

 Said Abdirahman Mohamed

ONLINE RECRUITMENT APPLICATION

Technology and Communication

 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/286448088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOWLEDGEMENTS

I would like to thank to VAMK for providing with me the opportunity to study at

this prestigious University. I would also like to express my gratitude to my

supervisor, Dr. Ghodrat Moghadampour, for his support, patience, and advice

throughout the thesis work.

Nobody has been more important to me in the pursuit of this project than the

members of my family. I would like to thank my parents, whose love and guidance

are with me in whatever I pursue. They are the ultimate role models. Most

importantly, I wish to thank my loving and supportive wife, and my wonderful

children, who provide unending inspiration.

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Said Abdirahman Mohamed

Title Online Recruitment Application

Year 2019

Language English

Pages 47

Name of Supervisor Ghodrat Mohgadampour

The purpose of this thesis was to develop an online recruitment application through

which two ends can meet. The ends are freshly-graduated jobseekers and employers.

This project introduces the best possible ways possible how a jobseeker can apply

for a job and view his/her applied jobs through the system. At the same time the

system provides the employers with a channel to post their vacancies in their efforts

of hunting new employees and checking if there is any application to their posted

jobs. apply for jobs.

The following four major parts were designed and implemented. Firstly, the

analysis phase the overall direction of the project was identified. Secondly, the

design of the graphical user interface was implemented. Thirdly, a MySQL database

that connects and communicates with spring boot was built to store all required data.

Finally, Thymeleaf which is a modern server-side java templete engine was written

to display the data in a human-friendly way to the users of this application.

The core features of this application for employers are posting jobs, editing jobs,

deleting jobs and viewing applications. Other core features for jobseekers are

viewing listed jobs in the system and applying for available jobs. In this application

almost any employer can post a job online, the process is clear, easy to understand,

less timewasting and user-friendly. Conversely, the process is very simple for

jobseekers too, it makes quick and painless to apply for jobs.

