
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part B 

Faculty of Engineering and Information 
Sciences 

2019 

Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature 

Verifications Verifications 

Arnaud Sipasseuth 
University of Wollongong, as447@uowmail.edu.au 

Thomas Plantard 
University of Wollongong, thomaspl@uow.edu.au 

Willy Susilo 
University of Wollongong, wsusilo@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers1 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Sipasseuth, Arnaud; Plantard, Thomas; and Susilo, Willy, "Using Freivalds’ Algorithm to Accelerate Lattice-
Based Signature Verifications" (2019). Faculty of Engineering and Information Sciences - Papers: Part B. 
3528. 
https://ro.uow.edu.au/eispapers1/3528 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/3528?utm_source=ro.uow.edu.au%2Feispapers1%2F3528&utm_medium=PDF&utm_campaign=PDFCoverPages


Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature Verifications Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature Verifications 

Abstract Abstract 
© Springer Nature Switzerland AG, 2019. We present a novel computational technique to check whether a 
matrix-vector product is correct with a relatively high probability. While the idea could be related to 
verifiable delegated computations, most of the literature in this line of work focuses on provably secure 
functional aspects and do not provide clear computational techniques to verify whether a product $$xA = 
y$$ is correct where x, A and y are not given nor computed by the party which requires validity checking: 
this is typically the case for some cryptographic lattice-based signature schemes. This paper focuses on 
the computational aspects and the improvement on both speed and memory when implementing such a 
verifier, and use a practical example: the Diagonal Reduction Signature (DRS) scheme as it was one of the 
candidates in the recent National Institute of Standards and Technology Post-Quantum Cryptography 
Standardization Calls for Proposals competition. We show that in the case of DRS, we can gain a factor of 
20 in verification speed. 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Sipasseuth, A., Plantard, T. & Susilo, W. (2019). Using Freivalds’ Algorithm to Accelerate Lattice-Based 
Signature Verifications. Lecture Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics), 11879 LNCS 401-412. Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics) 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/3528 

https://ro.uow.edu.au/eispapers1/3528


Using Freivalds’ algorithm to accelerate
Lattice-Based Signature Verifications

Arnaud Sipasseuth1,2, Thomas Plantard1,2, and Willy Susilo1,2

1 Institute of Cybersecurity and Cryptology
School of Computing and Information Technology

University of Wollongong
2 [as447,thomaspl,wsusilo]@uow.edu.au

Abstract. We present a novel computational technique to check whether
a matrix-vector product is correct with a relatively high probability.
While the idea could be related to verifiable delegated computations,
most of the literature in this line of work focuses on provably secure
functional aspects and do not provide clear computational techniques to
verify whether a product xA = y is correct where x, A and y are not given
nor computed by the party which requires validity checking: this is typ-
ically the case for some cryptographic lattice-based signature schemes.
This paper focuses on the computational aspects and the improvement
on both speed and memory when implementing such a verifier, and use
a practical example: the Diagonal Reduction Signature (DRS) scheme as
it was one of the candidates in the recent National Institute of Standards
and Technology Post-Quantum Cryptography Standardization Calls for
Proposals competition. We show that in the case of DRS, we can gain a
factor of 20 in verification speed.

Keywords: Diagonal Reduction Signature, Post-Quantum Cryptogra-
phy, Lattice-based Signatures, NIST, Delegated Computation Verifica-
tion, Lattice-based cryptography

