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Abstract: Free-standing flexible electrodes with high areal mass-loading are required for the 

development of flexible high-performance lithium-ion batteries (LIBs). Currently they face the 

challenge of low mass loading due to the limited concentrations attainable in processable 

dispersions. Here, we report a simple low temperature hydrothermal route to fabricate flexible 

layered molybdenum disulfide (MoS2)/reduced graphene oxide (MSG) films offering high areal 

capacity and good lithium storage performance. This is achieved using a self-assembly process 

facilitated by the use of liquid crystalline graphene oxide (LCGO) and commercial MoS2 powders 

at a low temperature of 70 oC. The amphiphilic properties of ultra-large LCGO nanosheets 

facilitates the processability of large size MoS2 powders, which is otherwise non-dispersible in 

water. The resultant film with an areal mass of 8.2 mg cm-2 delivers a high areal capacity of 5.80 

mAh cm-2 (706 mAh g-1) at 0.1 A g-1. This simple method can be adapted to similar non-

dispersible commercial battery materials for films fabrication or production of more complicated 

constructs via advanced fabrication technologies. 

1 Introduction 

Molybdenum disulfide (MoS2) is commercially available and among the most industrially used 

semi-conducting transition metal dichalcogenide (TMD). Thanks to its layered S-Mo-S structure 

with an interlayer distance of 0.62 nm,1 it can support facile insertion/deinsertion of lithium ions 

with a theoretical capacity of 670 mAh g-1.2,3 This has placed MoS2 among the most promising 

anode materials for rechargeable and low cost lithium ion batteries (LIBs). However, the non-

dispersible nature of MoS2 powders means that they are not amendable to conventional solution 

processing. Therefore, they are commonly mixed with conductive additives, binders and polymers 

before deposition on a metal foil used for both mechanical support and as a current collector. The 
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drawbacks with this approach are dead weight/volume of additives, inhomogeneous blending 

leading to power charge storage performance, high production cost and low durability due to 

delamination during charge-discharge cycling.  

 The ever-increasing demand for wearable and flexible devices requires robust, free-standing 

and flexible electrodes that can be easily manufactured into various shapes while avoiding 

excessive use of costly additives and metal substrates.4–6 Therefore, practical production of MoS2-

based freestanding electrodes for LIBs has become a major research focus. However, flexibility 

and performance of the state-of-art MoS2-based freestanding electrodes are still far from 

satisfactory. Freestanding MoS2-based electrode composites made of MoS2/Ni3S2/Ni foam7, 

MoS2/graphene foam 8 and pressed MoS2/nitrogen-doped graphene 9 are mostly rigid and cannot 

tolerate deformation. The most flexible electrodes such as exfoliated MoS2/graphene papers (~ 4 

mg cm-2)10 and our previously reported self-assembled exfoliated MoS2/graphene structures (~1.5 

mg cm-2)11 still cannot achieve high areal mass electrode. This inherent limitation in MoS2 loading 

is due to limited concentrations attainable in processable dispersions. Therefore, the holy grail is 

integration of non-exfoliated MoS2 powder into freestanding electrodes to achieve a commercial 

acceptable level of areal mass (~ 10 mg cm-2).12 

This requires a versatile scaffolding material to assume the combination of appropriate 

mechanical and electrochemical properties. Aqueous dispersions of graphene derivatives including 

graphene oxide and graphene nanoplatelets are suitable for production of flexible and 

mechanically strong composites for battery applications.13,14  For instance, graphene oxide sheets 

with rich functional groups can interact with various nanomaterials to form stable dispersions 

enabling fabrication of freestanding films that include carbon nanotubes15,16, PPy nanoparticles17, 
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LiFeO4 (50 nm)  and Li4Ti5O12 (<200 nm)18. In these nanocomposites, graphene oxide sheets 

provide a stable porous network to support volume changes of the electrode during the 

charge/discharge cycles as well as to improve electrons transfer, thus achieving high cycle stability 

and good rate capability.19,20 However, accommodation of a high loading of micron size MoS2 

particles in such structures has to date been challenging. 

The use of liquid crystalline graphene oxide (LCGO) provides a combination of properties that 

enable the processing of composite materials from more concentrated dispersions.21 The 

amphiphilic property of LCGO supports formation of a nematic phase that can generate a self-

organized structure comprising consecutive layers of active and scaffold materials.21 These robust 

hierarchical architectures have active material positioned between the ultra-large LCGO layers11,22. 

