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Abstract

In this thesis, we study thermionic emission in two kinds of Dirac materials, namely

Dirac semimetals and nodal-ring semimetals. Starting with the linear energy-momentum

dispersion, we develop a modified Richardson-Dushman (RD) law to describe the thermionic

emission current in 3D Dirac semimetals. The modified RD law has no mass depen-

dence, which is significantly different from the RD law. We found the average energy

carried by a degree of freedom in Dirac semimetals is twice of that in conventional ma-

terials. As a result, 3D Dirac semimetals have the best thermal efficiency and coefficient

of performance when compared to conventional semiconductors and graphene.

The density of states of 3D Dirac semimetals is smaller than that of 3D conventional

materials, which results in a relatively smaller thermionic current density. A new type

of 3D Dirac material, nodal-ring has a larger density of states near to the Dirac cones

due to it having more Dirac cones compared to Dirac semimetals. We developed a

modified RD law to calculate its thermionic emission current. The results show the

thermionic emission current can be enhanced by the nodal-ring. Additionally, it has

different thermionic emission in the x- and y-directions due to the anisotropic energy-

momentum dispersion.

Thermionic emission has many potential applications in harvesting thermal energy

and cooling. We calculate the heat transfer from electronic devices without and with

thermionic cooling. Without thermionic cooling, the internal temperature of the de-

vices is at best equal to and usually higher than the temperature of the surrounding

environment. However, when thermionic cooling is employed to transport heat, the

internal temperature can be considerably lower than the environmental temperature.
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Additionally, hot carrier relaxation is studied in gapped Dirac semimetals. A finite

gap relaxes the selection rule and gives rise to a nonvanishing internode coupling via

phonon scattering. The gap also enhances the intra-node scattering. By using the

Boltzmann transport equation, we find that the relaxation rate increases with the square

of the gap and the electron temperature.

Finally, we investigate the strong tunable photo-mixing in semi-Dirac semimetals in

the terahertz regime. The third-order photoresponses along the linear and parabolic

directions have been analyzed and determined quantitatively. We have found a remark-

able tunability of the mixing efficiency along the parabolic direction by a small electric

field in the linear direction, up to two orders of magnitude.
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Chapter 1

Introduction

There are two fundamental research topics in physics. One of them is to explore the

nature of light and its interactions with substances. The last four centuries from New-

ton’s era (the seventeenth century) to Albert Einstein’s era (the twentieth century) have

witnessed endless wars between particles and waves of light. Now, it is widely accepted

that light has wave-particle duality and manifests one of them depending on how it

is observed. Partly based on this postulate, quantum mechanics has been established,

opening the door to modern science. In return, the area of light has been significantly

enriched thanks to the establishment of quantum mechanics.

The other research area is to find the fundamental building blocks of matter, such as

atoms, electrons and phonons, as well as how these building blocks form substances such

as crystals, magnets and superconductors. At the beginning of the 20th century, most

physicists thought that there were no new building blocks to be discovered. Moreover,

Landau’s spontaneous symmetry breaking theory can well describe these known quan-

tum states. In 1980, a new building block, the quantum Hall (QH) state was discovered.

This new state does not adhere to Landau’s paradigm [2]. In order to describe the new

quantum state, topological concepts have been introduced. Soon, many topological

materials such as Dirac semimetals and Weyl semimetals were discovered [3–7].

According to band theory, traditional materials can be classified into three different

types (shown in Fig. 1.1), namely (a) metals, (b) semiconductors and (c) insulators. For

metals, the conduction band and valence band are overlapped. Hence, there are many

electrons in the bottom of the conduction band, which makes metals good conductors.
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If there is a gap between the valence band and conduction band and the gap is less than

3 eV, then the material is called semiconductor. The conduction band has no electrons

at absolute zero temperature (0 K) and cannot transport current, while it has a few

electrons due to thermal excitations at a finite temperature. If the gap is greater than

3 eV, then the state is called insulator where the conduction band can hardly obtain

electrons via thermal excitation. Unlike ordinary insulators, topological insulators (d)

not only have gapped bulk states but also have topologically protected surface states.

The gapless surface states have a linear energy-momentum dispersion, which makes

a very small effective electron mass. Additionally, the electrons in the surface states

obey the Dirac equation instead of the Schrödinger equation. Moreover, the electrons

in surface states move in one direction which is robust to dissipation [8].

Valence band
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Conduction 
band

Valence 
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bandgap less 
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Figure 1.1: Schematic band structure for metals, semiconductors, insulators and topological insulators.

Although, up to now, no topological states have been realized in monolayer graphene,

graphene systems have many exotic properties similar to those possessed by topological

materials such as high Fermi velocity, 0.85 × 106 m/s [9, 10], giant instrinsic mobility

and super mechanical properties [11]. Its conduction band and valence band cross

each other in the momentum space, forming a Dirac cone. The energy-momentum

dispersion near the Dirac cone is linear, and the corresponding electrons obey the Dirac

equation [12]. Additionally, graphene has a rather simple crystal structure containing
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two carbon atoms in the primitive unit cell. In this sense, graphene provides a wonderful

platform to investigate Dirac Fermions.

1.1 Dirac Fermions in graphene

Graphene, a 2D carbon material, has a hexagonal crystal structure shown in Fig. 1.2.

In every vertex of the hexagons, there is a carbon atom. The unit cell is outlined by

black lines, which contains two carbon atoms. The lattice environment of the two atoms

are different from each other. The lattice vectors are given as a1 = a
2
(3,
√

3) and a2 =

a
2
(3,−

√
3), where a = 1.42 Å is the distance between a pair of the nearest atoms. The

band structure of graphene can be calculated by using the first-principles calculations.

Here, within the framework of density functional theory, the first-principles calculations

code of VASP [13] (Vienna Ab initio Simulation Package) is employed to conduct the

band structure calculations. The exchange and correlation potentials are depicted by

the generalized gradient approximation (GGA) [14] of Perdew-Burke-Ernzerhof (PBE).

The energy cutoff and k-mesh are chosen to balance accuracy against computational

time [15,16]. Here we use 550 eV as cutoff energy and (21×21×1) as k-mesh.

The calculated band structure is shown in Fig. 1.3(a). It has linear dispersion at low

energy from -1 eV to 1 eV, near the Dirac point K, and has nonlinear dispersion at high

energies. Fig. 1.3(b) is a zoomed portion of the band structure at low energy where

the points are calculated results and lines are fitted functions, y = b1x + b2. Fitting

parameters are used to evaluate the Fermi velocity and the hopping parameter via the

following equations [17,18]

E = pvF = h̄kvF , (1.1)

t =
2h̄vF√

3a
. (1.2)

The evaluated Fermi velocity (vF ) and hopping energy (t) are 0.85 × 106 m/s and

2.6 eV, respectively, agreeing with previous results [9, 10]. In fact, the Fermi velocity

of graphene can be modified by varying the charge carrier concentration up to 3.0 ×

106 m/s [18]. Therefore the Fermi velocity of graphene is usually set to 1.0 ×106 m/s

with hopping energy 3.0 eV or 2.7 eV in the tight-binding model in order to simplify

calculations [19].
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a
1

a
2

Figure 1.2: A schematic crystal structure for graphene, where black lines outline a unit cell containing

two carbon atoms. Lattice vectors are given as a1 = a
2 (3,

√
3) and a2 = a

2 (3, −
√

3), where a = 1.41 Å

is the distance between a pair of the nearest atoms.

In the tight-binding model, the effective Hamiltonian of graphene is given by

H =

 0 h(k)

h∗(k) 0

 ,

where h(k) = t[1 + e−ika1 + e−ika2 ] with lattice vectors a1 and a2 shown in Fig. 1.2; t

is the hopping energy that has been obtained via the first-principles calculations. By

diagonalizing the effective Hamiltonian, the eigenvalues are obtained by

ε±(k) = ±t

√
1 + 4cos(

3kxa

2
)cos(

√
3kya

2
) + 4cos2(

√
3kya

2
). (1.3)

According to the equation, band structure of graphene is plotted in Fig. 1.4, where six
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Figure 1.3: The top panel is the band structure of graphene with a linear energy-momentum dispersion

near Dirac point K; the bottom panel is a part of band structure near Dirac point where the points

are calculated results and lines are fitted functions, y = b1x+ b2.

Dirac cones are observed. Let ε± = 0, the position of the six Dirac cones is obtained by,
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√
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√
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Figure 1.4: Band structure of graphene plotted according to Eq. 1.3.

Now, we shift the coordinate to the K1 point i.e., k′ = k+ K1 and expand ε±(k′−K1)

up to the first order in k′, which results in E± = 3a
2

√
k2
x + k2

y = 3a
2
|k| = h̄kvF . In this

sense, graphene has a linear low energy-momentum dispersion at the vicinity of Dirac

cones and the corresponding electrons obey the Dirac equation.

1.2 Dirac Materials

Dirac materials are a new type of material whose low-energy fermionic excitations

obey the Dirac equation instead of the Schrödinger equation and behave as massless

Dirac particles. Dirac materials can be classified into several types such as graphene,

topological insulators, Dirac semimetals, Weyl semimetals, nodal-ring semimetals and

so on [20].

Here, we give a brief introduction to 3D Dirac semimetals, 3D Weyl semimetals and
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3D nodal-ring semimetals. For 3D Dirac semimetals, the low energy properties can be

characterized by

H = vσk, (1.4)

where k = kxî+ky ĵ+kzk̂ is wave vector, v is the Fermi velocity and σ is Pauli matrices

defined by

σ = σxî+ σy ĵ + σzk̂, (1.5)

σx =

 0 1

1 0

 ,

σy =

 0 −i

i 0

 ,

σz =

 1 0

0 −1

 .

Dot product of σk is given by

σk = σxkx + σyky + σzkz =

 kz kx − iky
kx + ikz −kz

 . (1.6)

Due to time-reversal (TR) or inversion symmetry, Dirac nodes are double degenerate. If

the degeneracy is eliminated by either breaking time-reversal or inversion symmetry, a

Dirac node will separate into two-component Weyl nodes. This kind of topological state

is named as Weyl semimetals. The low energy of a single Weyl node can be described

by the Hamiltonian [21],

H = b0I + vσ(k − b). (1.7)

where I is a 2 × 2 identity matrix, b0 (a scalar) and b (a three-dimensional vector) are

the energy and momentum shift respectively. For a Weyl node, a small perturbation

can not open a gap because all three Pauli matrices are used. Thus Weyl semimetals is

a stable phase. Similar to other kinds of topological materials, Weyl semimetals have

protected surface states as well as exotic electromagnetic response.
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In Dirac and Weyl semimetals, the conduction band and valence band cross each

other at the Fermi level and form Dirac cones. The number of these Dirac cones is

finite and usually equals two due to spin degeneracy. If the number becomes infinite,

then a new type of material emerges called nodal semimetals. If the Dirac cones form

a continuous circle, the nodal semimetals are called nodal-Ring semimetals.

We have mentioned semimetals many times without explaining. Semimetals refer to

materials whose conduction band and valence band touch each other at the Fermi level

and whose density of states is zero at the Fermi level. In this sense, materials with

Dirac cones are usually semimetals.

1.3 Thermionic emission

Thermionic emission is a fundamental process whereby electrons are driven by thermal

energy to escape from bulk states, shown in Fig. 1.5(a). In metals and semiconduc-

tors, states near the Fermi level are filled with electrons. When the electrons obtain

enough thermal energy, they cross the surface barrier (W ) resulting in thermionic

emission, shown in Fig. 1.5(b). Thermionic emission has been extensively studied

in conventional semiconductors with a parabolic energy-momentum dispersion due to

its potential applications in thermionic devices such as refrigerators and energy gen-

erators [22–24]. The practical applications of thermionic devices are seriously hin-

dered by the lack of low work-function materials [25] and the space charge effect [26],

which makes thermionic emission receive decreasing attention from researchers. How-

ever, thanks to the recent technological developments in obtaining low work-function

materials and the discovery of new materials such as graphene and Dirac semimet-

als [27–31], thermionic emission now receives increasing attention [32, 33]. For con-

ventional semiconductors, the thermionic emission current (TEC) is described by a

universal equation, called Richardson-Dushman law JRD = ARDT
2e−W/kBT , where

ARD =
qmk2B
2π2h̄3

= 120 Acm−2K−2, q is the absolute charge of an electron, m is the

mass of an electron, kB is the Boltzmann constant, h̄ is the reduced Plank constant, T

is the dynamical temperature and W is the work-function of the material [25]. Elec-

trons in graphene obey the Dirac equation instead of the Schrödinger equation, which

results in graphene possessing unique properties. One such property is that the TEC

8
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of graphene is found to be different to the universal equation, and is instead given

as JG = AGT
2e−W/kBT , where AG = qkBT

π2h̄3v2F
and vF is the Fermi velocity [34]. Low

energy electrons in graphene are massless particles resulting in AG is also being mass-

independent. Possessing a high Fermi velocity (vF ∼ 106 m/s) is another feature of

graphene, which appears in AG. As we have mentioned, graphene is an atomically

thin 2D material. Therefore, its density of states is much smaller than that of 3D

conventional materials resulting in a smaller AG ≈ 0.02 A/cm−2K−2 [35].

EF

0

W

(a) (b)

Figure 1.5: Schematic of thermionic emission: (a) electrons are evaporated from a material to vacuum

driven by thermal energy, (b) corresponding energy level. States near the Fermi level are filled with

electrons. When the electrons obtain enough thermal energy, they cross the surface barrier (W )

resulting in thermionic emission.

We follow in Richardson’s footsteps to derive the Richardson-Dushman equation in

conventional semiconductors. Thermionic current density can be calculated by

JR =

∫
qn(E)vz(E)dE, (1.8)

where q is the charge of an electron, n(E) is the density of electrons and vz(E) is the

velocity of the electrons along the barrier direction. We assume the barrier direction is

the z direction. The density of electrons can be evaluated by

n(E) = N(E)f(E). (1.9)

Here f(E) = 1
eβ(E−EF )+1

is the Fermi function. The Fermi-Dirac distribution can be

replaced by the Maxwell-Boltzmann distribution F (E) = e−β(E−EF ) by assuming E −

EF > 3kBT . The assumption is reasonable if the work function W is greater than 3kBT

(about 90 meV at T = 350 K). It is important to make this assumption since it helps

9
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to obtain the thermionic current density analytically. N(E) is density of states and

β = 1/(kBT ). To evaluate Jz, we need to know N(E) and vz. These two terms are

closely related to energy-momentum dispersion.

Conventional semiconductors refer those materials having a parabolic energy mo-

mentum dispersion,

E =
h̄2k2

2m
. (1.10)

The density of states N(E) can be evaluated by using the following equation

N(E) =
dZ(E)

V dE
, (1.11)

where Z(E) is the total energy states giving as

Z(E) = 2ρ(k)
4

3
πk3 = 2× V

8π3
× 4

3
πk3, (1.12)

where factor 2 comes from spin up and spin down. By combining Eq. 1.10 and Eq.

1.12, Z(E) can be written as

Z(E) = 2× V

8π3
× 4

3
π

(2mE)3/2

h̄3 =
V (2mE)3/2

3π2h̄3 . (1.13)

Finally, the density of states is obtained by

N(E) =
dZ(E)

V dE
=

(2m)3/2

2π2h̄3

√
E. (1.14)

In some books, m3/2 is denoted as m∗. Additionally, the energy can be related to

velocity by following equation,

E =
1

2
mv2 =

1

2
m(v2

x + v2
y + v2

z). (1.15)

Based on the above equations, the current density of 3D conventional materials can be

calculated by

JR =

∫
q

(2m)3/2

2π2h̄3

√
Ef(E)vzdE =

∫
q

(2m)3/2

2π2h̄3

√
m

2
vf(E)vzmvdv

=
qm3

4π3h̄3f(E)

∫
vz4πv

2dv =
qm3

4π3h̄3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

vz,min

f(E)vzdvxdvydvz.

(1.16)

Inserting f(E) into the above equation, JR can be written as,

JR =
qm3

4π3h̄3 e
βqEF

∫ +∞

−∞
e−0.5βmv2xdvx

∫ +∞

−∞
e−0.5βmv2ydvy

∫ +∞

vz,min

× vze−0.5βmv2zdvz.

(1.17)
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Here the integrals over x, y and z are independent of each other. Therefore they can

be integrated separately. The integral over x and y is obtained by using the following

equation

I =

∫ ∞
−∞

e−x
2

dx =
√
π. (1.18)

The integral can be easily evaluated as,

I2 =

∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy =

∫ ∞
−∞

e−r
2

2πrdr

= π

∫ ∞
−∞

e−r
2

dr2 = π.

(1.19)

Before performing the integral over z direction, vz,min should be determined. vz,min is

the minimum speed of electrons in z direction, which makes the electrons have enough

energy to escape from bulk states to free space. It can be determined by

Emin = W + EF =
1

2
mv2

z,min. (1.20)

After some algebraic calculations, the thermionic current density is obtained by

JR(W,T ) =
qmk2

B

2π2h̄3T
2e−Wβ = ART

2e−Wβ. (1.21)

where T is the temperature, m is the mass of an electron, kB is the Boltzmann constant,

h̄ is the reduced plank constant, β = 1/(kBT ) and AR ≈ 120 A cm−2 K−2 is Richardson’s

constant.

Recently, the thermionic properties of graphene have been investigated both experi-

mentally [30] and theoretically [34]. The results showed the mass-dependent Richardon-

Dushman equation no longer holds for graphene due to the massless energy dispersion,

E = h̄kvF , where vF is the Fermi velocity. A modified thermionic law was established

by assuming graphene to have a linear energy-momentum dispersion within the layer

and a parabolic energy-momentum dispersion in the perpendicular direction [29,34]

JG(W,T ) =
qk3

BT

π2h̄3v2
F

T 2e−Wβ = AGT
2e−Wβ, (1.22)

where AG is the modified RD constant for graphene. The modified RD law is mass

independent. The main difference between graphene and conventional materials is that

AG has a linear temperature dependence. The work function of graphene extracted by
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the above equation agrees well with results in literature [36,37]. Based on the modified

law, graphene-based thermionic devices have been further investigated [29,38].

Although free-standing single-layer graphene has high electron mobility, its thermionic

emission ability is limited due to the small density of states and its emission ability

would be affected by substrates. Three dimensional Dirac semimetals have similar

electronic properties to graphene such as a linear energy-momentum dispersion in low

energy region. The density of states of 3D materials is larger than that of 2D materials.

Based on the above two factors, the thermionic properties of 3D semimetals should

be better than that of graphene. Besides, research showed Cd3As2 [39–41] has an un-

expectedly low thermal conductivity and extraordinary performance in thermoelectric

devices [42].

1.4 Thesis review

Two major topics are investigated in this thesis, namely, thermionic emission in Dirac

systems and the transport properties of Dirac systems.

On the topic of thermionic emission, we have investigated:

• Thermionics in Dirac semimetals (Chapter 2).

• Thermionics in nodal-ring semimetals (Chapter 3).

• Thermionic cooling enhanced heat transfer in Dirac semimetals (Chapter 4).

On the topic of transport properties of Dirac systems, we have investigated:

• Hot carrier relaxation in gapped Dirac semimetals (Chapter 5).

• Non-linear electromagnetic response in Semi-Dirac semimetals (Chapter 6).
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Chapter 2

Thermionics in Dirac semimetals

* In this chapter, we investigate the thermionics in three dimensional Dirac materials.

