
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part B 

Faculty of Engineering and Information 
Sciences 

2020 

Optimization of maintenances following proof tests for the final element of Optimization of maintenances following proof tests for the final element of 

a safety-instrumented system a safety-instrumented system 

Aibo Zhang 

Tieling Zhang 
University of Wollongong, tieling@uow.edu.au 

Anne Barros 

Yiliu Liu 

Follow this and additional works at: https://ro.uow.edu.au/eispapers1 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Zhang, Aibo; Zhang, Tieling; Barros, Anne; and Liu, Yiliu, "Optimization of maintenances following proof 
tests for the final element of a safety-instrumented system" (2020). Faculty of Engineering and 
Information Sciences - Papers: Part B. 3482. 
https://ro.uow.edu.au/eispapers1/3482 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F3482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F3482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F3482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/3482?utm_source=ro.uow.edu.au%2Feispapers1%2F3482&utm_medium=PDF&utm_campaign=PDFCoverPages


Optimization of maintenances following proof tests for the final element of a Optimization of maintenances following proof tests for the final element of a 
safety-instrumented system safety-instrumented system 

Abstract Abstract 
2019 The Authors Safety-instrumented systems (SISs) have been widely installed to prevent accidental 
events and mitigate their consequences. Mechanical final elements of SISs often become vulnerable with 
time due to degradations, but the particulars in SIS operations and assessment impede the adaption of 
state-of-art research results on maintenances into this domain. This paper models the degradation of SIS 
final element as a stochastic process. Based on the observed information during a proof test, it is 
essential to determine an optimal maintenance strategy by choosing a preventive maintenance (PM) or 
corrective maintenance (CM), as well deciding what degree of mitigation of degradation is enough in case 
of a PM. When the reasonable initiation situation of a PM and the optimal maintenance degree are 
identified, lifetime cost of the final element can be minimized while keeping satisfying the integrity level 
requirement for the SIS. A numerical example is introduced to illustrate how the presenting methods are 
used to examine the effects of maintenance strategies on cost and the average probability of failure on 
demands (PFDavg) of a SIS. Intervals of the upcoming tests thus can be updated to provide maintenance 
crews with more clues on cost-effective tests without weakening safety. 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Zhang, A., Zhang, T., Barros, A. & Liu, Y. (2020). Optimization of maintenances following proof tests for the 
final element of a safety-instrumented system. Reliability Engineering and System Safety, 196 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/3482 

https://ro.uow.edu.au/eispapers1/3482


 

Journal Pre-proof

Optimization of maintenances following proof tests for the final
element of a safety-instrumented system

Aibo Zhang , Tieling Zhang , Anne Barros , Yiliu Liu

PII: S0951-8320(19)30988-3
DOI: https://doi.org/10.1016/j.ress.2019.106779
Reference: RESS 106779

To appear in: Reliability Engineering and System Safety

Received date: 2 August 2019
Revised date: 29 October 2019
Accepted date: 22 December 2019

Please cite this article as: Aibo Zhang , Tieling Zhang , Anne Barros , Yiliu Liu , Optimization of
maintenances following proof tests for the final element of a safety-instrumented system, Reliability
Engineering and System Safety (2019), doi: https://doi.org/10.1016/j.ress.2019.106779

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.ress.2019.106779
https://doi.org/10.1016/j.ress.2019.106779


HIGHLIGHTS 

 Developing a specific algorithm for calculating average probability of failure 

on demand for the final element of a safety-instrumented system in 

degradation. 

 Improving the decision-makings on initiating and completing preventive 

maintenances with utilizing the collected degradation information in proof 

tests of SISs. 

 Optimizing the intervals of incoming proof tests of SISs to save maintenance 

cost while keeping safety integrity. 
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Safety-instrumented systems (SISs) have been widely installed to prevent 

accidental events and mitigate their consequences. Mechanical final elements of 

SISs often become vulnerable with time due to degradations, but the particulars 

in SIS operations and assessment impede the adaption of state-of-art research 

results on maintenances into this domain. This paper models the degradation of 

SIS final element as a stochastic process. Based on the observed information 

during a proof test, it is essential to determine an optimal maintenance strategy by 

choosing a preventive maintenance (PM) or corrective maintenance (CM), as 

well deciding what degree of mitigation of degradation is enough in case of a 

PM. When the reasonable initiation situation of a PM and the optimal 

maintenance degree are identified, lifetime cost of the final element can be 

minimized while keeping satisfying the integrity level requirement for the SIS. A 

numerical example is introduced to illustrate how the presenting methods are 

used to examine the effects of maintenance strategies on cost and the average 

probability of failure on demands (PFDavg) of a SIS. Intervals of the upcoming 

tests thus can be updated to provide maintenance crews with more clues on cost-

effective tests without weakening safety.  