Keywords Spring boot, MySQL,Bootstrap,Thymeleaf, Online Recruitment

Application

CONTENTS

ABSTRACT

1 INTRODUCTION... 1

2 REVELANT TECHNOLOGIES ... 2

2.1 Java Programming Language ... 2

2.1.1 Object-Oriented Programming .. 3

2.3 Spring Boot ... 3

2.3.1 Spring Initializr ... 4

2.4 Thymeleaf ... 5

2.4.1 Using Thymeleaf .. 6

2.4.2 Thymeleaf Standard Dialect .. 6

2.5 Bootstrap ... 7

2.6 MySQL.. 8

2.7 Eclipse IDE ... 9

3. APPLICATION DESCRIPTIONS .. 11

3.1 Quality Function Deployment .. 11

3.1.1 Normal Requirements (Must Have)... 11

3.1.2 Expected Requirements(Should Have) .. 12

3.1.3 Optional Requirements(Nice To Have).. 12

3.2 Use Case Diagram ... 12

3.2.1 Job Seeker Use Case ... 12

3.2.2 Job Seeker Login Review ... 13

3.2.3 Job Seeker View Jobs Review ... 14

3.2.4 Job Seeker Apply to Job Review ... 14

3.2.5 Job Seeker View Applied Jobs Review .. 15

3.2.6 Employer Use Case... 15

3.2.7 Employer Login Review ... 16

3.2.8 Employer Add Job Review.. 16

3.2.10 Employer Edit and Delete Jobs Review... 17

3.2.11 Employer View Applicants Review ... 18

3.3 Sequence Diagram ... 18

3.3.1 User Login Sequence Diagram ... 19

3.3.2 Add Job Sequence Diagram ... 19

3.3.3 View Job Sequence Diagram .. 20

3.3.4 Apply Job Sequence Diagram .. 21

3.3.5 Update Job Sequence Diagram ... 21

3.3.4 Delete Job Sequence Diagram .. 22

4. DATABASE AND GUI DESIGN ... 23

4.1 Database Design .. 23

4.2 Database Configuration.. 24

4.3 Launch Page .. 25

4.4 Employer Home Page .. 26

4.5 Jobseeker Home Page .. 27

5. IMPLEMENTATION ... 28

5.1 Spring Boot Application (Main Method) .. 28

5.2 Employer Controller .. 29

5.3 Add Job ... 30

5.4 View Job .. 31

5.5 Implementing Update and Delete Job ... 32

5.6 Apply Job .. 33

5.7 View Applications .. 34

5.8 Security Configuration ... 35

6. TESTING... 37

6.1 Employer Registration Page ... 37

6.2 Jobseeker and Employer Login Page .. 38

6.3 Add Job ... 38

6.4 Show Jobs .. 39

6.5 Jobseeker Registration Page ... 40

6.6 Jobseeker Show Jobs Page ... 41

6.7 Jobseeker Apply Job Page .. 41

6.8 Applications... 42

7. CONCLUSION .. 43

7.1 Future work ... 43

REFERENCES .. 44

LIST OF ABBREVIATIONS

HTML Hyper Text Markup Language

CSS Cascading Style Sheet

JAVA EE Java Platform Enterprise Edition

SQL Structured Query Language

IDE Integrated Development Environment

API Application Programming Interface

SDK Software Development Kit

GUI Graphical User Interface

ER Entity Relationship

VAMK Vaasan Ammattikorkeakoulu

UI User Interface

URL Uniform Resource Locator

HTTP Hypertext Transfer Protocol

JDBC Java Database Connectivity

UML Unified Modeling Language

LIST OF FIGURES AND CODE SNIPPETS

Figure 1. Spring Initializr UI..5

Figure 2. Job seeker use case diagram..13

Figure 3. Jobseeker Login Use Case..13

Figure 4. Jobseeker view jobs use case...14

Figure 5. Jobseeker apply to job use case..14

Figure 6. Jobseeker view applied jobs use case...15

Figure 7. Employer use case diagram..15

Figure 8. Employer login use case...16

Figure 9. Employer add job use case...16

Figure 10. Employer view job use case...17

Figure 11. Employer edit and delete job use case..17

Figure 12. Employer view applicants use case..18

Figure 13. Employer login sequence diagram...19

Figure 14. Add job sequence diagram...20

Figure 15. View job sequence diagram...20

Figure 16. Apply job sequence diagram..21

Figure 17. Update job sequence diagram..22

Figure 18. Apply job sequence diagram..22

Figure 19. Database design model..24

Figure 20. Launch page...26

Figure 21. Employer home page...26

Figure 22. Jobseeker home page...27

Figure 23. Employer registration page..37

Figure 24. Success registration message...38

Figure 25. Login page...38

Figure 26. Add job page..39

Figure 27. Employer registration page..40

Figure 28. Jobseeker registration page..40

Figure 29. Jobseeker show jobs page..41

Figure 30. Apply to Job...42

Figure 31. Applications...42

Code Snippet 1. Database configuration and communication..............................25

Code Snippet 2. Main method of the application..28

Code Snippet 3. Employer registration code..29

Code Snippet 4. add job code..30

Code Snippet 5. View job code...31

Code Snippet 6. Delete and update job code...32

Code Snippet 7. Apply job code..33

Code Snippet 8. View applications code...34

Code Snippet 9. Security Configuration code...35

1

1 INTRODUCTION

Somalia is an underdeveloped country in East Africa. The country suffered from

civil wars for a long time and the recruitment process is very slow. With that being

said, the country's telecommunication infrastructure is strong when compared with

other countries in the region, such as Ethiopia and Djibouti. Somalia is one of the

first East African countries that used Electronic Virtual Cash (EVC). /1/

The internet is a trend worldwide. In Somalia, more and more users are gaining

internet access every day. On a visit to the country, I discovered that an online

recruitment application would help Somali employers to gain a huge potential pool

of applicants. I then decided to develop an application for Somali Organization in

order to help them in the recruitment process. Employers and Jobseekers can use

Online Recruitment Application with its full functionality.