1 Introduction

Post-Quantum cryptography is currently being widely researched. Quan-
tum computing is improving and it is not clear how long it would take
for most currently used cryptographic primitives to be finally broken
by quantum algorithms such as Shor’s algorithm [25] or Grover’s algo-
rithm [13]. This has forced the National Institute of Standards and Tech-
nology (NIST) to call for a standardization of post-quantum primitives
in the hope of having the readiness of the standarized algorithm when
quantum computers arrive [19]. Nevertheless, research in cryptology still
continues outside of the NIST standardization process. One such impor-
tant result is the work of Gama, Izabachene, Nguyen and Xie [11] which
proves that the reduction from average cases to worst cases problems on
q-ary lattices, demonstrated by Ajtai [1] and Regev [23], can be extended
to most random lattices. Therefore one is not required to rely exclusively
on q-ary lattices when building a cryptosystem, unlike all lattice-based
candidates in the second round of the NIST process. However, q-ary lat-
tices can obtain a Hermite Normal Form (HNF) as a basis for almost free,
which allows very fast verification whether a random vector belongs to



the lattice generated by the said basis, on top of significantly reducing
key sizes [17]. Most lattice-based schemes rely on finding a vector of a
lattice with specific properties, mostly being short. For non q-ary lattice
schemes, obtaining a HNF is often costly. While computing a HNF can be
done in polynomial time [20], the actual time used in practice to compute
cryptographically secure HNF basis is too long for most applications. We
propose in this paper a method to alleviate this issue, using a variant of
Freivalds’ algorithm [10] to verify the validity of matrix product. While
the core ideas are also applicable to q-ary lattices and other HNF basis
to some extent, we deem its impact not significant enough to expand on
it, and rather we present an application to one of the schemes submitted
to the NIST which did not rely on q-ary lattices, the Diagonal Reduction
Signature scheme (DRS) [21]. DRS did not use a HNF as a public key:
the authors of DRS used an alternative to generate public keys and used
another way to verify if a vector belonged to a lattice. Our work provides
an alternative to verify lattice signatures if the need arises, showing an
interesting trade-off between pre-computation time for signature verifica-
tion time and memory storage. In this work, we show that by adopting
our approach to the proposed DRS parameters [27], we gain a factor of 20
on the verification speed. We also provide another approach on an attack
specifically to our modification as the security of our public key remains
unchanged. The rest of this paper is organized as follows. We will first
recall some basic lattice definitions, Freivalds’ algorithm and then briefly
reintroduce DRS mostly focusing on its verification part. We will proceed
with the presentation of our new technique and its results using simple
non-optimized implementations, followed by comments on its security and
concluding this work by raising open questions.

2 Background
2.1 Lattice basics

We call an integer lattice when a finitely generated subgroup of Zn. A
basis of the lattice is a basis as a Z − module. In our work we only
consider full-rank integer lattices, i.e such that any basis B of a lattice L
(we note L = L(B)) is full rank.
We call the max norm l∞ norm: ∀x ∈ Zn, ‖x‖∞ = maxi∈[1,n] |xi|.
A valid signature in the DRS scheme solve an instance of GDDγ (γ-
Guaranteed Distance Decoding): given a lattice L, x ∈ Zn and a bound
γ ∈ Z, find v ∈ L such that ‖x− v‖ ≤ γ.

2.2 Freivalds’ algorithm

Freivalds’ algorithm (algorithm 1) for verifying matrix products [10] is
one of the first probabilistic algorithms to be introduced to show the



efficiency and practicality of non-deterministic programs to solve decision
problems over deterministic ones. Freivalds’ technique had a major impact
on several research fields and is still an active research topic to this date
[8, 9]. The decision problem solved by Freivalds is the following: given
A,B,C, three n × n matrices over an arbitrary ring R, can we verify
that A×B = C with a faster method than recomputing A×B? Freivalds
brought a probabilistic solution, which rely on a simple statement: to
check A × B = C, we check instead A × (B × v) = C × v where v is a
randomly sampled vector, and then it follows that the more we run this
test, the more we decrease the probability of obtaining a false-positive.
This leads to Freivalds’ algorithm 1 which is perfectly complete: it will

Algorithm 1 Freivalds’ algorithm

Require: A,B,C ∈ Rn×n, f ∈ N a failure probability
Ensure: Check the validity of A×B = C with a chance of false-positive under 2−f