This stable reversibly expandable structure can be well preserved over the reduction process to 

attain high conductivity and electrochemical performance.23,24 These qualities are magnified once 

ultra-large and super flexible LCGO with exceptionally high aspect ratios (over 30, 000) is used.25–

27  

Herein, we develop a practical and low temperature (70 oC) hydrothermal route exploiting the 

self-assembly properties of ultra-large LCGO to process commercially sourced MoS2 powders to 

fabricate free-standing flexible MoS2/reduced graphene oxide (MSG) films with an unrivaled high 

areal mass loading and performance. Commercial graphite electrodes have particle sizes in the 

order of tens micrometers (the size of STF44 from Timcal is ~ 20 μm), so here similar large-size 

MoS2 powders (< 40 μm) are used here.28 MoS2 powders and LCGO when dispersed together form 

a stable LC phase with MoS2 powders sandwiched between the giant LCGO sheets. Thus, a porous 

structure is created with interconnected channels inside the MSG film facilitating fast ion diffusion 
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and enabling excellent electrochemical performance. The MSG film with a high mass loading of 

8.2 mg cm-2 offers a high areal capacity of 5.80 mAh cm-2 (706 mAh g-1) at 0.1 A g-1, much higher 

than today’s commercial lithium-ion batteries (2.5-3.5 mAh cm-2) and majority of the previously 

reported MoS2/graphene composites anodes (Table S1). 

2 Experimental  

2.1 Preparation of LCGO dispersion 

LCGO dispersion was prepared using a modified Hummer’s method29. Briefly, expandable 

graphite flakes (3772, Asbury Graphite Mills) were heated at 700 °C for 15 s to produce expanded 

graphite. Concentrated sulfuric acid (400 mL) was poured into expanded graphite (2 g) and kept 

stirring for 24 h, followed by the addition of KMnO4 (15 g) and stirring for another 24 h. Ice bath 

was used to cool down the temperature during the slow adding of Milli-Q water (400 mL) into the 

mixture. Finally, H2O2 (30%, 100 ml) was added accompanying with a color change from black 

to light brown. Centrifugation method was used to rinse the LCGO dispersion, which included a 

three-time rinsing process with tenfold-diluted HCl solution (4.2 wt%) to remove impurities, and 

then a rinsing process with Milli-Q water until its pH was above 5.  

2.2 Preparation of MSG films 

Commercial MoS2 particles (Alfa Aser, ~325 mesh) with designated amount were added into 

LCGO dispersion (2 mg ml-1, 10 ml) to get a homogeneous MSGO mixture using a vortex mixer. 

Then H3PO2 (50 wt%, 1ml) was added as reduction agent and further mixed using vortex mixer. 

An 8 ml of this mixed dispersion was transferred into a glass petri dish with a lid and heating in 

an oven of 70 oC for 6 hours at atmospheric pressure. The formed MSG hydrogels were rinsed 
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with Milli-Q water and subjected to dialysis for several days until the pH close to 7. Finally, a 

freeze-drying process was applied to fabricate free-standing MSG films. Pure rGO film without 

MoS2 powders was also produced as control. MSG films with high mass loading was fabricated 

through the same procedures but using high-concentration LCGO dispersions (4, 6 and 8 mg ml-

1) and the corresponding amount of H3PO2 (2, 3 and 4 ml).  

2.3. Material characterizations 

Cross-polarized optical microscope (Leica CTR 6000) operated in transmission mode was used 

to examine the birefringence of dispersions. Field emission scanning electron microscopy (FE-

SEM, JEOL JSM-7500FA) was applied to investigate the nanostructure and morphology as well 

as collect energy dispersive spectroscopy (EDS) data for the elemental distribution. Mechanical 

properties of all films were conducted using a Shimadzu EZ mechanical tester at a cross-head 

speed of 1 mm min-1. Four-point-probe equipment was used to measure the conductivity. 

Brunauer-Emmett-Teller (BET) tests were carried out by a Tristar II 3020 gas adsorption analyser 

(Micromeritics). Nitrogen gas (N2) was used as adsorbate and measurements were run at liquid 

nitrogen temperature. Prior to measurement, samples were cut into small pieces to fit into the 

analysis tube and then degassed overnight at 110oC. A hemispherical energy PHOIBOS 100/150 

analyzer was used to collect the X-ray photoelectron spectroscopy (XPS) data. Raman spectra were 

obtained on a confocal Raman spectrometer (Jobin Yvon HR800, Horiba) using a 632.8nm diode 

laser. Thermogravimetric analysis (TGA) was conducted on a Pyris Diamond thermogravimetric/ 

differential thermal analyzer at a heating rate of 10 °C min-1 in air flow.  

