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BackgroundBackground Dietary fish oil provides polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) and 
is associated with modified oxygen consumption, contractile fatigue and physiological responses to 
ischaemia or hypoxia in striated muscle. This study systematically investigated the membrane 
incorporation of fatty acids, with a focus on DHA, into skeletal muscle in relation to functional/metabolic 
differences and their responsiveness to fish oil doses. MethodsMethods Male Sprague-Dawley rats were 
randomised to isoenergetic diets (10% fat by weight). Human Western-style diets were simulated with 
5.5% tallow, 2.5% n-6 PUFA sunflower seed oil and 2% olive oil (Control). High-DHA tuna oil exchanged for 
olive oil provided a Low (0.32%) or moderate (Mod) (1.25%) fish oil diet. Membrane phospholipid fatty 
acid composition was analysed in samples of five skeletal muscles selected for maximum variation in 
muscle fibre-type. ResultsResults Concentrations of DHA varied according to muscle fibre type, very strongly 

associated with fast oxidative glycolytic fibre population (r2 = 0.93; P < 0.01). No relationship was evident 
between DHA and fast glycolytic or slow oxidative fibre populations. Fish oil diets increased membrane 
incorporation of DHA in all muscles, mainly at the expense of n-6 PUFA linoleic and arachidonic acid. 
ConclusionConclusion The exquisite responsiveness of all skeletal muscles to as little fish oil as the equivalent of 1-2 
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supports an integral role for DHA in muscle physiology, and particularly in fatigue resistance of fast-twitch 
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Highlights: 

 Mapping muscle membrane fatty acid and fibre type correlations within the 

rat. 

 DHA incorporation strongly associated with fast oxidative glycolytic muscle 

fibres. 

 DHA is incorporated at the expense of n-6 PUFA linoleic and arachidonic 

acid. 

 Preferential incorporation highlights integral role of DHA in contractile cells. 
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ABSTRACT 

Background: Dietary fish oil provides polyunsaturated fatty acid (PUFA) 

docosahexaenoic acid (DHA) and is associated with modified oxygen consumption, 

contractile fatigue and physiological responses to ischaemia or hypoxia in striated 

muscle. This study systematically investigated the membrane incorporation of fatty 

acids, with a focus on DHA, into skeletal muscle in relation to functional/metabolic 

differences and their responsiveness to fish oil doses.  

Methods: Male Sprague-Dawley rats were randomised to isoenergetic diets (10% fat 

by weight). Human Western-style diets were simulated with 5.5% tallow, 2.5% n-6 

PUFA sunflower seed oil and 2% olive oil (Control). High-DHA tuna oil exchanged for 

olive oil provided a Low (0.32%) or moderate (Mod) (1.25%) fish oil diet. Membrane 

phospholipid fatty acid composition was analysed in samples of five skeletal muscles 

selected for maximum variation in muscle fibre-type.  

Results: Concentrations of DHA varied according to muscle fibre type, very strongly 

associated with fast oxidative glycolytic fibre population (r2 = 0.93; P < 0.01). No 

relationship was evident between DHA and fast glycolytic or slow oxidative fibre 

populations. Fish oil diets increased membrane incorporation of DHA in all muscles, 

mainly at the expense of n-6 PUFA linoleic and arachidonic acid.  

Conclusion: The exquisite responsiveness of all skeletal muscles to as little fish oil 

as the equivalent of 1-2 fish meals per week in a human diet and the selective 

relationship to fatigable muscle fibre-types supports an integral role for DHA in 

muscle physiology, and particularly in fatigue resistance of fast-twitch muscles. 

 
Key words:  
Polyunsaturated fatty acids; omega-3; contractile fatigue; fast oxidative glycolytic; 
fast-twitch muscle  
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Summary: 

Skeletal muscle fibres vary according to structural, metabolic and neurological 

characteristics and ultimately influences contractile function. This study sort to 

determine if the composition of phospholipid polyunsaturated fatty acids (PUFA), 

incorporated in their membranes, might also differ according to fibre type and when 

omega-3 PUFA are made available in the diet. We systematically demonstrated that 

the omega-3 PUFA, docosahexaenoic acid (DHA), incorporated into skeletal muscle 

membranes well above its provision in the diet and without competitive influence of 

high omega-6 PUFA concentrations, typical to the Western-style human diet. 

Notably, incorporation preferentially occurred according to metabolic characteristics 

of each muscle, supporting the notion that DHA plays an integral role in fast 

oxidative glycolytic muscle fibres.  
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1. INTRODUCTION 

Skeletal muscles vary according to their different contractile roles, physiological 

and metabolic characteristics which enables a vast array of tasks [1]. For that 

reason, based upon contractile function, skeletal muscle fibres are often termed slow 

oxidative (SO), fast oxidative glycolytic (FOG) or fast glycolytic (FG) fibres, reflecting 

the range of contractile fatigue resistance [2]. Comparative physiology studies have 

demonstrated that certain animals have a propensity for rapid and powerful force 

production or prolonged endurance capacity [3]. Of primary interest to the current 

investigation, is that the composition of phospholipid polyunsaturated fatty acids in 

skeletal muscle cell membranes seem to be associated with contractile function [4, 

5]. However, until now, there has been no comprehensive within species study that 

has sought to determine if membrane phospholipid fatty acid composition of skeletal 

muscle is related to the fibre type.  