Recruitment is the process of finding and recruiting the best qualified applicant

from within or outside a company for job opening, in a timely and cost-effective

manner. The recruitment process includes determining the requirements of a job,

attracting candidates to that position, evaluating and selecting applicants, hiring and

integrating the new employee into the organisation./2/

The first objective of this project is to build a common meeting ground for freshly-

graduated job seekers and the employers where candidates find their dream jobs

and recruiters hunt the right candidates. The second objective is that this recruitment

application must be easy to use and secure at the same time.

This study contains five chapters. Chapter 1 introduces the study by outlining the

background of the thesis. It states the objective that the research is set to achieve

and explains the research problem and research questions. Chapter 2 reviews

relevant literature for the research which includes: the technologies and tools used

to build this application. Chapter 3 outlines the research methodology. In Chapter

4, the researcher designs the application’s GUI and database. Chapter 5 explains

some of the implementation part of the application. Chapter 6 describes the test

cases of all features of this application. In Chapter 7, conclusions are given.

2

2 REVELANT TECHNOLOGIES

This chapter explains tools and technlogies used to achieve the aim of the project,

some of which are Java Programming Language Spring Boot, Bootstrap,

Thymeleaf, MySQL and Eclipse IDE.

2.1 Java Programming Language

Java was originally developed by James Gosling at Sun Microsystems (which has

since been acquired by Oracle) and released in 1995 as a core component of Sun

Microsystems' Java platform. Java is a general-purpose programming language that

is class-based, object-oriented, and designed to have as few implementation

dependencies as possible. Java code can run on any Java supporting platform

without the need for recompilation. Java applications are usually compiled to

bytecodes that can run on any Java virtual machine (JVM) regardless of the

computer's underlying architecture. As of 2019, Java has continued to grow and

with an estimated 9 million developers it was one of the most common

programming languages in use according to GitHub, particularly for client-server

web applications. The Java language was created with five primary goals:

• It has to be simple, focused on the object, and familiar.

• It's must be robust and safe.

• It must be portable and architecture-neutral.

• It has to perform with high performance.

• It has to be interpreted, dynamic, and threaded.

One of the design goals of Java is portability, meaning that programs written for the

Java platform run on any combination of hardware and operating system with

adequate run time support. This is achieved by compiling the Java language code

to an intermediate representation called Java bytecode instead of directly to the

architecture-specific machine code./3/

3

2.1.1 Object-Oriented Programming

Java is an Object-oriented programming language (OOP). OOP is a methodology

or paradigm to design using classes and objects. An object is an entity in the real

world that has its own properties and behaviors, whereas classes are blueprints that

define an object.

2.3 Spring Boot

Spring framework has been around for over a decade and a half, the first edition

was written by Rod Johnson, who published the framework with his book Expert

One-on-One Design and Development in October 2002. The Spring Framework is

an application framework and inversion of control container for the Java platform.

Spring Framework provides structure and common patterns to make the process of

building applications easier.

The framework's features can be used by any Java application, but there are

extensions for building web applications on top of the Java Enterprise Edition (EE)

platform. The framework does not impose any specific programming model but, it

gives comprehensive infrastructure support for developing Java applications.

