follow immediately that

p
(α)
2 (G(k)) =

+∞∑
i=1

E(k)

[∏i
j=1(G(α)(k + j))2

]
(d(α)(k))2

r2i
α

+ 2
+∞∑
i=1

∑
j>i

E(k)

[∏i
h=1 G

(α)(k + h)
∏j

w=1 G
(α)(k + w)

]
(d(α)(k))2

ri+jα

.
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Let us consider expected value E(k)

[∏i
j=1(G(α)(k+ j))2

]
and apply the tower prop-

erty of conditional expectation to get

E(k)

[ i∏
j=1

(G(α)(k + j))2

]
= E(k)

[ i=1∏
j=1

(G(α)(k + j))2E(k+i−1)

[
(G(α)(k + i))2

]]
.

The expectation

E(k+i−1)

[
(G(α)(k + i))2

]
=

m∑
jα=1

(g
(α)
jα

)2 · P
(
G(α)(k + i) = jα|F (k + i− 1)

)
.

Since ∀n ∈ N

P
(
G(α)(k + i) = jα|G(1)(n) = e(1), . . . , G(γ)(n) = e(γ)

)
=

γ∑
β=1

m∑
h=1

e
(β)
h · λβα · P

(β,α)
h,jα

,

we have

E(k+i−1)

[
(G(α)(k + i))2

]
≤ max

e(1),...,e(γ)

m∑
jα=1

γ∑
β=1

m∑
h=1

e
(β)
h · λβα · P

(β,α)
h,jα

·
(
g

(α)
jα

)2
= g(α;2).

Thus

E(k)

[ i∏
j=1

(G(α)(k + j))2

]
≤ E(k)

[ i−1∏
j=1

(G(α)(k + j))2

]
g(α;2),

and by iteration

E(k)

[ i∏
j=1

(G(α)(k + j))2

]
≤
(
g(α;2)

)i
.

Similar computations can be executed to prove

E(k)

[ i∏
h=1

G(α)(k + h)

j∏
w=1

G(α)(k + w)

]
≤
(
g(α;2)

)i(
g(α;1)

)j−1
.

These bounds can be applied as follows:

p
(α)
2 (k) ≤

+∞∑
i=1

(
g(α;2)

)i
r2i
α

(
d(α)(k)

)2
+ 2

+∞∑
i=1

∑
j>i

(
g(α;2)

)i(
g(α;1)

)j−1

ri+jα

(
d(α)(k)

)2
, (A.30)

which is a convergent series being g(α;1) < rα and g(α;2) < r2
α by Assumptions 1 and
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2, respectively.

To prove the asymptotic conditions (4.17a) and (4.17b), we denote by

p
(α)
2 (g(k))(
d(α)(k)

)2 =: ψ
(α)
2 (g(k)) < +∞,

being p
(α)
2 (g(k)) < +∞.

Set ψ
(α)
2 := maxG(k)∈Eγ ψ

(α)
2 (G(k)) and observe that

E(k)

[(
P(α)(k +N)

)2] ≤ ψ
(α)
2 E(k)

[(
D(α)(k +N)

)2]
,

implies

E(k)

[(
P(α)(k +N)

)2]
r2N
α

≤ ψ
(α)
2

E(k)

[(
D(α)(k +N)

)2]
r2N
α

.

Accordingly

lim
N→+∞

E(k)

[(
P(α)(k +N)

)2]
r2N
α

≤ ψ
(α)
2 lim

N→+∞

E(k)

[(
D(α)(k +N)

)2]
r2N
α

.