We demonstrate that 3D Dirac semimetals have advantages over conventional semicon-

ductors and graphene in thermionic applications. The low emission current suffered

in graphene due to the vanishing density of states is enhanced by an increased group

velocity in 3D Dirac materials. Furthermore, the thermal energy carried by electrons

in 3D Dirac semimetals is twice of that in conventional materials. As a result, 3D

Dirac semimetals have the best thermal efficiency and coefficient of performance when

compared to conventional semiconductors and graphene. The generalized Richardson-

Dushman (RD) law in 3D Dirac semimetals is derived. The law exhibits an interplay

of the reduced density of states and enhanced emission velocity.

2.1 Introduction

Nowadays, global warming is a serious problem that threatens the future of all human

beings. Another similar problem is air pollution. There is no doubt that these problems

are caused by burning fossil fuels. After the Second World War, the global population

has been continually increasing, and industrialization in developing nations is consid-

erably speeding up. As a result, uncountable fossil fuels are burned day in and day

out to drive our cars, heat our homes and keep our factories running. There are two

* This chapter is based on S Huang, M Sanderson, Y Zhang Y and C Zhang., High efficiency and non-Richardson

thermionics in three dimensional Dirac materials., Applied Physics Letters, 111 (2017) 183902.
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main approaches in science to solve the problems caused by burning fossil fuels. The

first approach is developing clean and renewable energy to replace fossil fuels. Solar

energy is the most promising renewable one. Fossil fuels are also a kind of solar energy

that came from the sun several million years ago. The second approach is to improve

the energy conversion efficiency. Traditional energy conversion devices such as steam

engines and turbofan engines are mechanical devices that produce noise and lose energy

due to moving parts. Energy conversion devices that do not have moving parts are one

of the potential candidates to improve conversion efficiency.

Energy conversion devices based on electron (or hole) transport have no moving

parts, and have been continually researched for more than 100 years. There are two

conversion mechanisms; thermoelectrics (TE) and thermionics. Both realize energy

conversion between heat and electricity. Thermoelectric materials are characterized by

the merit, defined as ZT = S2σT (κL + κe)
−1, where S is the Seebeck coefficient, σ is

the electrical conductivity, T is the temperature, and κL (lattice) and κe (electronic)

are thermal conductivities. The relatively low thermodynamic efficiency of commonly

used TE materials has prevented their use in large-scale applications. Advancements

of TE materials and devices requires finding materials with a high S, a high σ, and

low κL and κe. The bottleneck is that these quantities are intrinsically connected,

as a good electrical conductor is normally a good thermal conductor, thus making

further improvement of ZT of bulk materials extremely difficult. Moreover, κL of a

solid has an amorphous limit [43–46]. Recent developments in nanotechnology allow

further reduction of κL by using material design, crystal structure design [43,44,47,48]

and nanostructuring [45, 49–52], nano-precipitation in PbTe [52] nano-grained Bi2Te3

[45,52], and liquid-like ions in Zn4Sb3 [44] and Cu2Se [43]. These approaches have been

the focus of thermoelectric research in the last few decades and have resulted in an

increase of peak ZT to 1.5 and higher. Research shows that a high band degeneration

[53–55], a low band effective mass [56], and weak scattering strength [57] can lead to

an increase in ZT .

Thermionic generators or coolers operate by using two parallel metal electrodes.

When the two metals have different temperatures, electrons in the hot metal flow across

the barrier into the cold metal, establishing an electrical current. They differ from
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thermoelectric devices in the way particles travel. In thermoelectric devices, electrons

travel diffusively. In thermionic devices, the barrier between the hot and cold regions

of the device is shorter than the distance between collisions for electrons, so electrons

travel ballistically. The efficiency of both thermoelectric and conventional thermionic

devices is lower than the theoretical upper limit, known as Carnot efficiency, for all

finite barrier heights [58]. The basic structure of the thermionic cooler consists of two

planar electrodes separated by a potential barrier (shown in Fig. 2.1). If there is no

external voltage, high energy electrons in the hot side will move to the cold side due

to the thermionic effect. In this case, the device can act as a thermionic generator. If

there is a moderate external voltage, the work function of the cold side will be reduced

and the work function of the hot side will be raised. As a result, high energy electrons

in the cold side move to the hot side and electrons in the hot side can not move to the

cold side resulting in a cooling effect. Hence the device act as a thermionic cooler.
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Figure 2.1: Schematic of a thermionic device and the potential energy of an electron in the device.

The external voltage reduces the work function of the cold side and raises the work function of the hot

side. As a result, high energy electrons in the cold side move to the hot side and electrons in the hot

side can not move to the cold side resulting in a cooling effect.

Conventional semiconductor materials were considered as a promising candidate for
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thermionic devices due to their relatively low work functions. The science of thermion-

ics and its potential application in integrated cooling of electronic and optoelectronic

devices has attracted considerable interest. Unfortunately, thermionic materials with a

low enough work function are still unavailable.

Newly discovered materials with a linear energy-momentum dispersion such as graphene

[59], topological insulators [8] and Dirac semimetals [60] have attracted enormous at-

tention in the past decade. These materials exhibit an incredibly high mobility, strong

optical absorption, and fast response, etc. These properties made this class of Dirac

materials a promising candidate for applications in electronics and photonics [1,61,62].

However, energy transport in these materials would be less significant because of the

zero mass nature of charge carriers. In this chapter, we shall demonstrate that while the

thermal emission current of Dirac materials is less than that of conventional materials,

and their thermal efficiency is higher compared to that of conventional materials.

2.2 Thermionic current density

For 3D semimetals, the mass-dependent Richardson-Dushman equation that has been

discussed in Section 1 no longer holds due to their special energy-momentum dispersions

(linear and mass-independent). The energy momentum dispersion is given by

E = h̄kvF . (2.1)

Their total energy states Z(E) can be calculated by

Z(E) = 2× V

8π3
× 4

3
πk3 =

V

3π2

E3

h̄3v3
F

. (2.2)

The density of states N(E) and the density of electrons n(E) in the unit of energy and

volume are obtained by

N(E) =
dZ(E)

V dE
=

E2

π2h̄3v3
F

, (2.3)

n(E) = N(E)f(E) =
E2

π2h̄3v3
F

× 1

1 + eβ(E−EF )
≈ E2

π2h̄3v3
F

eβEF e−βE. (2.4)

The energy of electrons can be related to velocity v by

vz =
∂H

∂pz
=
vFkz
k

=
vFkz√

k2
x + k2

y + k2
z

. (2.5)
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By Inserting these equations the into emission current equation JD =
∫
qn(E)vz(E)dE,

we obtain

JD =
qexp(EF/kBT )

π2h̄

∫
kkzexp(− h̄vFk

kBT
)dk = C

∫
kkze

−akdk, (2.6)

where C = qexp(EF /kBT )
π2h̄

and a = h̄vF
kBT

. The integral can be evaluated in spherical

coordinates,

JD = C

∫
kkze

−akdk = C

∫ ∫ ∫
k2 cos(θ)e−ak

1

4π
sin(θ)dθdφdk. (2.7)

Integrating over φ

JD =
C

2

∫ ∞
kmin

∫ θmax

0

k2 cos(θ)e−ak sin(θ)dθdk

=
C

4

∫ ∞
kmin

k2e−ak
∫ θmax

0

sin(2θ)dθdk,

(2.8)

where kmin = EF+W
h̄vF

and cos2(θmax) = kmin
k

, which guarantee the electrons to have

enough energy to overcome the potential barrier. By Integrating over k and θ, the

thermionic current density of 3D semimetals is obtained by

JD =
C

4

∫ ∞
kmin

k2e−ak(1− kmin
k

)dk

=
C

4
(
kmin
a2

+
2

a3
)e−akmin = ADT

2e−Wβ,

(2.9)

with modified Richardson’s coefficient

AD =
qk2

B

4π2h̄3v2
F

(W + EF + 2kBT ). (2.10)

While the JR =
qmk2B
2π2h̄3

T 2e−Wβ is mass dependent, JG =
qk3BT

π2h̄3v2F
T 2e−Wβ and JD are mass

independent which stems from the parabolic and linear energy-momentum dispersion.

The temperature dependence of the thermionic current densities for conventional ma-

terials (JR), single graphene (JG) and 3D Dirac semimetals (JD) are shown in Fig. 2.2,

where EF = 0.1 eV and W = 0.3 eV for all three systems. JG is much smaller com-

pared to JR and JD. So we plot 10JG in the figure. The figure shows JR > JD > JG,

which indicates conventional materials having the highest rate of thermionic emission

and single layer graphene having the lowest rate. The emission current from a 3D Dirac

semimetals is greater than that of graphene by an amount,

∆J = JD − JG =
qk2

B

2π2h̄3v2
F

(W + EF − 2kBT )T 2e−Wβ. (2.11)
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The negative term −2kBT comes from the valley degree of graphene. The terms W

and EF have the same form as JR in terms of the temperature dependence. In the

calculation of JG, the carriers are assumed to have a linear energy dispersion in the

direction perpendicular to the emission direction and a parabolic dispersion in the

emission direction. The current is relatively smaller than JR. The energy dispersion of

3D Dirac semimetals is linear in all directions. We analyze this change by considering

both the density of states and the group velocity of emitted electrons. The emission

current increases with both the density of states and the emission velocity. When the

in-plane energy dispersion changes from parabolic to linear, the density of states is

significantly reduced near the bottom of the conduction band. This is the origin of

JG being much smaller than JR. On the other hand the group velocity of the emitted

electrons along the emission direction, given by ∂E/∂kz increases when the energy

dispersion along the kz-direction changes from parabolic to linear. For a parabolic

dispersion, the group velocity goes to zero as kz goes to zero. For linear dispersion,

the group velocity can be finite when kz goes to zero if kx and ky both go to zero. In

the case of 3D Dirac semimetals, the enhancement of group velocity along the emission

direction compensates the vanishing in-plane density of states. Our result indicates

that the materials with the highest emission current would be those with a parabolic

in-plane energy dispersion and linear energy dispersion along the emission direction.

2.3 Thermionic energy flow density

In the previous section, we have derived a modified Richardson’s equation to describe

the thermionic charge current density in 3D Dirac semimetals. In the present section,

we are going to show how to describe the energy flow in 3D Dirac semimetals. To see

the difference in energy flow between conventional materials and Dirac semimetals, we

revisit the energy flow in a conventional material. Thermionic energy flow and current

density are both carried by electrons, which makes them rather similar to each other.

The charge carried by an electron is q, while the net energy carried by an electron is

E = 1
2
m(v2

x + v2
y + v2

z)− EF . Therefore, thermionic energy flow can be obtained by

QR =

∫
E

q
qn(E)vz(E)dE, (2.12)
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Figure 2.2: Temperature dependence of thermionic current density (absolute value) for conventional

materials (JR), single-layer graphene (JG) and 3D Dirac materials (JD), where EF = 0.1 eV and

W = 0.3 eV. In addition, we plot 10JG instead of JG to make it visible.

where n(E) ≈ E2

π2h̄3v3F
eβEF e−βE is the electron density states for 3D conventional mate-

rials which has been already obtained in the previous section. Inserting everything in,

the energy flow can be written as

QR =
qm3

4π3h̄3 e
βEF

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

vz,min

m(v2
x + v2

y + v2
z)− 2EF

2q

× e−0.5βm(v2x+v2y+v2z)vzdvxdvydvz = Ax + Ay + Az −
EF
q
JR.

(2.13)

Where Ax , Ay and Az are given by

Ax =
m4

8π3h̄3 e
βEF

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

vz,min

v2
xvz

× e−0.5βm(v2x+v2y+v2z)dvxdvydvz,

(2.14)

Ay =
m4

8π3h̄3 e
βEF

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

vz,min

v2
yvz

× e−0.5βm(v2x+v2y+v2z)dvxdvydvz,

(2.15)
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Az =
m4

8π3h̄3 e
βEF

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

vz,min

v3
z

× e−0.5βm(v2x+v2y+v2z)dvxdvydvz.

(2.16)

Since the integral variables x, y and z are independent of each other. Therefore they

can be integrated separately.

Ax =
m4

8π3h̄3 eβEF
∫ +∞

−∞
v2
xe
−0.5βmv2xdvx

∫ +∞

−∞
e−0.5βmv2ydvy

×
∫ +∞

vz,min

vze
−0.5βmv2zdvz =

m4

8π3h̄3 eβEF
√
π

2
a3
√
πa
a2

2
e−v

2
z,min/a

2

=
qmk2

B

2π2h̄3T
2e−Wβ × kBT

2q
=
kBT

2q
Jz,

(2.17)

Az =
m4

8π3h̄3 e
βEF

∫ ∞
−∞

e−0.5βmv2xdvx

∫ ∞
−∞

e−0.5βmv2ydvy

∫ ∞
vz,min

v3
ze
−0.5βmv2zdvz

=
m4

8π3h̄3 e
βEF
√
πa
√
πa

1

2
a4(

v2
z,min

a2
+ 1)e−v

2
z,mina2

=
qmk2

B

2π2h̄3T
2e−Wβ (W + EF + kBT )

q
=

(W + EF + kBT )

q
Jz,

(2.18)

I1 =

∫ +∞

−∞
e−x

2/a2dx =
√
πa, (2.19)

I2 =

∫ +∞

m

xe−x
2/a2dx =

a2

2
e−m

2/a2 , (2.20)

I3 =

∫ +∞

−∞
x2e−x

2/a2dx =

√
π

2
a3, (2.21)

I4 =

∫ +∞

m

x3e−x
2/a2dx =

1

2

∫ +∞

m

x2e−x
2/a2dx2

=
1

2
a4(

m2

a2
+ 1)e−m

2

a2.

(2.22)

Where we have used the standard formulae I1, I2, I3 and I4, which can be found in the

majority of math handbooks or websites. Here vz,min is the minimum speed of electrons
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in the z-direction, which makes the electrons have enough energy to escape from bulk

states to free space. It is determined by

Emin = W + EF =
1

2
mv2

z,min. (2.23)

According to the symmetry of integral variables x and y, Ay is equal to Ax. Now we

can write down the energy flow in conventional materials as

QR = Ax + Ay + Az −
EF
q
Jz =

W + 2kBT

q
Jz. (2.24)

The result can be explained by the average thermal energy per degree of freedom. The

average thermal energy per freedom degree in a 1D material with a parabolic energy

dispersion can be calculated by

Ē =

∫ +∞
−∞ Ee−βEdv∫ +∞
−∞ e−βEdv

=

∫ +∞
−∞ 0.5mv2e−0.5βmv2dv∫ +∞

−∞ e−0.5βmv2dv
= 0.5m

∫ +∞
−∞ v2e−v

2/b2dv∫ +∞
−∞ e−v2/b2dv

= 0.5m
2 (0.5b)3

√
π

0.5b
√
π

= 0.5kBT,

(2.25)

where β = 1/(kBT ) and b2 = 1/(0.5mβ) = 2kBT/m. For 2D and 3D material with a

parabolic energy dispersion, the average thermal energy per degree can be calculated in

a similar way and the result is also 0.5kBT . The result is well known and can be found

in thermodynamics books. In 3D thermionic materials, there are four freedom degrees,

namely vx, vy, vz and φz. Therefore the average net energy carried by an electron that

jumped over the potential barrier is 2kBT + W . Then the thermal energy flow can be

written as W+2kBT
q

Jz, which agrees with the above result.

Similarly, the energy flow for 3D Dirac semimetals is

QD =
W + 4kBT

q
Jz. (2.26)

The term 4kBT is the average energy for four degree of freedoms, which is different from

their counterparts 2kBT in conventional materials due to the average energy for one

degree of freedom being 0.5kBT in conventional materials and kBT in Dirac semimetals,

which is obtained by

< ε >= h̄vF

∫∞
0
ke−akdk∫∞

0
e−akdk

= kBT, (2.27)

where h̄vFk is the energy of a particle and e−ak is the Maxwell-Boltzmann Distribution.
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Figure 2.3: Voltage and the hot side temperature dependence of energy flow (Q) where Tc = 250 K,

EF = 0.1 eV and W = 0.2 eV.

2.4 Thermionic refrigerators

Based on the above results, we consider a thermionic refrigerator made up of Dirac

semimetals. The net charge current and the net energy current can be written as [25]

I = Ic − Ih, (2.28)

Ic = JD(W,Tc), (2.29)

Ih = JD(W,Th)e
qV β, (2.30)

Q = [(W + 4kBTc)Ic − (W + 4kBTh)Ih]/q, (2.31)
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where the positive direction is from the cold side to the hot side.

Voltage and hot side temperature dependence of the energy flow are investigated

(shown in Fig. 2.3.). The energy flow is negative when the voltage is absent or small

since the energy tends to flow from the hot side to the cold side. Here we have set

the negative Q to zero for visual effect (the left corner of Fig. 2.3.). As the voltage

increases, Q firstly increases dramatically and then approaches a constant. The reason

is that the voltage only weakens the emission ability of the hot side and keeps the cold

side unchanged. Hence Q will solely be determined by the cold side and stay constant

with the increase of voltage.
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Figure 2.4: The hot side temperature dependence of VQ and VI at two different work functions, where

EF = 0.1 eV and Tc = 250 K.

The threshold voltage that separates the value of Q from negative to positive in-

creases with the hot side temperature due to the rise of the temperature difference

between the hot and cold sides. By setting Q = 0, the threshold voltage (VQ) is ob-
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tained by

VQ = [
W (Th − Tc)
kBThTc

+ 4ln(
Th
Tc

) + ln(
W + 2kBTh
W + 2kBTc

)

+ ln(
W + EF + kBTh
W + EF + kBTc

)]
kBTh
q

.

(2.32)

The result shows that VQ has a complicated dependence on Th. Fig. 2.4 shows VQ

versus Th at two different work functions. It is a surprising fact that VQ has a linear

dependence on Th in the plotted range. When Th = 250 K, i.e., no temperature differ-

ence between the hot and cold side, the value of VQ is zero. The result agrees with the

obvious law that there is no thermionic energy flow between two substance if there is

no temperature difference and external voltage. According to the second law of ther-

modynamics, thermal energy would go from the hot material to the cold material. In

order to stop this spontaneous movement, an external voltage is needed. As we can see,

a bigger voltage is needed when the temperature difference is increased. Furthermore,

VQ also dependents on W . To be more specific, for a fixed temperature difference, VQ

increases with W . There is another threshold voltage VI that separates the value of I

from negative to positive. By setting I = 0, we obtain the threshold voltage as

VI =
1

q
[kBThln

W + 2kBTc
W + 2kBTh

+
Tc − Th
Tc

W ] (2.33)

The value of VI is less than the value of VQ, shown in Fig. 2.4, since the energy carried

by a hot side electron is greater than that of a cold side electron. Therefore, the energy

flow comes from hot side to cold side when I = 0.

The efficiency (η) of the refrigerator is calculated by η = −Q/(IV ). In order to

characterise the performance of the refrigerator, the relative ratio of η and Carnot

efficiency ηc = Tc(Th − Tc)−1 is calculated

η

ηc
= − 1

qV
(W + 4kBT ×

Th − TcIch
1− Ich

). (2.34)

where Ich = Ic/Ih. The voltage and hot side temperature dependence of the efficiency

η is investigated (shown in Fig. 2.5), where the value of the efficiency is given in color

ranging from 0 to ηc. No cooling takes place when the voltage is too low or the hot

side temperature is too high (the top left corner). As the voltage goes up, the efficiency

firstly increases to a maximum value dramatically and then gradually decreases. As we

discussed earlier, Q will be independent of voltage when the voltage is high enough.
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Figure 2.5: Voltage and hot side temperature dependence of efficiency (η) where EF = 0.1 eV and W

= 0.2 eV. The color indicates the value of η arrange from 0 to ηc.