Spring Framework includes some good features and modules, such as Dependency

Injection and they provide a range of services. Some of these models are Spring

JDBC, Spring MVC, Spring Security, Spring AOP, Spring ORM, Spring Test,These

modules can reduce the development time of an application significantly. In the

early days of Java web development before Spring Framework was released, Java

developers needed to write a lot of boilerplate code to insert a record into a data

source. But by using the JDBCTemplate of the Spring JDBC module the process

has been reduced to a few lines of code with only some configurations./4/

Spring Boot is a project built at the top of the Spring Framework. It provides a

simpler and quicker way to setup, configure, and run applications that are both

simple and web based. It smartly chooses your dependencies, auto-configures all

the features required, and the application can be started with one click. Furthermore,

it also simplifies the deployment process of the application. Using Spring Boot the

4

process of writing a Java-Based web application becomes easy, first the application

needs to be packaged then run with a simple command, such as java -jar my-

application.jar. Spring Boot provides plugins to work with embedded and in-

memory databases very easily.

Spring Boot has the following core features that make it unique and easy to use:

1. Auto-configuration: Spring Boot can automatically provide configurations

based on the application being built.

2. Standalone: Spring-boot-starter provides all the required dependencies

needed and auto configurations to build standalone applications. The

application simply needs to be started by clicking a button or giving a run

command.

3. Opinionated: The framework helps developers to setup a working application

quickly by giving default configurations that are most likely to satisfy

developers./5/

2.3.1 Spring Initializr

Spring Initializr is a web-based tool to bootstrap a Spring Boot application. With

the assistance of Spring Initializr we can easily generate the structure of the Spring

Boot project. It provides extensible API to build projects based on JVM. It provides

the project with various options that are presented in a model of metadata. The

metadata model enables us to configure the list of JVM and platform for example,

version-supported dependencies, It represents the metadata in a well-known

allowing third-party clients to obtain the requisite assistance. It supports IDE STS,

IntelliJ IDEA Ultimate, NetBeans and Eclipse. The Spring Team has provided these

three approaches to create Spring Boot Application, using Spring Boot CLI Tool,

using Spring STS IDE and using Spring Initializr Website. The last approach Spring

Initializr UI has been used to create this Online Recruitment Application./6/ The

screenshot below displays the Spring Initializr UI.

5

Figure 1. Spring Initializr UI

A spring boot application can easily be bootstrapped by entering the kind of project,

language, the Spring boot version and project metadata in the Spring Initializr UI

fields and then clicking the Generate button. This will start packing the project and

download the selected Jar or War file.

2.4 Thymeleaf

Thymeleaf is a modern server-side Java template engine for rendering pages

(HTML5, XML, XHTML) for both web and standalone environments. It is open

source, free, and downloadable without difficulties. Thymeleaf is so simple to learn

and its syntax is easy to understand. Thymeleaf's main goal is to bring the

development workflow with beautiful natural templates – HTML that can be

viewed correctly in browsers and also act as static prototypes, allowing for better

collaboration in development teams. HTML templates written in Thymeleaf look

and work like HTML. Big companies all over the world are using Thymleaf such

as Across framework, Auchan Retail France, Sahibinden and PPI AG./7/

6

2.4.1 Using Thymeleaf

Thymeleaf is a library for Java. It is a template engine and capable of applying a set

of transformations to template files to display the data and/or text generated by the

applications. It is best suited to serve XHTML / HTML5 in web applications, but it

can process any XML file, whether in web applications or in standalone applications.

Thymeleaf's main goal is to create models in an elegant and well-formed way. To

achieve this, XML tags and attributes are used to define the execution of predefined

logic on the DOM (Document Object Model) instead of writing that logic explicitly

as code within the template.

Its architecture allows templates to be processed quickly, relying on smart caching

of parsed files to use as few I / O operations as possible during execution. Finally,

Thymeleaf has been designed with XML and Web standards in mind from the

beginning, allowing to create templates that are fully validated if required./8/

2.4.2 Thymeleaf Standard Dialect

Thymeleaf is an incredibly extensible template engine (actually it has to be best

referred to as a template engine framework) that enables the full description of the

DOM nodes to be transformed into templates and, in addition, how they are to be

processed.

An object that adds any common sense to a DOM node is known as a processor,

and a hard and quick of those processors — plus a few larger artifacts — is called

a dialect of which Thymeleaf's core library provides one out — the Standard Dialect,

which must be sufficient for a large percentage of users ' desires.