Now, from equation (A.30) we have

+∞∑
i=1

E(k)

[(
D(α)(k + i)

)2]
r2N
α

< +∞,

and consequently

lim
N→+∞

E(k)

[(
D(α)(k +N)

)2]
r2N
α

= 0. (A.31)

It remains to prove the second asymptotic condition, i.e.

lim
N→+∞

N∑
i=1

E(k)[D
(α)(k + i)P(α)(k +N)]

ri+Nα

= 0.
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To achieve the result, we apply the Cauchy-Schwartz inequality to get

lim
N→+∞

N∑
i=1

E(k)[D
(α)(k + i)P(α)(k +N)]

ri+Nα

≤ lim
N→+∞

(
E(k)

[(
P(α)(k +N)

)2]
r2N
α

) 1
2

lim
N→+∞

N∑
i=1

(
E(k)

[(
D(α)(k + i)

)2]
r2i
α

) 1
2

.

At this point, it is sufficient to note that

lim
N→+∞

(
E(k)

[(
P(α)(k +N)

)2]
r2N
α

) 1
2

= 0,

from equation (A.31) and that due to the finiteness of p
(α)
2 (k) we have

lim
N→+∞

N∑
i=1

(
E(k)

[(
D(α)(k + i)

)2]
r2i
α

) 1
2

< +∞.

Proof of Theorem 4.10

First of all, we establish the validity of equation (4.18). As we have established that

p
(α)
2 (k) = ψ

(α)
2 (g(k))

(
d(α)(k)

)2
=

E(k)

[
(G(α)(k + 1)d(α)(k) + P(α)(k + 1))2

]
r2
α

,

by developing the square we obtain three expectations that need to be evaluated,

i.e.

p
(α)
2 (k) =

1

r2
α

E(k)[(G
(α)(k + 1)d(α)(k))2] +

1

r2
α

E(k)[(P(α)(k + 1))2]

+
2

r2
α

E(k)[G
(α)(k + 1)d(α)(k)P(α)(k + 1)]. (A.32)

According to formula (A.28), we have

1

r2
α

E(k)

[
(G(α)(k + 1)d(α)(k))2

]
=

1

r2
α

m∑
jα=1

γ∑
β=1

m∑
h=1

e
(β)
h (k)λβ,αP

(β,α)
h,jα

(
g

(α)
jα

)2(
d(α)(k)

)2

(A.33)
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1

r2
α

E(k)

[
(P(α)(k + 1))2

]
=

1

r2
α

E(k)

[
ψ

(α)
2 (g(k))

(
D(α)(k + 1)

)2]
=

1

r2
α

E(k)

[
ψ

(α)
2 (g(k))

(
G(α)(k + 1)d(α)(k)

)2]
=

1

r2
α

m∑
j1,...,jγ=1

ψ
(α)
2 (g

(1)
j1
, . . . , g

(γ)
jγ

)(g
(α)
jα

)2

· P
[
G(α)(k + 1) = (g

(1)
j1
, . . . , g

(γ)
jγ

)
∣∣∣G(1)(k) = e(1), . . . , G(γ)(k) = e(γ)

](
d(α)(k)

)2

=

(
d(α)(k)

)2

r2
α

m∑
j1,...,jγ=1

ψ
(α)
2 (g

(1)
j1
, . . . , g

(γ)
jγ

)(g
(α)
jα

)2

( γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

)
.

(A.34)
2

r2
α

E(k)[G
(α)(k + 1)d(α)(k)P(α)(k + 1)]

=
2

r2
α

E(k)[G
(α)(k + 1)d(α)(k)ψ

(α)
1 (g(k))D(α)(k + 1)]

=
2

r2
α

E(k)[G
(α)(k + 1)d(α)(k)ψ

(α)
1 (g(k))G(α)(k + 1)d(α)(k)]

=
2
(
d(α)(k)

)2

r2
α

E(k)

[(
G(α)(k + 1)

)2
ψ

(α)
1 (g(k))

]
=

2
(
d(α)(k)

)2

r2
α

m∑
j1,...,jγ=1

ψ
(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)(g
(α)
jα

)2

· P
[
G(α)(k + 1) = (g

(1)
j1
, . . . , g

(γ)
jγ

)
∣∣∣G(1)(k) = e(1), . . . , G(γ)(k) = e(γ)

]
=

2
(
d(α)(k)

)2

r2
α

m∑
j1,...,jγ=1

ψ
(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)(g
(α)
jα

)2

( γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

)
.