The current (I) has the same trend as Q. Hence, the efficiency will gradually decrease

with the voltage after the initial increment, which can also be seen from Eq. 2.34.

The performance of Dirac semimetals (labeled by subscript D) and conventional

materials (labeled by subscript R) in thermionic refrigeration is compared in Fig. 2.6

and Fig. 2.7. Although the energy flow QR is larger than QD by about four times, the

efficiency of Dirac semimetals is considerably higher than that of conventional materials.

The main reason behind the higher efficiency of 3D Dirac semimetals is the energy-

carrying capability of electrons in the different materials. As shown in Eq. 2.27, the

energy carried by Dirac particles per degree of freedom is twice that of a particle with

a parabolic energy dispersion. Carriers with a parabolic dispersion have the highest

charge current, as shown in Fig. 2.2. However, the energy current in 3D materials

is enhanced. As a result, 3D Dirac semimetals have the highest thermal efficiency,

compared to both parabolic materials and graphene. Therefore, together with their low

thermal conductivity and high electron mobility, it is somewhat reasonable to expect

that 3D Dirac semimetals would make excellent candidates for thermionic devices. It

should be pointed out that we only considered the ideal case of no heat backflow. In a
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Figure 2.6: The voltage dependence of energy flow Q where the solid red line and the dashed black

line are for Dirac materials and conventional materials. Here Tc = 250 K, Th = 300 K, EF = 0.1 eV

and W = 0.2 eV.

practical device, there is a heat backflow due to phonon conduction Qp = (Th−Tc)/Rth

where Rth is the thermal resistance. The heat backflow will significantly reduce the

thermal efficiency in all three systems discussed.

Now we study the dependence of energy flow and efficiency on external voltage.

For both Dirac and conventional materials, the energy flow firstly increases with the

external voltage and then reaches a maximum value. The reason is that the external

voltage only suppresses the thermal energy of the hot side going to the cold side, which

can be seen from Eq. 2.28 - Eq. 2.31. Hence further increasing the external voltage will

make no changes to the entire energy flow if the external voltage is already large enough

to completely suppress the energy of the hot side flowing into the cold side. Unlike the

energy flow, the efficiency firstly increases rapidly with the increase of external voltage

to a maximum value and then gradually decreases with the external voltage. The main

reason is that the energy flow and total current would reach a constant value as the

increase of external voltage while the total energy consumption per unit time V × I
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Figure 2.7: The voltage dependence of efficiency η where the solid red line and the dashed black line

are for Dirac materials and conventional materials. Here Tc = 250 K, Th = 300 K, EF = 0.1 eV and

W = 0.2 eV.

would continually increase with the external voltage V .

Refrigerators usually work at different temperatures. In different work temperatures,

their performance would be different. In order to see the influence of temperature on

their performance, external voltage V dependence of energy flow and efficiency η at two

different hot side temperatures (Th) are investigated (shown in Fig. 2.8), where solid

line and dashed line are Q and η, respectively. Red line is for Th = 300 K, and black

line is for Th = 350 K. In addition, Tc = 250 K, EF = 0.1 eV and W = 0.28 eV are

used for the calculations. The results show that the maximum efficiency and energy

flow are nearly identical at the two work temperatures. However, the external voltage

that is required to achieve maximum efficiency is considerably different for the two

work temperatures. This means that in order to work efficiently, the external voltage

should change with the working temperature. In practical applications, a low energy

consumption device can be realized by applying a variable external voltage. The value

of the external voltage is set according to the working temperature to realize the best
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Figure 2.8: External voltage V dependence of energy flow (Q) and efficiency η at two different hot side

temperatures (Th), where the solid line and dashed line are Q and η, respectively. The red line is for

Th = 300 K, and black line is for Th = 350 K. Here Tc = 250 K, EF = 0.1 eV and W = 0.28 eV are

used for the calculation.

work efficiency.

2.5 Outlook

The absolute value of the standard Richardsons coefficient is about 120A/cm2K2. The

modificatory one for 3D Dirac semimetals would less than that by several times and the

modificatory one for graphene even would less than that by two orders of magnitude.

Therefore, one may think why not use the conventional materials as the cathode (cold

side) of refrigerator devices and Dirac semimetals (graphene) as the anode (hot side),

shown in Fig. 2.9.

It is reasonable to argue that such a device would have a better performance com-

pared to its counterparts that are based on one kind of material. The argument is that

the total net current may be enlarged in such a device. However, we would like to point

out that the conventional method that is used to describe the performance of thermionic

refrigerator or generator breaks down. The first reliable evidence is that it breaks the

second law of thermodynamics. The law tells us that thermal energy always flows from
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Q

V

coldhot

Figure 2.9: Schematic diagram of the refrigerator that is based on conventional and Dirac semimetals.

the hot side into the cold side. However, as we can see from Fig. 2.9, the thermal

energy flows from the cold side into the hot side without an external voltage when the

temperature difference is smaller than 50 K. The physical reason is that even though

conventional materials can emit more electrons than 3D Dirac semimetals (graphene),

many of the electrons would be reflected by 3D Dirac materials (graphene) and make

no contribution to the thermionic current.

2.6 Conclusion

We have shown the TEC of 3D Dirac semimetals can be calculated by JD = ADT
2e−W/kBT

where AD =
qk2B

4π2h̄3v2F
(W +EF + 2kBT ). As we expected, AD is considerably larger than

AG. However, it is still smaller than ARD. The underlying reason is that the density of

states of 3D semimetals g(ε) = ε2

π2h̄3v2F
is smaller than that of 3D conventional semicon-

ductors g(ε) = (2m)3/2

2π2h̄3

√
ε. Although AG and AD are smaller than ARD, the thermionic

emission in Dirac systems has one fundamental advantage in that the average energy
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carried by per freedom of electrons in Dirac systems is twice that of conventional semi-

conductors. We have noted that the exponential term e−W/kBT present in JG, JD and

JRD is due to the Maxwell-Boltzmann distribution function e(EF−ε)/kBT . Dirac semimet-

als exhibit excellent properties with respect to thermionic cooling. Due to an enhanced

group velocity along the emission direction, the thermionic current is enhanced com-

pared to graphene. Due to the higher energy carrying capability, the efficiency of

thermionic cooling is higher than that in graphene and conventional materials.
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Chapter 3

Thermionics in nodal-ring

semimetals

In this chapter, we theoretically investigate the thermionic emission from nodal-ring

semimetals. The thermionic emission is found to be anisotropic in the x and y direc-

tions. The anisotropic emission can be enhanced by increasing the radius of nodal-ring

ε0/(h̄vF ). Nodal-ring not only results in an anisotropic thermionic emission current

but also affects the value of thermionic emission current (TEC). The TEC of the lower

branch of energy-momentum dispersion increases with ε0, while the TEC of the upper

branch decreases with ε0. In the limit of ε0 = 0, a nodal-ring semimetal becomes to a

Dirac semimetal resulting in a Dirac TEC. Unlike in conventional materials, the TEC in

nodal-ring semimetals depends on the Fermi energy, similar to the situation in graphene

and Dirac semimetals. The underlying reason is that graphene, Dirac semimetals and

nodal-ring semimetals have a linear or linear-like energy-momentum dispersion while

conventional materials have a parabolic energy-momentum dispersion. The TEC of

nodal-ring semimetals slightly depends on ε0 and EF , while it heavily depends on the

work function and temperature. By Increasing the value of ε0, a positive effect on the

performance of thermionic refrigerators is observed.
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3.1 Introduction

Materials with a linear energy-momentum dispersion such as graphene [63–65], Dirac

semimetals and Weyl semimetals [66, 67] have received much attention in recent years

[68–73]. Dirac materials are a type of topological material, which are protected by time-

reversal and spatial inversion symmetries [74]. If one of the above symmetries is broken,

Dirac semimetals turn into Weyl semimetals [75]. Recently, a new type of 3D topo-

logical semimetal has been theoretically predicted [76, 77] and experimentally realized

in ZrSiSe [78]. This new type of topological material is called nodal-line semimetals,

which is also protected by the time-reversal and the inversion symmetries [79]. Addi-

tionally, it is protected by mirror reflection and nonsymmorphic symmetries [80,81]. Its

conduction and valence band cross each other at many points which form a continuous

ring (shown in Fig. 3.1) instead of a single point in Dirac semimetals. The radius of

the ring b is a key material parameter of nodal-ring semimetals. The value of b can be

measured by angle-resolved photoemission spectroscopy [82]. However, direct physical

property measurements associated with b are highly desired. Researchers have pro-

posed a magneto-optical way to determine b accurately [83]. By applying a magnetic

field along the ring axis, the axial magnet-optical response is found to have a giant

peak at the position of 2b, which is independent of the strength of the magnetic field

and can be used to determine the value of b. In the limit ε0 = 0, nodal-ring semimetals

turn to Dirac semimetals. In this sense, nodal-ring and Weyl semimetals are variations

of Dirac semimetals.

Magnetic susceptibility [84], Landau quantization [85], Lifshitz transitions [86] and

quantum anomalies [87] have been investigated in nodal-ring systems [88–90]. Thermionic

emission in such systems is still not studied. In this chapter, we are going to inves-

tigate thermionic emission in such systems and explore their potential applications

in thermionic devices. In the low-energy region, the density of states of nodal-ring

semimetals is usually larger than that of Dirac semimetals. Additionally, the low energy-

momentum dispersion in nodal-ring semimetals is anisotropic in the x- and y-directions.

These features would make the thermionic emission different from its previous coun-

terparts. We firstly develop the necessary formulas to describe the density of states
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Figure 3.1: Schematic diagram of the energy-momentum dispersion of nodal-ring semimetals, where

the green circle stands for the nodal ring.

and the TEC. Then thermionic emission is discussed in many situations. Finally, the

performance of thermionic refrigerator made of nodal-ring semimetals is investigated.

3.2 Formalism

The energy-momentum dispersion of nodal-ring semimetals is given by [91]

ε = sh̄vF

√
k2
x + (

√
k2
y + k2

z + s′b)2, (3.1)

where s = ± and s′ = ± are the band indexes. Using the equation, we plot the

energy-momentum dispersion of nodal-ring semimetals in Fig. 3.2, where kx = 0, k⊥ =√
k2
y + k2

z , ε0 = h̄vF b and the dashed horizontal line is the Fermi level. We label the

conduction bands as lower branch ε1 (s = +, s′ = −) and upper branch ε2 (s = +, s′ =

+), and valance band as ε3 (s = −, s′ = −) and ε4 (s = −, s′ = +), respectively. The

conduction band ε1 touches the valence band ε3 at points (kx = 0, and k⊥ = b) forming

a nodal-ring of radius b. The minimum value of ε2 is ε0, which means there is no

density of states for ε2 when ε2 < ε0. Here we only investigate the thermionic emission

in conduction bands ε1 and ε2 since conduction bands make the main contribution to

material properties. According to its definition, the density of states can be calculated

by

g(ε) = 2
1

(2π)3

∫ ∫ ∫
δ(ε− ε(kx, ky, kz))dkxdkydkz. (3.2)
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In the following discussion, we omit the indices in ε1 and ε2 for simplicity. For example,

we write the density of states of ε1 as g1(ε) instead of g1(ε1). After some algebra, the

density of states for ε1 and ε2 (Calculation details can be found in Appendix A.2) are

obtained by

g1(ε) =


bε

πh̄2v2F
ε < ε0,

bε
π2h̄2v2F

arcsin( ε0
ε

) + ε
π2h̄3v3F

√
ε2 − ε20 + bε

2πh̄2v2F
ε ≥ ε0,

(3.3)

g2(ε) =
bε

π2h̄2v2
F

arcsin(
ε0
ε

) +
ε

π2h̄3v3
F

√
ε2 − ε20 −

bε

2πh̄2v2
F

. (3.4)

When ε = ε0, g1(ε) = bε
π2h̄2v2F

× π
2

+ bε
2πh̄2v2F

= bε
πh̄2v2F

indicates that the density of states is

continuous. In the limit ε0 = 0, g1(ε) = ε2

π2h̄3v3F
agrees well with the density of states of

3D Dirac materials.
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Figure 3.2: Schematic diagram of the energy-momentum dispersion of nodal-ring semimetals plotted

by using Eq. 3.1, where kx = 0, k⊥ =
√
k2y + k2z and ε0 = h̄vF b.
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The energy-momentum dispersion is isotropic in the ky and kz directions, which

results in the same TEC and the same form of component energy in the y- and z-

directions. Therefore, only the TEC in the x- and y-directions needs to be calculated.

The TEC in the m direction (m = x or y) and n band (n = 1 or 2) is calculated by

Jm,n =

∫
qvm,n(ε)f(εkx,ky ,kz − EF )dkxdkydkz, (3.5)

where f(ε−EF ) = 1

1+e
ε−EF
kBT

is the Fermi-Dirac distribution function, q is the charge of

one electron, and vm,n is the velocity component in the m dirction for n band, which is

calculated by

vm,n =
1

h̄

∂εn
∂km

. (3.6)

The velocity vx1 and vx2 are calculated by

vx1 =
h̄vF
h̄

2kx

2
√
k2
x + (

√
k2
y + k2

z − b)2
=
h̄v2

Fkx
ε

, (3.7)

vy1 =
h̄v2

Fky
ε

(1− b√
k2
y + k2

z

). (3.8)

In the integral, the kx, ky and kz should make εm,n > W + EF , which guarantees that

we only count the electrons that have enough energy to cross the surface barrier in the

m direction. Here, εx,n and εy,n are given by

εx,n = h̄kxvx,n, (3.9)

εy,n = h̄(ky + (−)n b
2ky

√
k2
y + k2

z)vy,n. (3.10)

For band ε1, the energy components are given as

εx1 =
h̄2k2

xv
2
F

ε1
, (3.11)

εy1 = h̄(ky − b
2ky

√
k2
y + k2

z)vy. (3.12)

The sum of the component energy in the x-, y- and z-directions is the total energy i.e.,

εn = εx,n + εy,n + εz,n. In our calculations, the Fermi velocity vF is set to 106 m/s. For

EF , ε0 and W , their default value is set to 0, 30 meV and 300 meV, respectively.
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3.3 Thermionic emission

In the limit ε0 = 0, nodal-ring semimetals go to Dirac semimetals. By replacing the

Fermi-Dirac distribution function with the Maxwell-Boltzmann distribution function

that is rather reasonable for ε − EF > 3kBT , the thermionic emission current can be

analytically obtained by

J0
x1 =

qk2
B

4π2h̄3v2
F

(W + EF + 2kBT )T 2e−W/(kBT ). (3.13)

The analytical and numerical results are shown by the black dashed line and solid

circles in Fig. 3.3(a), respectively, which agree well with each other. When ε0 6= 0, the

TEC is numerically calculated. The results at three values of ε0 = 30 meV, 60 meV

and 90 meV are shown in Fig. 3.3(a), which indicates the TEC increases with ε0. A

large ε0 means a large nodal-ring, which results in a large density of states (shown in

Fig. 3.3(d)). This is the underlying reason for the increase of the TEC.

As can be seen from Eq. 3.13, the TEC depends on the Fermi energy (EF ). The

TEC dependence of EF only comes from the density of states since the velocity (shown

in Eq. 3.8) does not depend on EF . The majority of electronic properties of a material

are determined by the electrons near the Fermi level since they are more active and

energetic. This is also true for the TEC. The electrons near the Fermi level have a higher

average energy, which results in a larger chance to escape from the material. When EF

is increased by doping or an external voltage, there are more electrons near the Fermi

level because the density of states increases with energy (shown in Fig. 3.3(d)). The

temperature dependence of the TEC at three values of EF is shown in Fig. 3.3(b). At

a fixed temperature, the TEC increases with EF .

In a thermionic process, electrons are driven by thermal energy to overcome the

surface barrier. In this sense, the TEC would be heavily affected by the height of the

surface barrier, i.e. work function W . As can be seen from Eq. 3.13, J0
x1 is proportional

to (EF + W + 2kBT )e−W/(kBT ), which indicates J0
x1 would decrease significantly with

W . For ε0 6= 0, the decrease still exists, shown in Fig. 3.3(c). At T = 250 K, J0
x1 drops

almost five orders when W changes from 300 meV to 400 meV. When the temperature

is increased from 250 K to 350 K, the dropping tendency slows down slightly. Increas-

ing temperature means more electrons have sufficient energy to overcome the surface
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Figure 3.3: Thermionic emission of the lower branch. (a) Temperature dependence of Jx1 at four

values of ε0 from 0 to 90 meV. For the limit ε0 =0, Jx1 is obtained both analytically and numerically,

and the results agree with each other perfectly. (b) Temperature dependence of Jx1 at three values of

EF from 0 to 300 meV. (c) log10(Jx1) as a function of T at three values of W . (d) Density of states

against ε at four values of ε0.

barrier. For conventional materials with a parabolic energy dispersion, the TEC has

T 2e−W/(kBT ) dependence [22]. For single layer graphene with a parabolic energy disper-

sion perpendicular to the graphene layer and a linear energy dispersion in the layer,

the TEC has T 3e−W/(kBT ) dependence [34]. For Dirac semimetals with a linear en-

ergy dispersion, the TEC has a (EF +W +2kBT )e−W/(kBT ) dependence. For nodal-ring

semimetals, the TEC is supposed to show a similar temperature dependence with Dirac

semimetals. The TEC in the above systems increases rapidly with temperature since T

emerges in the exponent part (e−W/kBT ). To see this clearly, log10(Jx1) against log10(T )
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Figure 3.4: log10(Jx1) as a function of log10(T ) at three values of W from 2.0 eV to 3.0 eV.

is plotted in Fig. 3.4 at three values of W from 2.0 eV to 3.0 eV. When T increases

from 100 K to 10,000 K, the TEC is increased by almost 100 orders.

Above all, the TEC slightly increases with EF and ε0. In our work, the increment is

less than five times. However, the TEC decreases and increases dramatically with W

and T , respectively. The decrement and increment can be as high as 100 orders. In a

practical application, a minimum TEC, usually in the order of A/cm2, is required and

the working temperature is fixed in some range. For example, the working temperature

is around 250 K∼ 350 K when the thermionic effect is employed to make air-conditions

and refrigerators—this is why our discussion is mainly focussed on 250 K∼ 350 K. The

temperature is around 500 K∼ 1000 K when the thermionic effect is employed to harvest

thermal heat. In this sense, a proper work function should be chosen according to the

working temperature and the minimum TEC. In a thermionic refrigerator, the work

function usually needs to be less than 300 meV. This is the main barrier that hinders

the practical applications of thermionic devices.

The energy-momentum dispersion of nodal-ring systems is anisotropic in the x- and

y-directions and isotropic in the y- and z-directions, shown in Eq. 3.1. This results in

that the thermionic emission is different in the x and y directions and is the same in the
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Figure 3.5: Jy1/Jx1 as a function of T at four values of ε0 from 0 to 90 meV.

y- and z-directions. To see the anisotropic thermionic emission, Jy1/Jx1 as a function of

T is calculated and shown in Fig. 3.5. In the limit ε0 = 0, the value of Jy1/Jx1 is equal

to one over the entire temperature range. Indeed, this is expected since the thermionic

emission is isotropic in Dirac systems (ε0 = 0). For T = 250 K, Jy1/Jx1 increases with

ε0, and the maximum value reaches 1.68, indicating anisotropic thermionic emission.

The value of Jy1/Jx1 decreases with T , which indicates Jy and Jx having different

temperature dependence. Above all, thermionic emission in nodal-ring systems displays

a temperature dependent anisotropic response in the x- and y-directions.