The Thymeleaf Standard Dialect can perfom templates in any mode, however it is

especially appropriate for web-oriented template modes (XHTML and HTML5

ones). Besides HTML5, it mainly supports and validates the following XHTML

specifications: XHTML 1.0 Transitional, XHTML 1.0 Strict, XHTML 1.0 Frameset,

and XHTML 1.1. Most of the processors of the Standard Dialect are characteristic

processors. This lets in browsers to successfully display XHTML/HTML5 template

documents even before being processed, because they will without a doubt ignore

7

the extra attributes. For example, while a JSP the usage of tag libraries could consist

of a fraction of code not at once displayable through a browser.

Thymeleaf's center is a tool for storing DOMs. In particular, it uses its own high-

performance DOM implementation— not the standard DOM API — to build in-

memory tree representations of templates on which it later operates through its

nodes and executes processors on them which modify the DOM according to the

current configuration and the collection of statistics passed to the temp.

The use of a DOM template representation makes it thoroughly suitable for net

programs due to the fact net files are very frequently represented as item timber; in

fact DOM trees are the manner browsers represent internet pages in reminiscence.

Also, building on the idea that most web applications use only a few dozen

templates, that these are no longer huge documents and they don not generally

change whilst the application is running, Thymeleaf’s utilization of an in-

reminiscence cache of parsed template DOM bushes permits it to be speedy in

manufacturing environments, Because most template processing operations require

very little I/O./8/

2.5 Bootstrap

Bootstrap is a free and open source front-end framework for designing websites and

web applications. It contains HTML and CSS-based design templates typography,

forms, buttons, navigation and other interface components. Bootstrap, originally

named Twitter Blueprint, was developed by Mark Otto and Jacob Thornton at

Twitter. Bootstrap 4 is the newest version of Bootstrap with new components, faster

stylesheet and more responsiveness. Bootstrap 4 supports the latest versions of all

major browsers. The most common components of Bootstrap are its layout

components, its basic layout component is called Container and every other element

in the page is put in it. The Container has four predefined fixed width, depending

on the size of the screen. Once a container is in place, other Bootstrap layout

components enforce a CSS grid layout through specifying rows and columns. /9/

8

Bootstrap helps us to make modern, sleek, responsive and mobile first websites. It

provides a solid basis for any website, regardless of the size of the project. It

includes Reboot, which is based on Normalize.css and helps level out browser

differences for different page elements. Here top four reasons that make Bootsrap

one of the most popular front-end frameworks on the web are explained:

The powerful Grid System: Bootstrap comes with one of the best mobile-first,

responsive grid systems. It's built with Flexbox, and its simple to use. While

developers have a CSS Grid layout for building models, the Bootstrap Grid section

can still be useful for fast prototyping.

Rapid Development: Bootstrap has many common CSS and JavaScript components

that can help any website achieve the desired functionality.

Browser Compatibility: Bootstrap supports all major browsers and platforms, with

the latest stable updates. By following Bootstrap’s instructions carefully, a website

design can be built that works fully in all those major browsers.

Open Source: Bootstrap is an open source project hosted on Github and published

under the license of MIT. This is one of the major reasons Bootstrap became famous.

As a developer there is no need deal with purchasing and licensing issues./10/

2.6 MySQL

MySQL is an open source relational database management system (RDBMS).

MySQL was developed by a Swedish company, MYSQL AB, founded by David

Axmark, Allan Larsson and Micheal Widenius. Original development of MySQL

launched in 1994 by Widenius and Axmark. MySQL’s first version came out on 23

May 1994. It is written in C and C++ and the last version of MySQL Server is 8.0

which was announced in April 2018. /11/

With over ten million installations. MySQL is the most popular database

management system. One reason for MySQL's success must be the fact that it can

be used with PHP and it is free. But it is also extremely powerful, fast and highly

scalable, which means that it can grow with the application. There are three different

9

ways in which a user can interract with MySQL: using a command line, via a web

interface such as phpMyAdmin, and through a programming language, such as Java.