In animals, membrane unsaturation has been reported to vary according to 

skeletal muscle contractile function. For example, in the European hare, with a fast-

maximal running speed, the skeletal muscle membranes contain a high degree of 

unsaturation [6]. In fact, across species the maximal running speed of an animal has 

been positively associated with omega-6 polyunsaturated fatty acid (n-6 PUFA)1 

membrane content [4]. However, in contrast, there is a high concentration of long 

chain omega-3 polyunsaturated fatty acid (LCn-3PUFA) docosahexaenoic acid 

(22:6n-3; DHA) found in the rattlesnake tail and hummingbird wing skeletal muscles, 

each with the specialised high-speed characteristics and the additional capacity for 

repeated force production over protracted durations [5]. Most notably, this same 

                                                
1
 Abbreviations: n-6 PUFA, omega-6 polyunsaturated fatty acids; LCn-3PUFA, long chain omega-3 polyunsaturated fatty acids; 

16:0, palmitic acid; 18:0, stearic acid; 18:1n-9, oleic acid; 18:2n-6, linoleic acid (LA); 18:3n-3, α-linolenic acid (ALA); 20:4n-6, 
arachidonic acid (AA); 20:5n-3, eicosapentaenoic acid (EPA); 22:5n-3, docosapentaenoic acid (DPA); 22:6n-3, 
docosahexaenoic acid (DHA); SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; SO, slow oxidative; FG, fast 

oxidative; FOG, fast oxidative glycolytic. 
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propensity for higher concentration of membrane DHA is found within skeletal 

muscles of rats that have enhanced contraction speed requirements, such as in 

mixed fast oxidative glycolytic and fast glycolytic fibre types gastrocnemius muscle 

[7-9]. Yet, surprisingly there has been limited within species fibre type comparisons 

of membrane phospholipid composition, where rats are the ideal model given that 

the skeletal muscle fibre type profile of the rat hindlimb is well-established [10, 11]. 

Therefore, the first objective of the current study was to sample a wide range of 

skeletal muscles from the rat hindlimb and determine if certain fatty acids are more 

likely to concentrate according to fibre type.      

Notwithstanding the potential of the contractile stimuli to modify skeletal muscle 

membrane phospholipids, it is the modification of fatty acids in the diet that produces 

the most effective changes [12]. Skeletal muscle membrane phospholipids maintain 

relatively constant saturated fatty acid and mono-unsaturated fatty acid 

concentrations, independent to dietary manipulation. Additionally, when small 

changes are made to dietary n-6 PUFA content, membrane phospholipid 

concentrations remain unperturbed [13] and large increases in dietary linoleic acid 

(18:2n-6; LA) only produce small changes in membrane n-6 PUFA [14]. In contrast, 

when pre-formed eicosapentaenoic acid (20:5n-3; EPA) and DHA are added to the 

diet via fish oil, membrane phospholipids are very responsive, particularly DHA 

concentrations [13]. This suggests that in most dietary studies, tissue requirements 

for n-6 PUFA are fully met whereas those for LCn-3PUFA are not. Therefore, the 

second objective of the current study was to determine if the provision of DHA-rich 

dietary achievable fish oil doses, could augment the incorporation of DHA into a 

range of skeletal muscles and according to fibre type distribution. Collectively, this 

study tested the hypothesis that membrane phospholipid, in particular DHA 
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incorporation into skeletal muscle, is related to fibre type of the muscle and can be 

further manipulated by the provision of a DHA-rich fish oil. 
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2. MATERIALS AND METHODS 

2.1. Ethical standards: 

Experiments were approved by the Animal Care and Ethics Committee from the 

University of Wollongong and were performed in accordance with the ethical 

standards laid down in the 1964 Declaration of Helsinki and its later amendments. 

2.2. Animals and study design. 

Thirty-two Sprague Dawley rats (Male; 8-10 weeks of age; baseline body mass: 

428 ± 10 g) were used for the study. Animals were housed two per cage in the 

institution’s animal facility with a room temperature maintained at 23oC-25oC and a 

12-hour light-dark cycle. Animals were allowed ad libitum access to regular lab chow 

for a minimum of 1 week prior to being placed on the pre-fabricated diets in a 

randomised manner and allowed ad libitum access to the diet and water for 4-5 

weeks. The animals in this study were a subgroup of animals that underwent in vivo 

cardiac physiological experiments under anaesthetic (pentobarbital: 60 mg/kg I.P). 

As such, tissue collection occurred immediately following physiological experiments 

and animal euthanasia (rapid exsanguination and removal of the heart). 

2.3. Diet Composition. 

Three diets were carefully prepared. A control diet (Control) and two experimental 

diets that provided a low dose of fish oil (Low) and a moderate dose of fish oil (Mod). 