Now we move to the thermionic emission of the upper branch ε2. The thermionic

emission current Jx2 as a function of T at four values of ε0 is plotted in Fig. 3.6(a). The

results are fundamentally different from the results of the lower branch. Jx2 decreases

with ε0, while Jx1 increases with ε0. This dependence can also be understood by the

decrease of the density of states. For the upper branch, the density of states is zero when

ε < ε0. In this sense, the density of states near the Fermi surface (EF = 0) decreases

with ε0, which leads to the number of thermal driven electrons decreasing with ε0. For

T = 350 K, Jx2 drops by more than eight times when ε0 changes from 0 to 90 meV.

Besides, the zero density of states results in a smaller Jx2 compared with Jx1. To

visualise this, Jx1 and Jx2 together with JxT = Jx1 + Jx2 as a function of T are plotted

in Fig. 3.6(d). The results show Jx1 is considerably larger than Jx2, which indicates

that the total TEC is mainly contributed by the lower branch of energy-momentum

dispersion. For example, Jx1 contributes about 75% to JxT when T = 350 K.
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Figure 3.6: Thermionic emission of the upper branch. (a) Temperature dependence of Jx2 at four

values of ε0 from 0 to 90 meV. (b) Temperature dependence of Jx2 at three values of EF . (c) Jx2/Jy2

against T at three values of ε0. (d) Jx1, Jx2 and JxT as a function of T .

The Fermi energy dependence of Jx2 is also investigated and shown in Fig. 3.6(b).

The results are similar to that of the lower branch, i.e., Jx2 increases with EF . When

EF is increased, the density of states near the Fermi surface is increased. This would

increase Jx2. For the upper branch, the anisotropic thermionic emission is still expected

due to the anisotropy of the energy-momentum dispersion. The temperature depen-

dence of Jy2/Jx2 at four values of ε0 is plotted in Fig. 3.6(c). In the limit of ε0 = 0,

Jy2/Jx1 is equal to one which is rather reasonable since thermionic emission in Dirac sys-

tems is isotropic. When ε0 is increased, Jy2/Jx2 is larger than one showing an anisotropic

thermionic emission in the x- and y-directions. Additionally, the anisotropic emission

increases with ε0. Unlike in the lower branch, the anisotropy shows little temperature
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dependence in the temperature range 250 K∼ 350 K.

3.4 Thermionic devices
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Figure 3.7: Impact of ε0 on the performance of the thermionic refrigerator. (a) energy flow Q and (b)

efficiency η as a function of external voltage at four values of ε0 from 0 to 90 meV, where EF = 0 and

W = 200 meV.

In this section, we investigate the effect of ε0 on the net energy flow Q and the ideal

efficiency η of a thermionic refrigerator, which is made of nodal-ring semimetals. In the

calculation, other energy losses such as radiation and heat conduction are ignored, and

the space charge effect is not taken into consideration. Based on the above assumptions,
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the net energy flow and the ideal efficiency can be calculated by [92]

Q = [(W + 4kBTc)Ic − (W + 4kBTh)Ih]/q, (3.14)

η

ηc
= −Q

P
× Th − Tc

Tc
, (3.15)

where Ic = JxT (Tc), Ih = JxT (Th)e
qV/kBTh , V is the external voltage, Tc and Th are the

temperatures of cold side and hot side respectively. ηc = Tc
Th−Tc

is the Carnot efficiency,

and P = IV = (Ic − Ih)V is the external power.

Energy flow and efficiency as a function of external voltage at four values of ε0 from

0 to 90 meV are plotted in Fig. 3.7(a) and Fig. 3.7(b), respectively. Here the work

function is chosen to be 200 meV in order to produce enough large net energy flow in the

order of W/cm2. The Fermi energy is set to 0 to keep the thermionic emission near the

nodal-ring. The cold side and hot side temperatures are 250 K and 300 K, respectively,

which is the work temperature range of the most refrigerators. The results show that

nodal-ring size ε0 can significantly affect the net energy flow. At V = 200 mV, the

value of Q is tripled when ε0 changes from 0 to 90 meV. Although ε0 only has a limited

effect on the ideal efficiency, a small enhancement of η is observed when ε0 is increased.

3.5 Conclusion

We have investigated the thermionic emission in nodal-ring systems and its potential

applications in thermionic refrigerators. The thermionic emission shows anisotropy in

the x- and y-directions in both the lower and upper branches of the energy-momentum

dispersion. The anisotropic emission can be enhanced by increasing ε0. TEC increases

with ε0 in the lower branches, while it decreases with ε0 in the upper branch. However,

TEC increases with EF for both of the situations. Although the value of TEC can be

tuned by EF and ε0, the change is limited, usually less than one order of magnitude. T

and W can significantly change the value of TEC, which can be as high as 100 orders of

magnitude. If material parameters such as W , EF and vF have the same values, TEC

of nodal-ring systems is larger than that in Dirac systems due to the larger density of

states. In thermionic refrigerators made of nodal-ring semimetals, increasing the value

of ε0 has a positive effect on both Q and η. Our results are helpful to understand the

thermionic emission in nodal-ring systems.
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Chapter 4

Thermionical enhacned heat

transfer in Dirac semimetal based

devices

* We calculate the heat transfer from electronic devices without and with thermionic

cooling. Without thermionic cooling, the internal temperature of the devices is at best

equal to and usually higher than the temperature of the surrounding environment.

However, when thermionic cooling is employed to transport heat, the internal temper-

ature can be considerably lower than the environmental temperature. Below a critical

environmental temperature (Tc1), the internal heat can be well transferred to the sur-

rounding environment by thermal radiation and thermal conductivity alone; i.e. the

device can operate well without thermionic cooling. When the environmental temper-

ature is higher than Tc1, thermionic cooling can be used to accelerate the heat transfer

processes to keep low internal temperature. When the environmental temperature is

higher than a second critical environmental temperature, Tc2, the device cannot operate

well even with thermionic cooling. Tc1 increases with the thermal resistance K, while

Tc2 decreases with K. In the proposed thermionic cooling process, the energy efficiency

can be as high as 75% of the Carnot efficiency.

* This chapter is based on S Huang, R Lewis and C Zhang., Thermionic enhanced heat transfer in electronic devices

based on 3D Dirac materials., Journal of Applied Physics, 126(2019) 165105.
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CHAPTER 4. THERMIONICAL ENHACNED HEAT TRANSFER IN DIRAC SEMIMETAL
BASED DEVICES

4.1 Introduction

The heat power density of electronic devices increases rapidly with their miniaturization

and integration, which are the main developments of future devices. The high density

of heat power demands more powerful methods to transport heat. Otherwise, a high

internal temperature will result. For electronic devices, a high internal temperature

reduces not only their efficiency but also their lifetime [93]. There are several cool-

ing schemes to overcome these problems, such as high-flux heat pipes, air-cooled heat

sinks, direct liquid immersion and thermionic cooling [94, 95]. Thermionic cooling is

based on thermionic emission that was discovered by Richardson in 1901. Thermionic

emission refers to the process where electrons are driven by thermal energy across a

surface barrier, which is a hot research topic [96–100]. For conventional materials with

a parabolic energy-momentum dispersion, the thermionic emission density is described

by the Richardson-Dushman (RD) law:

JR(T ) =
qmk2

B

2π2h̄3T
2e−qφβ, (4.1)

where q is the electron charge, m is the electron mass, kB is the Boltzmann constant, h̄ is

the reduced Plank’s constant, φ is the surface potential and β = 1/(kBT ), where T is the

thermodynamic temperature. Graphene, a single layer 2D material, has been reported

to have many remarkable properties, such as ultra-high mobility, excellent conductivity

and a linear energy-momentum dispersion [11,18, 101]. Its thermionic emission cannot

be described by the RD law, due to the linear energy-momentum dispersion. A modified

law has been developed to describe thermionic emission in graphene by assuming that

it has a linear energy-momentum dispersion within the plane and a parabolic dispersion

perpendicular to the plane. In this case [29, 34,38],

JG(T ) =
qk3

BT

2π2h̄3v2
F

T 2e−qφβ, (4.2)

where vF is the Fermi velocity. The thermionic emission current density is lower than

in its counterpart in 3D conventional materials since the density of states is lower

than that of 3D materials. The low thermionic emission current of graphene can be

increased in 3D Dirac materials. As in graphene, the low-energy fermionic excitations in

Dirac materials behave as massless Dirac particles [20]. Additionally, their low energy-
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momentum is linear along all three momentum directions. A 3D Dirac semimetal phase

has been experimentally observed in Cd3As2 by means of angle-resolved photoemission

spectroscopy [102]. The material has attracted considerable attention [68, 103–105]

and has been found to have many astounding properties such as the extraordinarily

high mobility of electrons (10,000 cm2/V s at room temperature) [106], tunable mid-

infrared optical switching [69], low thermal conductivity [42] and high efficiency and

non-Richardson thermionics [92]. Therefore, it is regarded as a building block of future

devices. Starting with the 3D linear energy-momentum dispersion, the thermionic

emission of 3D Dirac materials is determined to be [92]

J(T ) =
qk2

B

4π2h̄3v2
F

(qφ+ EF + 2kBT )T 2e−qφβ, (4.3)

where EF is the Fermi energy.

Based on thermionic emission processes, two kinds of devices, namely thermionic

generators and thermionic coolers, have been proposed [31, 95, 107]. Thermionic gen-

erators show promising applications in harvesting thermal energy [33, 108]. Besides,

they have been used to convert solar energy to electricity [109]. The investigation of

thermionic cooling can be dated back to 1994 when G. D. Mahan described thermionic

refrigeration [25]. The thermionic cooler is made of two parallel planes and a thermal

barrier. Theoretically, the cooler can work as a room temperature refrigerator if the

work function of its anode is about 0.3 eV. A few years later, Mahan extended the work

to multilayer thermionic refrigeration [22]. Since then, thermionic cooling has attracted

a great deal of attention and has been studied extensively [23,24,110]. Recently, much

experimental work has been carried out [27, 111, 112], and a large thermionic cooling

has been observed. This work paves the way for practical applications of thermionic

refrigeration.

In this chapter, we demonstrate that thermionic emission in 3D Dirac materials can

be used to cool electronic devices effectively. Additionally, the energy (power) consumed

by the process is low, and the cooling efficiency is high.
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Figure 4.1: A schematic diagram of the electric devices (a) without thermionic cooling (b) with

thermionic cooling. The red part of the center plane is the heart of the device, which is coated

by a layer of insular materials indicated by yellow. The green outer layer of the center plane is the

cathode giving out thermionic emission, and its temperature (T ) is the internal temperature. The left

and right green planes are the boundaries of the device, which have constant temperature TE , named

as environmental temperature. The green part of the planes is made of Dirac semimetal. The center

green plane is grounded, and the green boundary planes are positively biased. (a) and (b) have the

same structure except for the external voltage.

4.2 Model

A schematic diagram of electric devices without and with thermionic cooling is shown

in Fig. 4.1(a) and (b), respectively. The red part of the center plane is the heart of
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the electronic device that realizes all electronic functions, which is coated by a layer of

insular materials indicated by yellow. The green outer layer of the center plane is the

cathode giving out thermionic emission, and its temperature is the internal temperature.

The left and right green planes are the boundaries of the device and provide mechanical

protection. Between the center plane and the boundary planes, there is a thermal

barrier. This can be a vacuum gap or a barrier material. The center plane will produce

heat at a constant power Pin while the device runs. For devices without thermionic

cooling, the heat is transferred to the boundary planes by thermal radiation and thermal

conduction. For devices with thermionic cooling, the heat is also transferred to the

boundary planes by thermionic cooling. In our model, the temperature of the center

plane (the internal temperature, T ) is assumed to be uniform, and the temperature of

boundary planes (the environmental temperature, TE) is assumed to be both uniform

and constant. According to the Stefan-Boltzmann law, the thermal radiation heat is

approximately given by 2Aεσ(T 4 − T 4
E), where σ = 5.67 × 10−8 Js−1m−2K−4 is the

Stefan-Boltzmann constant, ε is the emissivity and 2A (here 2 for the left and right

sides) is the surface area of the centre plane. The thermal conduction heat is given by

2AK(T −TE), where K is the thermal coefficient. The thermionic cooling is realized by

carefully choosing materials and applying an external voltage (V ) between the centre

plane and the boundary planes. We assume both centre and boundary planes are made

up of the 3D Dirac material Cd3As2. In our devices, the thermionic cooling can be

turned on and off by controlling the external voltage, while the thermal radiation and

thermal conduction will always be present. In our calculations, the following parameters

are used, K0 = 2× 103 W/cm2K, V = 55 mV and qφ = 250 meV.

4.3 Results and discussion

At the outset, we discuss the heat transfer in devices without thermionic cooling. The

heat is transferred by two kinds of mechanism, i.e. thermal radiation and thermal con-

duction. The entire heat transfer processes can be described by the following equation

∆Q = mCv∆T = APindt− 2Aεσ(T 4 − T 4
E)dt− 2AK(T − TE)dt, (4.4)
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where ∆Q is the heat change of the centre plane in a small period of time dt, m = ρAd

is the mass of the centre plane, ρ = 3.03×103 kg/cm3 is the volumetric mass density of

Cd3As2, d = 1 mm is the thickness of the centre plane, ∆T is the change of the internal

temperature, K is the thermal resistance and Cv is the specific heat capacity of Cd3As2.

Since this value is not available, we assume it can be approximately calculated by

Cv =
3mCdC

Cd
v + 2mAsC

As
v

3mCd + 2mAs

, (4.5)

where CCd
v = 230 J/kg K and CAs

v = 330 J/kg K are the specific heat capacity at room

temperature of cadmium (Cd) and arsenic (As), respectively, and mCd and mAs are the

standard atomic weights of Cd and As. The calculated Cv is 260 J/kg K and we assume

it is constant in our calculation. After some algebra, Eq. 4.4 can be rewritten as

∆T =
2

ρdCv
[
Pin

2
− εσ(T 4 − T 4

E)−K(T − TE)]dt, (4.6)

where Pin = 1 W/cm2 and ε = 0.5. There are only two unknown parameters i.e. ∆T and

dt. In this sense, the time dependence of the internal temperature can be calculated.

Time dependence of the internal temperature at three different values of K are

shown in Fig. 4.2(a) and (b) for TE = 25 ◦C and 60 ◦C, respectively. In the present

work, 40 ◦C is assumed to be the highest internal running temperature of the devices.

For K = 0.2K0 and TE = 25 ◦C, the device cannot operate at all since the internal

temperature will reach 40 ◦C in just one second and then reach a maximum temper-

ature of 50 ◦C. When TE = 25 ◦C, the maximum internal temperatures for K = K0

and K = 5K0 are about 30 ◦C and 26 ◦C, respectively, which indicates the devices run

well at an environmental temperature of TE = 25 ◦C. When TE = 60 ◦C, the internal

temperatures for all three K-values shown are greater than 40 ◦C, to be more precise,

greater than 60 ◦C. From the results, three conclusions can be drawn. Firstly, a large K

is highly desirable in devices without thermionic cooling since it means better thermal

conduction that can quickly transport heat into surroundings. Secondly, the internal

temperature may reach the maximum temperature in just a few seconds. Lastly, no

matter how large K is, the internal temperature is higher than or equal to the environ-

mental temperature. Before the device is turned on, the internal temperature equals

the environmental temperature. When the device is turned on, the internal tempera-

ture will gradually become higher than the environmental temperature. This feature

48



CHAPTER 4. THERMIONICAL ENHACNED HEAT TRANSFER IN DIRAC SEMIMETAL
BASED DEVICES

0 1 2 3 4 5

t (s)

5

10

15

20

25

T
 (
°
C

)

T
E

 = 25 °C

(c)

0 1 2 3 4 5
25

30

35

40

45

50

T
 (
°
C

)

(a)

T
E

 = 25 °C

K = 0.2K
0

K = K
0

K = 5K
0

0 1 2 3 4 5
60

65

70

75

80

85

(b)

T
E

 = 60 °C

0 1 2 3 4 5

t (s)

20

30

40

50

60

T
E

 = 60 °C

(d)

Figure 4.2: Time dependence of the internal temperature at three different values of K where the (a),

(b) and (c), (d) are for the devices without and with thermionic cooling, respectively. In (a) and (b),

the only difference is the environmental temperature; TE = 25 ◦C for (a) and TE = 60 ◦C for (b).

considerably hinders the applications of the devices. For example, if the environmental

temperature is higher than 40 ◦C, then the internal temperature will always be higher

than the highest working temperature.

To further study heat transfer in devices without thermionic cooling, the environ-

mental temperature dependence of the maximum internal temperature is investigated.

As it can be seen from Fig. 4.2, the internal temperature reaches the maximum tem-

perature in just a few seconds. Therefore the maximum temperature can be obtained

by measuring the internal temperature after the device has been operating for five sec-

onds. The results are shown in Fig. 4.3. The maximum internal temperature shows a

linear dependence on the environmental temperature and the slope is almost the same

for three values of K. This is because the thermal conduction makes an overwhelm-
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Figure 4.3: The environmental temperature dependence of the maximum internal temperature in

devices without thermionic cooling.

ing contribution to the heat transfer. If we take away the contribution of the thermal

radiation to the heat transfer, Eq. 4.6 can be analytically solved as

T = TE +
Pin
2K
− Pin

2K
e

−2Kt
ρdCv . (4.7)

When t goes to positive infinity, T has the maximum value, i.e. Tmax = TE + Pin/2K.

The result indicates why the maximum internal temperature has a linear dependence

on the environmental temperature, and the slope is independent of K. When TE = 0,

Tmax = Pin/2K also agrees with the result in Fig. 4.3. As we have mentioned, the

maximum internal temperature should be lower than 40 ◦C to keep the device running

well, resulting in a maximum environmental temperature Tc1. For K = 0.2K0, K0 and

5K0, the values of Tc1 are 15 ◦C, 35 ◦C and 39 ◦C, respectively. The results indicate a

larger K has a larger Tc1. This agrees well with intuitive physics since larger thermal

conduction can transport internal heat into the environment more quickly than a smaller

one. However, the value of K is limited by material properties and device structures.

Now, we are going to demonstrate that the maximum environmental temperature
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Figure 4.4: The environmental temperature dependence of the maximum internal temperature in

devices with thermionic cooling.

that the device can operate well may be increased by employing thermionic cooling to

transport heat. Unlike thermal radiation and thermal conduction, thermionic cooling

can transport net heat from a cold object to a hot object [92]. This means the internal

temperature can lower than the environmental temperature. When thermionic cooling

is introduced, Eq. 4.6 can be rewritten as

∆T =
2

ρdCv
[
Pin

2
− εσ(T 4 − T 4

E)−K(T − TE)− JQ]dt, (4.8)

where JQ is the heat flow contributed by thermionic cooling, given by

JQ = [(qφ+ 4kBT )J(T )− (qφ+ 4kBTE)J(TE)eqV β]/q. (4.9)

The time dependence of the internal temperature at three values of K at TE = 60 ◦C

is shown in Fig. 4.2. When TE = 25 ◦C, the internal temperature for three values

of K is well below 40 ◦C. When TE = 60 ◦C, the maximum internal temperature is

about 24 ◦C and 36 ◦C for K = 0.2K0 and K = K0, respectively, indicating that the

thermionic enhanced devices can run well at TE = 60 ◦C. For K = 5K0, the max-

imum internal temperature is lower than the environmental temperature and higher

51



CHAPTER 4. THERMIONICAL ENHACNED HEAT TRANSFER IN DIRAC SEMIMETAL
BASED DEVICES

than the highest running temperature. In devices without thermionic cooling, a larger

K results in a lower internal temperature. However, in thermionic enhanced devices,

a larger K results in a higher internal temperature. The fundamental reason is that

the internal temperature is lower than the environmental temperature in thermionic

enhanced devices. In such devices, a larger K accelerates the heat conduction from

surroundings to the interior of the devices, leading to a higher internal temperature.