(A.35)

A substitution of (A.33), (A.34), and (A.35) into (A.32) leads to

ψ
(α)
2 (g(k))

(
d(α)(k)

)2
=

2
(
d(α)(k)

)2

r2
α

m∑
jα=1

γ∑
β=1

m∑
h=1

e
(β)
h (k)λβ,αP

(β,α)
h,jα

(
g

(α)
jα

)2

+

(
d(α)(k)

)2

r2
α

m∑
j1,...,jγ=1

ψ
(α)
2 (g

(1)
j1
, . . . , g

(γ)
jγ

)(g
(α)
jα

)2

( γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

)

+
2
(
d(α)(k)

)2

r2
α

m∑
j1,...,jγ=1

ψ
(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)(g
(α)
jα

)2

( γ∏
f=1

γ∑
w=1

m∑
c=1

e(w)
c (k)λw,fP

(w,f)
c,jf

)
.

Some algebraic computations yield equation (4.18).

The existence and uniqueness of the solution of the linear system of equations ob-

tained from equation (4.18) with g(k) ∈ Eγ is a consequence of Theorem 4.7, which
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affirms that p
(α)
2 (k) < +∞ and since

(
d(α)(k)

)2 ∈ R and ψ
(α)
2 (g(k)) =

p
(α)
2 (k)(

d(α)(k)
)2 , also

ψ
(α)
2 (g(k)) should be unique ∀g(k) ∈ Eγ and exists as it is the ratio of two finite

quantities.

Proof of Theorem 4.11

To prove the finiteness of p
(α,β)
2 (g(k)) we first represent it in terms of the growth-

dividend process of α and β stocks. To do this, we observe that

D(α)(k + i) =
i∏

j=1

G(α)(k + j) · d(α)(k) (A.36)

D(β)(k + i) =
i∏

j=1

G(β)(k + j) · d(β)(k). (A.37)

A substitution of equations (A.36) and (A.37) in (4.10) gives

p
(α,β)
2 (g(k)) =

+∞∑
i=1

E(k)

[∏i
j=1G

(α)(k + j)G(β)(k + j)
]
d(α)(k)d(β)(k)

(rαrβ)i

+
+∞∑
i=1

∑
j>i

E(k)

[∏i
h=1G

(α)(k + h)G(β)(k + h)
∏j

w=i+1G
(β)(k + w)

]
d(α)(k)d(β)(k)

riαr
j
β

+
+∞∑
i=1

∑
j>i

E(k)

[∏i
h=1G

(α)(k + h)G(β)(k + h)
∏j

w=i+1G
(α)(k + w)

]
d(α)(k)d(β)(k)

riβr
j
α

.

(A.38)

Now, let us proceed to bound the three expectations in Formula A.38.

Let us start from E(k)

[∏i
j=1 G

(α)(k + j)G(β)(k + j)
]
.
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An application of the tower property of conditional expectations gives

E(k)

[ i∏
j=1

G(α)(k + j)G(β)(k + j)
]

= E(k)

[
i−1∏
j=1

G(α)(k + j)G(β)(k + j)E(k+i−1)

[
G(α)(k + j)G(β)(k + j)

]]

= E(k)

[
i−1∏
j=1

G(α)(k + j)G(β)(k + j)
m∑

jα=1

m∑
jβ=1

g
(α)
jα
g

(β)
jβ

P
(
G(α)(k + i) = jα,

G(β)(k + i) = jβ
∣∣F (k + i− 1)

)]
.