Keywords: safety-instrumented system; final element; degradation; preventive 

maintenance; maintenance strategy; PFDavg 

1. Introduction 

Considering production safety and environment protection, many safety-

instrumented systems (SISs) have been employed in different industries. For example, 

on an offshore oil and gas production platform, emergency shutdown (ESD) systems are 

installed to protect the facility in case of an undesired event. Normally, a SIS, like the 
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ESD system, consists of sensor(s) (e.g. pressure transmitters), logic solver(s) and final 

element(s) (shutdown valves)[1]. The final element performs one or more safety-

instrumented functions (SIFs), by closing itself down to stop the gas flow in a pipeline 

if an emergency occurs in production. The facility protected by the ESD system is 

called equipment under control (EUC) in this context.  

An ESD system is a typical SIS operating in a low demand mode, where the 

activation frequency is less than once per year in general. The final elements of such a 

SIS are mainly in a dormant state unless there is a proof test or a real shock on the 

equipment being protected by the SIS, or equipment under control (EUC)[1]. Therefore, 

some failure modes of final elements will stay hidden until the time to be activated. 

These hidden failures are called dangerous undetected (DU) if they can result in serious 

accidents. The average probability of failures on demands (PFDavg) is a common-used 

measure in the evaluation of unavailability of SISs in the low demand mode [2], and 

DU failures are the main contributors for PFDavg. In IEC standards, the value of PFDavg 

will be used to determine the safety integrity level (SIL) of a SIS. 

Many researches have paid attention to the calculation of PFDavg, using: simplified 

formulas [1,3], Markov methods [4–7] and Petri Nets [8–10]. Common for most of 

these methods is the assumption of constant failure rates of all elements in a SIS. In 

practices, such an assumption is always valid for electronic components, but its validity 

for mechanical components is in question. 

Mechanical components, such as many final elements of SISs, incl uding shutdown 

valves, are operated in harsh conditions, and they are rather vulnerable to creeping or 

other degradation processes [11]. Thus, their failure rates, namely the conditional 

probability of failure in the next short time period, always increase with time. Several 

authors have assessed unavailability of SISs in consideration of non-constant failure rate 

[11,12]. Meanwhile, several dynamic reliability method, e.g. multiphase Markov 

process, have been applied to SISs for reliability assessment [5,13–16]. Their findings 

show that PFDavg is changing with time and becomes different from one proof test 

interval to the next. The changing PFDavg makes the updating of proof test interval 

necessary based on the requirement from SILs.  

With the development of sensor technologies, more data about operation conditions 

and system degradation status can be collected in periodic proof tests. Information about 

degradation is helpful for the assessment of system performance [17]. Numerous 

parameters, such as lubricant ingredient, corrosion extent and so on, can be measured 

and utilized for failure prediction and diagnosis [18]. When any deviation from the 

normal, or early-phase signal of failure is identified, the upcoming tests and following 

maintenance actions need to be re-scheduled.  

In terms of the final elements of an ESD, they can suffer several failure mechanisms, 

including erosion, corrosion, cracks etc., which can lead the capacity of performing 

safety functions to degrade with time [19]. For example, closing time on demand is an 

                  



indicator of the performance of a shutdown valve. Once degradation of the valve 

reaches a certain level, the final element will be in a faulty/failed state. Such a DU 

failure will be hidden until a proof test identifies that closure of the valve needs too 

much time.  

However, even though the shutdown valve is qualified in a proof test, the final 

element may be not as-good-as-new. Namely, the closing time is under the acceptable 

maximum value, but it is still longer than that when the SIS is just put into operation. 

As-good-as-new after each proof test is the extension of the constant failure rate 

assumption, meaning that PFDavg remains a fixed value in each test interval [20]. Since, 

the unavoidable gradual degradation of mechanical components challenges the constant 

failure rate assumption, the unavailability of final element should be supposed to 

increase by time.  

In the simple calculation of PFDavg, more frequent proof tests are regarded to lower 

risks, but some practical issues can weaken such a conclusion. If a proof test of SISs 

fully stops the process, or complete a whole trip of shutdown, stoppage and restart of 

the process will cause production loss, especially in offshore engineering and facilities 

[1]. In addition, such a whole shutdown trip may damage the valve (e.g. wear of the 

valve seat area) in some degree due to high stress level [11,21]. Hence, it is reasonable 

to consider how to utilize given proof test information to schedule future tests more 

effectively (e.g. to avoid unnecessary tests), while keeping the SIS availability meeting 

in the required level.  