Therefore, in thermionic enhanced devices, a smaller K is wanted instead of a larger

one. Additionally, the internal temperature reaches the maximum temperature in just

one second. In thermionic enhanced devices, there is also a maximum environmental

temperature (Tc2). Obviously, Tc2 is always higher than Tc1. Similarly, Tc2 can be

obtained by investigating the environmental temperature dependence of the maximum

internal temperature, which is shown in Fig. 4.4. Here the maximum internal temper-

ature is not linearly dependent on environmental temperature, which means that the

thermionic cooling makes a comparable contribution to the heat transfer with thermal

conduction. For K = 0.2K0, K0 and 5K0, the values of Tc2 are 85 ◦C, 68 ◦C and 48 ◦C,

respectively. In real devices, the internal temperature of a device should be reduced to

40 ◦C by thermionic cooling before the device is turned on. In this sense, the device

can run below 40 ◦C at the entire time.

In thermionic enhanced devices, an external voltage is needed to drive the thermionic

cooling, which consumes energy. The consumed power density P can be calculated by

P = JnetV, (4.10)

where the Jnet = 2[J(T )− J(TE)eqV β] is the net current density. The time dependence

of P is shown in Fig. 4.5(a), where TE = 60 ◦C. The curves share a rather similar

trend with those in Fig. 4.2. The reason is that P depends only on T when V and TE

are fixed. Therefore, P and T share a similar time dependence. Combining Fig. 4.2

and Fig. 4.5, we find the device with the smallest K has the best performance in

the thermionic cooling process, demonstrating the lowest internal temperature and the

smallest consumed power. The underlying reason is found in Eq. 4.10, where a smaller

T leads to a smaller P .

In order to characterize the cooling energy efficiency of the thermionic enhanced
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Figure 4.5: Time dependence of the consumed power in the thermionic cooling process (dashed line

with left y-axis as indicated by the magenta dashed arrow) and the cooling energy efficiency (solid line

with right y-axis as indicated by the solid magenta arrow), where TE = 60 ◦C.

devices, a relative efficiency is defined as

η =
JQ
P
× TE − T

T
, (4.11)

where T/(TE− T ) is the Carnot efficiency. According to the equation, the time depen-

dence of η is plotted in Fig. 4.5(b). The results show that η decreases with K, which

indicates again that the thermionic enhanced device with the smallest K has the best

performance in thermionic cooling. The energy efficiency is rather high, up to 75% of
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Table 4.1: The critical environmental temperatures Tc1 and Tc2 for three values of K.

K 0.2K0 K0 5K0

Tc1(◦C) 15 35 39

Tc2(◦C) 85 68 48

the Carnot efficiency. However, we should point out that the device with the smallest

K has a rather low Tc1 and this limits the applications of the device.

4.4 Conclusion

Without thermionic cooling, the maximum environmental temperature that a device

can operate well is lower than the maximum running temperature. However, with

the contribution of thermionic cooling, the maximum environmental temperature can

be significantly higher than the maximum running temperature. Table 1 gives the

values of Tc1 and Tc2 at three different values of K. For K = 5K0, the device has a

high Tc1 and a low Tc2, indicating that thermionic cooling has a little effect. Indeed,

the energy consumed by the process is high and the energy efficiency is low in such

a device, as it can be seen in Fig. 4.5. That is to say, if a device has an excellent

thermal conductivity performance, there is no need to employ thermionic cooling to

accelerate the heat transfer. For K = K0, the device has a relatively high Tc1 and Tc2.

This means that the device can normally operate without thermionic cooling and has

great potential to work at higher environmental temperatures by employing thermionic

cooling. For K = 0.2K0, the device has a very small Tc1 but a very large Tc2. This means

thermionic cooling is needed even when the environmental temperature is considerably

below the maximum running temperature. However, the device can operate at very

high environmental temperatures when thermionic cooling is included. Additionally,

the energy consumed by thermionic cooling is low, and the energy efficiency reaches

about 75% of the Carnot efficiency. In this sense, if a device is designed to work at very

high environmental temperatures, then a small K should be chosen. Theoretically, the

device can run at even higher TE, as long as we decrease the work function of the centre

plane [92].
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In summary, we have shown that the thermionic effect can be employed to enhance

heat transfer in electronic devices. With thermionic cooling, the internal temperature

of the devices may be considerably lower than the surrounding environmental tempera-

ture. In this sense, the operating temperature range of the devices may be significantly

extended. The energy consumed by thermionic cooling and its energy efficiency are

consonant with an excellent heat transfer performance. These findings promise to be

useful in developing future electronic devices.
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Chapter 5

Hot carrier relaxation in gapped

Dirac semimetals

* In this chapter, we calculate the relaxation rate of hot carriers in a Cd3As2 semi-

metal with a finite gap. The quantization of the transverse momentum gives rise to

a minimum gap at the Dirac point. Additional chemical doping further increases the

gap. A finite gap relaxes the selection rule and gives rise to a nonvanishing internode

coupling via phonon scattering. The gap also enhances the intra-node scattering. By

using the Boltzmann transport equation, we find that the relaxation rate increases with

the square of the gap and the electron temperature.

5.1 Introduction

Dirac semimetal Cd3As2 has attracted enormous attention due to its exotic electronic

properties such as robust and universal optical absorbance, high electronic mobility

(∼ 106 m/s) as well as a tunable carrier density through modification of the gate

voltage. Recently, experimental work [69] shown a gap could be opened through the Cr

element doping scheme. It was demonstrated that the bulk Dirac properties of Cd3As2

make it a promising material in optoelectronics, for example, optical switching.

In this chapter, we present a qualitative and quantitative analysis of hot carrier

* This chapter is based on S Huang, M Sanderson, J Tian, et al., Hot carrier relaxation in three dimensional gapped

Dirac semi-metals, Journal of Physics D: Applied Physics, 51 (2017) 015101.
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relaxation in a gapped Cd3As2 film. By considering the electron-phonon interaction in

the Boltzmann transport equation, we calculated the energy loss of hot carriers. The

hot carriers are excited by mid-infrared photons to the conduction band. We shall

show that the fast relaxation of these hot carriers is strongly dependent on the size

of the bandgap. For gapless Dirac semi-metals, the two nodes with opposite chirality

are orthogonal and cannot be mixed by electron-phonon scattering. Opening a gap,

however, introduces a finite inter-node overlap due to electron-phonon interaction. The

inter-node transition contributes a term in the relaxation rate, which is proportional

to the square of the gap. On the other hand, when the carrier concentration is fixed,

increasing the gap will result in a higher Fermi level. This also leads to the relaxation

rate increasing with the bandgap.

5.2 Electronic states and cooling of hot carriers

For gapped Cd3As2 thin films, the Hamiltonian is given by [113–115]

H =


Mzkz Ak− ∆ 0

Ak+ −Mzkz 0 ∆

∆ 0 −Mzkz −Ak−
0 ∆ −Ak+ Mzkz

 . (5.1)

Here k± = kx± iky = kxye
±iθ, θ is the angle between kx and ky. Due to quantization in

the z direction, kz is given by nπ/L where n denotes the nth subband in the z direction

and L is the thickness of the film. In our calculations, the following parameters are

used, Mz = 2
√
M0M1, M0 = 10 meV, M1 = 9600 meV·nm2, A = 275 meV·nm and

L = 400 nm. By diagonalizing the Hamiltonian, the energy-momentum dispersion is

obtained by

ε± = ±
√
ε2nz + ε2xy + ∆2, (5.2)

where εnz = Mzkz, εxy = Akxy and ∆ is the band gap parameter. Correspond-

ing eigenstates are obtained by Ψs=+
a=± = (ε± + Mzkz, Ak+,∆, 0)T/

√
R± and Ψs=−

a=± =

(0,∆,−Ak−, ε± + Mzkz)
T/
√
R±, where we use a = ± to denote the valence and con-

duction band, and s = ± to denote spin up and down. R± are normalization constants

of wave functions which are given by R± = A2k2
xy + ∆2 + (ε± + Mzkz)

2. The band
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structure of the Cd3As2 film is plotted in Fig. 5.1 by using Eq. 5.2, where the dashed

horizontal line is the Fermi level (chemical potential µ). The blue and red curves are

the 0th and 35th subbands in the z direction. A gap is opened at the Dirac point where

kxy = 0.
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Figure 5.1: A band structure of the gapped Cd3As2 film along with hot electron relaxation process.

Under laser pumping, ground state electrons are pumped to excited states, shown by the magenta

arrow. Then, the excited electrons relax back to ground states, shown by the green arrow.

The pumping process and hot carriers relaxation process are presented schematically

in Fig. 5.1. Under photon excitation, massive ground state electrons are pumped to ex-

cited states, shown by the vertical magenta arrow. The excited electrons establish a

Fermi Dirac distribution via electron-electron coupling in a short time (of the order of

0.1 ps). At this stage, the electron temperature is far higher than the lattice tempera-

ture. Thus the excited electrons are named as hot electrons (hot carriers). According

to the second law of thermodynamics, the hot electrons relax back to ground states and

transfer energy to lattice via electron-phonon coupling, shown by the green arrow. Hot

carrier relaxation is characterized by power loss P , which is defined as [70,116]

P =
∂E

∂t
=
∂
∑

k,a εk,af
a
k

∂t
=

16∑
1

Pi, (5.3)

where εk,a is the energy of an electron at a band with wave vector k and fak is the Fermi
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Dirac distribution. Hot carrier relaxation can be divided into sixteen types (Pi), listed

in table. 5.1 according to its band, nodes, phonon and translation.

Table 5.1: Types of power loss, where intraband refers to hot electrons jumping from conduction

band to conduction band, interband refers to hot electrons jumping from conduction band to valence

band, intra-node refers to the jumping between nodes with the same spin, internode refers to the

jumping between nodes with opposite spin. In the present work, we only evaluate intraband hot

carrier relaxation marked with
√

.

No. band node phonon translation evaluation

1 intraband intra-node acoustic spontaneous
√

2 intraband intra-node optical spontaneous
√

3 interband intra-node acoustic spontaneous ×

4 interband intra-node optical spontaneous ×

5 interband inter-node optical spontaneous ×

6 interband inter-node acoustic spontaneous ×

7 intraband inter-node optical spontaneous
√

8 intraband inter-node acoustic spontaneous
√

9 intraband intra-node acoustic induced
√

10 intraband intra-node optical induced
√

11 interband intra-node acoustic induced ×

12 interband intra-node optical induced ×

13 interband inter-node optical induced ×

14 interband inter-node acoustic induced ×

15 intraband inter-node optical induced
√

16 intraband inter-node acoustic induced
√

In gapless systems, there is no inter-node hot carrier relaxation due to the selection

rules. In our system, a finite bandgap relaxes the selection rule and gives rise to a nonva-

nishing internode coupling via phonon scattering. Therefore, inter-node contributions

should be taken into consideration.

To simplify the calculation, we firstly evaluate the induced transitions Pind, and

then the spontaneous transitions Pspon can be evaluated in the same way. Eight types

of induced power loss are schematically shown in Fig. 5.2. Due to phonon velocity
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significantly less than Fermi velocity, interband transitions (P3, P4, P5, P6, ) can be

neglected, i.e. only intraband transitions need to be evaluated [116]. In the following

parts, we will use inter and intra to denote inter-node and intra-node, respectively.

Usually, the energy of optical phonons is higher than that of acoustic phonon, which

results in a critical temperature Tc. When the electronic temperature is around and

above Tc, optical modes dominate the energy transfer. Otherwise, acoustic modes will

play a dominant role. Here we mainly investigate the power loss contributed by acoustic

modes.

s=+, a=+

s=-, a=+ s=-, a=-

s=+, a=-

2 1

4 5

7

8

3 6

Figure 5.2: A schematic band structure for Cd3As2 where eight types of induced power loss are

presented. In energy-momentum space, the spin up (a = +) and spin down (a = −) bands are

degenerate.

The term Pi is given by [70]

Pi(µ, Te, TL) = −2π
∑
q,p

∫ ∞
0

dε(ε− εp)NL(ωq)(f(ε)− f(εp))

× δ(ε− εp − ωq)δ(ε− εp+q)wiq.
(5.4)

Here ε and εp are the energy of the final state and initial state; (ε − εp) is the energy

difference for a carrier relaxation; NL(wq) and f(ε) are the Bose-Einstein distribution

for phonons and the Fermi-Dirac distribution for electrons, which measure the number

of phonons and electrons in a particular state; δ(ε− εp − ωq) and δ(ε− εp+q) are the

energy and momentum conservation, respectively; Te and TL are the temperatures of
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the electrons and lattice, p and q are the wave vectors of electrons and phonons, ωq =

h̄csq is the energy dispersion relation for the phonons and wiq is the transition rate for

the final and initial states which is given by

wiq =
h̄2D2q2F i(k, p)

2ρSwq
, (5.5)

where D = 20 meV is the deformation potential constant, ρ is the mass density of ions,

and S is the area of the sample. F i(k, p) is the coupling term, which can be calculated

by [72]

F (p, k) = | < φp|e−iqr|φk > |2, (5.6)

where p, k, q are the wave vectors of initial, final electrons and phonons, shown in

Fig. 5.3; φp and φk are the wave functions of the initial and final states. We firstly use

graphene wave function to show how to calculate the coupling term. The wave function

of graphene is given by

φk =
1√
2

 1

eiθ

 eikr. (5.7)

Plugging this into Eq. 5.6 gives

F (p, k) =
1

4
|e−ikr(1, e−iθk)eiqreipr

 1

eiθp

 |2
= (1 + eiθp−iθk)(1 + e−iθp+iθk)

=
1 + cos(θp − θk)

2
=

1 + cos(θ)

2
,

(5.8)

where θ is the angle between p and k. It is also possible to write the coupling term in

p and q,

F (p, q) = F (p, k) =
1 + cos(θ)

2

=
1

2
(1 +

k + qcos(φ)

|k + q|
),

(5.9)

where tan(θk) = ky/kx, tan(θp) = py/px and φ is the angle between p and q, cos(θ) =

p+qcos(φ)
|p+q| .

Similarly, the coupling terms in Cd3As2 film are obtained by

Fintra(k, p) =
x2 + A2(k2 + p2 − q2)x+ A4k2p2

4(ε2p + aεpεnz)(ε2k + aεkεmz)
, (5.10)
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f
q fqcos(  )
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Figure 5.3: A schematic diagram of wave vectors, where φ is the angle between q and p, θ is the angle

between k and p.

Finter(k, p) =
∆2v2

F q
2

(2ε2p + 2aεpεnz)(ε2k + aεkεmz)
, (5.11)

x = (aεk + εnz)(aεk + εmz) + ∆2. (5.12)

Here we have used an approximation |p| ≈ |k| to simplify the calculation since the

sound velocity is significantly less than the Fermi velocity. Fintra(k, p) is the coupling

term for intra-node power loss P1, P2, P3, P4, P9, P10, P11 and P12; Finter(k, p) is the

coupling for the rest of power loss. It is clear that Finter has a finite value when ∆ 6= 0

indicating the selection rule is released in the gapped Cd3As2 film.

After some algorithms, the intra and inter power loss due to the electron-acoustic

phonon scattering are obtained by

Pintra = −SD
2(kBTe − kBTL)

4ρπv6
F h̄

5

∑
n,m

∫ +∞

√
ε2nz+∆2

εxy

× (
∂f [βe(ε− µ)]

∂ε
+
∂f [βe(ε+ µ)]

∂ε
)

∫ 2εxy

0

y2

× x2 + A2(k2 + p2 − q2)x+ A4k2p2

4(ε2p + aεpεnz)(ε2k + aεkεmz)
dydε,

(5.13)
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Pinter = −SD
2(kBTe − kBTL)

4ρπv6
F h̄

5

∑
n,m

∫ +∞

√
ε2nz+∆2

εxy

× (
∂f [βe(ε− µ)]

∂ε
+
∂f [βe(ε+ µ)]

∂ε
)

∫ 2εxy

0

y2

× ∆2v2
F q

2

(2ε2p + 2aεpεnz)(ε2k + aεkεmz)
dydε,

(5.14)

where KBTL and KBTe are the induced and spontaneous terms, respectively. When

TL = Te, there is no hot carrier relaxation that agrees with our physical intuition.

Further, y = vF q, βe = 1/(kBTe), m and n are the indexes of the subband in the

z-direction, which present in x. In our calculation, Cd3As2 film is treated as a 2D

material. We calculate the power loss for each subband in the z-direction and then sum

them up to get the total power loss.

In the following section, we will discuss the power loss in different values of carrier

density n0. For each of n0, there is a corresponding chemical potential µ. Now, we

show how to use n0 to determine µ. In the limit of T = 0, all states below and above

the Fermi level (µ) are full and empty, respectively. Supposing the number of carriers

in the ith subband is Sni, then its Fermi radius can be determined as

2×
πk2

F,i

(2π
L

)2
=
Sk2

F,i

2π
= Sni, (5.15)

which generates

ni =
k2
F

2π
. (5.16)

The chemical potential is the same for all the occupied subbands and it is obtained by

µ =
√

∆2 + ε2xy + ε2iz =
√

∆2 + A2k2
F,i + i2ε2z. (5.17)

From which, the Fermi radius is obtained for each subband

k2
F,i =

(µ2 −∆2 − i2ε2z)
A2

. (5.18)

The total carrier density is the sum of carrier densities in all occupied subbands, which

results in

n0 =
K∑
0

ni =
K∑
0

k2
F

2π
=

K∑
0

µ2 −∆2 − i2ε2z
2πA2

=
1

2πA2
[(K + 1)(µ2 −∆2)− K(K + 1)(2K + 1)

6
ε2z].

(5.19)
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From which, the chemical potential is obtained by

µ =

√
2πA2n0

K + 1
+ ∆2 +

K(2K + 1)ε2z
6

, (5.20)

where εz = Mzπ/L. K is the index of the highest occupied subband, which is an

implicit parameter. In order to obtain its value, we use a trial value and then test it.

For n0 = 5 × 1013 cm−2 and ∆ = 0, the chemical potential µ is about 119 meV and

K = 23. When T 6= 0, the chemical potential can be approximately calculated by

µ(T ) = µ(0)[1− π2

12
(
kBT

µ(0)
)2]. (5.21)

The equation above says the chemical potential decreases with temperature. Supposing

µ(0) = 119 meV, then µ(200K) has a value of 0.98 µ(0). This indicates that µ has a

small temperature dependence at the low-temperature area.

5.3 Results and discussion

The hot carrier relaxation is evaluated by solving Eq. 5.13 and Eq. 5.14. Bandgap

dependence of Pinter and Pintra at three different values of carrier density are shown in

Fig. 5.4(a) and (b), respectively. The results show there is no inter-node contribution to

the power loss for ∆ = 0 due to the selection rule. When the selection rule is released

by opening a bandgap, a finite Pinter is observed, and it increases with ∆. Increase

the density of carriers, Pinter increases since more carriers contribute to the relaxation.

Similarly, Pintra increases with ∆ and n0. However, Pintra has a finite value for ∆ = 0

because there is no section rule for intra-node relaxation.