The pre-fabricated diets were developed for use in similar feeding studies [13]. All 

diets contained 10% fat, 50% carbohydrate and 20% protein by weight, plus minerals 

and vitamins based on the American Institute of Nutrition AIN-93M diet [15], differing 

only in the fatty acid composition making up the total fat. Four sources of fats and 

oils were used to provide the total 10% of fat in the diet. The specific mix of oils 

(5.5% beef tallow, 2.5% n-6 PUFA rich sunflower seed oil, 2.5% olive oil) aimed to 
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replicate the high amounts of saturated fatty acids and n-6 PUFA found in a typical 

Western-style diet. Extra light (refined) olive oil was provided, therefore free of most 

antioxidant polyphenols commonly present in less refined oils. The Low and Mod fish 

oil diets were prepared by substituting 0.31% and 1.25% fish oil, respectively, for 

olive oil using DHA-rich tuna oil (26% DHA and 7% EPA) (Nu-Mega Ingredients Pty 

Ltd, Sydney, Australia). The final fat composition of each diet is outlined in Table 1. 

The prefabricated diets were prepared using purified ingredients and stored at -20ºC.  

2.4. Tissue collection. 

A pre-determined selection of skeletal muscles with varied populations of slow 

oxidative, fast oxidative glycolytic and fast glycolytic fibre types, according to 

Armstrong et al., (1984), were carefully dissected from the left thigh and lower limb. 

The soleus was chosen as a muscle with a predominance of slow oxidative fibres, 

the rectus femoris white and extensor digitorum longus were chosen as examples of 

muscles with predominantly fast glycolytic fibres and the rectus femoris red and 

gastrocnemius red were chosen as examples of muscles with predominantly fast 

oxidative glycolytic fibres. Each dissection was weighed to the nearest milligram, 

freeze-clamped using liquid nitrogen and stored (-80oC) until fatty acid analysis. 

Individual hindlimb skeletal muscles were anatomically referenced to the upper 

hindlimb or lower hindlimb and categorised into fibre type groups (slow oxidative, fast 

glycolytic, fast oxidative glycolytic) to allow calculations of total mass.  

2.5. Membrane phospholipid fatty acid analysis. 

The methods used for membrane fatty acid analysis have been described 

previously [16-18]. In brief, 100–150 mg of tissue was weighed and homogenised in 

a chloroform–methanol mixture (2:1, v/v) (analytical grade, Thermo-Fisher Scientific, 

North Ryde, Australia; Sigma-Aldrich, Castle Hill, Australia). Steps were taken for 
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acidified total lipid extraction using 1 M - H2SO4 (Sigma-Aldrich), solid phase 

phospholipid separation via silica Sep-Pak® columns (Waters, Sutton, MA, USA), 

transesterification of phospholipid fatty acids using 14% boron trifluoride in methanol 

([Sigma-Aldrich] stored at 0–4°C) heated at 85°C for 1 h, purification via Sep-Pak® 

Florisil columns (Waters) using diethyl ether (5%) (Fluka; Sigma-Aldrich) in 

petroleum spirit (7 mL) (Fluka; Sigma-Aldrich) and finally GC (Shimadzu GC-17A, 

30 m × 0·25 mm internal diameter capillary column, total run time 23 min; Shimadzu, 

Rydalmere, Australia). All solvents were freshly prepared at the time of analysis and 

contained 0·01% (w/v) butylated hydroxytoluene (Sigma-Aldrich). Individual fatty 

acids were identified by comparison with the known standards in the laboratory. The 

relative amount of each fatty acid was determined by integrating the area under the 

peak and dividing by the result for all fatty acids detected. 

2.6. Statistical analysis. 

For investigation of correlations between membrane fatty acid content and the 

population of muscle fibre type, we used published data on mean muscle fibre 

composition, in which contents of the same set of muscles from the same strain of 

rats as investigated in our current study was provided [10]. To investigate 

relationships independent of diet, correlations were conducted within the Control 

group only. Pearson’s r was used to assess the strength and direction of 

relationships between membrane phospholipid fatty acid concentration and 

population of muscle fibre type. Membrane phospholipid fatty acid composition data 

were analysed using a one-way ANOVA. When an effect of dietary treatment was 

detected, post-hoc comparisons were completed with the Bonferroni procedure. All 

statistical analyses were performed using Statistix for Windows (Statistix for 

Windows; Analytical Software). For all comparisons, statistical significance was 
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accepted for Type I error of P < 0.05.  Data was reported as mean ± standard error 

of the mean (SEM).  

mzingel
Sticky Note
None set by mzingel

mzingel
Sticky Note
MigrationNone set by mzingel

mzingel
Sticky Note
Unmarked set by mzingel



           

12 

 

3. RESULTS 

3.1. Membrane phospholipid fatty acid correlation with fibre type population. 

When correlations were calculated according to the population of fast oxidative 

glycolytic fibre type typical for each muscle (Fig. 1), there was an extremely strong 

positive correlation with the concentration of DHA . In contrast, arachidonic acid (AA) 

demonstrated a moderate negative correlation with the population of fast oxidative 

glycolytic muscle fibres . No other relationships were evident for any other fatty acids 

measured in correlation to fast oxidative glycolytic fibre type population. When 

correlations were calculated according to the population of fast glycolytic fibre type 

(Fig. 2), LA demonstrated a very strong negative correlation . In contrast, α-linolenic 

acid (18:3n-3; ALA) demonstrated a strong positive  and docosapentaenoic acid 

demonstrated a moderate positive  correlation with fast glycolytic muscle fibres. No 

other relationships were evident for any other fatty acids measured in correlation to 

fast glycolytic fibre type population. When correlations were calculated according to 

the population of slow oxidative fibre type (Fig. 3), LA demonstrated a strong positive 

correlation . No other relationships were evident for any other fatty acids measured 

in correlation to slow oxidative fibre type population. Correlations for EPA were 

unable to be calculated for any fibre type as it was not detected in enough samples.   