2.4. Electrochemical measurement 
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All rGO and MSG films were pressed under a pressure of 10 MPa for 30 s and cut into pieces 

of similar size (0.8-1cm) before the use as working electrodes in 2032 coin cells coupled with 

lithium foils electrodes. These cells were assembled in an argon-filled glovebox (MBrau, UNIlab 

Plus). The electrolyte used was 1M LiPF6 in a mixture of ethylene carbonate (EC) and dimethyl 

carbonate (DMC) (1:1, v/v; Aldrich). Neat MoS2 electrodes were prepared by coating a mixed 

slurry in N-Methyl-2-pyrrolidone (NMP) containing MoS2 particles, carbon black and 

polyvinylidene fluoride (PVDF) (weight ratio of 8:1:1) onto a copper foil, and then dried in a 

vacuum oven at 60 °C overnight. A Solartron SI 1287 electrochemical system was applied to 

record cyclic voltammograms (CV) at a scan rate of 0.2 mV s-1 over a potential range of 0.01 - 3.0 

V (vs. Li/Li+). Galvanostatic charge/ discharge tests were conducted over a potential range of 0.005 

– 3.0 V (vs. Li/Li+) using a battery test system (Neware Electronic Co.). Specific capacity of rGO 

and all MSG films was calculated based on the mass of the composites. Gravimetric specific 

capacities were firstly calculated and then transferred into areal capacities using the areal mass of 

corresponding MSG films. Electrochemical impedance spectra (EIS) were acquired through a 

Biologic VSP electrochemical workstation over a frequency range of 100 kHz to 0.01 Hz with an 

AC perturbation of 10 mV. 

3 Results and Discussion 

LCGO has proven to be a most useful graphene derivative when used for the fabrication of self-

assembled dispersions and composites. LCGO has been employed as a dispersing agent to process 

carbon nanotubes and many other particles in water in order to produce hybrid self-organized 

composites.30 This is due to the amphiphilic properties of the ultra-large GO sheets, which makes 

them an ideal candidate as a water processing additive. Here, the LCGO dispersion was mixed and 
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homogenized with various amount of commercial MoS2 powders to obtain homogeneous colloidal 

dispersions, which were then chemically reduced with H3PO2 over a simple hydrothermal thermal 

process at 70 oC. Free-standing and flexible MSG films were obtained after freeze drying followed 

by pressing. In order to investigate the structural, mechanical and electrochemical properties of 

MSG, films of different weight ratios of MoS2 to LCGO (1:1, 2:1 and 4:1) as well as with different 

LCGO concentrations (2, 4, 6 and 8 mg ml-1) were produced. For simplicity, samples and their 

dispersion precursors were respectively named as xMSGy and xMSGOy, in which x was the 

weight ratio between MoS2 and LCGO and y was the concentration of LCGO in precursors. For 

example, 2MSG6 film was made from a dispersion containing 6 mg ml-1 LCGO and the mass ratio 

between MoS2 and LCGO was 2:1.  

To investigate the anisotropic property of the MSGO dispersions, cross-polarized optical 

microscopy (POM) has been employed. Birefringence, characteristic of liquid crystals, can be 

easily recognized in the POM images collected under crossed-polarizers.21 Typically LCGO 

nanosheets orientated parallel to each other form robust LC domains due to the high aspect ratio 

and the resultant large excluded volume.26 The LCGO dispersion showed a clear anisotropy in its 

texture even after the addition of MoS2 (Figure 1a). After mixing with commercial MoS2 powders, 

POM images of all samples still maintained large areas of uniform orientation with random defects, 

confirming the presence of nematic LC order. The defects are attributed to some non-dispersed 

MoS2 particles on the surface, labelled by red arrows in Figure 1a and Figure S1. 

The resulting MoS2 / LCGO dispersions were stable for several weeks without any observable 

graphene aggregation. Even though a small portion of the dispersed MoS2 settled down, gentle 

shaking was enough to redisperse the particles. The high aspect ratio of LCGO sheets along with 



 9 

the amphiphilic property are the main reason for the formation of this stable LC phase.11 MoS2 

particles are layered van der waals crystals, in which a plane of molybdenum atoms is sandwiched 

by planes of sulfide ions. Bulk MoS2 powder consists of stacked monolayers, which provide a very 

flat top surface that is ideal for the interaction with the LCGO sheets. The basal plane of LCGO 

sheets consists of many π-conjugated aromatic domains, which in solution can strongly interact 

with the flat surface of the MoS2 particles. Therefore, the electrostatic interaction between the 