The power loss, shown in Fig. 5.4, is the loss per unit volume, and it increases as the

carrier density increases. Now we calculate the power loss per particle (P s). The results

are shown in Fig. 5.5. While P s
Inter is zero for ∆ = 0 and increases with ∆, it decreases

with n0 that is considerably different from the results of PInter. The underlying reason

is that the number of carriers below the Fermi level increases with n0, and the power

loss ability of these carriers is weaker than the carriers near the Fermi level. Thus, the

average power loss per carrier decreases with n0. For a small bandgap, P s
Intra increases

with the density. At a large gap, it decreases with the density. At small gap and low

concentration, the chemical potential increase with the gap fast enough so that the total
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Figure 5.4: Bandgap dependence of (a) Pinter and (b) Pintra at three different values of carrier density

n0, where Te = 140 K, TL = 77 K and P0 is the power loss for ∆ = 0.

power loss divided by the total carrier density increases with the carrier density. At

large gap, the chemical potential increases with the density at a slower rate, resulting

the increase of the total cooling power is slower than the increase of carrier density.

In order to obtain the contribution of internode transitions to the power loss, a
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Figure 5.5: Bandgap dependence of (a) P s
Inter and P s

Intra at three different values of carrier density

n0, where Te = 140 K and TL = 77 K.

parameter RP = Pinter/P × 100% is introduced. The bandgap dependence of RP

and P at three different values of carrier density are shown in Fig. 5.6. The fractional

contribution from the inter-node transition is less than 10% for all gap values, indicating

that the intra-node transition dominates the hot carrier relaxation. The total energy
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loss rate as a function of the bandgap is presented in Fig. 5.6(b), which shows that the

total power loss rate can be significantly enhanced by a band gap. The enhancement can

be as large as 10 times when ∆ = 250 meV and n0 = 1013 cm−2. For a fixed bandgap,

the power loss increases with the carrier concentration. This is rather reasonable since

more carriers mean that more hot electrons are jumping back to lower-energy states

and losing energy to the lattice. The gap dependence is two-fold. (i) At a fixed carrier

density, increasing the gap increases the chemical potential. For a fixed excitation

energy, the energy difference between the hot electrons and the Fermi level decreases

as the gap increases. This leads to faster cooling. (ii) The internode cooling increases

with the gap as the overlap between different nodes increases. Both enhancements are

proportional to the square of the gap. As a result, the total power loss increases with

∆2. In order to see the parabolic band gap dependence, P as a function of ∆2 at three

values of n0 is plotted in Fig. 5.7. The results confirm that the total power loss has

parabolic dependence on the bandgap.

Fig. 5.8(a) shows the dependence of the power loss on the electron temperature

with the lattice temperature TL = 77 K. At a fixed lattice temperature, the power loss

is determined by the temperature difference Te − TL. A large difference between the

electron temperature and the lattice temperature leads to a fast energy exchange from

the hot electrons to the lattice. Indeed, Fig. 5.8(a) shows P increases rapidly with the

increase of Te.

Here we define an energy relaxation time τ , which measures how fast the hot carriers

loss their energy to the lattice at a constant power loss. We would like to point out

that the energy relaxation time here is not the time that is needed by hot carriers to

reach the lattice temperature. The τ is defined by

τ = − E

∂E/∂t
= −E

P
, (5.22)

where the total energy E is given by

E =
∑
k,a

εk,af
a
k =

n=K∑
n=0

∫ ∞
√

∆2+εnz

εg(ε)f(ε)dε, (5.23)

where g(ε) = Sε/(πA2) is the density of states of subbands. The temperature depen-

dence of τ is presented in Fig. 5.8.
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Figure 5.6: Bandgap dependence of (a) RP and (b) P at three different valus of carrier density n0,

where Te = 140 K, TL = 77 K and P0 is the power loss for ∆ = 0 and carrier density n0 = 1013cm−2.

Now, we consider the relaxation due to the electron-optical phonon scattering. The

energy carried by optical phonon is finite and approximately constant. Recent experi-

mental work shows the optical phonon energy (15 meV) [69] in doped Cd3As2 is much

smaller than that in graphene (162 ∼ 198 meV) [117,118]. Hence, the interband contri-
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Figure 5.7: Total power loss as a function of ∆2 at three value of carrier density, where Te = 140 K,

TL = 77 K and P0 is the power loss for ∆ = 0. We would like to point out that for different n0, P0

has a different value.

bution is zero in doped Cd3As2 where Fermi level is higher than 100 meV. The cooling

power due to optical phonon scattering is given by

Pop = − 1

2πv4
F h̄

5

∑
n,m

∫ +∞

√
ε2nz+∆2

εxy

∫ 2εxy+ωq

0

ωopq ωq

× [N e
q (ωq)−NL

q (ωq)](f(ε)− f(ε− ωq))dydε,

(5.24)

wopq =
9h̄2γ′20 F (k, p)

2ρSw0

. (5.25)

Here wopq is the electron-optical phonon coupling constant [72] and γ′0 = 40 meV/ nm.

The bandgap dependence of cooling power is determined by the coupling term F (k, p)

which is the same for optical and acoustic phonons. Therefore, the bandgap dependence

of the cooling power is the same as that due to acoustic phonon scattering. The temper-

ature dependence of the cooling power due to two different phonon scattering processes

is shown in Fig. 5.9. The electron-optical phonon scattering rate is greater than that

of acoustic phonon scattering rate. The main reason for this is that the energy of an
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Figure 5.8: Temperature dependence of (a) power loss and (b) relaxation time at three different carrier

densities, where ∆ = 10 meV, TL = 77 K, P0 and τ0 are power loss and relaxation time for Te = 80 K

and carrier density n0 = 1013cm−2, respectively.

optical phonons is small (15 meV) leading to a relatively small critical temperature (less

than 77 K). Below the critical temperature, the power loss is dominated by acoustic

phonon scattering since the optical phonons are frozen. Above this temperature, the

70



CHAPTER 5. HOT CARRIER RELAXATION IN GAPPED DIRAC SEMIMETALS

1

10

100

1000

10000

100000

1x10
6

1x10
7

0 200 400 600 800 1000

P
/P

0

T     (K)

Optical
Acoustic

e

Figure 5.9: Temperature dependence of the electron power loss due to the acoustic and optical phonon

scattering, respectively, where ∆ = 10 meV, TL = 77 K and carrier density n0 = 1013 cm−2.

optical phonon scattering rate is greater than that of the acoustic phonon scattering by

1 to 2 orders of magnitude unless the lattice temperature is very high. The result coin-

cides with its counterpart in doped graphene [116]. It also indicates that the observed

carrier relaxation is mainly due to optical phonon scattering.

5.4 Conclusion

In this chapter, we calculated the energy loss of hot carriers in 3D Dirac semimetals

with a finite gap. The minimum gap is a result of transverse momentum quantization.

Chemical doping further increases the gap. The hot carrier relaxation is mainly due

to the electron-optical phonon interaction. The finite gap gives rise to both intra- and

inter-node relaxation. At a fixed carrier concentration, the Fermi level increases with

the gap. It is found that the relaxation rate increases as the gap, which agrees with

experimental results. The power loss and τ have a strong dependence on electronic

temperature, changing 3 or 4 orders of magnitude over a temperature range of ∼ 1000

K. The temperature and gap dependence of the scattering rate due to the optical phonon

scattering is similar to that due to the acoustic phonon scattering.
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Chapter 6

Non-linear electromagnetic

response in Semi-Dirac semimetals

* In this chapter, we demonstrate a strong and anisotropic photo-mixing effect in an

electronic system whose energy-momentum dispersion is parabolic in the x-direction

and linear in the y-direction, such as a TiO2/VO2 multilayered structure. The third-

order photoresponses along the linear and parabolic directions have been analyzed and

determined quantitatively. We have found a remarkable tunability of the mixing effi-

ciency along the parabolic direction by a small electric field in the linear direction, up

to two orders of magnitude. In the terahertz (THz) regime, the third-order response

is comparable to the linear response under an applied field of 103-104 V/cm. Addi-

tionally, the nonlinear response persists at room temperature. The results may have

applications where different current responses are required along different directions in

the THz regime.

6.1 Introduction

Terahertz (THz) technology has been proven to have promising applications in ob-

taining molecular spectral and material information due to energy matching [119,120].

Although a number of THz emission mechanisms have been developed [121–124], the

* This chapter is based on S. Huang, M. H. Tran, J. Zuber, Q. Wang, Y. Zhu, C. Zhang, Strong tunable photomixing

in semi-Dirac materials in the terahertz regime, JOSA B 36 (2) (2019) 200-203.
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lack of high performance of THz resources is a hindrance in applications of THz tech-

nology [125]. Various nonlinear processes such as down-conversion and up-conversion

have been used for emitting THz radiation [126].

w1

w2 w3

w4

Nonlinear 
Materials

w1

w2

w3 w4 = w1+ w2- w3

Third-order photo-mixing(a)

(b)

Figure 6.1: A schematic diagram of the down-conversion THz radiation process based on the third-

order photo-mixing (a); Energy level diagram for the down-conversion process (b).

A schematic diagram of the down-conversion THz radiation process is presented in

Fig. 6.1(a), where three incident photons (femtosecond laser) interact in a nonlinear

material and produce a fourth photon in the THz regime. The process is also known as

four-wave mixing since it involves four photons. Fig. 6.1(b) is the corresponding energy

level diagram. In the process, the energy of the photons is conserved. Theoretically, the

energy of the fourth photon (E4) is the combinations of the incident energy (E1, E2, E3)

i.e.,

E4 = | ± E1 ± E2 ± E3|. (6.1)

For photons, their energy can be written as E = h̄ω. In this sense, Eq. 6.1 can be
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rewritten as

ω4 = | ± ω1 ± ω2 ± ω3|. (6.2)

There are two special cases. One is ω4 = ω1 + ω2 + ω3, which is known as the sum

frequency generation. The other is ω4 = ω1 +ω2−ω3, known as the difference frequency

generation, where we have assumed ω1 + ω2 > ω3. This is the exact case shown in

Fig. 6.1(a). In a difference frequency generation, ω4 can be significantly smaller than

ω1, ω2 and ω3, which gives rise to THz radiation by using a femtosecond laser. The

THz generation efficiency is charactered by the nonlinear effect (third-order nonlinear

response) of nonlinear materials. Therefore, our investigations are focused on the third-

order nonlinear response of nonlinear materials.

It has been demonstrated that graphene is a strong nonlinear material, due to

its massless Dirac Fermion energy-momentum dispersion [126–129]. Additionally, a

strong nonlinear effect [1] has been found in the bulk state of topological insulator

HgTe/CdTe quantum wells, which arises from the non-parabolic energy-momentum

dispersion. While Dirac systems generally show a stronger nonlinear optical effect

and better photo-mixing efficiency compared to conventional systems with a parabolic

energy-momentum dispersion, such systems usually have a low density of states near the

Dirac point. In the case of graphene, the density of states vanishes at the Dirac point.

The low density of states has limited the power generated in the nonlinear process. On

the other hand, conventional electronic materials with parabolic energy dispersion have

a weaker nonlinear response. It will be useful if the low efficiency can be significantly

enhanced with the use of Dirac dispersion in some way. In this chapter, we will employ

so-called semi-Dirac semimetals to achieve this purpose.

Recently, a unique energy-momentum dispersion was found in a VO2-TiO2 interface

[130] and attracted enormous attention [131–134]. The new two-dimensional (2D) state

possesses a semi-Dirac point that has a parabolic energy-momentum dispersion along

the x-axis shown in Fig. 6.2(b) and has a linear energy-momentum dispersion along

the y-axis shown in Fig. 6.2(c). For graphene with artificially designed hopping, a

semi-Dirac energy dispersion can also occur [131]. Physical properties such as Faraday

rotation, heat capacity, plasmon frequency [135], dynamical polarization [136], and

optical conductivity [137] have been investigated in this unique system. Its plasmon
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frequency and optical conductivity are found to be highly anisotropic.

In this chapter, we analyze the photo-mixing properties of a semi-Dirac semimetal.

By using a semi-classical approach where the quantum mechanically calculated energy

dispersion is used to derive the velocity in the presence of an applied field along the x-

and y-directions, we calculated the third-order current response involving three photons.

6.2 Models and current response

The energy-momentum dispersion of the semi-Dirac system is given as [137,138]

ε0 = ±2mv2
F

√
p4
x

(2mvF )4
+

p2
y

(2mvF )2
, (6.3)

where ± is the index of the valence and conduction bands, m is the mass of a free

electron, vF = 106 m/s is the Fermi velocity, px and py are the momenta in the x and

y directions, respectively. Based on Eq. 6.3, a band structure is plotted in Fig. 6.2(a),

along with its projections in the x-z plane (b) and in the y-z plane (c), where pxF =
√

2µm, pyF = µ/vF and µ = 0.04 eV. In the limit py = 0, it has a parabolic energy-

momentum dispersion, shown in Fig. 6.2(b). In the limit px = 0, it has a linear energy-

momentum dispersion, shown in Fig. 6.2(c). The strong anisotropic energy-momentum

dispersion results in an anisotropic nonlinear electromagnetic response. Therefore, the

nonlinear electromagnetic response is evaluated in both the x- and y-directions.

The non-linear response is investigated under external fields E =
∑

nE0exp[i(qnr−

wnt)], where E0 is the magnitude of the external field, qn and wn are the n-th wave

vector and frequency. Under the minimum coupling scheme [1], the momentum in the

x- and y-directions is rewritten as px + ux and py + uy, where ux = −eAx, uy = −eAy,

Ax and Ay are electronic potentials, respectively. Additionally, the energy-momentum

dispersion changes to

ε = 2mv2
F

√
(px + ux)4

(2mvF )4
+

(py + uy)2

(2mvF )2
. (6.4)

Based on the energy-momentum dispersion, velocity of electrons in the x and y direc-

tions is calculated by

vx =
∂ε

∂px
=

(px + ux)
3

mH
, (6.5)
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Figure 6.2: Band structures of the Semi-metal system (a); projection of the band structure in the x-z

plane (b); projection of the band structure in the y-z plane (c). Here, pxF =
√

2µm and pyF = µ/vF

are the Fermi momentum in the x and y directions and µ = 0.04 eV.

vy =
∂ε

∂py
=

(py + uy)ε0
H

, (6.6)

where ε0 = 2mv2
F and H =

√
(px + ux)4 + 2mε0(py + uy)2. The first- and the third-

order velocity expansion in the x and y direction are given by (Calculation details can
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be found in Appendix A.1)

v(1)
x = G(1)

x = (
3p2

x

mF
− 2p6

x

mF 3
)ux −

2ε0p
3
xpy

F 3
uy, (6.7)

v(3)
x =

1

6
G(3)
x = (

1

mF
− 17p4

x

mF 3
+

36p8
x

mF 5
− 20p12

x

mF 7
)u3

x

− (
6ε0pxpy
F 3

− 54ε0p
5
xpy

F 5
+

60ε0p
9
xpy

F 7
)u2

xuy

− (
3ε0p

2
x

F 3
−

18mε20p
2
xp

2
y

F 5
− 6ε0p

6
x

F 5
+

60mε20p
6
xp

2
y

F 7
)uxu

2
y

+ (
6mε20p

3
xpy

F 5
−

20m2ε30p
3
xp

3
y

F 7
)u3

y,

(6.8)

v(1)
y = −pyε0

F 2

2p3
x

F
ux + (

ε0
F
− pyε0

F 2

2mε0py
F

)uy

= −2ε0p
3
xpy

F 3
ux + (

ε0
F
−

2mε20p
2
y

F 3
)uy,

(6.9)

v(3)
y =

1

6
G(3)
y = (−2ε0pxpy

F 3
+

18ε0p
5
xpy

F 5
− 20ε0p

9
xpy

F 7
)u3

x

− (
3ε0p

2
x

F 3
−

18mε20p
2
xp

2
y

F 5
− 6ε0p

6
x

F 5
+

60mε20p
6
xp

2
y

F 7
)u2

xuy

+ (
18mε20p

3
xpy

F 5
−

60m2ε30p
3
xp

3
y

F 7
)uxu

2
y

− (
mε20
F 3
−

12m2ε30p
2
y

F 5
+

20m3ε40p
4
y

F 7
)u3

y.

(6.10)

The n-th order nonlinear response (current density) is calculated by

J (n) = e

∫ +∞

−∞

∫ +∞

−∞
v(n)[f(εk)− f(εk + εph)]dkxdky

=
e

h̄2

∫ +∞

−∞

∫ +∞

−∞
v(n)[f(εk)− f(εk + εph)]dpxdpy,

(6.11)

where v(n) is the n-th order velocity to the applied electronic field, f(εk) is the Fermi-

Dirac distribution function, εph is the total energy of the incoming photons. The equa-

tion is a modified version of J = evn, where the electron density n is replaced by the

integral of the Fermi-Dirac distribution function [f(εk) − f(εk + εph)] in momentum

space. It can be understood in a two energy level system, shown in Fig. 6.3. A ground-

state electron jumps to a higher-energy state by absorbing a photon, shown by a red

arrow. The probability of the jump is described by P0f(εk) × [1 − f(εk + εph)], where
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f(εk) is the probability that state εk is occupied, [1 − f(εk + εph)] is the probability

that state εk + εph is empty. At the same time, electrons would jump from the excited

state to the ground state through radiation, shown by a blue arrow. The radiation

probability is given by P0[1− f(εk)]× f(εk + εph). In this sense, the net probability of

electrons from state εk to state εk + εph is given by

P = P0f(εk)× [1− f(εk + εph)]− P0[1− f(εk)]× f(εk + εph)

= P0[f(εk)− f(εk + εph)],
(6.12)

where P0 is a dimensionless constant parameter that is omitted in Eq. 6.11. Due to the

special properties of the Fermi Dirac function, [f(εk)− f(εk + εph)] only has a nonzero

value near the chemical potential and has an axis of symmetry at µ + 0.5εph, which

can be seen from Fig. 6.4. This is an important condition, which considerably narrows

down the domain of integration in Eq. 6.11. The effective domain of the integration are

[µ − εph, µ] and [µ − εph − 7kBT , µ + 7kBT ] for T = 0 and T 6= 0, respectively. Here

7kBT is a cutoff value, which controls the accuracy of the integration.

Absorption Radiation

 k

 k+ ph

 ph

Figure 6.3: Electron absorption and radiation in a two energy level system.

Due to the symmetry of px and py in the Eq. 6.11, all terms containing odd exponents

of px or py will obtain zero after integral. Hence J (2) is zero and J (1) can be written as

J (1)
x =

4e

h̄2

∫ +∞

0

∫ +∞

0

(
3p2

x

mF
− 2p6

x

mF 3
)ux

× [f(εk)− f(εk + εph)]dpxdpy.

(6.13)
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the black dashed line is the chemical potential, and the cyan dashed line is the axis of symmetry for

function f(εk)− f(εk + εph). The temperature is 10 K and εph = 3.3 meV (5 THz).

Here we define a Fermi momentum px0 =
√

2mµ by equation µ = vF

√
p4x

(2mvF )2
. Using

the Fermi momentum to cancel out physical units, we obtain

J (1)
x =

4ep3
x0

mh̄2

∫ +∞

0

∫ +∞

0

(
3x2

f
− 2x6

f 3
)ux0

× [f(εk)− f(εk + εph)]dxdy,

(6.14)

where x = px/px0, y = py/pxo, f =
√
x4 + coe2y2, coe2 = 2mε0/p

2
x0 = (2mvF/px0)2 and

ux0 =
ux
px0

=
eE

ωpx0

, (6.15)

εk = vF

√
p4
x

(2mvF )2
+ p2

y = vFpx0

√
x4

coe2
+ y2. (6.16)
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Similarly,

J (1)
y =

4ep3
x0

mh̄2

∫ +∞

0

∫ +∞

0

(
0.5coe2

f
− 0.5coe4y2

f 3
)uy0

× [f(εk)− f(εk + εph)]dxdy,

(6.17)
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(6.18)
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(6.19)

In what follows, we make two assumptions: first, we assume that the magnitude of three

incoming photons is in the order of 103 V/cm. Secondly, we assume that the chemical

potential is larger than 0.04 eV. The two assumptions guarantee that the value of u/p0

is small enough to make the above velocity expansion valid, where p0 is the Fermi

momentum. We now consider a situation where three ultrafast fields (of the order of

femtoseconds) are incident on the semi-Dirac system to generate a photo-response at a

frequency (ω) in the THz regime.