1: i← 0
2: while i < f do
3: v ← Randomly taken in {−1, 1}n
4: x← Cv, y ← Bv, y ← Ay
5: if x 6= y then return FALSE . check validity

6: i← i + 1

7: return TRUE

always output TRUE whenever A × B = C is correct. It is also sound :
the probability of outputting TRUE for A × B 6= C is negligible (as
much as we want). The gain in efficiency compared to a deterministic
method is quite impactful as this shifts the arithmetical computations
from a matrix-matrix product to a matrix-vector multiplication. We are
not recalling the proof on the original error probability bound in [10] but
we will later give a much tighter upper bound which will be more adapted
to our case.

2.3 DRS and its verification algorithm

DRS is one of the five lattice-based signature schemes that have been
proposed to the NIST PQC competition [19]. The original idea behind
DRS stemmed from when Plantard, Susilo and Win [22] suggested to
use a diagonal dominant matrix to reduce large message vectors to short
signatures within a known hypercube as a countermeasure against par-
allelogram detection attacks [18]. The security of the scheme has been
shown to be reduced by a machine learning method [28] and since then
it has been modified to resist against this attack at the cost of a slower
secret key generation [27]. We will briefly describe both keys, the signa-
ture and the verification, the latter being the only part affected by this
work. The secret diagonal dominant matrix (as defined in [7]) Skey is



generated using the work in [27]). The public key Pkey is generated by
the multiplication of Pkey = Skey × U with U unimodular and randomly
taken such that ‖Pkey‖∞ < 263. The signature algorithm makes use of
the structure of Skey to output (h, s) to solve the GDDD problem on
m with hPkey = m − s and ‖m − s‖∞ < D. The verification algorithm,
algorithm 2, checks two points: the first ensuring that the vector s is in-
deed short enough, and the second ensuring that m− s is indeed a vector
of the lattice. This is where DRS differs from other lattice-based crypto-
graphic schemes even from the original concept from [22]: DRS does not
use a HNF. Our understanding is that the computation time of a HNF
was deemed too large to be suggested for practical uses, and thus the
authors of DRS opted for another solution which impacted the verifica-
tion algorithm as they could no longer use HNF to check m − s ∈ L.
Another important point about DRS is their choice to fit every compu-
tation within 64-bits to ensure that computation of h × Pkey does not
overflow without the use of multiprecision integers. The principle of this
algorithm can be compared to a verification per block: we successively
deal with parts of the input, where each part taken h′ of h is chosen such
that t = ‖h′Pkey‖∞ < 263 and remove t from m − s until t and h′ reach
0 exactly at the same time. While this algorithm could be interesting

Algorithm 2 DRS Verify
Require:

The message m ∈ Zn, the public key Pkey both stored by Alice
The signature (s, h) given by Bob

Ensure:
The boolean value ( (hPkey = m− s) AND (‖w‖∞ < D) )

1: if ‖w‖∞ > D then return FALSE . Test for max norm first

2: q ← h, t← v − w . Loop Initialization
3: while q 6= 0 ∧ t 6= 0 do
4: r ← q mod ‖Pkey‖∞, t← rPkey − t
5: if t 6= 0 mod ‖Pkey‖∞ then return FALSE . Check correctness

6: t← t/‖Pkey‖∞, q ← (q − r)/‖Pkey‖∞
7: if (t = 0) Y (q = 0) then return FALSE . Check correctness

8: return TRUE

to improve on its own, we suggest an alternative instance of the scheme
where this verification method can be completely discarded.