MoS2 and LCGO enhances the stability of the dispersion and drives the MoS2 particles to be 

accommodated in the LC order. Interestingly, GO sheets at concentrations that do not form full 

LC (i.e. bi-phasic or isotropic) were not able to support and sustain the MoS2 dispersion in water 

(Figure 1b). For example, the 4MSGO mixture that was made from a mixture of 0.5 mg ml-1 

LCGO dispersion resulted in the precipitation of metallic lustre MoS2 powders at the bottom of 

the vial (Figure 1b). LCGO at 0.5 mg ml-1 forms a bi-phasic LC phase comprise of GO mesogens 

that co-exist with water pockets – evidence for this bilayer formation.31 When the MoS2 particles 

are added to the bi-phasic LCGO, the particles do not intercalate between the GO sheets, thus stay 

non-soluble in water. On the other hand, when the concentration of LCGO dispersion reached 2 

mg ml-1 (full LC phase), MoS2 powders could be readily suspended while no precipitation was 

found even after standing for one week (Figure 1b). Furthermore, MoS2 particles precipitated 

quickly in a small-sized, non-LC GO dispersion even at relatively high concentration of 2 mg ml-

1 (Figure 1b). This result further indicates the role of a robust full LC phase to sustain the stability 

of MSGO dispersions in water. 

A schematic representation of the process used in the production of stable MSGO dispersions 

and eventually MSG films is illustrated in Figure 1c. In our previous reported work 32, results 

showed that giant LCGO nanosheets of hundreds micrometres aligned to produce LC domains, 
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that self-organized into porous hydrogels as the rGO nanosheets produced through chemical 

reduction. In the MSGO dispersions, MoS2 powders were sandwiched between LCGO sheets and 

became wrapped in the porous skeletons of rGO nanosheets. Since MoS2 occupied the spaces 

between rGO nanosheets, a more compact structure was formed in the MSG film. Further 

increasing the concentration of MoS2 induced stronger interaction between MoS2 and LCGO, thus 

increasing the degree of order to produce more compact MSG films. The following SEM and 

Raman characterization techniques provide further evidence. 
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Figure 1 Properties of dispersion containing MoS2 and LCGO. (a) Cross-polarized optical 

microscope (POM) images of LCGO, 2MSGO2 and 2MSGO6 dispersions; (scale bars: 50 μm, 

defects were labelled by red arrows). (b) The stability of different 4MSGO mixtures; (c) Schematic 

illustration of the fabrication process of rGO and high areal mass MSG films. 
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The shape and size of the rGO and MSG films are mainly determined by the mold used and the 

amount of dispersion. When the mold (glass petri dish in this work) had a diameter of 8.5 cm, the 

diameter of produced MSG films was in a range of 4.3 - 4.6 cm, slightly smaller than that of the 

rGO film (5 cm). This may be ascribed to the electrostatic interactions between MoS2 powders and 

LCGO nanosheets.33 MSG and rGO films all showed excellent flexibility when bent except for the 

2MSG8 film with obvious cracks appearing (Figure 2a). We also fabricated large size 2MSGO6 

film in a large petri dish (17 cm) using 2MSGO6 with the same volumetric ratio to the mold as for 

small size film. The obtained MSG films displayed a larger diameter of 9.5 cm (Figure S2). These 

clearly demonstrate that the size and shape of produced films are mainly limited by the mold used 

for fabrication.  MSG and rGO films all showed excellent flexibility when bent except for the 

2MSG8 film with obvious cracks appearing (Figure 2a). rGO, 1MSG2, 2MSG2 and 4MSG2 films 

from dispersions containing the same amount of LCGO displayed similar thickness (~700 μm, 

Figure S3).  The thickness of 2MSG4, 2MSG6 and 2MSG8 films apparently increased with the 

increase in LCGO content (Figure S3 b-h), further confirming the supporting role of the rGO 

backbone. Large size MoS2 powders could be easily recognized on the surface and in cross-

sectional SEM images of MSG films. They were all wrapped with wrinkled rGO nanosheets as 

marked by the red dash circles in Figure 2c and Figure S3 j-o. The distribution of Mo and S 

elements in the EDS images of 2MSG6 film (Figure S4) also confirm the region of MoS2 particles.  