6.3 Results and discussion

The first order current as a function of the electric field at two values of chemical

potential is plotted in Fig. 6.5. Both J1x and J1y have a linear dependence on the
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amplitude of electric field E, which agrees with our physical picture. A larger E means

more phonons are involved in the process, which results in a larger first order current.

Besides, the number of phonons has linear dependence with E. That is why the first

order current has linear dependence with E. There is saturation of E since the number

of electrons near the Fermi level is finite.
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Figure 6.5: The first-order current as a function of the electric field; (a) J1x where Ey = 0; (b) J1y

where Ex = 0.
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When the chemical potential increases, the first order current increases for both J1x

and J1y. The increase can be attributed to the enlargement of the integral domain.

For the first-order response, the energy of phonon is εph = h̄ω = h̄ × 100 THz = 66

meV. Therefore, the domain is [0, 40 meV] and [0, 50 meV] for µ = 40 meV and µ

= 50 meV, shown in Fig. 6.6, respectively. We can image a physical picture where

all electrons in the conduction band can contribute to the first order current. When

the chemical potential is increased, there are more electrons in the conduction band,

resulting in a larger first order current. The first order current in the y-direction is

significantly larger than that in the x-direction. For µ = 0.04 eV and Ey = Ex = 5000

V/cm, J1y/J1x is about 50. The main difference comes from the first order velocity in

the x- and y-directions.

-1 -0.5 0 0.5 1

p
x
 / p

xF

-1

-0.5

0

0.5

1

p
y
 /

 p
y
F

40

4
0

40

40

4
0

40

5
0

50
50

5
0

5
0

50 50

5
0

Figure 6.6: The integral domain of the first-order current in momentum space, where the area enclosed

by the red line is for µ = 40 meV and the area enclosed by the blue line is for µ = 50 meV.

The third-order current as a function of the electric field at three values of chemical

potential is plotted in Fig. 6.7(a) for J3x and Fig. 6.8 for J3y, respectively. The results
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Figure 6.7: Electric field dependence of J3x (a) and Qx (b) at three values of chemical potential. The

insets of (a) and (b) show the dependence of J3x and Qx on E3
x and E2

x, respectively.

show that the third-order current in the x-direction with a parabolic energy-momentum

dispersion is significantly smaller than that in the y-direction with a linear energy-

momentum dispersion, by up to five orders. The third-order current has an exact cubic

electric field dependence in the x and y directions shown in the inset of Fig. 6.7(a) and
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the inset of Fig. 6.8(a). For the third-order current, there are three incoming photons

involved. Therefore, J3x and J3y have a cubic dependence on the number of incoming

photons, i.e. the electric field Ex and Ey. The third order current decreases with

chemical potential.

The third order current in graphene at T = 0 K is given by

J3 =
12e4v2

FE
3∆

h̄2µ2ω3
. (6.20)

Calculation details are available in Appendix.3. The equation showes the third-order

current density in graphene system has exactly cubic dependence on E and decreases

with µ. The inset of Fig. 6.8(a) indicates J3y of graphene is smaller than that of semi-

Dirac semimetals.

To characterise the third-order photo-responses, a mixing efficiency is defined as

Q =
J (3)

J (1)
=
e
∫ ∫

v(3)[f(ε)− f(ε+ h̄ω)]h̄ωdk2

h̄ωJ (1)

=
−eh̄ω

∫ ∫
v(3)f ′(ε)dk2

J (1)
.

(6.21)

The photo-mixing efficiency as a function of the electric field is plotted in Fig. 6.7(b)

and Fig. 6.8(b). The results show the photo-mixing efficiency in the x-direction is sig-

nificantly larger than that in the y-direction, which agrees with our knowledge that

materials with a parabolic energy-momentum dispersion demonstrate a weak nonlinear

electric field response while those with a linear energy-momentum dispersion demon-

strate strong nonlinear electric field response. Additionally, the photo-mixing efficiency

has a parabolic dependence on the electric field, shown in the inset of Fig. 6.7(b) and

the inset of Fig. 6.8(b). This is because of Qx = J3x/J1x, where J3x and J1x have cubic

and linear dependence on the electric field, respectively.

While the first-order current increases with electric field shown in Fig. 6.5, the third-

order current decreases with electric field. As we have discussed, the integral domain is

enlarged when increasing the chemical potential. The integral domain of the third-order

current changes from [37 meV, 40 meV] to [47 meV, 50 meV] where εph = h̄ω = h̄× 5

THz ≈ 3 meV, which results a larger number of states in the momentum space being

sampled, shown in the inset of Fig. 6.9. More available states would result in a larger

third-order current, however we get a smaller one. This is because the third-order
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Figure 6.8: Electric field dependence of J3y (a) and Qy (b) at three values of chemical potential. The

inset of (a) is electric field dependence of J3y in graphene systems, and the inset of (b) showes the

dependence of J3y and Qy on E3
y and E2

y , respectively.

velocity (1
6
G(3)) decreases with ε. Fig. 6.9 shows G

(3)
y decreases with ε when px = 0. We

would like to point out that this is a rather simple situation. In fact, the third order

current has a more complicated dependence on ε.

As we have discussed, the semi-Dirac system is strongly anisotropic in the energy-
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of the third-order current is [µ − εph, µ] for T = 0. Consider the third-order response happens at 5

THz i.e., εph = h̄ω ≈ 3 meV, the integral domain is [37 meV, 40 meV], the area enclosed by the red
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respectively.

momentum dispersion and the photo-mixing response. The anisotropic property results

in the photo-mixing having a response to its vertical electric field. Qx (Qy) as a function

of Ey (Ex) is plotted in Fig. 6.10. The results show the photo-mixing efficiency in the

x-direction can be significantly enhanced by a small electric field in the y-direction. The

enhancement can reach up to 50 times when the enhancement electric field is 0.2Ey0.

However, the photo mixing efficiency in the y-direction can be hardly enhanced by an

electric field in the x-direction. The enhancement is almost zero for Ex = 0.2Ey0.

Here the benchmark is the enhancement in an isotropic system, where the photo-

mixing efficiency is independent with electric field direction and proportional to the

square of the electric field E2, i.e.

Q = A(E2
x + E2

y). (6.22)
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Figure 6.11: A schematic diagram shows the relationship among Qx, Qy and Q, where cos(ϕ) =
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.

As shown in Fig. 6.11, its projection in the x direction can be calculated by

Qx = Qcos(ϕ) = A(E2
x + E2

y)×
Ex√

E2
x + E2

y

= AEx

√
E2
x + E2

y . (6.23)

The result shows a vertical electric filed can make a contribution to the photo-mixing

efficiency even in an isotropic system. The benchmark is evaluated as

Qx(Ey)

Qx(0)
=
AEx

√
E2
x + E2

y

AE2
x

=

√
1 + (

Ey
Ex

)2. (6.24)

Qy(Ex)

Qy(0)
=

√
1 + (

Ex
Ey

)2. (6.25)

The results in Fig. 6.10 show the benchmark is significantly larger than its counterparts

in the x-direction and smaller than its counterparts in the y-direction of the semi-Dirac

system.

The temperature dependence of J3x at three values of chemical potential is plotted

in Fig. 6.12, where the dashed black line is selected from [1] for topological insulator

HgTe/CdTe quantum wells. J3x firstly increases with T and then decreases with T .

The initial increase is because electrons in the conduction band become more energetic

and have more chance to contribute to the third-order current when the temperature

is increased. Mathematically, the integral domain is enlarged from [µ − εph, µ] to

[µ − εph − 7kBT , µ + 7kBT ] when the temperature is increased from 0 to T , which

results in a larger integration. When the temperature is increased, [f(εk) - f(ε + εph)]
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becomes more smaller, resulting in a smaller integration. Indeed, when the temperature

is considerably increased, more and more electrons jump from ground states to higher-

energy states. Therefore, the number of electrons at ground states and the number of

empty states near the Fermi level decrease, which reduces the value of the third-order

current. The competition of the above two mechanisms leads to the special temperature

dependence of the third-order current. Additionally, there is an optimal T to produce a

peak third-order current response. The optimal temperature increases from 50 K to 75

K as the chemical potential increases from 40 meV to 60 meV. Besides, the third-order

current decreases more slowly for a larger µ. At the room temperature, the value of

J3x(T )/J3x(0) is 0.65, 0.59 and 0.49 for µ = 40 meV, 50 meV and 60 meV, respectively.

In this sense, a large µ is preferred to produce a strong third-order photo-mixing in room

temperature. The variation tendency of the third-order current density to temperature

agrees previous results [1].
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Figure 6.12: Temperature dependence of J3x at three values of µ, where the dashed black line is

selected from [1] for topological insulator HgTe/CdTe quantum wells.
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CHAPTER 6. NON-LINEAR ELECTROMAGNETIC RESPONSE IN SEMI-DIRAC
SEMIMETALS

6.4 Conclusion

We have systematically investigated the first-order and the third-order photo response

in a semi-Dirac system whose energy-momentum dispersion is linear in the x-direction

and is parabolic in the y-direction. Both the J1y, J3y and Qy are considerably larger

than their counterparts in the x-direction. We found the first order and the third-order

current have linear and cubic electric field dependence. Consequently, the photo-mixing

efficiency has a parabolic dependence on the electric field. While the first order current

increases with the chemical potential, the third-order current and the photo-mixing

efficiency decreases with the chemical potential. More importantly, the lower photo-

mixing efficiency of electrons with a parabolic energy-momentum dispersion can be

significantly enhanced if the electron energy-momentum dispersion perpendicular to

the parabolic direction is linear. A small electric field along the linear direction can

improve the mixing efficiency by two orders of magnitude. Our results suggest that the

strength of the nonlinear electromagnetic response can be controlled by the weak field

perpendicular to the direction of the third-order current. The enhancement is much

greater than that in an isotropic parabolic system like conventional semiconductors and

an isotropic linear system like graphene.
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Chapter 7

Conclusion

In conclusion, we have systematically investigated thermionics in 3D Dirac and 3D

nodal-ring semimetals. We have found the RD law no longer holds for both Dirac

semimetals and nodal-ring semimetals due to their linear energy-momentum dispersion.

Thermionic emission current in Dirac semimetals and nodal-ring semimetals is smaller

than their counterparts in conventional materials due to their relatively smaller density

of states near the Fermi level. However, the average energy carried by a degree of

freedom in Dirac semimetals is twice that in conventional materials, which results in

Dirac semimetals having a better thermionic efficiency than conventional materials. We

calculate the heat transfer from electronic devices without and with thermionic cooling.

Without thermionic cooling, the internal temperature of the devices is at best equal

to and usually higher than the temperature of the surrounding environment. However,

when thermionic cooling is employed to transport heat, the internal temperature can

be considerably lower than the environmental temperature. In the thermionic cooling

process proposed, energy efficiency can be as high as 75% of the Carnot efficiency.

We calculated the energy loss of hot carriers in 3D Dirac semi-metals with a finite

band gap. The minimum band gap is a result of transverse momentum quantization.

Chemical doping can further increase the band gap. The hot carrier relaxation is mainly

due to the electron-optical phonon interaction. The finite band gap gives rise to both

intra- and inter-node relaxation. It is found that the relaxation rate increases as the

band gap increases, which agrees with experiment results.
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CHAPTER 7. CONCLUSION

The first-order and the third-order photo-response is investigated in a semi-Dirac

system. We found that the lower photo-mixing efficiency of electrons with parabolic

energy dispersion can be significantly enhanced if the electron energy dispersion per-

pendicular to the parabolic direction is linear. A small electric field along the linear

direction can improve the mixing efficiency by two orders of magnitude. Compared with

graphene, the semi-Dirac system has a stronger nonlinear effect at room temperature.

Our results suggest that the strength of the nonlinear electromagnetic response can be

controlled by the weak field perpendicular to the direction of the third-order current.

This enhancement with a magnitude of up to two orders is much higher than that in

isotropic systems.
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Experimental realization of a three-dimensional Dirac semimetal, Physical Review

Letters 113 (2) (2014) 027603.

[103] S. S. Kubakaddi, T. Biswas, Hot electron cooling in Dirac semimetal Cd3As2 due

to polar optical phonons, Journal of Physics: Condensed Matter 30 (26) (2018)

265303.

[104] L. He, X. Hong, J. Dong, J. Pan, Z. Zhang, J. Zhang, S. Li, Quantum transport

evidence for the three-dimensional Dirac semimetal phase in Cd3As2, Physical

Review Letters 113 (24) (2014) 246402.

[105] Q. Wang, C.-Z. Li, S. Ge, J.-G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D.-P. Yu, Z.-

M. Liao, et al., Ultrafast broadband photodetectors based on three-dimensional

Dirac semimetal Cd3As2, Nano Letters 17 (2) (2017) 834–841.

[106] I. Crassee, R. Sankar, W.-L. Lee, A. Akrap, M. Orlita, 3d Dirac semimetal Cd3As2:

A review of material properties, Physical Review Materials 2 (12) (2018) 120302.

[107] R. Y. Belbachir, Z. An, T. Ono, Thermal investigation of a micro-gap thermionic

power generator, Journal of Micromechanics and Microengineering 24 (8) (2014)

085009.

103



BIBLIOGRAPHY

[108] K. A. A. Khalid, T. J. Leong, K. Mohamed, Review on thermionic energy con-

verters, IEEE Transactions on Electron Devices 63 (6) (2016) 2231–2241.

[109] D. M. Trucchi, A. Bellucci, M. Girolami, P. Calvani, E. Cappelli, S. Orlando,

R. Polini, L. Silvestroni, D. Sciti, A. Kribus, Solar thermionic-thermoelectric

generator (ST2G): Concept, materials engineering, and prototype demonstration,

Advanced Energy Materials 8 (32) (2018) 1802310.

[110] B. Lough, S. Lee, R. Lewis, C. Zhang, Numerical calculation of thermionic cool-

ing efficiency in a double-barrier semiconductor heterostructure, Physica E: Low-

dimensional Systems and Nanostructures 11 (2-3) (2001) 287–291.

[111] M. Bescond, D. Logoteta, F. Michelini, N. Cavassilas, T. Yan, A. Yangui, M. Lan-

noo, K. Hirakawa, Thermionic cooling devices based on resonant-tunneling Al-

GaAs/GaAs heterostructure, Journal of Physics: Condensed Matter 30 (6) (2018)

064005.

[112] F. Jin, S. Little, Thermionic cooling with functionalized carbon nanotube thin

films, Applied Physics Letters 106 (11) (2015) 113102.

[113] Z. Wang, S.-C. Zhang, Chiral anomaly, charge density waves, and axion strings

from Weyl semimetals, Physical Review B 87 (16) (2013) 161107.

[114] H. Wei, S.-P. Chao, V. Aji, Excitonic phases from Weyl semimetals, Physical

Review Letters 109 (19) (2012) 196403.

[115] K.-Y. Yang, Y.-M. Lu, Y. Ran, Quantum Hall effects in a Weyl semimetal: Pos-

sible application in pyrochlore iridates, Physical Review B 84 (7) (2011) 075129.

[116] R. Bistritzer, A. MacDonald, Electronic cooling in graphene, Physical Review

Letters 102 (20) (2009) 206410.

[117] C. Weber, E. Arushanov, B. S. Berggren, T. Hosseini, N. Kouklin, A. Nateprov,

Transient reflectance of photoexcited Cd3As2, Applied Physics Letters 106 (23)

(2015) 231904.

[118] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, P. Ordejón, Phonon dispersion

in graphite, Physical Review Letters 92 (7) (2004) 075501.

104



BIBLIOGRAPHY

[119] B. Ferguson, X.-C. Zhang, Materials for terahertz science and technology, Nature

Materials 1 (1) (2002) 26–33.

[120] R. A. Lewis, Physical phenomena in electronic materials in the terahertz region,

Proceedings of the IEEE 95 (8) (2007) 1641–1645.

[121] S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, M. Hu, Surface polariton

cherenkov light radiation source, Physical Review Letters 109 (15) (2012) 153902.

[122] C. Yang, A. Wright, F. Gao, C. Zhang, Z. Zeng, W. Xu, Two color plasmon excita-

tion in an electron-hole bilayer structure controlled by the spin-orbit interaction,

Applied Physics Letters 88 (22) (2006) 223102.

[123] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang,

A. Zettl, Y. R. Shen, et al., Graphene plasmonics for tunable terahertz metama-

terials, Nature Nanotechnology 6 (10) (2011) 630–634.

[124] S. Chen, W. Shi, L. Hou, R. A. Lewis, Investigation of terahertz peak frequen-

cies from GaAs photoconductive antennas, IEEE Journal of Selected Topics in

Quantum Electronics 23 (4) (2017) 1–6.
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Appendix

A.1 Velocity expansion

(a) velocity expansion in the x direction

vx =
∂ε

∂Px
=

P 3
x

mH
, (7.1)

H =
√
P 4
x + 2mε0P 2

y , (7.2)

Px = px + ux, Py = py + uy, (7.3)

F =
√
p4
x + 2mε0p2

y, (7.4)

∂F

∂px
=

2p3
x

F
, (7.5)

∂F

∂py
=

2mε0py
F

. (7.6)

Firstly, we calculate the total differential of vx up to the third-order

G(1)
x =

∂vx
∂px

ux +
∂vx
∂py

uy = (
3p2

x

mF
− 2p6

x

mF 3
)ux −

2ε0p
3
xpy

F 3
uy, (7.7)

G(2)
x =

∂G1
x

∂px
ux +

∂G1
x

∂py
uy = (

6px
mF
− 18p5

x

mF 3
+

12p9
x

mF 5
)u2

x

− (
12ε0p

2
xpy

F 3
− 24ε0p

6
xpy

F 5
)uxuy − (

2ε0p
3
x

F 3
−

12mε20p
3
xp

2
y

F 5
)u2

y

= I1u
2
x − I2uxuy − I3u

2
y,

(7.8)

G(3)
x = (

∂I1

∂px
u3
x −

∂I2

∂px
u2
xuy −

∂I3

∂px
uxu

2
y

+
∂I1

∂py
u2
xuy −

∂I2

∂py
uxu

2
y −

∂I3

∂py
u3
y),

(7.9)

∂I1

∂px
= (

6

mF
− 6px
mF 2

2p3
x

F
− 90

p4
x

mF 3

+ 3
18p5

x

mF 4

2p3
x

F
+

108p8
x

mF 5
− 5

12p9
x

mF 6

2p3
x

F

=
6

mF
− 102p4

x

mF 3
+

216p8
x

mF 5
− 120p12

x

mF 7
,

(7.10)
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∂I1

∂py
= − 6px

mF 2

2mε0py
F

+ 3
18p5

x

mF 4

2mε0py
F

− 5
12p9

x

mF 6

2mε0py
F

= −12ε0pxpy
F 3

+
108ε0p

5
xpy

F 5
− 120ε0p

9
xpy

F 7
,

(7.11)

∂I2
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24ε0pxpy
F 3

− 3
12ε0p

2
xpy

F 4
× 2p3

x

F
− 24ε06p5

xpy
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F 3
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+
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F 7
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(7.12)
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12ε0p
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F 3
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2
xpy

F 4
× 2mε0py

F

− 24ε0p
6
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F 5
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6
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6
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(7.13)

∂I3

∂px
= 6ε0p2x

F 3 − 12ε0p6x
F 5 −

36mε20p
2
xp

2
y

F 5 +
120mε20p

6
xp

2
y

F 6 , (7.14)

∂I3

∂py
= −36mε20p

3
xpy

F 5
+

120m2ε30p
3
xp

3
y

F 7
. (7.15)

Now the first- and the third-order velocity in the x direction are obtained by

v(1)
x = G(1)

x = (
3p2

x

mF
− 2p6

x

mF 3
)ux −

2ε0p
3
xpy

F 3
uy, (7.16)

v(3)
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y.