3 Modifiying Freivalds’ technique for lattice-based
signature verification

3.1 The first core idea: Modification of Freivalds’ algorithm

In this work, we modify Frivalds’ technique to obtain a faster probabilis-
tic verification algorithm. The vector pairs (k,m) to check are not given



by the person who needs the verification but by the signatory, and so is
Pkey. In the case where one public key is re-used over multiple message-
signature exchanges, the equality hPkey = m − s = v must stand true
for all vector triplets (h, s,m) provided. In that case, we can introduce
a random vector x> and X = Pkey × x> such that (h × X = v × x>)
which reduce a matrix-vector multiplication check to the comparison of
two scalar products (vector-vector multiplications). A difference with the
original Frivalds’ algorithm is that we don’t use x ∈ {−1, 1}n but rather,
we will choose a prime p such that x ∈ Fnp is taken randomly, and project
the whole equation over the field Fp. For sufficiently many vectors x,X
and primes p, let’s say k primes and k vectors x, our new validity con-
dition is then (h × Xi = v × x>i mod pi)i∈[1,k]. Note that projecting
Freivalds’ algorithm over a finite field was proposed in [15] for a non-
cryptographic purpose, however to the best of our knowledge there is no
work that modify the algorithm in the manner we just described. The
choice to use multiple different moduli will be expanded in section 4. Let
us compute the probability of failure of our verification algorithm. First
of all, the algorithm is perfectly complete, i.e it will never output a false
negative. The last thing to check is then the probability of a false posi-
tive. In that regard, rather than thinking of probability of a false positive,
let us first compute the proportion of positive results over all possibili-
ties given a prime p. Let us enumerate all possibilities. If v is fixed, then
v∗x> = ap mod p is also fixed. So the proportion of couples (h,m) giving
a positive result is the probability of

∑n
i=1 h[i]X[i] = ap mod p. Without

losing generality, if we choose and index j such that X[j] is non-zero (X
being obviously chosen non-zero) and fix every other coefficient hi such
that bp = ap(

∑
i 6=j h[i]X[i])−1 mod p, we obtain the result of a positive

output with the same proportion as verifying h[i] = cp mod p which is
1/p for a given prime p. As this reasoning is sound for any v = m− s and
in any triplet (h,m, s), we determine the quantity of false positives being
the difference between the amount of positive outcomes and the amount
of valid positive outcomes, which set a proportion of false positives of
being strictly under 1/p (and by extension its probability over all possi-
ble samples). If we repeat this process over k different vectors, the false
positive probability lowers to below p−k. Generally speaking, if we try
the test once per couple prime/vectors over k primes {pi, xi}i∈[1,k], then

the probability of obtaining a false positive becomes lower than
∏k
i=1 p

−1
i .

This is a tighter upper bound over Freivalds’ initial upper bound, al-
though our work only concerns our very specific case and does not apply
to the general scope of Freivalds’ technique.



3.2 The second core idea: Changing the verifier

With our previous idea in mind, we need to explain what we aim to
modify in the previous DRS scheme. First let us briefly recall how the
sender/verifier Alice and the signatory Bob acts in 5 steps:

1. Bob generates a pair of keys {Pkey, Skey}.
2. Bob keeps the secret key Skey, and sends the public key Pkey to Alice.
3. Alice sends a random vector m with ”large” norm ‖m‖∞ to Bob.
4. Bob uses Skey to send the signature {h, s} to Alice.
5. Alice verifies that ‖s‖∞ is ”low” and hPkey = v = m− s.
While we can consider the verification process to be entrusted to a third-
party like a certification authority, here we restrict ourselves on exclu-
sively modifying the computation of the verification which is step 5, and
inserting a precomputation which can be placed after or during step 2.
One important point to stress on is that Alice does not need to communi-
cate to Bob she is using a precomputation. The whole process is oblivious
to Bob and his role does not change at all compared with the existing
DRS process. Hence, it seems natural for us to assume Alice will keep her
computations secret as there is no apparent benefit in revealing them.