Interconnected pores observed in the SEM images serve to increase the surface area and facilitate 

lithium ion transport producing high electrochemical performance. The use of increased LCGO 

concentrations resulted in decreased pore sizes in the 2MSG8 film, since at high concentrations 

the spacing between LCGO nanosheets became smaller resulting in the formation of small pores 

as depicted in Figure 2c. To investigate the porous structure of rGO and MSG films, Brunauer-
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Emmett-Teller (BET) tests were carried out and the collected nitrogen adsorption-desorption 

isotherms were shown in Figure S5 a-g. All samples showed type II/III isotherm indicative of 

macroporous materials. This result matched well with our SEM images, in which pores were as 

large as tens microns. The BET surface area was 92.1, 45.2, 52.7, 19.6, 38.9, 35.5 and 40.9 m2 g-1 

for rGO, 1MSG2, 2MSG2, 4MSG2, 2MSG4, 2MSG6 and 2MSG8, respectively (Figure S5h). rGO 

film possessed the highest porosity, which decreased with the increased content MoS2 till the ratio 

between MoS2 and LCGO reached 4:1. It could be deduced that MoS2 had a negative effect on the 

porosity of MSG films. The increased LCGO concentration had little effect on the porosity of 

MSG films at the same MoS2/LCGO ratio of 2:1, as supported by no much difference shown in 

the BET surface area. 

The rGO film displayed a low mass loading of 0.6 mg cm-2, and this increased to 1.7, 2.6, 4.3, 5.2 

mg cm-2 for 1MSG2, 2MSG2, 4MSG2 and 2MSG4 films, respectively. It even reached to 8.2 mg 

cm-2 for 2MSG6 film and 11.1 mg cm-2 for 2MSG8 film (Figure 2d), close to or even higher than 

that of commercial electrodes (~10 mg cm-2).12 Such a high areal mass is attractive for achieving 

high areal capacity. Conductivity of rGO and MSG films was investigated using a four-point-probe 

technique (Figure 2d). The increased conductivity from 75 S m-1 for rGO film to 94 S m-1 for 

1MSG and 231 S m-1 for 2MSG was attributed to the decreased porosity. MoS2 powders helped to 

bridge the neighbouring rGO nanosheets, accelerating the electron transfer between them. 

However, this effect reached its highest in 2MSG film while instinctive semi-conductive MoS2 

powders resulted in the decreased conductivity in 4MSG film. Interestingly, the conductivity was 

constant in the composites with the same MoS2/LCGO ratios but increased precursor 

concentrations, confirming the key effect of MoS2/LCGO ratio on the conductivity. These 

properties were essential for obtaining good rate capability in the MSG films with high areal mass. 
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The stress-strain profiles of rGO and MSG films were collected after pressing under 10 MPa for 

30s (Figure 2e). The thickness of rGO, 1MSG2, 2MSG2, 4MSG2, 2MSG4, 2MSG6 and 2MSG8 

films was reduced to 124, 72, 85, 97, 108, 173, 243 μm, respectively. Compared to MSG films 

(2MSG2, 2MSG2 and 4MSG2) containing the same amount of GO, the higher thickness of pure 

rGO film displayed a higher thickness that should be attributed to the good structural elasticity 

enabled by its strong backbones. The increased content of MoS2 may facilitate the accommodation 

between the sheets resulting in lower thickness. The thickness of MSG films increased as the 

increase of precursor concentration. For the mechanical properties test, the fracture strength was 

1.26, 2.64, 2.42 and 2.02 MPa for neat rGO, 1MSG2, 2MSG2 and 4MSG2 films, respectively; 

which was opposite to their thickness. Interestingly, the mechanical strength increased as the 

increase of LCGO concentration in the precursor dispersions; it was 2.42, 2.61, 2.73 and 2.84 MPa 

for 2MSG2, 2MSG4, 2MSG6 and 2MSG8 films, respectively. The increased concentration of 

LCGO precursors may be the main reason for the increments in both thickness and fracture 

strength. This result further emphasizes the key role of rGO nanosheets as robust supporting 

skeletons in the composite.  
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Figure 2 Morphology of MSG films. (a) Digital images of rGO and MSG films and the flexibility 

demonstration (Inset of 2MSG8 film shows the induced crack from the bending process); Surface 

morphologies (SEM images) of rGO (b) and MSG films (c), scale bar in (b, c): 100 μm; (MoS2 
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particles in MSG films were highlighted by red dash circles); (d) Areal mass and conductivity of 

rGO and MSG films; and (e) stress-strain curves of rGO and MSG films. 