3.2. Effect of diet on muscle mass and membrane phospholipid fatty acids. 

There was no effect of dietary treatment on the mean mass of any of the 

individual muscles measured (Table 1) including when muscle mass was analysed 

according to total upper hindlimb (Control, 2.97 ±0.15 g; Low, 3.08 ±0.19 g; Mod, 

3.20 ±0.17 g; P > 0.05) or lower hindlimb weight (Control, 3.39 ±0.12 g; Low: 3.31 

±0.07 g; Mod: 3.33 ±0.27 g; P > 0.05). Across all tissues following supplementation, 

the fish oil diets produced several marked differences in membrane phospholipid 

mzingel
Sticky Note
None set by mzingel

mzingel
Sticky Note
MigrationNone set by mzingel

mzingel
Sticky Note
Unmarked set by mzingel



           

13 

 

fatty acid concentrations (Table 1). In all muscles, total LCn-3PUFA concentration 

were significantly higher in a dose-related manner in the Low and Mod fish oil groups 

compared to Control. Elevated LCn-3PUFA concentrations were predominantly 

attributable to significantly greater DHA incorporation across all muscles compared 

to Control. In the Control diet, the lowest concentrations of DHA were observed in 

the soleus and the greatest concentrations were observed in the gastrocnemius red. 

With fish oil diets, DHA increased in all muscles in a dose-related manner, the linear 

relationship with the population of fast oxidative glycolytic fibre type remained 

evident but it became progressively weaker (Fig. 4). Increasing DHA concentrations 

were associated with a dose-related lower total n-6 PUFA concentration with 

significantly lower concentrations of AA across all tissues of fish oil fed groups. The 

concentration of LA was lower in all muscles of the Mod fish oil group compared to 

the Control group. These changes in muscle phospholipid composition were 

reflected in significantly lower n-6:n-3 ratios across all muscles in the Low and Mod 

fish oil groups.   
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4. DISCUSSION 

This study confirmed DHA as the principal LCn-3PUFA and AA as the principal n-

6 PUFA, which together contribute a major proportion of the total PUFA present in all 

skeletal muscles. However, for the first time we demonstrate that while DHA is highly 

incorporated into membrane phospholipid of all skeletal muscle, it is preferentially 

integrated into muscles of the rat hindlimb that have a greater population of fast 

oxidative glycolytic fibres. Furthermore, supplementing DHA-rich fish oil caused 

skeletal muscle membrane phospholipids to avidly incorporate even higher 

concentrations of DHA (in exchange for n-6 PUFA: AA & LA). The other marine 

derived LCn-3PUFA in muscle membrane, docosapentaenoic acid (DPA), was 

consistently present in higher concentrations than EPA in Control animals and 

showed a moderate positive correlation with fast glycolytic fibres but no consistent 

pattern of change with fish oil feeding. In combination, the preferential incorporation 

of DHA into skeletal muscle, and further into muscles with high populations of fast 

oxidative glycolytic fibres, provides novel structural evidence of an integral role for 

DHA in contractile cells [5] including the cardiomyocyte [19]. 

4.1. Relationship between membrane fatty acids and skeletal muscle fibre type. 

In the current study, DHA was increasingly incorporated into muscle membrane 

phospholipid according to relative populations of fast oxidative glycolytic fibre type, 

characteristic of fast-twitch fatigable muscle. Despite reports of a relationship 

between omega-6 PUFA content of skeletal muscle and maximum running speed 

across species [4], this study did not reveal any similar relationship between omega-

6 PUFA and muscle fibre type within the one species. Fast reacting muscles such as 

the rectus femoris red, with high populations of fast oxidative glycolytic fibres, have an 

extensive network of sarcoplasmic reticulum for the rapid distribution and reuptake of 
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Ca2+ by the sarcoplasmic reticulum Ca2+-ATPase pump. Abnormalities of Ca2+ 

regulation in skeletal muscle tissue causes contractile dysfunction [20]. Noteworthy, 

in the cardiomyocyte, both the sarcoplasmic reticulum Ca2+-ATPase pump-mediated 

Ca2+ reuptake and ryanodine receptor-mediated Ca2+ release are modulated by 

membrane DHA [19]. Paradoxically, sarcoplasmic reticulum function is impaired in 

association with decreased omega-6 to omega-3 ratio when very low dietary intakes 

of omega-6 drives a small decrease in membrane linoleic acid and a simultaneous 

small increase in α-linolenic acid derived membrane DHA [21]. This contrasts to the 

effects of direct dietary inclusion of DHA on sarcoplasmic reticulum function [22]. As 

such, it is plausible that preferential incorporation of DHA into muscles with high 

populations of rapid-twitch fast oxidative glycolytic fibres is linked to the ability of 

DHA to modulate Ca2+ regulation, leading to dietary-modulated fatigue resistance [7]. 