Precomputation The precomputation construct the samples required
to apply our modified Freivalds’ test and can be described in two halves
as follows:

– Generate a family of tuples (pi, xi)i∈[1,k]
– Compute T = (pi, xi, Xi)i∈[1,k] where Xi = Pkeyxi mod pi given Pkey

The first half of the precomputation do not requires input from Bob as
the dimension is supposed to be public, therefore those can even be pre-
computed before Bob generating his keys in step 1. The choice of random
generators for primes and vectors are important for security and efficiency
considerations, however those are not the main point of the paper. As far
as our experimental results are concerned, we just used the basic ran-
dom function ”rand()” of the library ”stdlib.h” in C with the classical
modulo operator % to generate our vectors, and our primes are randomly
taken in a set we will discuss in the security section of this paper, using
the MAGMA software [6] to pick primes and write them into a header file
used by our code before the compilation. Its computation time is neglige-
able compared to the second part of the precomputation which involves
matrix-vectors modular multiplications.

In the second half of the precomputation, Alice does not need to store
Pkey at the end, and furthermore she does not even need to store the whole
public key while computing Xi. Since for each row j of Pkey Alice can in-
dependently compute Pkey[j]∗xi = Xi[j] mod pi, Alice can discard every



row of Pkey where the corresponding computation is finished and choose
to only receive a certain amount of rows at a time, which would reduce
the amount of internal memory required for the whole precomputation
(and allow for further parallelism). The cost of the second half of the
precomputation is the main cost of the whole precomputation process.

New verification method The new verification method will apply our
modification on Freivalds’ algorithm using our precomputation step. Al-
ice, at step 5, previously discarded the public key Pkey and kept some
small footprint in the form of a secret list T of triplets and sent a random
message m. As she received in step 4 the signature (k, s) from Bob, her
verification process is now described by algorithm 3. This new verifica-

Algorithm 3 New Verification
Require:

a list of triplets T = (pi, xi, Xi)i∈[1,k] and a message m from Alice
a signature (h, s) from Bob
a public bound D on the signature norm

Ensure:
a boolean R stating whether (h, s) is a valid signature for m and Pkey

R is a false-positive with probability strictly less than
∏k

i=1 p
−1

1: R← {‖s‖∞ < D} . Verifies the max norm of the signature
2: for i ∈ [1, k] do
3: R← R ∧ {hxi = (m− s)xi mod pi} . Verifies modular equalities

4: return R

tion algorithm is more compact than the original one and also simpler to
understand. The only remaining point to deal with is to choose how large
h and the primes pi need to be. We will discuss that in the next section
when discussing security.

4 Security considerations

While the previous attacks on the old DRS are well-understood heuristics
relying either on machine learning [28] or pure lattice reduction as with
most other lattice-based schemes (being signature-based or decryption-
based), our modification does not thwart previous attacks nor does it re-
inforce them and thus rely on the same security assumptions. However,
this is only when considering the only secret was the diagonal dominant
matrix Skey. Here, we introduce a new secret, which is the list of triplets
T generated by Alice. Thus, new attacks venues can be considered which,
to the best of our knowledge, were also not considered in others lattice
schemes submitted to the NIST. We will consider them in this section.
We briefly present the two avenues we found and explain our reasoning on
why only the second can be considered, and tackle this issue. Note that



our reasoning discard all attack venues that can affect the old DRS inde-
pendently of our new method, as this would be out of this paper’ scope,
and we stress it is hard to construct a security proof when an attack aside
from exhaustive search cannot be constructed.

4.1 Attack models

A malicious Bob One attack is to try to guess the triplets generated by
Alice, as malicious Bob, by sending carefully crafted keys and signatures.
While it is definitively an interesting idea, as long as Alice generates a
different triplet for each public key (using a hash of Pkey as a seed for
example) and only answers True or False in the verification, we do not
see any gain malicious Bob could have over a honest Bob.