The XPS spectra of LCGO, rGO and all MSG films were collected to analyze the degree of 

reduction of LCGO nanosheets (Figure 3a, S6a). XPS C1s spectra were de-convoluted into three 

peaks around 284.2, 285.8 and 287.8 eV, which could be recognized as sp2 carbon or sp3 carbon 

(C-C/C=C), C-O bond and C=O bond, respectively.34,35 The intensity of C-O peak and C=O peak 

of all MSG films decreased dramatically compared to that of LCGO. The atomic ratio of carbon 

to oxygen (C/O) increased from 2.2 for LCGO to over 7.5 for all MSG films due to the removal 

of oxygen functional groups; also suggesting the successful reduction of GO. The C/O ratios were 

9.5, 8.5, 8.2 and 7.5 for 2MSG2, 2MSG4, 2MSG6 and 2MSG8, respectively. The descending C/O 

ratio with the ascending LCGO content indicates lower reduction efficiency for LCGO at high 

concentration. The peak ratio of C-C/C=C bonds in the XPS C1s spectrum increased from 39% 

for LCGO to about 66% for rGO and MSG films, which implied that the aromatic domains at the 

basal plane of LCGO sheets were stable during the reduction process while the reducing oxygen-

containing functional groups created more aromatic domains. XPS Mo3d spectra of commercial 

MoS2 powders and 2MSG6 film were also collected (Figure S6b). They all contained similar peaks 

including the Mo 3d3/2 and Mo 3d5/2 peaks resulting from the Mo4+ in MoS2, and the Mo6+-O 

peak that was assigned to the partially oxidized Mo atoms on the sample surface. This result 

demonstrated the stability of MoS2 during the reduction process. 

Distinct peaks at 374.5, 406.6, and 455.7 cm-1 were observed in the Raman spectra of MoS2 

powder and all MSG films (Figure 3b, S6d), which respectively correspond to the E1
2g, A1g, and 

2LA modes of hexagonal MoS2 crystal.6,36 Neat rGO and all MSG films showed two typical carbon 
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peaks representing the co-existence of sp3 disordered carbon (D band at 1330 cm-1), and sp2 2D 

graphite carbon (G band at 1587 cm-1).37 The intensity ratio of D band to G band (Id/Ig) was 2.34 

for rGO film. It gradually deceased with the increased areal mass of MSG films to 2.33, 2.27, 2.2, 

2.15, 2.1 and 2 for 1MSG2, 2MSG2, 4MSG2, 2MSG4, 2MSG6 and 2MSG8 films, respectively. 

The increased precursor concentrations as well as the interactions between LCGO and MoS2 

powders may confine the wrinkling and folding of reduced LCGO. Thus ordered level of rGO 

nanosheets and in-plane sp2 domains were increased, which should be the reason for the 

descending Id/Ig for MSG films. 

XRD data were recorded to further examine the chemical structure of rGO and MSG films 

(Figure S6b). rGO and all MSG films displayed a peak around 26o, revealing the 002 planes of 

reduced graphene oxide.38 All MSG films and MoS2 powders displayed a diffraction peak at 14.5o, 

which can be described as the (002) plane of 2H-MoS2 (JCPDS 37-1492).39 Thermal stability of 

MoS2 powders, rGO and all MSG films was investigated by thermal gravimetric analysis (TGA) 

in air gas flow (Figure 3d). The slight weight loss from 120 oC to 500 oC for rGO film was caused 

by the removal of moisture and residual functional oxygen-containing groups, and a steep weight 

loss after 530 oC can be ascribed to the oxidation of rGO to CO2.
40 It was completely decomposed 

at 650 oC. The weight loss for neat MoS2 powders beyond 460 oC should be attributed to the 

decomposition of MoS2 to MoO3.
41 For MSG films, their MoS2 contents could be calculated as 

65.5%, 79.9%, 88%, 78.9%, 78.5% and 75.1% for 1MSG2, 2MSG2, 4MSG2, 2MSG4, 2MSG6 

and 2MSG8 films, respectively. These values matched well with their initial amount in the 

precursors. The areal mass of MoS2 in 2MSG2, 2MSG4, 2MSG6 and 2MSG8 films displayed a 

decreasing tendency, which was resulted from the decreased reducing rate as illustrated by their 

C/O ratios from XPS tests. 
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Figure 3 Chemical states and thermal stability of MoS2, rGO and MSG films. (a) XPS C1s spectra 

of LCGO, rGO, 2MSG and 2MSG6 films; Raman spectra (b) and TGA curves (c) of MoS2, rGO, 

2MSG and 2MSG6 films.  

Cyclic voltammograms (CV) of rGO, MoS2 and MSG films are shown in Figure 4 a-b and S7a. 