With the observation in a proof test of a shutdown valve, three options of follow-ups 

are possible: (1) No action if the valve in test is working well; (2) preventive 

maintenance (PM) if a certain degradation has been identified; (3) repair or replacement 

of the valve if it is failed. Repair/replacement can be regarded as perfect, leading the 

SIS to work as-good-as-new. For a PM, degradation of the valve can be mitigated but 

not be eliminated, so that the probability of failure by the next test is reduced. The 

mitigation degree can be naturally assumed positively correlated with the resources and 

time spent in the PM, namely the cost of PM. However, it is challenging to decide what 

is the optimal degree of PM that can balance the cost and the SIS availability. In 

addition, questions exist in the level of degradation initiating a PM. In other words, 

when closing time of a valve is a bit longer than the design value, a decision needs to be 

made whether the degradation can be ignorable, or some actions should be taken 

immediately. Ignoring means to take more risks to EUC, but actions are costly 

especially when they are not needed.  

It should be noticed that even though many studies on maintenance optimization 

with degradation have been conducted, they are not naturally suitable for SIS final 

elements. As aforementioned, failures and degradations of SISs are hidden and only can 

be observed periodically. Decision-making on maintenances is not based on 

instantaneous availability but should be based on the estimation of system performance 

                  



in the next test interval. In addition, to comply with international standards, the effects 

of maintenances should be connected with the average unavailability of a SIS in a 

period (PFDavg) and should always be a strict constraint when making any testing and 

maintenance strategies. Considering those maintenance models for renewal systems 

having some similarities with SISs, they assume perfect PM or CM [22–26] and focus 

on the average long-run cost rate [27–29]. However, for SISs, the total cost in the 

designed service time (e.g. 20 years) is more of interest, and perfect PMs are often not 

practical or necessary. 

 Therefore, the main objective of this paper is to deal with both the challenges by 

degradation to SIS assessment and the challenges by SISs to maintenance optimization, 

to identify the optimal PM strategies of a SIS. Specifically, the optimal combination of 

the two threshold values of a SIS final element is in search: the degree of degradation 

initiating a PM (ωa), and the degree of degradation where completing of this PM (ωb) 

can be acceptable. 

The remainder of this paper is organized as follows: Section 2 explains how a SIS 

final element operates and what are the assumptions in the analysis; Section 3 

investigates the calculation of instantaneous unavailability of SIS, PFDavg and expected 

cumulative maintenance cost; Section 4 discusses the optimal values of two thresholds 

PMs based on the minimum expected cost and the SIL requirement respectively; 

Section 5 illustrates a method to update the test interval and conclusions are in Section 

6.  

2. Descriptions of safety-instrumented systems 

2.1. System states and performance requirements 

Without losing generality, we use an ESD system to study behaviors and operations 

of SISs. The ESD system is designed to maintain or achieve the EUC in a safe state, e.g. 

a normal pressure in process. One of main SIFs of an ESD valve is to cut off the flow 

when the high pressure occurs. To keep the risk of EUC within acceptable level, the 

valve is designed with a specific closing time, for example, 12 seconds. The actual 

performance requirement for this valve is, normally, the designed target value with 

acceptable deviations, e.g. 3 seconds. It means that the valve is considered to be 

functioning (with respect to this particular function) as long as the closing time is within 

the interval (9, 15) seconds.  

If the valve closes too slowly, e.g. 18 seconds, it, as a safety barrier, will not meet the 

performance requirements for risk mitigating of EUC. A failure occurs on this valve 

since the required function is terminated. The corresponding failure mode is called 

„closing too slowly‟, which is one of dangerous failure modes of ESD valve [1]. 

Degradation like corrosion or erosion due to the harsh environment is the reason of such 

a failure. Meanwhile, even the closing time is still within the acceptable interval, the 

criticality of the failure will obviously increase with the deviation from the target value 

                  



(12 seconds) [20]. In most cases, it is not possible to observe such kind of failure 

without activating the valve, and so the failure mode „closing too slowly‟ is a DU 

failure. Therefore, closing time checked in proof tests can be collected and reflect the 

valve status/degradation [30]. 

It is obvious that when the closing time is beyond 15 seconds, the valve is in a failed 

state. When the closing time is shorter than a certain value, e.g.14 seconds, we can 

regard the valve in a good condition. While if the closing time is between 14 and 15 

seconds, we can consider the valve with a degraded performance but still functioning. 

Therefore, we can consider the valve with three different states: working, degraded and 

failed, as shown in Table 1. It should be noted that degradation still can exist in state 0, 

but it can be accepted without any maintenance action.  