A honest Bob, and a ”fake Bob” Eve To the best of our knowledge,
the only other attack venue is having a honest Bob, who is giving good
signatures, and Eve, who has no knowledge of the secret key Skey, wanting
to sign as well as Bob but could not in the existing DRS scheme. Let
us suppose Eve knows that Alice is using our technique for signature
verification, although assuming she has no knowledge of the triplets T and
knows as much as Alice concerning Bob. Can Eve make Alice believe Eve
is Bob? To this purpose, we assume Eve has to generate a false-positive
from Alice’s verification algorithm. As Alice can make the primes pi and
their quantity k as large as she wants, it seems unreasonable to assume
Eve can randomly fall into the

∏k
i=1 p

−1
i false-positive probability. Eve

cannot resort either to a lattice-reduction technique on an easier lattice
stemming from T if she has no knowledge of T . Furthermore, building
a false-positive for the modified Freivalds’ test is not enough: one has
to guarantee the vector-signature s is short enough. It is then possible
that the number of false-positives drastically decreases, which reinforces
the security of our modification however counting the number of false-
positives within a bound seems non-trivial. Therefore, we believe that for
Eve to be successful she must at least recover T fully. It is unclear if the
knowledge of the primes pi is enough for Eve to recover the associated
vectors xi. While this is a very obvious overexaggeration on Eve’s attack
capabilities, we will assume for a simpler analysis that guessing exactly
all pi is sufficient to trigger a false-positive on Alice’s side. We will now
explain how to alleviate this (potential) issue.

4.2 How to choose the primes

In order to dissuade Eve from trying to guess the correct set of primes
Tp = (pi)i∈[1,k], we have to make sure the number of possibilities is large



enough. In that regard, we are considering two objectives: one is to re-
duce the complexity of arithmetical operations used during the verification
algorithm, and the other is to match a chosen level of security. Which
naturally brings us to a natural question: is it easier to trigger a random
false-positive, i.e to try our luck with an attacker’s success of

∏k
i=1 p

−1
i ,

or to guess Tp? As we will observe later, the set of combinations Tp is

picked from is actually far below
∏k
i=1 pi. We also choose primes to ob-

tain efficient arithmetic. To deal with the second objective, we will just
fix the level of security to match the same level of security the orig-
inal DRS algorithm was aiming to achieve with lattices of dimension
{1108, 1372, 1779}: the NIST security levels {3, 4, 5} which is basically
requiring {128, 192, 256} bits of security. To reach that number, let us
present how we determine the number of combinations available when
choosing primes of a certain amount of bits. Suppose we have a set S
of primes, and pick k primes from it which gives

(
S
k

)
combinations to

choose from. We now have to determine both S and k. To give an idea of
the numbers required, we give table 1 and refer to a table available on-
line [26] referencing the number of primes. While taking low-bits primes
to minimize the amount of modular reductions allows for more efficient
arithmetic (see ”lazy reductions” in Seiler’s work for NewHope [24]), we
will very soon show that we have to combine multiple sets of large sizes
of primes to achieve a reasonable amount of security. DRS fitted every
computation within 64-bits for both speed and convenience, and ideally
we should follow that philosophy. Our final choices are:

3 : 128-bits security: k = 6 with S the set of 28-bits primes
4 : 192-bits security: k = 9 with S the set of 27 and 28-bits primes
5 : 256-bits security: k = 12 with S the set of 24 to 28-bits primes

Table 1. Size of set S necessary to achieve
(
S
k

)
> 2b

@
@@b
k

5 6 7 8 9 10

128 132,496,421 7,910,346 1,080,111 - - -

192 - - 610,573,333 63,155,327 10,957,838 2,727,426

@
@@b
k

11 12 13

256 49,751,158 13,974,454 4,801,557

5 Implementation results

5.1 Time results on a basic implementation

To make a fair comparison, we first give the time given by the original
algorithm (setup, sign and verify). Time is given as an average in millisec-
onds and computations were done using a Intel(R) Xeon(R) Gold 6128



CPU @ 3.40GHz processor using a non-optimized C implementation and
re-using the code provided by the DRS submitters on their website (see
table 2). We then showcase the base case where we do not take account of