MoS2 and MSG electrodes all displayed two main peaks in the first cathodic scan. The peak at 0.9 

V was ascribed to the insertion of lithium ions into MoS2 forming LixMoS2.
42 The peak at 0.42 V 

was resulted from the reduction of LixMoS2 to Mo and Li2S, as well as the formation of a solid 

electrolyte interface (SEI) layer.42,43 The depletion of MoS2 during this process is irreversible, but 

the SEI formation continued in the consecutive several cycles. This explains the presence of a 
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much weak peak at 0.42 V in the following two cycles.44,45 In the anodic scan the major peak at 

~2.4 V could be recognized as the delithiation process of Li2S to Li+ and S.11 MoS2 was completely 

transferred into Mo and S in the first cycle and cannot restore to MoS2 anymore. Two new 

reduction peaks at 1.8 V and 1.1 V in the following scans can be attributed to the association of 

lithium ions with S and Mo, respectively.46 The first three discharge-charge profiles of 2MSG2 

and 2MSG6 are shown in Figure 4 c-d, while those for rGO, MoS2 and other MSG films are 

shown in Figure S7b. All plateaus in the discharge and charge curves are in good accordance with 

their peaks in CV. rGO film displayed an initial coulombic efficiency (CE) of 53%, attributed to 

the formation of significant amount of SEI on its large surface area and trapping of lithium ions in 

the defect-rich structure.47,48 The high initial CE of 83% from neat MoS2 is mainly due to its 

compact structure with small surface area for the formation of SEI.49  With the decreased structural 

porosity from the increased total concentration of precursors, the initial CE increased to 85% for 

2MSG film and 78% for 2MSG6 film, higher than that of many reported MoS2/graphene 

composites.9,50,51 

Rate capability (Figure 4e, Figure S7c), EIS and cycling stability of freestanding rGO and MSG 

films were all investigated for comparison. Since the neat MoS2 electrode on a copper foil substrate 

was not flexible yet with much lower areal mass-loading (~1.5 mg cm-2), it was not feasible to 

make reasonable comparison, thus its performance was not included in this work to avoid 

misinterpretation. Neat rGO film displayed a capacity of 475 mAh g-1 (0.28 mAh cm-2) at 0.1 A g-

1 (5th cycle). After the addition of MoS2 powders, the capacities were dramatically increased to 

716, 752 and 759 mAh g-1 (i.e., 1.22, 1.96, 3.26 mAh cm-2) for 1MSG2, 2MSG2 and 4MSG films, 

respectively. MSG films with higher areal mass offered high gravimetric capacity as well. 2MSG4, 

2MSG6 and 2MSG8 films delivered a capacity of 735, 707 and 695 mAh g-1 (3.82, 5.80, 7.71 mAh 
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cm-2), respectively. The areal capacity of 2MSG6 film was higher than the reported folded 

SnO2/graphene film (4.15 mAh cm-2)52, typical commercial electrodes (2.5-3.5 mAh cm-2)52 and 

most MoS2/graphene composites (Table S1). 2MSG6 film displayed a high areal capacity of 0.98 

mAh cm-2 at a high current density of 1 A g-1 (8.2 mA cm-2), which is about two times than that of 

2MSG2 film (0.52 mAh cm-2 at 1 A g-1). 

Nyquist plots of rGO, MoS2 and MSG films were collected after the rate capability tests and 

fitted using equivalent circuit (Figure 4f, S7d). In the Nyquist plot, the line slop at low frequency 

is positively correlated with the ion diffusion rate. The semicircle in medium frequency is related 

to charge transfer resistance (Rct) while intercept at high frequency corresponds to bulk resistance 

including solution and contact resistance (Rs). CPE and Wo used in the equivalent circuit represent 

constant phase element and Warburg impedance, respectively. The Rct value of rGO was 175 Ω, 

slightly lower than that of all MSG films (~ 200 Ω). This confirms that rGO was the main 

conductive materials in MSG composites and provided a similar electron transfer rate along the 

rGO networks. The line slope at low frequency decreased with the areal mass of composites, 

indicating a deteriorative ions transportation resulted from the compact structure. This is well 

matched with the poor rate performance from high areal-mass MSG films. 
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Figure 4 Electrochemical performance of MSG films. Cyclic voltammograms of 2MSG film (a) 

and 2MSG6 film (b) at a scan rate of 0.2 mV s-1; The first three discharge/charge profiles of 2MSG 

film (c) and 2MSG6 film (d) at a current density of 0.1 A g-1; (e) Rate capabilities of rGO, neat 

MoS2, 2MSG and 2MSG6 films; (f) Nyquist plots of rGO, MoS2, 2MSG and 2MSG6 films over a 

frequency range of 100 kHz to 10 mHz (Inset: equivalent circuit). 