Table 1 System state definition 

state status State description 

0 Working  The system is functioning as specified 

1 Degraded The system has a degraded performance but functioning 

2 Failed The system has a fault 

Because maintenance or replacement after each proof test is often expensive, no 

action is welcomed when the estimation based on the observed situation has shown that 

failure probability of the SIS by the next test is rather low. Specifically, when the valve 

is at the working state (state 0), no maintenance will be executed. When the valve in a 

degraded state, even it is still functioning, a PM with reasonable costs will be employed. 

The degradation is mitigated but is not eliminated considering a perfect maintenance is 

too costly. When the valve in a failed state, replacement is needed. 

2.2. System operation and test 

Possible causes of „closing too slowly‟ failure mode may be because of the loss of 

stiffness of a spring[1,31,32]. According to [33,34], such kind of degradation could be 

described by stochastic process. Gamma process has been justified by practical 

applications for modeling degradations [35,36] due to its strongly monotone increasing 

property [37–39]. 

The final element of such a SIS is assumed to be subject to a homogeneous gamma 

degradation process, and a hidden failure occurs when the degradation level exceeds a 

predefined threshold L. The SIS is periodically tested at τ, 2τ, …, where τ is the test time 

interval, e.g. one year. In a proof test, degradation level is checked. As shown in Figure 

1, at 4τ, the degradation level is found beyond the failure threshold, L, then the failed 

system is replaced by a new one. When the degradation level is found beyond ωaL in a 

proof test, PM is needed. For example, at 6τ or 8τ in Figure 1, PM is executed and the 

degradation level goes back to a specific level (ωbL) rather than 0. 

                  



 

Figure 1 Possible degradation path 

Consider a one-unit system that is subject to a continuous aging degradation process. 

The degradation process is modelled by a Gamma process with the initial state X0=0. 

Then, the degradation X(t) follows a gamma probability density function (PDF). 
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Then, the mean and variance of X(t) are αt/β and αt/β
2
, respectively. 

Periodic proof tests are executed. Proof tests are assumed perfect in this study and 

have no direct influence on the degradation process. In addition, we assume that the 

time spent in repair and test is negligible compared with the much longer test intervals. 

3. Maintenance modeling and unavailability estimation 

3.1. Maintenance modeling of a final element 

The SIS is periodically tested with an interval τ and with cost CPT. During each proof 

test, if the observed the degradation level X(t) of the final element is less than the 

predefined ωaL, no action is carried out and total cost is only CPT. If the degradation 

level is higher than ωaL but less than L, a PM is performed with cost CPM and CPM > CPT. 

However, if the system is found failed, it will be replaced by a new one with CCM, 

where CCM > CPM. In addition, the cost (CD) related with risks of EUC needs to be 

considered in the downtime of SIS, CD is calculated by the product of demand rate λde 

and the possible loss in an EUC accident.  

The long-run cost rate could be calculated with the renewal theorem [29].  
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 , (  )-
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(

3) 

where C(t) is the cumulated maintenance cost by time t, and S1 is the length of the 

first renewal cycle. 

                  



The designed service time of most SISs is not infinite, and thus the steady-state 

assumption may not be accepted. We estimate the cost rate over a SIS lifetime as 

   
(     )      ( )        ( )        ( )      ( ) 

(

4) 

where Ni (t), NCM (t), NPM (t) and Td (t) are, respectively, number of proof tests, number 

of CMs, PMs and the expected downtime in [0, t]. 

It is not hard to understand that the   
(     ) is a function of maintenance parameters, 

including the degradation level L, PM coefficient (ωa, ωb) and test interval τ. 

Here, minimization of cost over the designed life (e.g. 20τ) is the criterion of 

selecting a suitable maintenance strategy. 

3.2. Unavailability calculation 

We start from estimation availability (A(t)) of the maintained final element at time t, 

namely the conditional probability that the component is working at time t given X0 = x, 

with x[0, ωaL]. A(t) is the probability that the system performs its required function at 

time t, when the degradation level is less than the predefined failure threshold L. 

  (   )    (    ) 
(

5) 

In the case t ≤ τ, there is no maintenance action on [0, t). So,  

  (   )    ( )(   )         
(

6) 

From the second interval, the prior test result acts as the condition to estimate the 

instantaneous availability. For i ≥ 2, we have the conditional knowledge given the 

degradation level µ at time τ, for τ < t ≤ 2τ: 

 (   )    ( ( )   |      )    (   )(     )  (7) 

Similarly, we can get A(x,t), for  (i-1)τ < t ≤ iτ as, 
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(

8) 

The valve will fail to function when the degradation level reaches or overpasses a 

predefined critical threshold L. PFDavg, the widely measure of a low demand SIS, is not 

the long-term approximation here, but the average proportion of time where the system 

is not able to perform the required safety function within one test interval [1]. PFDavg in 

the first test interval is 
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While PFDavg in the second interval (τ, 2τ) with known degradation level µ at time τ 

can be calculated as 
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Similarly, PFDavg in the i-th interval can be calculated using Eq. (8). 