Table 2. Average time (in ms) for the existing DRS scheme

PPPPPPPSecurity
Phase

Setup Signature Verification

128 67.5 1.495 0.89

192 102 2.46 1.68

256 162.9 3.82 3.50

the number of combinations and use just enough 32-bit integers to reach
the product size needed, and compare them with our choices with smaller
primes (28-bits or less) in a larger amount to reach the combination size
needed (see table 3). Note that the generation of primes is not included,
as we used MAGMA [6] to pick primes and write them into a header file
used by our code before the compilation. Picking primes, however did not
take any significant amount of time (almost always lower than 10ms),
and we used an external software to select them. Following this, we do
not think reporting the time taken for the prime generation is very rele-
vant, as the literature also points out it is on a much lower scale than a
matrix-vector multiplication (for our sizes, see [16] and subsequent work
on either heuristic or deterministic algorithms). We observe that the pre-

Table 3. Average time (in ms) for the precomputation/verification algorithms

PPPPPPPSecurity
Phase

128 192 256

Precompute (32-bits) 100.16 223.9 646.69

Verify (32-bits) 0.1328 0.2515 0.4297

Precompute (28-bits) 153.21 363.1 1005.1

Verify (28-bits) 0.1048 0.2006 0.3429

computation is heavier than the generation of the keys. Which is expected
as we are dealing with multiple modular matrix-vectors multiplications,
whereas the original DRS setup only had to deal with randomized vectors
additions. The number of signatures generated per key to break even in
time (including precomputation) compared with the old DRS is reached
for 256-bits of security with 319 signatures (28-bits case) and 211 (32-bits
case).

5.2 Memory storage

As we mentioned previously, Alice does not need to store Pk in our al-
ternative scheme. Memory-wise, this showcases an obvious advantage for
the verifier to require only a quasi-linear amount of memory in function of
the dimension rather than a quadratic amount (i.e full public key). Here



in all 3 cases we store k prime integers of 28-bits, plus 2 ∗ k vectors of
dimension n containing 28-bits integers, thus the memory taken in bytes
is d28(k+2kn)/8e (see table 4). Another potential worry in term of mem-

Table 4. Memory storage in bytes for Pkey and its footprint T

Security 128 192 256

Pk the public key 7,672,900 11,764,900 19,780,257

pi, xi, Xi 46,557 86,468 149,478

ory in our modified scheme is that the prime number generation might be
taking a lot of memory for the verifier. However, after decades of research
on prime number generation we do not believe this is the case [14].

6 Conclusion

In this paper we introduced a modification of Freivalds’ algorithm to
introduce a faster verification method to DRS. By introducing a precom-
putation step that is in the same order of magnitude as the setup in
time, we gain a factor of almost 20 for the verification part while also
heavily reducing its memory cost. This process is done while not modify-
ing any information given by the signatory. Furthermore, more research
should greatly improve this new work. First, we assumed almost “para-
noiac” security requirements, thus a deeper analysis should improve effi-
ciency. Second, we can make use of Residue Number Systems: stemming
from [12] with several applications [2–5], finding large arithmetically effi-
cient random groups is exactly what we need. Third, generalizing to all
lattices and HNF keys. It needs the extra vector h, but any party can
compute h in polynomial time with no security loss.