Indeed, intracellular Ca2+ handling is implicated in DHA modulated cardiac function, 

oxygen consumption and arrhythmia vulnerability [23]. Thus, DHA incorporation 

would facilitate more rapid contractile function and fatigue resistance across all 

muscle types, including myocardium.  

Comparative physiology studies support this notion with DHA concentrated in 

membrane phospholipids of skeletal muscles that frequently experience low oxygen 

environments [24, 25], and in rapid-twitch muscles [5]. Further evidence of the 

adaptive incorporation of DHA to facilitate activity of highly excitable cells comes 

from the contrasting effects of between-species membrane DHA differences and 

dietary induced membrane DHA differences within a species. Allometric analysis 

describes metabolic rate, oxygen consumption, and heart rate comparatively 

increased as species body size decreases. Membrane DHA increases as species 

body size decreases [26]. However, a causative link between DHA and metabolism 
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is contradicted by effects of dietary induced increases in DHA slowing heart rate and 

metabolism in many species [27]. Furthermore, dietary fish oil has been 

demonstrated to enhance oxygen efficiency in heart [23], mixed fibre skeletal muscle 

[8] and during whole body exercise [28, 29]. In heart, which is resistant to beat to 

beat fatigue and devoid of these highly fatigable fast oxidative glycolytic muscle 

fibres, the enhanced oxygen efficiency is expressed as functional improvement only 

when the heart is under stress, such as during or following myocardial ischaemia 

[23, 30] or in heart failure [31].  

In skeletal muscle, the improved oxygen efficiency is expressed under less 

extreme conditions than the heart, during normal physiological function, as 

contractile fatigue resistance [7] and better recovery between bouts of contraction 

[8], especially in the fast responses attributable to fast oxidative glycolytic muscle 

fibres. Furthermore, when physiological stress is increased, as in skeletal muscle 

hypoxia, provision of DHA in the diet has been demonstrated to attenuate the 

reduction in contractile force [32]. Together, this suggests that phospholipid 

membrane incorporation of DHA from fish oil is integral to maintaining contractile cell 

performance (cardiac and skeletal), particularly during conditions where oxygen  

availability is challenged. 

The differential incorporation of DHA and other fatty acids reflects the different 

membrane composition of muscle fibre types, with varying contributions of 

subcellular lipid membranes (SR content, mitochondrial content) according to their 

physiological / metabolic function. In turn, these organelles and the external 

sarcolemmal membrane have characteristic phospholipid make up. Fatty acid 

incorporation from dietary lipids vary markedly between phospholipid types, with 

DHA incorporated much more into phosphatidylethanolamine than into 
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phosphatidylcholine, and cardiolipin [33]. However, while diets alter fatty acid 

composition of individual and total phospholipids, diets do not affect the phospholipid 

distribution within a tissue [34]. 

4.2. The effect of fish oil on skeletal muscle mass. 

There was no evidence of catabolic or anabolic properties associated with fish oil 

supplementation from the skeletal muscle mass measured in healthy animals from 

this study. Provision of LCn-3PUFA, DHA and EPA, are reported to modify skeletal 

muscle mass in healthy elderly subjects with [35] or without resistance training [36]. 

However, the evidence provided of an anabolic effect of fish oil supplementation in 

these studies is when the skeletal muscles are in a state of decay e.g., sarcopenia 

associated with ageing rather than a healthy state, which is likely why they contrast 

to the current findings of this study. This is in line with animal studies which 

demonstrate attenuation of muscle mass loss during cachetic cancer model [37], 

burn injury model [38] and an immobilisation model [39]. Several recent human 

studies have also come to similar conclusions that fish oil supplementation results in 

an anti-catabolic rather than an anabolic effect in skeletal muscle [40, 41], 

particularly in older individuals [42]. Notably, these observations of attenuated 

muscle mass loss, have been achieved with supra-therapeutic doses of fish oil which 

are not realistically achievable in the habitual human diet. Given the increased 

phospholipid membrane LCn-3PUFA incorporation demonstrated in the current study 

using much lower doses, further research is warranted to determine if a dietary 

achievable dose of DHA-rich fish oil can alleviate skeletal muscle atrophy.  

4.3. The effect of fish oil on skeletal muscle membrane phospholipid fatty acids. 

It is well established that feeding a DHA-rich fish oil to rats modifies skeletal 

muscle membranes to incorporate high DHA concentrations [7, 43]. The doses of 
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fish oil that generated such marked responses in this rat study, at 0.31% and 1.25% 

of the diet by weight, were equivalent in dietary energy terms to quantities that a 70 

kg person on 8700 kJ daily energy intake could reasonably expect to obtain from the 

diet, by either habitual consumption of oily fish or supplement capsules (Low fish oil: 

1-2 x ~125 g salmon portions per week; Mod fish oil: 6 fish oil capsules per day [13]). 