Cycling stability was tested after rate capability tests at a current density of 0.1 A g-1 for 200 

cycles (Figure 5a). Neat rGO film showed a much stable capacity during the whole cycling test 

with 88% of its initial capacity retained. 1MSG2 and 2MSG2 films displayed a small capacity 

dropping during the initial 60 cycles, then it gradually increased to 617 and 511 mAh g-1 at the 

200th cycle, 91% and 79% of the initial capacity, respectively. The capacity degradation at the 

initial stage may be due to the volume changes of MoS2 powders and formation of SEI. The 

following capacity increasing may be mainly due to the porous structure which may provide 

pathways to progressively access those embedded MoS2 powders. 2MSG4 and 2MSG6 films with 
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higher MoS2 content all maintained ~55% of their capacity after 200 cycles, and only 35% was 

retained for 4MSG2 and 2MSG8 films. These results clearly demonstrate that the films with high 

MoS2 content faced serve capacity fading problems, which may be ascribed to volume changes of 

MoS2. Taking areal capacity into consideration, 2MSG6 with a mass loading of 8.2 mg cm-2 

delivered the highest areal capacity of 2.80 mAh cm-2 after 200 cycles, much higher than all other 

MSG films. It was also still comparable with previously reported MoS2/graphene-based composite 

(Table S1) and commercial electrodes (2.5-3.5 mAh cm-2).12 

All electrodes were examined after the cycling tests (Figure 5 b-c). The rGO film kept an intact 

surface without any cracks, confirming that the stable structure was responsible for its stable 

cycling stability. 1MSG2 and 2MSG2 films were basically still in an integrated form but with tiny 

cracks. It may be explained by that the strong rGO skeleton in the composite tolerated the volume 

expansion of MoS2. For 2MSG4 and 2MSG6 films, small cracks appeared on the surface, 

evidencing the occurring of structure failures that may trap active materials in isolating sites and 

lose lithium inventory in fresh-formed solid-electrolyte interphase layer.53 4MSG2 and 2MSG8 

films with high MoS2 content presented even worse structural failure, as evidenced by the presence 

of large cracks on the surface. All these results confirmed that the robust rGO skeleton and porous 

structure could confine the volume changes of MoS2, highlighting the importance of a stable 

structure to the cycling stability.  

The optimized ratio between MoS2 and LCGO was found to be 2:1 (MoS2/ LCGO) for 2MSG6 

giving the highest robustness and electrochemical performance. The 2MSG6 showed the highest 

areal mass of 8.2 mg cm-2 and consequently the highest areal capacity of 5.8 mAh cm-2 at 0.1 mA 

g-1. On top, 2MSG6 performed well over the flexibility and durability tests. The addition of this 
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optimum amount of MoS2 provided high capacity for 2MSG6 film while the rGO skeletons 

ensured robustness, flexible and porous structure. This structure can provide an express electron 

transfer network for good rate capability, high surface area for the loading of more electrolyte ions 

and accelerated ion diffusion rate. The excellent mechanical properties enabled stable performance 

during cycling. Moreover, those unique properties may expand the application of MSG films in 

other batteries such as sodium ion batteries or as catalysts for the hydrogen evolution reaction.54 

 



 24 

Figure 5 Cycling stability of MSG films. (a) Cycling stability and areal capacity after cycling of 

rGO and all MSG films at a current density of 100 mA g-1; Surface SEM images of rGO (b) and 

MSG films (c) after cycling tests (Scale bar: 25 μm). 

4 Conclusion 

In this work, we develop a simple method to fabricate freestanding flexible MoS2/reduced 

graphene oxide (MSG) films directly from low-cost commercial MoS2 powders by using liquid 

crystalline graphene oxide (LCGO) to confine these large particles forming stable dispersion. The 

LC orders in LCGO are robust to hold high content of large-size MoS2 powders while preserving 

the LC state. MSG films with a porous sandwiched structure display good electrochemical 

performance as anodes in lithium-ion batteries, as the porous structure accommodate the volume 

change of MoS2 powders and provide easy access of electrolyte. The 2MSG6 film with 78.5% 

MoS2 can offer a high areal capacity of 2.8 mAh cm-2 even after 200 cycles at 0.1 A g-1 (0.82 mA 

cm-2). This type of freestanding electrodes directly fabricated from low-cost commercial MoS2 

powders with high areal mass and good electrochemical performance are attractive for practical 

applications. This work also demonstrates the feasibility of solution processing undispersable and 

large-size materials by using LCGO dispersion. 
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