(7.17)

(b) velocity expansion in the y direction

vy =
∂ε

∂Py
=
Py
H
. (7.18)
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Similarly, we calculate the total differential of vy up to the third-order
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(7.24)

∂I3

∂px
= −36mε20p

3
xpy

F 5 +
120m2ε30p

3
xp

3
y

F 7 , (7.25)
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∂I3
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=
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(7.26)

The first- and the third-order velocity in the y direction are obtained by

v(1)
y = −pyε0

F 2

2p3
x

F
ux + (

ε0
F
− pyε0
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F

)uy
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ux + (
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2
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)uy,

(7.27)
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F 7
)u3

y.

(7.28)
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A.2 Density of states for Nodal-ring semimetals

The energy momentum dispersion of nodal-ring is given by

ε = ±
√
k2
x + (

√
k2
y + k2

z ± b)2. (7.29)

At the beginning, we only discuss the branch that forms nodal ring i.e.,

ε =

√
k2
x + (

√
k2
y + k2

z − b)2. (7.30)

In a spherical coordinate system, kx, ky and kz can be written as

ky = ksin(θ)cos(φ),

kz = ksin(θ)sin(φ), (7.31)

kx = kcos(θ).

Plugging them into Eq. 7.30, we get

ε =
√
k2 + b2 − 2kbsin(θ). (7.32)

ε2 = k2 + b2 − 2kbsin(θ) = (k − bsin(θ))2 + b2 − b2sin2(θ)

= (k − bsin(θ))2 + b2cos2(θ).
(7.33)

Therefore, k can be written as

k± = bsin(θ)±
√
ε2 − b2cos2(θ). (7.34)

In spherical coordinates, k is always a non-negative real number, which requires

ε2 − b2cos2(θ) > 0. (7.35)

In this sense, |cosθ| < ε/b can make sure k = bsin(θ) +
√
ε2 − b2cos2(θ) is meaningful.

To make sure k2 = bsin(θ)−
√
ε2 − b2cos2(θ) is meaningful, it further requires,

bsin(θ)−
√
ε2 − b2cos2(θ) > 0. (7.36)

This results ε < b. Overall, for ε < b and |cos(θ)| < ε/b,

k± = bsin(θ)±
√
ε2 − b2cos2(θ). (7.37)
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For ε > b and |cos(θ)| < ε/b,

k = bsin(θ) +
√
ε2 − b2cos2(θ). (7.38)

Now, we are going to evaluate density of states of nodal ring system. According to

its definition, density of states can be calculated by,

g(ε) = 2
1

(2π)3

∫ ∫ ∫
δ(ε− ε(kx, ky, kz))dkxdkydkz

= 2
1

(2π)3

∫ ∫ ∫
δ(ε−

√
k2 + b2 − 2kbsin(θ))

× k2sin(θ)dθdφdk

=
1

2π2

∫ ∫
δ(ε−

√
k2 + b2 − 2kbsin(θ))k2sin(θ)dθdk.

(7.39)

Let h(k) = ε−
√
k2 + b2 − 2kbsin(θ) = 0. Then,

|h′(k)| = |2k − 2bsin(θ)|
2
√
k2 + b2 − 2kbsin(θ)

=
|k − bsin(θ)|

ε
. (7.40)

As we have discussed before, h(k) = 0 has two roots when ε < b, and it has one root

when ε > b. When ε < b, the density of states can be calculated by,

g(ε) =
1

2π2

∫ ∫
δ(ε−

√
k2 + b2 − 2kbsin(θ))k2sin(θ)dθdk

=
1

2π2

∫
1

|h′(k1)|
k2

1sin(θ)dθ +
1

2π2

∫
1

|h′(k2)|
k2

2sin(θ)dθ

= I1 + I2,

(7.41)
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where I1 can be calculated by

I1 =
1

2π2

∫
1

|h′(k1)|
k2

1sin(θ)dθ =
1

2π2

∫
ε
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(7.42)

As mentioned above, |cos(θ)| ≤ ε/b results in θ ∈ [arccos(ε/b), π - arccos(ε/b)], where
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arccos(-ε/b) = π - arccos(ε/b). Thus I1 can be written as

I1 =
ε

2π2

∫ −ε/b
ε/b
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.

(7.43)

Where I2 can be calculated by

I2 =
1

2π2

∫
1

|g′(k2)|
k2

2sin(θ)dθ

=
1

2π2

∫
ε

|k2 − bsin(θ)|
k2

2sin(θ)dθ

=
1

2π2

∫
ε

|bsin(θ)−
√
ε2 − b2cos2(θ)− bsin(θ)|

× [bsin(θ)−
√
ε2 − b2cos2(θ)]2sin(θ)dθ

=
1

2π2

∫
ε√

ε2 − b2cos2(θ)
[bsin(θ)−

√
ε2 − b2cos2(θ)]2sin(θ)dθ

=
ε

2π2

∫
−[

b2 + ε2√
ε2 − b2cos2(θ)

− 2b2cos2(θ)√
ε2 − b2cos2(θ)

]dcos(θ)

−
∫

ε

2π2
2bsin2(θ)dθ,

(7.44)
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I2 =
ε

2π2

∫ −ε/b
ε/b

−[
b2 + ε2√
ε2 − b2x2

− 2b2x2

√
ε2 − b2x2

]dx−
∫ π−arccos(ε/b)

arccos(ε/b)

ε

2π2
2bsin2(θ)dθ

=
ε

2π2
[−b

2 + ε2

b
(−π/2) +

ε2

b
(−π)]

+
bε

2π2
[π − 2arccos(ε/b)− 2ε√

ε2 + b2
]

=
bε

2π
+
bε

π2
arccos(

ε

b
)− bε2

π2
√
ε2 + b2

.

(7.45)

Therefore, g(ε) = bε
π

for ε < b. When ε ≤ b, f(k) = 0 only has one root

k1 = bsin(θ) +
√
ε2 − b2cos2(θ), (7.46)

where θ ∈ [0, π].

g(ε) =
1

2π2

∫
1

|h′(k1)|
k2

1sin(θ)dθ

=
ε

2π2

∫
[

b2 + ε2√
ε2 − b2cos2(θ)

− 2b2cos2(θ)√
ε2 − b2cos2(θ)

+ 2bsin(θ)]sin(θ)dθ

=
ε

2π2

∫ −1

1

[− b2 + ε2

b
√
ε2/b2 − x2

+
2bx2√

ε2/b2 − x2
]dx

+

∫ π

0

ε

2π2
2bsin2(θ)dθ

=
ε

2π2
[−b

2 + ε2

b
arcsin(

bx

ε
) + 2b[−1

2
x
√
ε2/b2 − x2

+
1

2
(
ε

b
)2arcsin(

bx

ε
)]]|−1

1 +
bε

2π2
[θ − sin(θ)cos(θ)]|π0

=
ε

2π2
[−b

2 + ε2

b
arcsin(−b

ε
)× 2

+ 2b[
1

2

√
ε2/b2 − 1× 2 +

1

2
(
ε

b
)2arcsin(−b

ε
)× 2]] +

bε

2π2
[π − 0]

=
ε

2π2
[2
b2 + ε2

b
arcsin(

b

ε
) + 2b[

√
ε2/b2 − 1− (

ε

b
)2arcsin(

b

ε
)]] +

bε

2π

=
bε

π2
arcsin(

b

ε
) +

ε

π2

√
ε2 − b2 +

bε

2π
.

(7.47)

Therefore, the density of states for the upper branch is given by

g1(ε) =


bε
π

ε < b.

bε
π2 arcsin( b

ε
) + ε

π2

√
ε2 − b2 + bε

2π
ε ≥ b.

(7.48)
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When ε = b, g(ε) = bε
π2 × π

2
+ bε

2π
= bε

π
indicates that the density of states is continuous. If

we set b = 0, then g(ε) = ε2

π2 agrees well with the density of states of 3D Dirac materials.

Now we discuss another energy momentum branch i.e.,

ε =

√
k2
x + (

√
k2
y + k2

z + b)2 =
√
k2 + b2 + 2kbsin(θ), (7.49)

ε2 = k2 + b2 + 2kbsin(θ) = (k + bsin(θ))2 + b2 − b2sin2(θ)

= (k + bsin(θ))2 + b2cos2(θ).
(7.50)

Therefore, k can be written as

k± = −bsin(θ)±
√
ε2 − b2cos2(θ). (7.51)

In spherical coordinates, k is always a non-negative real number. Therefore, only

k1 = −bsin(θ) +
√
ε2 − b2cos2(θ) may meet the requirement and it further requires√

ε2 − b2cos2(θ) > bsin(θ) i.e., ε > b. This makes (ε2 − b2cos2(θ)) always greater than

zero, where θ ∈ [0, π]. Let f(k) = ε−
√
k2 + b2 + 2kbsin(θ) = 0, then f ′(k) = k+bsin(θ)

ε
.

The density of states can be obtained by

g(ε) =
1

2π2

∫
1

|f ′(k1)|
k2

1sin(θ)dθ =
1

2π2

∫
ε

|k1 + bsin(θ)|
k2

1sin(θ)dθ

=
1

2π2

∫
ε

| − bsin(θ) +
√
ε2 − b2cos2(θ) + bsin(θ)|

[−bsin(θ)

+
√
ε2 − b2cos2(θ)]2sin(θ)dθ

=
ε

2π2

∫
[

b2 + ε2√
ε2 − b2cos2(θ)

− 2b2cos2(θ)√
ε2 − b2cos2(θ)

− 2bsin(θ)]sin(θ)dθ

=
ε

2π2
[−b

2 + ε2

b
arcsin(

bx

ε
) + 2b[−1

2
x
√
ε2/b2 − x2

+
1

2
(
ε

b
)2arcsin(

bx

ε
)]]|−1

1 −
bε

2π2
[θ − sin(θ)cos(θ)]|π0

=
ε

2π2
[2
b2 + ε2

b
arcsin(

b

ε
) + 2b[

√
ε2/b2 − 1

− (
ε

b
)2arcsin(

b

ε
)]]− bε

2π

=
bε

π2
arcsin(

b

ε
) +

ε

π2

√
ε2 − b2 − bε

2π
.

(7.52)

Therefore, the density of states for the whole system is given by

g(ε) =


bε
π

ε < b,

2bε
π2 arcsin( b

ε
) + 2ε

π2

√
ε2 − b2 ε ≥ b.

(7.53)
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Figure 7.1: The density of states for nodal-ring system.

When ε = b, g(ε) = 2bε
π2 × π

2
= bε

π
indicates that the density of states is continuous. The

density of states is plotted in Fig. 7.1.
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A.3 The third-order current in graphene

The low energy-momentum dispersion of graphene is

ε = h̄kvF = h̄
√
p2
x + p2

y. (7.54)

By using the energy-momentum dispersion, we obtained the third-order

velocity in the x-direction as

v(3)
x = vF

6 (− 3
p3 + 18p2x

p5 −
15p4x
p7 )u3

x

= 6 cos2 θ−5 cos4(θ)−1
2p3 )u3

xvF . (7.55)

Graphene is an isotropic system. Therefore we can safely set uy = 0 to

simple the calculations. The third-order current at T = 0 K is calculated

by

J3 = 4e

∫ ∫
v(3)(Θ(ε)−Θ(ε−∆))dkxdky

= 4e

∫ ∫
6 cos2 θ − 5 cos4 θ − 1

6p3
)
u3
xvF

h̄2 (Θ(ε)−Θ(ε−∆))dpxdpy

= 4e

∫ ∫
6 cos2 θ − 5 cos4 θ − 1

2p3
)
u3
xvF

h̄2 (Θ(ε)−Θ(ε−∆))pdθdp

=
2ev2

Fu
3
x

h̄2

∫ µ

µ−∆

∫ 2π

0

6 cos2 θ − 5 cos4 θ − 1

ε2
)dθdε

= (18π − 8)
evFu

3
x∆

h̄2µ(µ−∆)
≈ 12e4v2

FE
3∆

h̄2µ2ω3
,

(7.56)

where the factor 4 is for spin and valley degree, and ∆ is far less than µ.
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A.4 Math tools used in the main text

(a) Coordinate systems

For a three dimensional space coordinate system, there are three independent coor-

dinate variables u1, u2 and u3. Take Cartesian coordinate system for example, u1 = x,

u2 = y and u3 = z.

In spherical coordinates, u1 = r, u2 = φ and u3 = θ, where r the length of coordinate

vector, φ is the angle between z axis and the vector, θ is the angle between x axis and

the xy plane projection of r. The relationship between those two coordinate systems

are

x = rsin(θ)cos(φ), (7.57)

y = rsin(θ)sin(φ), (7.58)

z = rcos(θ). (7.59)

In spherical coordinates, coordinate axises have different unit such as length and angle.

To overcome this, a parameter called metric coefficient is introduced,

hn =

√
(
∂x1

∂un
)2 + (

∂x2

∂un
)2 + (

∂x3

∂un
)2. (7.60)

For Cartesian coordinate system, h1 = h2 = h3 = 1, while for spherical coordinates,

h1 = 1, h2 = r and h3 = rsin(θ). In Cartesian coordinate system, potential gradient

can be written as

∇V =
∂V

∂l1
ê1 +

∂V

∂l2
ê2 +

∂V

∂l3
ê3 =

∂V

∂x
êx +

∂V

∂y
êy +

∂V

∂z
êz, (7.61)

where ln = hndun. In spherical coordinates, potential gradient can be written as

∇V =
∂V

∂r
êr +

∂V

r∂θ
êθ +

∂V

rsin(θ)∂φ
êφ. (7.62)

(b) Integal formulas

Skills for integraling the imaginary part of optical conductivity.

Im

∫ ∞
0

f(x)

g(x)
= π

∑
x0

f(x0)

|g′(x0)|
, (7.63)

where g(x0) = 0 and x0 > 0. For example,

Im

∫ ∞
0

x+ x2

x2 − a2
= π

∑
x0

f(x0)

|g′(x0)|
=
a+ a2

2a
π =

1 + a

2
π. (7.64)
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Figure 7.2: Low energy spectra of Dirac and Weyl semimetals.

Cauchy principles intergal.

We want to evaluate I =
∫∞

0
sin(x)
x

that contains a singular pole at x = 0. Hence,

Cauchy’s integral principle is needed, which is given by∮
sin(z)

z
=

∫ −ε
−∞

sin(z)

z
+

∫
Cm

sin(z)

z
+

∫ ∞
ε

sin(z)

z
+

∫
Cr

sin(z)

z
. (7.65)

Then the target intergal is written by

I =
1

2

∫ ∞
−∞

sin(z)

z
=

1

2
[

∮
sin(z)

z
−

∫
Cm

sin(z)

z
−
∫
Cr

sin(z)

z
]

=
1

2
[I1 − I2 − I3].

(7.66)

There are two paths to evaluate the intergal Fig.7.3(a) and (b). Firstly, we consider

the situation (a), where I1 =
∮ sin(z)

z
= 0 due to no singular polar inside the intergal

path, I2 =
∫
Cr

sin(z)
z

= 0 and I3 is caculated by

I3 =

∫
Cm

sin(z)

z
= limε→0

∫
Cm

Imeiz

εeiθ
εeiθidθ = Imlimε→0

∫
Cm

eiεe
iθ

idθ

= Im

∫
Cm

idθ = Im

∫ 0

π

= −π.
(7.67)

Thus, I = 0.5π.

The second situation is slightly different from the first one, where I1 = Im eiz

z
=

Im2πiRes eiz

0
= 2π, I2 = 0 and I3 = Im

∫ 2π

π
= π. Therefore, I still equals to 0.5π

agreeing with the first situation.

Some integral formulae. ∫ ∞
m

e−cxdx =
1

c
e−cm. (7.68)
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0

Cr

Cm

0

Cr

Cm

(a) (b)

Figure 7.3: Cauchy principle intergral for sin (x)/x.

∫ ∞
m

xe−cxdx = (
m

c
+

1

c2
)e−cm. (7.69)

∫ ∞
m

x2e−cxdx = (
m2

c
+

2m

c2
+

2

c3
)e−cm. (7.70)

∫ ∞
m

x3e−cxdx = (
m3

c
+

3m2

c2
+

6m

c3
+

6

c4
)e−cm. (7.71)

∫ ∞
m

x4e−cxdx = (
m4

c
+

4m3

c2
+

12m2

c3
+

24m

c4
+

24

c4
)e−cm. (7.72)

(c) Ways to calculate velocity along one direction

For single layer graphene, the Hamiltonian can be written as

H = h̄vF

 0 kx − iky
kx + ky 0

 . (7.73)

The eigenvalues and corresponding wavefunctions are obtained by ε =±h̄vFk and Ψ(r)±

= 1√
2
(eiφ,±1).

1. Obtaining vx from energy

vx =
∂ε

∂px
=
h̄vF∂

√
k2
x + k2

y

h̄∂kx
= vf

kx√
k2
x + k2

y

= vF cos(φ). (7.74)

where φ is the angle between kx and ky.

2. Obtaining vx from wave function
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vx =< Ψ∗|v̂x|Ψ >, (7.75)

where v̂x = ∂H
h̄∂kx

can be written as

v̂x = vF

 0 1

1 0

 . (7.76)

vx =< Ψ∗|v̂x|Ψ >=
vF
2

(e−iφ, 1)

 0 1

1 0

 (eiφ, 1)T =
vF
2

(eiφ + e−iφ) = vF cos(φ).

(7.77)

(d) Density of states

1. two dimensional conversional materials.

D(ε0) =
g

(2π)2

∫ ∞
0

2πkδ[ε(k)− ε(k0)]dk =
g

2π

k

|ε′(k0)|
=

m

πh̄2 , (7.78)

where g = 2 is spin degeneracy and ε(k) = h̄2k2/(2m).

2. three dimensional conversional materials.

D(ε0) =
g

(2π)3

∫ ∞
0

4πk2δ[ε(k)− ε(k0)]dk =
g

2π2

k2

|ε′(k0)|
=

(2m)3/2

2π2h̄3

√
ε. (7.79)

3. two dimensional Dirac materials.

D(ε0) =
g

(2π)2

∫ ∞
0

2πkδ[ε(k)− ε(k0)]dk =
g

2π

k

γ
=

ε

πγ2
, (7.80)

where ε(k) = γk and |ε′(k)| = γ.

4. three dimensional Dirac materials.

D(ε0) =
g

(2π)3

∫ ∞
0

4πk2δ[ε(k)− ε(k0)]dk =
g

2π2

k2

γ
=

ε2

π2γ3
. (7.81)

Therefore, the densiy of states of three dimensional mateirals changes more quickly with

energy than that of two dimensional materials and it changes more quickly in Dirac

system than in convensional systems.
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