 

      
  

∫  ̅(   )  
  

(   ) 

 

   
∫   (  (   ) )(     (   ) )  
  

(   ) 

 
 

(

11) 

Each SIF should comply with the specific SIL. IEC 61508 [2] specifies four SILs, 

with SIL4 most strict in terms of safety. SILs and their associated values of PFDavg are 

shown in Table 2. 

Table 2 SILs for low demand SISs, from [2] 

SIL PFDavg 

SIL4 10
-5

~10
-4

 

SIL3 10
-4

~10
-3

 

SIL2 10
-3

~10
-2

 

SIL1 10
-2

~10
-1

 

To estimate degradation of the SIS element in each test interval, Monte Carlo 

simulation is implemented here by generating random events to obtain the probability 

distributions for the variables of the problem. A number of papers can be found using 

Monte Carlo methods in the domains of reliability, availability, maintainability and 

safety (RAMS) [40–43]. 

The main idea here is to randomly generate M degradation paths to simulate M 

possible components and use the average value in each test interval to estimate the 

performance.  

4. Evaluation and optimization of maintenance strategies 

4.1. Optimization criteria 

As mentioned in Eq. (4), the cost is a function of several parameters, including 

failure threshold, L, test interval, τ, PM coefficient factors (ωa, ωb). It is difficult to 

obtain exact values of cost parameters [44], especially those related with production loss 

of shutdown process and the potential effects of hazardous event due to the failure of a 

SIS. Therefore, cost ratios, instead of absolute costs, are used here in optimization. 

Taking CPT as the unit cost, CD, CCM, CPM, can be expressed as k1CPT, k2CPT, and k3CPT 

respectively, where k1 > k2 > k3 ≥ 1. 

                  



For a SIS, the optimal (ωa, ωb) should find a trade-off between the minimum lifetime 

cost and the required SIL. For an ESD valve as an example, its required SIL is SIL3 

(see Table 2), meaning that PFDavg should be in the range of (10
-4

,10
-3

).  

4.2. Numerical example  

To illustrate the proposed method for optimizing maintenance strategy, a numerical 

example is employed with the degradation and operation parameters listed in Table 3. 

Table 3 Parameter values for system analysis 

Parameter Value 

L 1.25×10-3 

α 1.02×10-4 

β 1.2×104 

τ 8760  

λde 2.5×10
-5

 

Ni 20 

CT 1 

k1 1×105 

k2 10 

k3 5 

4.2.1. Instantaneous Availability 

The degradation level X(t), availability A(t) and PFDavg of such an element can be 

plotted based on Eq. (1), Eq. (6)-(8) and Eq. (9)-(11) respectively, as depicted in Figure 

2. 

 

Figure 2 A possible degradation path ( )X t and the corresponding ( )A t  and PFDavg 

At the starting point, X0 = 0, and A (0) = 1. With time elapsing, the degradation level 

X(t) is accumulating, meanwhile, A(t) is decreasing and PFDavg is increasing. Given the 

periodic proof tests, the system status will be updated after each proof test. A(t) curve 

has a certain periodicity but A(t) reduces faster due to the accumulation of degradation. 

PFDavg curve indicates that even the valve is functioning at each proof test, PFDavg is 

increasing with time. It implies that the final element is becoming more fragile 

                  



compared to that at the beginning. Given that the accumulated degradation level, X(t), 

exceeds PM threshold, ωaL, at 8τ, a PM is applied. After that, the degradation level is 

set back to ωbL, the correspondingly instantaneous availability is improved. In other 

words, the SIS goes back to a situation performing its SIF well. But due to the existing 

degradation, PFDavg is still higher than that in the first test interval. At 12τ, the 

degradation level X(t) goes beyond failure threshold L, and then replacement is executed. 

The system availability, A(t), is improved while PFDavg decreases as low as the first test 

interval. Another similar process is the execution of a PM at 18τ.  

4.2.2. Scenarios with different maintenance strategies 

With the parameters given in Table 3, the expected cumulative costs in 20τ under 

three scenarios are compared: 

(1). Scenario 1: The valve is only be repaired as-good-as-new once the failure has 

occurred, ωa = 1, ωb = 0.  

(2). Scenario 2: The initial state is X0 = ωbL (ωb ≠ 0), the system is repaired to as-

good-as-new X0 = ωbL (ωb ≠ 0) for both PM and CM with ωa = 0.8, ωb = 0.1. 

(3). Scenario 3: The initial state is X0 = 0, under the proposed maintenance strategy 

with ωa = 0.8, ωb = 0.1. 