Since ∀n ∈ N

P
(
G(α)(n+ 1) = jα, G

(β)(n+ 1) = jβ
∣∣G(1)(n) = e(1), . . . , G(γ)(n) = e(γ)

)
=
( γ∑
z=1

m∑
h=1

e
(z)
h · λzα · P

(z,α)
h,jα

)( γ∑
z=1

m∑
h=1

e
(z)
h · λzβ · P

(z,β)
h,jβ

)
,

it results that

E(k)

[
G(α)(k + i)G(β)(k + i)

]
≤
(

max
e(1),...,e(γ)

m∑
h=1

γ∑
jα=1

m∑
h=1

e
(z)
h · λzα · P

(z,α)
h,jα
· g(α)

jα

)
·
(

max
e(1),...,e(γ)

m∑
h=1

γ∑
jβ=1

m∑
h=1

e
(z)
h · λzβ · P

(z,β)
h,jβ
· g(β)

jβ

)
= g(α;1) · g(β;1).

In this way we obtained the following bound

E(k)

[ i∏
j=1

G(α)(k + j)G(β)(k + j)
]
≤ E(k)

[ i−1∏
j=1

G(α)(k + j)G(β)(k + j)
]
· g(α;1) · g(β;1).

An iteration of previous arguments leads to

E(k)

[ i∏
j=1

G(α)(k + j)G(β)(k + j)
]
≤
(
g(α;1)

)i · (g(β;1)
)i
. (A.39)

Consequently, the first addendum on the right hand side of Equation (A.39)
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converges because

+∞∑
i=1

E(k)

[∏i
j=1G

(α)(k + j)G(β)(k + j)
]
d(α)(k)d(β)(k)

(rαrβ)i

≤
+∞∑
i=1

(
g(α;1)

)i · (g(β;1)
)i · d(α)(k)d(β)(k)

(rαrβ)i
< +∞

due to Assumption 1 for both stocks α and β.

As second step of the proof, we proceed to prove the convergence of the second

addendum of the r.h.s. of equation (A.38). To this end, we have

E(k)

[ i∏
h=1

G(α)(k + h)G(β)(k + h)

j∏
w=i+1

G(β)(k + w)
]

= E(k)

[ i∏
h=1

G(α)(k + h)G(β)(k + h)

j−1∏
w=i+1

G(β)(k + w)E(k+j−1)

[
G(β)(k + j)

]]
.

Within proof of Theorem 4.1 we obtained that for a given stock it results

E(k+j−1)

[
G(β)(k + j)

]
≤ g(β;1)

and by iteration, we get

E(k)

[ i∏
h=1

G(α)(k + h)G(β)(k + h)

j∏
w=i+1

G(β)(k + w)
]

≤ E(k)

[ i∏
h=1

G(α)(k + h)G(β)(k + h)
](
g(β;1)

)j−i
≤
(
g(α;1)

)i · (g(β;1)
)i · (g(β;1)

)j−i
=
(
g(α;1)

)i · (g(β;1)
)j
.
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Consequently, for both the stocks α and β, we get

+∞∑
i=1

∑
j>i

E(k)

[∏i
h=1G

(α)(k + h)G(β)(k + h)
∏j

w=i+1G
(β)(k + w)

]
d(α)(k)d(β)(k)

riαr
j
β

≤
+∞∑
i=1

∑
j>i

(
g(α;1)

)i(
g(β;1)

)j
d(α)(k)d(β)(k)

riαr
j
β

≤
+∞∑
i=1

(g(α;1)

rα

)i +∞∑
j=1

(g(β;1)

rβ

)j
d(α)(k)d(β)(k),

(A.40)

where the last inequality in (A.40) is due to the non-negativity of g(α;1) and g(β;1). It

is simple now to realise that (A.40) converges due to properties of geometric series

and Assumption 1 for both the stocks.

The third addendum of the r.h.s. of equation (A.38) can be proved to be con-

vergent using similar computations as those that demonstrated the convergence of

the second term, since they are symmetrical with respect to the stocks α and β.

It remains to prove the validity of the asymptotic conditions (4.19a), (4.19b),

and (4.19c).