Muscle tissue with the highest proportion of fast oxidative fibre type were least 

responsive to dietary fish oil as fish oil intake increased. This most likely indicates 

that the high fast oxidative glycolytic, high DHA red muscle components of 

gastrocnemius and rectus femoris were approaching saturation point, in line with the 

maximum incorporation of DHA achieved using much higher fish oil doses [8].  

Previous animal studies investigating the effects of fish oils have either used 

doses that are far beyond what could realistically be achieved in a human diet [8, 43] 

or used realistic doses but either much lower or much higher concentrations of n-6 

PUFA in the background diet [7, 13]. Whereas, a typical Western-style diet contains 

high amounts of saturated fatty acids and n-6 PUFA and very little pre-formed LCn-

3PUFA [44], as could also be implied from global erythrocyte EPA+DHA levels [45]. 

This study therefore confirms previous reports that the dose of LCn-3PUFA and not 

the dietary n-6:n-3 PUFA ratio is critical for LCn-3PUFA membrane phospholipid 

incorporation [13, 46]. 

4.4. Conclusions. 

This study confirmed that DHA is avidly incorporated into all skeletal muscle, well 

above its provision in the diet, without competition from dietary n-6 PUFA or adverse 

influence of dietary saturated fat. Additionally, DHA was increasingly incorporated 

into muscle membrane phospholipid according to relative populations of fast 

oxidative glycolytic fibre type, characteristic of repeatedly powerful contractile 
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function. Incorporation occurred from doses of fish oil achievable in a human diet 

against background dietary saturated fatty acids and n-6 PUFA typical of a Western 

diet. The preferential incorporation of DHA into muscle, and further into muscles with 

high populations of fast oxidative glycolytic fibres provides evidence, for the first 

time, that links to the consistent physiological observations of an integral role for 

DHA in the attenuation of muscle fatigue [7, 32]. Further investigation is warranted to 

determine if fish oil modifies contractile function uniformly across striated muscles 

(including heart), regardless of fibre type proportion, or is more effective in the 

presence of a high proportion of a particular fibre type. The outcomes of such 

research could inform dietary translational studies, using DHA-rich fish oil, in 

populations experiencing augmented skeletal muscular fatigue and exercise 

intolerance.  
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Tables: 

 
Table 1. Fat sources and concentration of major fatty acids of experimental diets, and the effect of diet on phospholipid fatty acid 
composition and skeletal muscle mass. 

  Fatty acid profile  
(% fat in diet) 

Relative proportion (%) of phospholipid membrane fatty acids 

  
Soleus Rectus femoris (white) 

 

 Diet Fibre pop (%): SO: 87; FG: 0; FOG: 13 Fibre pop (%): SO: 1; FG: 74; FOG: 25 

  
Control Low Mod Control Low Mod P Control Low Mod P 

 

16:0 17.2 17.5 18.4 13 ± 0.2 14 ± 0.6 14 ± 0.5 
 

22 ± 0.4 22 ± 0.2 22 ± 0.1 
 

 
18:0 12.1 12.1 12.4 20 ± 0.1 19 ± 0.3 18 ± 0.2* 0.03 14 ± 0.3 14 ± 0.5 14 ± 0.1 

 

 
18:1n-9 41 39.1 33.4 9.7 ± 0.2 9.9 ± 0.9 7.9 ± 0.2 0.07 8.7 ± 0.1 7.1 ± .09* 7.6 ± 0.1* <0.01 

 
18:2n-6 (LA) 19.3 19.1 18.4 22 ± 0.5 19 ± 0.3 18 ± 0.7* 0.01 15 ± 0.3 13 ± 0.6* 12 ± .07* < 0.01 

 
18:3n-3 (ALA) 0.5 0.55 0.56 0.7 ± .02 0.6 ± .01* 0.6 ± .02 0.01 0.9 ± .05 0.8 ± .03 0.8 ± .03 

 

 
20:4n-6 (AA) 0.02 0.08 0.24 17 ± 0.2 13 ± 0.4* 11 ± 0.6*† < 0.01 17 ± 0.6 15 ± 0.1* 13 ± 0.3*† < 0.01 

 
20:5n-3 (EPA) - 0.22 0.87 ND ND 0.5 ± .09*† < 0.01 ND 0.1 ± .01* 0.4 ± .09*† < 0.01 

 
22:5n-3 (DPA) - 0.03 0.14 1.7 ± 0.1 1.6 ± 0.1 1.7 ± 0.1 

 
2.5 ± 0.3 2.3 ± 0.1 1.7 ± 0.3* 0.04 

 
22:6n-3 (DHA) - 0.89 3.61 8.3 ± 0.1 14 ± 0.2* 19 ± 0.7*† < 0.01 8.5 ± 0.2 14 ± 0.4* 20 ± 0.3*† < 0.01 