Two maintenance strategies are considered: One is reflected by Scenario 1, without 

PM; the other is reflected by Scenarios 2 and 3, with PMs. For the latter two, they are 

indicating different initial degradations occurred in manufacturing or installation. More 

specially, Scenario 3 means higher manufacturing and installation quality.  

With the parameters in Table 3, the cost curves of these 3 scenarios are obtained as 

shown in Figure 3. 

 

Figure 3 Cumulative cost under different scenarios 

It can be found that maintenance costs of the three scenarios are almost same until 

around 10 . By this time, PM or CM is seldom carried out.  Then the cost of Scenario 1 

increases significantly mainly due to the potential downtime cost. For Scenarios 2 and 

3, their cost curves are very similar, with that of Scenario 2 a bit higher. By comparing 

                  



the cumulative costs of Scenario 1 and Scenarios 2&3 in the total 20 test intervals, it can 

be found that PMs reduce the total lifetime cost dramatically, but the cost difference 

between Scenario 2 and Scenario 3 is quite small.  

  

Figure 4 PFDavg under different scenarios 

The PFDavg values of the SIS in different scenarios are shown in Figure 4. At 

beginning, PFDavg increases with time (app. by 10τ) because of the continuous 

degrading process. For Scenario 1, PFDavg still increases after 10τ without PM and the 

SIS is within SIL1 most time, while for Scenarios 2 and 3, PFDavg is always lower, no 

worse than SIL2. Obviously, PMs improve SIS availability effectively, especially after 

the half of designed service time.  

In practices, due to materials or mis-operation in the manufacturing or installation 

process, zero degradation is too ideal for a valve even it is new. In comparison of 

Scenarios 2 and 3, initial degradation is only found a slight negative effect on 

performance during the overall cycle. When rescheduling proof tests, it is not necessary 

to prioritize the considering of initial degradation.  

4.2.3. Effect of PM strategies on lifetime costs   

With the parameters in Table 3, the expected maintenance cost of the final element is 

calculated based on Eq. (4). The expected lifetime cost is a function of (ωa,ωb) with 

different (k2, k3) as shown in Figure 5. 

  

(a) k2=10, k3=1 (b) k2=10, k3=3 

                  



  

(c) k2=10, k3=5 (d) k2=10, k3=8 

Figure 5 Mesh plot the expected total maintenance cost on (k2, k3) 

The CM cost is fixed as k2 = 10, and Figure 5 illustrates the impact of k3 on the 

lifetime cost, i.e., the expensiveness of PMs. In general, when k3 is larger, a PM is more 

costly, and the lifetime cost in 20 test intervals increases as well.  

 In Figure 5(a), k3 = 1 means that PM cost is very low, same as the test cost. Given a 

fixed ωa, the total lifetime cost slightly increases with respect to ωb. Even the higher ωb 

can lead to more PMs, but due to the quite low PM cost in each time, the expected 

lifetime cost almost keeps unchanged under the same ωa. However, given a fixed ωb, 

the expected lifetime cost increases significantly with ωa. When ωa closes to 1, it means 

that the PM threshold ωaL is near the failure threshold L, namely PMs are being 

avoided. CM cost is thus dominant for the increasement of lifetime cost.  

In Figure 5(b), compared to CM cost, PM cost is still quite low, so the overall 

tendency of lifetime cost is similar to that shown in Figure 5(a). Within this assumed 

range of k3 and (ωa,ωb), it can be obtained that the optimal value of (ωa,ωb) is (0.70,0). 

In Figure 5(c) and Figure 5(d), PMs are more expensive. The lifetime cost increases 

with respect to ωb, while decreases firstly and then increases with respect to ωa. There is 

a trade-off between PM cost and the potential downtime cost. Because a smaller ωa 

increases the PM expenses, but it results in a higher failure possibility that can increase 

CM and downtime costs. This phenomenon becomes more obvious in Figure 5(d) when 

PM cost is equivalent to 80% CM cost.  

For both Figure 5(c) and Figure 5(d), it is necessary to find an optimal (ωa, ωb) under 

the certain parameters. With calculation, the optimal (ωa, ωb) is (0.75, 0) in Figure 5(c), 

while the optimal (ωa, ωb) is (0.80, 0) in Figure 5(d). 

The findings can help the decision-making of maintenance crew of SISs. If PM costs 

are much lower than those led by a SIS failure, it is reasonable to take more PMs to 

keep the system safe. Otherwise, if PM costs are close to CM costs, many PMs are not 

essential. 

However, we have an assumption so far that PM cost is same no matter what the 

value of ωb is. In practices, when a system is aging, the PM cost often increases as well. 

The PM factor ωb should link with system installation time and actual healthy status.   