The data in a MySQL database are stored in tables. A table is collection of related

data, and it consists of columns and rows. Since the 1980s, RDBMSs have been a

suitable choice for storing information, personnel data, and other applications.

Relational databases have often substituted traditional hierarchical databases and

network databases as they have been easier to implement and maintain.

The aim of using MySQL for this application is to make it possible to dynamically

pull contents from the database to create web pages for regular browser viewing.

So, at one end of the system we have a visitor to our application using a web browser

to request a page. That browser expects to receive standard HTML document in

return. One the other hand, we have the contents of our application, which is located

in one or more tables in a MySQL database that only understands how to respond

to SQL queries./12/

2.7 Eclipse IDE

Eclipse is an integrated framework (IDE) for the development of Java programming

language applications and other programming languages such as C / C++, Python,

and Ruby. The Eclipse architecture that provides the basis for the Eclipse IDE is

composed of plug-ins and is built with additional plug-ins to be extensible. The

software Eclipse can be used for the development of rich client applications,

integrated development environments and other tools. The Java Development Tools

(JDT) project offers a plug-in enabling for the use of Eclipse as a Java IDE. The

Eclipse Public License(EPL) is the license under which Eclipse projects are

released. EPL ensures that Eclipse is free to download and install, it also allows

Eclipse to be distributed. Since 2006, the Foundation releases new versions, the

newest version of Eclipse is 2019-12 which released 18 December 2019 /13/

Eclipse Foundation's mission is to enable development through the provision of

infrastructure (version control systems, code review systems, server building,

download sites, and a structured process. The Eclipse Foundation is not operating

10

on the basis of the Eclipse code, i.e. it has no employee developers working on

Eclipse projects.

Eclipse's open source community nowadays consists of over 150 projects covering

various aspects of software development. Eclipse projects, for example, host the

Jakarta EE project (formerly known as Java EE), the JavaScript development

framework and the Jetty webserver. As an Integrated Development Environment

(IDE) for Java, most people know Eclipse. The Eclipse IDE is Java's leading

development environment with a market share of approximately 40.5% in 2019.

There are several modules in the Eclipse IDE. The website of Eclipse.org provides

pre-packaged Eclipse distributions for typical use cases to provide downloads. The

distribution of the Eclipse IDE for Java Developers is specifically designed for

regular development of Java. This includes typical packages required, such as

Maven and Gradle build system support and Git version control system support./14/

11

3. APPLICATION DESCRIPTIONS

This chapter presents the detailed description of the project and its requirements.

This project has two main parts server-side, which is hidden from the users, and

client-side functionalities, which can be seen and used by the clients. Following,

the researcher covers on the client side in detail.

3.1 Quality Function Deployment

The following sections provide a detailed description of the application's key

features and functionalities. The properties are classified into three major categories:

Must-have, Should-have, and Nice-to-have. Must-have is any requirement that

absolutely has to be delivered for the project to be considered successful whereas

Nice-to-have are the complement of objectives or requirements that are considered

desired or even important the overall deliverable, but can be considered as optional

or nice-to-have in the overall completion of the project. These may alternatively be

classified as optional, non-critical or auxiliary requirements.

3.1.1 Normal Requirements (Must Have)

A job seeker must be able to:

1. Register his/her personal information into the system

2. Login with his/her registered username and password

3. See available jobs

4. Apply available jobs

The employer must be able to:

1. Register his/her personal information into the system

2. Login with his/her registered username and password

3. Post available jobs

4. See applicants who applied his/her open jobs

5. See the jobs his/her has posted

12

3.1.2 Expected Requirements(Should Have)

The system should be secure, reliable and at the sametime user friendly. Job seekers

and employers should be able to login with their existing username and password

easily and then play with the rest features on the system.