References

1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: STOC ’97. pp. 284–293. ACM (1997)

2. Bajard, J.C., Eynard, J., Merkiche, N.: Multi-fault attack detection for rns crypto-
graphic architecture. IEEE 23nd Symposium on Computer Arithmetic (July 2016)

3. Bajard, J.C., Imbert, L.: A full rns implementation of rsa. IEEE Transactions on
Computers 53(6), 769–774 (2004)

4. Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full rns variant of fv like some-
what homomorphic encryption schemes. In: SAC. pp. 423–442. Springer (2016)

5. Bajard, J.C., Plantard, T.: Rns bases and conversions. In: Optical Science and
Technology, the SPIE 49th Annual Meeting. pp. 60–69 (2004)

6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

7. Brualdi, R.A., Ryser, H.J.: Combinatorial matrix theory, vol. 39. Cambridge Uni-
versity Press (1991)

8. Dumas, J.G.: Proof-of-work certificates that can be efficiently computed in the
cloud (invited talk). In: CASC 2018. pp. 1–17. Springer (2018)



9. Dumas, J.G., Zucca, V.: Prover efficient public verification of dense or
sparse/structured matrix-vector multiplication. In: ACISP 2017. pp. 115–134.
Springer (2017)

10. Freivalds, R.: Fast probabilistic algorithms. In: International Symposium on Math-
ematical Foundations of Computer Science. pp. 57–69. Springer (1979)

11. Gama, N., Izabachene, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: gen-
eralized worst-case to average-case reductions and homomorphic cryptosystems. In:
EUROCRYPT 2016. pp. 528–558. Springer (2016)

12. Garner, H.L.: The residue number system. In: Papers presented at the the March
3-5, 1959, western joint computer conference. pp. 146–153. ACM (1959)

13. Grover, L.K.: A fast quantum mechanical algorithm for database search. arXiv
preprint quant-ph/9605043 (1996)

14. Joye, M., Paillier, P.: Fast generation of prime numbers on portable devices: An
update. In: CHES 2006. pp. 160–173. Springer (2006)

15. Kimbrel, T., Sinha, R.K.: A probabilistic algorithm for verifying matrix products
using o(n2) time and log2(n)+ o(1) random bits. Information Processing Letters
45(2), 107–110 (1993)

16. Maurer, U.M.: Fast generation of prime numbers and secure public-key crypto-
graphic parameters. Journal of Cryptology 8(3), 123–155 (1995)

17. Micciancio, D.: Improving lattice based cryptosystems using the hermite normal
form. In: Cryptography and Lattices, pp. 126–145. Springer (2001)

18. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of ggh and ntru
signatures. Journal of Cryptology 22(2), 139–160 (2009)

19. NIST: Post-quantum cryptography standardization (2018), https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography

20. Pernet, C., Stein, W.: Fast computation of hermite normal forms of random integer
matrices. Journal of Number Theory 130(7), 1675–1683 (2010)

21. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: Drs : Diagonal dom-
inant reduction for lattice-based signature. PQC Standardization Conference,
Round 1 submissions (2018), https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/round-1/submissions/DRS.zip

22. Plantard, T., Susilo, W., Win, K.T.: A digital signature scheme based on cvp max.
In: PKC 2008. pp. 288–307. Springer (2008)

23. Regev, O.: New lattice-based cryptographic constructions. Journal of the ACM
(JACM) 51(6), 899–942 (2004)

24. Seiler, G.: Faster avx2 optimized ntt multiplication for ring-lwe lattice cryptogra-
phy. Cryptology ePrint Archive, Report 2018/039 (2018)

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing 26(5) (1997)

26. e Silva, T.O.: Tables of values of pi(x) and of pi2(x).
http://sweet.ua.pt/tos/primes.html (2018)

27. Sipasseuth, A., Plantard, T., Susilo, W.: Improving the security of the drs scheme
with uniformly chosen random noise. In: ACISP 2019. pp. 119–137. Springer (2019)

28. Yu, Y., Ducas, L.: Learning strikes again: The case of the drs signature scheme.
In: ASIACRYPT 2018. pp. 525–543. Springer (2018)

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DRS.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DRS.zip

	Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature Verifications
	Recommended Citation

	Using Freivalds’ Algorithm to Accelerate Lattice-Based Signature Verifications
	Abstract
	Disciplines
	Publication Details

	Using Freivalds' algorithm to accelerate Lattice-Based Signature Verifications*-0.3in