Meanwhile, the effects of failure threshold, L, and PM parameter, ωa, on the lifetime 

cost are analyzed. The values of L are set as [1.05,1.15,1.25,1.35,1.45] ×10
-3

 

                  



respectively, and then lifetime cost of the final element is calculated with the result 

shown in Figure 6. 

 

Figure 6 Expected maintenance cost 

When L = 1.45×10
-3

, the lifetime cost has minor increase from ωa = 0.7 to ωa = 0.9. 

This is because such a threshold is so high that the chance of a failure event is very low. 

When the value of L is lower, e.g. 1.05×10
-3

, the lifetime cost differences between the 

solutions of ωa = 0.7 and ωa = 0.9 is more apparent. For lower failure threshold with 

higher value of ωa, the degradation level can exceed the failure threshold with higher 

possibility.  

Given a fixed ωa, the lifetime cost decreases with a higher threshold L, because a 

smaller threshold L will increase downtime. 

The failure threshold L can be affected by manufacturing process and risk acceptance 

criteria. In manufacturing, high-quality material could lead to higher degradation-

tolerant threshold. In operations, when it is acceptable to tolerate more risks to the EUC, 

the failure threshold also could be set higher.  

In determining the optimal value of ωa, failure threshold should also be considered. 

When the failure threshold is quite high, from the perspective of maintenance cost, ωa 

could be set a higher value as of the low failure probability.  

4.2.4. Effects of PM strategies on PFDavg  

Here we study how PM strategies with different (ωa, ωb) influence PFDavg. 

The PFDavg of such a SIS can be obtained using simulation based on Eq. (9)-(11). 

PFDavg in each test interval is illustrated in Figure 7.   

 
(a) Parameter ωa effect on PFDavg 

                  



 
(b) Parameter ωb effect on PFDavg 

Figure 7 (ωa, ωb) effect on PFDavg of the system in every test interval 

It is obvious that the PFDavg has a strong correlation with parameters, (ωa, ωb).  

The effect of ωa on PFDavg in Figure 7(a) is analyzed with setting with ωb = 0.1. At 

early stage, for example, t is around t = 8τ, PFDavg increases over time but still remains 

within SIL3. After 8τ, PFDavg falls into SIL2 for ωa = 0.9. PFDavg starts to keep stable in 

each interval and just fluctuates in a small range (same SIL). These curves show that the 

value of PFDavg in each test interval decreases with ωa. With the lower ωa, the earlier 

PM will be taken. After a PM, the degradation is mitigated so that the probability of 

failure is reduced.  

The effect of parameter ωb on PFDavg in Figure 7(b) is evaluated with ωa = 0.75. 

Compared to ωa, parameter ωb has slight impact on system PFDavg.  

The combined effect of (ωa, ωb) on system PFDavg in several intervals are then 

depicted in Figure 8. 

  

(a) (10τ, 11τ)  (b) (11τ, 12τ)  

  
(c) (12τ, 13τ)  (d) (13τ, 14τ)  

Figure 8 Mesh plot PFDavg in several intervals 

                  



The overall tendency of PFDavg in each test interval is almost same. Meanwhile, 

PFDavg in each test interval is limited mainly in SIL3 and SIL2. Give a fixed ωb, PFDavg 

increases with ωa. However, given a fixed ωa, PFDavg keeps almost the same value for 

different ωb.  

The values of failure threshold L are set [1.05,1.15,1.25,1.35,1.45] ×10
-3

, 

respectively, to observe the effect of threshold on PFDavg. The mesh plot is shown in 

Figure 9. 

 

Figure 9 Mesh plot PFDavg on failure threshold L and 
a  

 

Given a same threshold L, PFDavg is going down with lower ωa. This finding can be 

regarded as a guideline for maintenance management. For the same SIS, the earlier the 

PM is executed, the more liable the system is. Without considering the PM cost, ωa 

should be as small as possible.   

Meanwhile, for a fixed ωa, PFDavg is going up with lower threshold L. For threshold 

L= 1.45×10
-3

, ωa = 0.8 is enough for the system to be limited within SIL3, whereas, ωa 

= 0.7 should be taken for L= 1.05×10
-3

.  

5. Updating test intervals with the information from tests 

For low demand SISs, it might not be always worthwhile running proof tests 

periodically, especially if the shutdown and restart of process is costly. In this case, the 

date of the next proof test can be determined based on degradation state observed in the 

current test. Interval to the next test can be longer if the SIS element is very healthy, and 

the interval should be shorter as the element deteriorates. When the degradation level is 

closing to PM threshold, more tests are expected. 