3.1.3 Optional Requirements(Nice To Have)

Job seekers can add their CV’s and resumes while applying for the job which can

be reviewed by the employer any time needed to proceed the application process.

Employers can store the information of the company like when it is founded, what

kind of projects they are working on and the work culture in their workplace.

3.2 Use Case Diagram

A use case is a structure for documenting the functional requirements for a system,

usually involving software. Each use case provides a set of scenarios that shows

how the system should interact with a human user or another system. In this project

there are two actors identified for this system - jobseeker and employer. They have

their own pages and to login they should use their existing email and password for

authentication which authorizes their existing data.

3.2.1 Job Seeker Use Case

The following figure shows the Jobseeker’s use case diagram. The diagram

describes how the Jobseeker interacts with the application and also shows all the

actions that the Jobseeker can perform on this application.

13

Figure 2. Job seeker use case diagram

The Jobseeker has these lists of use cases in details.

3.2.2 Job Seeker Login Review

Figure 3. Jobseeker Login Use Case

The Jobseeker’s login Description:

1. The system prompts the job seeker to enter his/her email and password

after clicking the job seeker’s page.

2. The Job seeker clicks the sign-in button.

3. The system verifies if the provided email and password are correct.

14

3.2.3 Job Seeker View Jobs Review

Figure 4. Jobseeker view jobs use case

1. The Jobseeker’s view jobs Description:

2. The Jobseeker clicks view jobs page.

3. The system lists all available jobs in detail.

3.2.4 Job Seeker Apply to Job Review

Figure 5. Jobseeker apply to job use case

The Jobseeker’s apply jobs Description:

1. The Job seeker clicks apply button to apply after sees his/her suitable job.

2. The system verifies the information and saves to the database.

3. The system returns the job seeker to the view jobs page.

15

3.2.5 Job Seeker View Applied Jobs Review

Figure 6. Jobseeker view applied jobs use case

The Job seeker’s applied jobs Description:

1. The Jobseeker clicks applied jobs button to see his/her applied vacancies.

2. The system fetches these data from the database and displays them in a user

friendly way.

3.2.6 Employer Use Case

The following figure shows the Employer use case diagram. The diagram presents

how the Employer deals with the application and also shows all the actions that

his/her can perform on this application. The Employer has two features more than

the job seeker, which are edit and delete jobs.

Figure 7. Employer use case diagram

16

The Employer has these lists of use cases in details.

3.2.7 Employer Login Review

Figure 8. Employer login use case

The Employer’s login Description:

1. The system prompts the employer to enter his/her email and password after

clicking the employer’s page.

2. The Employer clicks the sign-in button.

3. The system verifies if the provided email and password are correct.

3.2.8 Employer Add Job Review

Figure 9. Employer add job use case

The Employer’s add job Description:

1. The Employer clicks the addjob page in order to add available jobs into the

system.

2. The system prompts the employer to enter all necessary information about

adding new jobs

3. The system verifies provided information and then saves into the database.

17

4. The system returns the employer to the same page.

3.2.9 Employer View Jobs Review

Figure 10. Employer view job use case

The Employer’s see job Description:

1. The Employer clicks the view jobs page.

2. The system lists all jobs that the employer has already added into the system.

3. The Employer can edit or delete all his/her jobs on the same page.

3.2.10 Employer Edit and Delete Jobs Review

Figure 11. Employer edit and delete job use case

The Employer’s edit and delete job Description:

1. The Employer clicks view the jobs page and then clicks delete or edit icon.

2. The Employer clicks the delete icon, then the system deletes that particular

job from the database.

18

3. The Employer clicks the edit icon, then the system prompts the employer to

edit the information.

4. The system verifies the edited information and then saves into the database.

3.2.11 Employer View Applicants Review

Figure 12. Employer view applicants use case

The Employer’s view applicants Description:

1. The Employer clicks the view applicants page.

2. The system fetches all applicants from the database and displays them in a

user friendly way.