From Formula (A.38), we have that

p
(α,β)
2 (g(k)) = ψ

(α,β)
2 (g(k))d(α)(k)d(β)(k) < +∞

where

ψ
(α,β)
2 (g(k)) =

+∞∑
i=1

E(k)

[∏i
j=1G

(α)(k + j)G(β)(k + j)
]

(rαrβ)i

+
+∞∑
i=1

∑
j>i

E(k)

[∏i
h=1 G

(α)(k + h)G(β)(k + h)
∏j

w=i+1 G
(β)(k + w)

]
riαr

j
β

+
+∞∑
i=1

∑
j>i

E(k)

[∏i
h=1 G

(α)(k + h)G(β)(k + h)
∏j

w=i+1 G
(α)(k + w)

]
riβr

j
α

.
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Let denote by

ψ
(α,β)
2 := max

g(k)∈Eγ

(
ψ

(α,β)
2

(
g(k)

))
,

and observe that

0 ≤
E(k)

[
P(α)(k +N)P(β)(k +N)

]
(rαrβ)N

≤ ψ
(α,β)
2

E(k)

[
D(α)(k +N)D(β)(k +N)

]
(rαrβ)N

,

from which we get

lim
N→+∞

E(k)

[
P(α)(k +N)P(β)(k +N)

]
(rαrβ)N

≤ ψ
(α,β)
2 lim

N→+∞

E(k)

[
D(α)(k +N)D(β)(k +N)

]
(rαrβ)N

.

(A.41)

Since E(k)

[∏N
j=1G

(α)(k + j)G(β)(k + j)
]
≤
(
g(α;1)

)N · (g(β;1)
)N

, then

E(k)

[
D(α)(k +N)D(β)(k +N)

]
d(α)(k)d(β)(k)

= E(k)

[ N∏
j=1

G(α)(k + j)G(β)(k + j)
]
≤
(
g(α;1)

)N · (g(β;1)
)N
.

But from Assumption 1, we know that

+∞∑
N=1

(
g(α;1)

)N · (g(β;1)
)N

(rαrβ)N
< +∞

=⇒
+∞∑
N=1

E(k)

[
D(α)(k +N)D(β)(k +N)

]
(rαrβ)N

· 1

d(α)(k)d(β)(k)
< +∞

which implies that

lim
N→+∞

E(k)

[
D(α)(k +N)D(β)(k +N)

]
(rαrβ)N

= 0,

and then

lim
N→+∞

E(k)

[
P(α)(k +N)P(β)(k +N)

]
(rαrβ)N

= 0.
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It remains to prove that

lim
N→+∞

N∑
i=1

E(k)

[
D(α)(k + i)P(β)(k +N)

]
riαr

N
β

= lim
N→+∞

N∑
i=1

E(k)

[
D(β)(k + i)P(α)(k +N)

]
riβr

N
α

= 0.

To this end, we proceed to verify only the first limit because the second one is

symmetrical with respect to stocks α and β.

An application of the Cauchy-Schwartz inequality gives

lim
N→+∞

N∑
i=1

E(k)

[D(α)(k + i)P(β)(k +N)

riαr
N
β

]

≤ lim
N→+∞

N∑
i=1

(
E(k)

[(
D(α)(k + i)

)2]
r2i
α

) 1
2
(
E(k)

[(
P(β)(k +N)

)2]
r2N
β

) 1
2

= lim
N→+∞

N∑
i=1

(
E(k)

[(
D(α)(k + i)

)2]
r2i
α

) 1
2

lim
N→+∞

(
E(k)

[(
P(β)(k +N)

)2]
r2N
β

) 1
2

.

Now, it is sufficient to remark that

lim
N→+∞

(
E(k)

[(
P(β)(k +N)

)2]
r2N
β

) 1
2

= 0

directly from Theorem 4.7 and that, again from Theorem 4.7, we know that p
(α,β)
2

(
g(k)

)
<

+∞, which in turn implies that

lim
N→+∞

N∑
i=1

(
E(k)

[(
D(α)(k + i)

)2]
r2i
α

) 1
2

< +∞.