Σ 

SFA 32.2 32.7 34.3 37 ± 0.2 38 ± 0.4 38 ± 0.3 
 

42 ± 0.9 44 ± 0.6 41 ± 0.1 
 

MUFA 43.7 42.1 37 13 ± 0.3 13 ± 1.2 11 ± 0.3 
 

13 ± 0.2 11 ± 0.2* 11 ± .09* 0.02 

PUFA 19.9 20.9 23.9 49 ± 0.4 48 ± 1.4 51 ± 0.6 
 

45 ± 0.9 45 ± 0.7 48 ± 0.2* 0.03 

n-6 PUFA 19.4 19.2 18.7 38 ± 0.4 32 ± 1.3* 29 ± 1.1* < 0.05 33 ± 0.6 28 ± 0.5* 24 ± 0.2*† < 0.01 

n-3 PUFA 0.55 1.69 5.17 11 ± 0.1 16 ± 0.4* 22 ± 0.7*† < 0.01 12 ± 0.4 17 ± 0.4* 23 ± 0.2*† < 0.01 

EPA + DHA - 1.11 4.48 8.3 ± 0.1 14 ± 0.2* 19 ± 0.7*† < 0.01 8.5 ± 0.2 14 ± 0.4* 21 ± 0.2*† < 0.01 

 
n-6:n-3 35.4 11.3 3.62 3.5 ± .07 2.0 ± .07* 1.3 ± .09*† < 0.01 2.7 ± .06 1.6 ± .04* 1.0 ± .02*† < 0.01 

 

Tissue Mass (g)     0.19 ± .03 0.18 ± .03 0.22 ± .04 > 0.05 0.30 ± .02 0.29 ± .01 0.29 ± .03 > 0.05 

  Relative proportion (%) of phospholipid membrane fatty acids 
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Table 1. cont. 
Abbreviations: 16:0, palmitic acid; 18:0, stearic acid; 18:1n-9, oleic acid; 18:2n-6, linoleic acid (LA); 18:3n-3, α-linolenic acid (ALA); 20:4n-6, 
arachidonic acid (AA); 20:5n-3, eicosapentaenoic acid (EPA); 22:5n-3, docosapentaenoic acid (DPA); 22:6n-3, docosahexaenoic acid (DHA); 
SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; pop, population; SO, slow oxidative; FG, fast 
oxidative; FOG, fast oxidative glycolytic. Fatty acid concentrations as determined by gas chromatography. Muscle fibre composition previously 

published in Armstrong & Phelps (1984). Values are mean ± SEM (n = 4 – 5 per group). ND = Not Detected. a = Only detected in 3 samples. b = 
Only detected in 2 samples. Some individual fatty acids were not present “-“ in dietary fats and oils. *P < 0.05 vs Control diet within tissue. †P < 

0.05 vs Low diet within tissue (One-way ANOVA with Bonferroni post-hoc test). 

  
Extensor digitorum longus Rectus femoris (red) Gastrocnemius (red) 

  

Fibre pop (%): SO: 2; FG: 56; FOG: 42 Fibre pop (%): SO: 7; FG: 40; FOG: 53 Fibre pop (%) SO: 30; FG: 8; FOG: 62 

  
Control Low Mod P Control Low Mod P Control Low Mod P  

 
16:0 20 ± 0.3 21 ± 0.5 20 ± 0.1 

 
15 ± 0.3 17 ± 0.5 16 ± 0.5 

 
16 ± 0.4 16 ± 0.2 17 ± 0.5 

 

 
18:0 18 ± 0.5 17 ± 0.2 17 ± 0.2 

 
18 ± 0.4 18 ± 0.9 17 ± 0.2 

 
17 ± 0.4 16 ± 0.3 17 ± 0.2 

 

 
18:1n-9 8.2 ± 0.2 7.0 ± .08 7.9 ± 0.2 

 
7.4 ± 0.2 8.0 ± 0.2 7.1 (0.3 

 
8.3 ± 0.2 7.6 ± .04 7.6 ± 0.2 

 

 
18:2n-6 (LA) 18 ± 0.5 17 ± 0.7 15 ± 0.3 

 
20 ± 0.7 18 ± 0.1 18 ± 0.8* 0.03 20 ± 0.8 18 ± 0.7 16 ± 0.4* 0.01 

 
18:3n-3 (ALA) 0.7 ± .05 0.7 ± .04 0.7 ± .02 

 
0.6 ± .04 0.7 ± .03 0.5 ± .02* 0.02 0.7 ± .03 0.6 ± .07* 0.5± .07*† < 0.01 

 
20:4n-6 (AA) 16 ± 0.2 13 ± 0.4* 9.9 ± 0.2*† < 0.01 16 ± 0.2 12 ± 0.3* 9.3 ±0.5*† < 0.01 16 ± 0.4 12 ± 0.1* 9.4 ±0.3*† < 0.01 

 
20:5n-3 (EPA) b

.03 ± .02 0.1 ± .04* 0.5 ± .04*† < 0.01 ND 
a
0.3 ± .02 0.5 ± .06* < 0.05 0.1 ± .01 0.3 ± .01* 0.5± .06*† < 0.01 