Having considered degradation and diverse maintenance strategies, it is interesting to 

introduce non-periodic proof tests. According to the study of [45], to keep system 

safety, 3 years is roughly set as the maximum length of a proof test interval.  

In consideration of degradations, PM parameters are set as ωa = 0.75 and ωb = 0.05. 

The general expected test interval length is generated by Monte Carlo simulation.  

The main steps of simulation algorithm for the expected test intervals are shown here. 

 Step 1: Set Xt = 0 and N = 1. If N ≤ Nmax the process goes to steps. 

                  



 Step 2: Generate n degradation paths. Then the arrival time of the first reach 

failure threshold L can be obtained. 

 Step 3: Get the 5-th percentile value as potential arrival time τ1. Compare τ1 and 

3 years. If τ1 < 3 years, then take τ1 as the new test interval of the system; if τ1 ≥ 3 

years, then 3 years are used as the new test interval. 

 Step 4: Use the mean value and variance of Gamma process in Section 2.2 to 

estimate the increment X0~τ1 between (0, τ1). At the same time, safety margin is also 

considered. The 97.5-th percentile (ρ = 0.975) is used as the potential increment in (0, 

τ1).  

 Step 5: Compare the potential degradation level at time τ1, Xτ1, with PM 

threshold or CM threshold to decide whether a maintenance strategy is required here. 

The Xτ1 after comparison is the new starting point.  

 Step 6: Repeat Step 2~ Step 5 and set N = N +1.  

The time to failure threshold L from Xt = 0 is verified to follow normal distribution. 

Different increment percentiles are investigated as the result shown in Table 4. 

Table 4 Updated test intervals under different increment percentiles 

 1st 2nd 3rd 4th 5th 6th 7th 8th 

ρ=0.975 (0, 3τ) (3τ, 6τ) (6τ, 9τ) (9τ, 11.5τ) (11.5τ, 14.5τ) (14.5τ, 17τ) (17τ, 20τ) (20τ, 22.5τ) 

ρ=0.90 (0, 3τ) (3τ, 6τ) (6τ, 6.5τ) (6.5τ, 9.5τ) (9.5τ, 12.5τ) (12.5τ, 15.5τ) (15.5τ, 18.5τ) (18.5τ, 21.5τ) 

ρ=0.825 (0, 3τ) (3τ, 6τ) (6τ, 7.2τ) (7.2τ, 10.2τ) (10.2τ, 13.2τ) (13.2τ, 14.2τ) (14.2τ, 17.2τ) (17.2τ, 20.2τ) 

*τ = 8760 h = 1 year 

The updated general lengths of each test interval are listed in Table 4. We can see 

that with different percentile values, test interval length becomes different from the third 

updated test. With ρ = 0.975, a PM is executed after the second interval and the 

degradation is mitigated. When ρ is set as 0.90 or 0.825, the third test interval is shorter 

with the length of 0.5τ and 1.2τ, respectively.  

It is worth mentioning that the degradation parameters (α, β) affect the degradation 

rate directly. The simulation results in Table 4 are based on assumed (α, β) in Table 3. It 

only acts as a reference method for updating test intervals.  

If the exact degradation level μ can be observed in each proof test. When updating 

the test lengths, the main constraint is the required SIL. Considering the degradation 

process, the first interval τ1 can be calculated based on Eq. (12) with the given limit 

values of PFDavg.  
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For calculating the second interval, the degradation level µ1 at τ1 is taken into 

consideration.  
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Using Eq. (13), the value of τ2 can also be updated. By following the similar solution 

process for the latter intervals, the flexible test interval can be calculated and updated.  

6. Conclusion 

A stochastic process-based availability analysis for the final element of a SIS is 

carried out, and three states of the element are considered. This forms the basis for 

determining the maintenance strategies following proof tests. The algorithms of 

instantaneous availability of the SIS element and expected lifetime cost in the SIS 

operation are developed. PFDavg of the SIS element is calculated based on the 

homogeneous gamma process. 

The findings in the case studies have shown that PM strategies, i.e. the optimal 

values of (ωa, ωb), and the expensiveness of PMs to CMs, are influential factors of the 

lifetime cost and SIL of a SIS. 

PFDavg of the SIS is affected by the PM threshold ωa significantly, especially after 

half of the service lifetime, but not too much affected by ωb. Effects of ωa on PFDavg are 

becoming more obvious with lower threshold L. When the failure threshold L is quite 

high, the value of ωa has slight effects on PFDavg given the low possibility of failure.  

Based on the above findings, suggestions on updating test intervals are given. 

Maintenance crews can be beneficiary of these suggestions, by saving maintenance 

costs through reducing frequency of proof tests. 

For further studies, it would be interesting to consider the availability and 

maintenance cost on k-out-of-n architectures.  
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