Proof of Theorem 4.14

We start by establishing the validity of equation (4.21). In formula (4.20) we get

ψ
(α;β)
2 (g(k)) · d(α)(k) · d(β)(k) = p

(α;β)
2 (g(k)).
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Using the definition of p
(α;β)
2 (g(k)), we have

ψ
(α;β)
2 (g(k)) · d(α)(k) · d(β)(k) = E(k)

[(D(α)(k + 1) + P(α)(k + 1)

rα

)(D(β)(k + 1) + P(β)(k + 1)

rβ

)]
= E(k)

[(G(α)(k + 1)d(α)(k) + P(α)(k + 1)

rα

)(G(β)(k + 1)d(β)(k) + P(β)(k + 1)

rβ

)]
=

1

rαrβ

(
E(k)

[
G(α)(k + 1)G(β)(k + 1)d(α)(k)d(β)(k)

]
+ E(k)

[
G(α)(k + 1)P(β)(k + 1)d(α)(k)

]
+ E(k)

[
P(α)(k + 1)G(β)(k + 1)d(β)(k)

]
+ E(k)

[
P(α)(k + 1)P(β)(k + 1)

])
. (A.42)

Now, let us compute these for expectations in formula (A.42).

E(k)

[
G(α)(k + 1)G(β)(k + 1)d(α)(k)d(β)(k)

]
=

m∑
jα=1

m∑
jβ=1

g
(α)
jα
g

(β)
jβ

P
[
G(α)(k + 1) = jα, G

(β)(k + 1) = jβ
∣∣G(1)(k) = e(1), . . . , G(γ)(k) = e(γ)

]
=

m∑
jα=1

m∑
jβ=1

g
(α)
jα
g

(β)
jβ

∏
f∈{α,β}

( γ∑
w=1

m∑
c=1

e(w)
c (k)λwfP

(w,f)
c,jf

)
d(α)(k)d(β)(k).

E(k)

[
G(α)(k + 1)P(β)(k + 1)d(α)(k)

]
= E(k)

[
G(α)(k + 1)ψ

(β)
1 (G(k + 1))D(β)(k + 1)

]
d(α)(k)

= E(k)

[
G(α)(k + 1)ψ

(β)
1 (G(k + 1))G(β)(k + 1)

]
d(α)(k)d(β)(k)

=
m∑

j1,...,jγ=1

g
(α)
jα
g

(β)
jβ
ψ

(β)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)·

P
[
G(k + 1) = (g

(1)
j1
, . . . , g

(γ)
jγ

)
∣∣G(1)(k) = e(1), . . . , G(γ)(k) = e(γ)

]
d(α)(k)d(β)(k)

=
m∑

j1,...,jγ=1

g
(α)
jα
g

(β)
jβ
ψ

(β)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)
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f=1

( γ∑
w=1

m∑
c=1

e(w)
c (k)λwfP

(w,f)
c,jf

)
d(α)(k)d(β)(k).
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The same calculation can be applied to obtain

E(k)

[
P(α)(k + 1)G(β)(k + 1)d(β)(k)

]
=

m∑
j1,...,jγ=1

g
(α)
jα
g

(β)
jβ
ψ

(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)

γ∏
f=1

( γ∑
w=1

m∑
c=1

e(w)
c (k)λwfP

(w,f)
c,jf

)
d(α)(k)d(β)(k).

The fourth term of equation (A.42) can be evaluated as follows:

E(k)

[
P(α)(k + 1)P(β)(k + 1)

]
= E(k)

[
ψ

(α)
1 (G(k + 1)D(α)(k + 1)ψ
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1 (G(k + 1)D(β)(k + 1)

]
= E(k)
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ψ

(α)
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(β)
1 (G(k + 1)G(β)(k + 1)d(β)(k)

]
= E(k)

[
ψ

(α)
1 (G(k + 1)ψ

(β)
1 (G(k + 1)G(α)(k + 1)G(β)(k + 1)

]
d(α)(k)d(β)(k)

=
m∑

j1,...,jγ=1

g
(α)
jα
g

(β)
jβ
ψ

(α)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)ψ
(β)
1 (g

(1)
j1
, . . . , g

(γ)
jγ

)d(α)(k)d(β)(k)·

γ∏
f=1

( γ∑
w=1

m∑
c=1

e(w)
c (k)λwfP

(w,f)
c,jf

)
.