 
22:5n-3 (DPA) 1.6 ± .09 1.7 ± .05 1.6 ± .04 

 
1.7 ± 0.1 1.7 ± 0.1 1.4 ± 0.1 

 
1.9 ± 0.1 1.6 ± 0.1 1.3 ± 0.1* 0.02 

 
22:6n-3 (DHA) 11 ± 0.2 16 ± 1.1* 21 ± 0.4*† < 0.01 11 ± 0.3 16 ± 0.2* 22 ± 0.6*† < 0.01 13 ± 0.2 19 ± 0.2* 23 ± 0.5*† < 0.01 

Σ 

SFA 41 ± 0.3 41 ± 0.4 40 ± 0.2 
 

38 ± 0.3 39 ± 0.6 38 ± 0.5 
 

38 ± 0.2 37 ± 0.3 39 ± 0.7 
 

MUFA 12 ± 0.2 10 ± 0.2 11 ± 0.2 
 

11 ± 0.1 12 ± 0.4 10 ± 0.4 
 

11 ± 0.2 10 ± 0.1* 10 ± 0.3* < 0.01 

PUFA 47 ± 0.5 49 ± 0.5 49 ± 0.4* 0.05 50 ± 0.2 49 ± 0.5 51 ± 0.8† 0.02 51 ± 0.3 52 ± 0.4 51 ± 0.7 
 

n-6 PUFA 33 ± 0.3 30 ± 0.8* 25 ± 0.2*† < 0.01 37 ± 0.5 30 ± 0.3* 27 ± 0.8*† < 0.01 36 ± 0.5 30 ± 0.6* 25 ± 0.7*† < 0.01 

n-3 PUFA 13 ± 0.1 18 ± 1.0* 23 ± 0.5*† < 0.01 14 ± 0.4 18 ± 0.3* 24 ± 0.5*† < 0.01 15 ± 0.2 22 ± 0.1* 25 ± 0.5*† < 0.01 

EPA + DHA 11 ± 0.2 16 ± 1.1* 21 ± 0.4*† < 0.01 11 ± 0.3 16 ± 0.3* 22 ± 0.6*† < 0.01 13 ± 0.2 20 ± 0.2* 24 ± 0.5*† < 0.01 

 
n-6:n-3 2.5 ± .02 1.6 ± 0.1* 1.1 ± .03*† < 0.01 2.6 ± 0.1 1.6 ± .03* 1.1 ± .05*† < 0.01 2.3 ± .06 1.3 ± .04* 1.0 ±.04*† < 0.01 

Tissue Mass (g) 0.19 ± .01 0.17 ± .02 0.20 ± .01 > 0.05 0.27 ± .03  0.25 ± .02 0.31 ± .03 > 0.05 0.23 ± .03 0.24 ± .01 0.29 ± .04 > 0.05 
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Figure captions: 

 

Fig. 1. Fatty acid correlations (n=4-6 per muscle) calculated according to the 

population of fast oxidative glycolytic fibre type typical for each muscle collected from 
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within the same animal. Correlations (Pearson’s r) were completed using previously 

published data on mean muscle fibre composition, in which contents of the same set 

of muscles from the same strain of rats as investigated in our current study were 

used (Armstrong and Phelps, 1984). To investigate relationships independent of diet, 

correlation analysis was conducted within the Control group only. Abbreviations: 

LA, Linoleic acid; AA, Arachidonic acid; ALA, α-linolenic acid; DPA, 

Docosapentaenoic acid; DHA, Docosahexaenoic acid. 
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Fig. 2. Fatty acid correlations (n=4-6 per muscle) calculated according to the 

population of fast glycolytic fibre type typical for each muscle collected from within 

the same animal. Correlations (Pearson’s r) were completed using previously 
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published data on mean muscle fibre composition, in which contents of the same set 

of muscles from the same strain of rats as investigated in our current study were 

used (Armstrong and Phelps, 1984). To investigate relationships independent of diet, 

correlation analysis was conducted within the Control group only. Abbreviations: 

LA, Linoleic acid; AA, Arachidonic acid; ALA, α-linolenic acid; DPA, 

Docosapentaenoic acid; DHA, Docosahexaenoic acid.  
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Fig. 3. Fatty acid correlations (n=4-6 per muscle) calculated according to the 

population of slow oxidative fibre type typical for each muscle collected from within 

the same animal. Correlations (Pearson’s r) were completed using previously 

published data on mean muscle fibre composition, in which contents of the same set 
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of muscles from the same strain of rats as investigated in our current study were 

used (Armstrong and Phelps, 1984). To investigate relationships independent of diet, 

correlation analysis was conducted within the Control group only. Abbreviations: 

LA, Linoleic acid; AA, Arachidonic acid; ALA, α-linolenic acid; DPA, 

Docosapentaenoic acid; DHA, Docosahexaenoic acid. 

 

Fig. 4: Effect of fish oil diets on the relationship between DHA concentration and the 

population of fast oxidative glycolytic fibres in different muscles. Muscle fibre 

composition previously published in Armstrong & Phelps (1984). Soleus, 13%; 

Rectus femoris (white), 25%; Extensor digitorum longus, 42%; Rectus femoris (red), 

53%; Gastrocnemius (red), 62%. 
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