A substitution of these four expectations into formula (A.42) and little algebraic

operations give equation (4.21).

152



Bibliography

Agosto, A. and Moretto, E., 2015, ‘Variance matters (in stochastic dividend discount

models)’, Annals of Finance, vol. 11, no. 2, pp. 283–295.

Agosto, A., Mainini, A., and Moretto, E., 2018, ‘Stochastic dividend discount model:

Covariance of random stock prices’, Journal of Economics and Finance. Online

first article available at https://doi.org/10.1007/s12197-018-9455-9.

Anderson, T.W. and Goodman, L.A., 1957, ‘Statistical inference about Markov

chains’, The Annals of Mathematical Statistics, vol. 28, no. 1, pp. 89–110.

Baillie, R.T., Booth, G.G., Tse, Y., and Zabotina, T., 2002, ‘Price discovery and

common factor models’, Journal of Financial Markets, vol. 5, no. 3, pp. 309–321.

Barbu, V.S., D’Amico, G., and De Blasis, R., 2017, ‘Novel advancements in the

Markov chain stock model: Analysis and inference’, Annals of Finance, vol. 13,

no. 2, pp. 125–152.

Barsky, R.B. and De Long, J.B., 1993, ‘Why does the stock market fluctuate?’, The

Quarterly Journal of Economics, vol. 108, no. 2, pp. 291–311.

Basu, S., 1977, ‘Investment performance of common stocks in relation to their price-

earnings ratios: A test of the efficient market hypothesis’, The Journal of Finance,

vol. 32, no. 3, pp. 663–682.

Berchtold, A. and Raftery, A.E., 2002, ‘The mixture transition distribution model

for high-order Markov chains and non-Gaussian time series’, Statistical Science,

vol. 17, no. 3, pp. 328–356.

153

https://doi.org/10.1007/s12197-018-9455-9


Beveridge, S. and Nelson, C.R., 1981, ‘A new approach to decomposition of economic

time series into permanent and transitory components with particular attention

to measurement of the business cycle’, Journal of Monetary Economics, vol. 7,

no. 2, pp. 151–174.

Billingsley, P., 1961a, Statistical inference for Markov processes. University of

Chicago Press, Chicago, IL.

Billingsley, P., 1961b, ‘Statistical methods in Markov chains’, The Annals of Math-

ematical Statistics, vol. 32, no. 1, pp. 12–40.

Black, F., 1972, ‘Capital market equilibrium with restricted borrowing’, The Journal

of Business, vol. 45, no. 3, pp. 444–455.

Blanchard, O.J. and Watson, M.W., 1982, ‘Bubbles, rational expectations and fi-

nancial markets’, in Wachtel, P. (ed.), Crises in the Economic and Financial

Structure. D.C. Heathand Company, Lexington, MA.

Blume, M.E. and Friend, I., 1973, ‘A new look at the capital asset pricing model’,

The Journal of Finance, vol. 28, no. 1, pp. 19–34.

Boehmer, E., Fong, K.Y., and Wu, J., 2013, ‘Algorithmic trading and changes in

firms’ equity capital’. Available at SSRN https://ssrn.com/abstract=2348730.

Bohl, M.T., Salm, C.A., and Schuppli, M., 2011, ‘Price discovery and investor struc-

ture in stock index futures’, Journal of Futures Markets, vol. 31, no. 3, pp. 282–

306.

Booth, G.G., Lin, J.C., Martikainen, T., and Tse, Y., 2002, ‘Trading and pricing in

upstairs and downstairs stock markets’, The Review of Financial Studies, vol. 15,

no. 4, pp. 1111–1135.
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