3.3 Sequence Diagram

The sequence diagram is a type of UML diagram that shows how objects in a system

or classes within a code interact with each other. Particularly these diagrams show

interactions in the order they take place. Messages in the sequence diagram show

the information being sent between the objects, the sequence diagrams show the

order of interactions or sequences.

19

3.3.1 User Login Sequence Diagram

The following sequence diagram describes how the user interacts with the login

instance on the application and how many steps must be taken before the user

proceeds with other features of the application.

Figure 13. Employer login sequence diagram

3.3.2 Add Job Sequence Diagram

The following sequence diagram explains how the employer interacts with the add

job feature in the application and how many steps must be taken in order to add data

to the system. The Employer fills the form and then clicks the submit button, the

controller will save the data into the database and then the server will show the

saved data to the employer.

20

Figure 14. Add job sequence diagram

3.3.3 View Job Sequence Diagram

This sequence diagram explains how the user views jobs in the system. It shows

how many steps must be taken to view available jobs. The user clicks the view jobs

page and then the controller will check the user’s role. If the user’s role is the

employer, the system displays only his/her posted jobs but, if the user’s role is the

job seeker the system displays all available jobs.

Figure 15. View job sequence diagram

21

3.3.4 Apply Job Sequence Diagram

The following sequence diagram explains how the employer interacts with the add

job feature on the application and how many steps must be taken in order to add

data to the system. The Employer fills the form and then clicks the submit button,

the controller will save the data into the database and then the server will show the

saved data to the employer.

Figure 16. Apply job sequence diagram

3.3.5 Update Job Sequence Diagram

The below sequence diagram briefly illustrates how an employer interacts with the

update job feature in the application and explains all the steps that must be taken in

order to update data in the system. The Employer clicks the job that he/she wants

to update then the system prompts that specific jobs form, then the employer

updates the form and then clicks the submit button. The controller will save the data

into the database and then the server will show the updated data to the employer.

22

Figure 17. Update job sequence diagram

3.3.4 Delete Job Sequence Diagram

This is a sequence diagram which shows the messages involved in deleting a job in

the application. The employer will click the delete job button, then the feature will

delete only that specific job in the database.

Figure 18. Apply job sequence diagram

23

4. DATABASE AND GUI DESIGN

This chapter will show us how the graphical user interface of the application was

implemented and how it was built and configured for the database. This online

recruitment application has a launch page for all and two different registration pages,

one for the employer and the other for jobseeker and login page. Thymeleaf and

Bootstrap were used to create the graphical user interface for this application.

4.1 Database Design

Database design is the process of producing a detailed data model of database and

involves classifying data and identifying relationships between tables. To model

and create a MySQL database, MySQL workbench was used. The model below

contains tables that hold all the information on the Online Recruitment Application.

The employers will be in the main table which will have all the information about

employers. The job table will have all the information about jobs while the

application table will have all the data related to the applications. There will be four

joining tables in this application which will be many-to-many relationships as many

jobseekers can have many jobs and vice versa.

24

Figure 19. Database design model

4.2 Database Configuration

Spring Boot provides ready-made auto configuration to create datasource beans

using application properties file. The code snippet below configuration shows how

the MySQL database was configured. The application properties file starts by

setting the path of the application and then specifies the database URL, which

basically represents the location of the database. It also specifies the database

username and password and some other configurations related to the applicaton.

When the application is executed, Spring Boot will read this file and creates the

data source bean.

25

The path of the application

server.servlet.context-path=/RecruitmentApplication

Connection url for the database

spring.datasource.url=jdbc:mysql://localhost/thesis_db

username and password for the databse

spring.datasource.username=root

spring.datasource.password=

show each sql queries

spring.jpa.show-sql=true

Hibernate ddl auto

spring.jpa.hibernate.ddl-auto=update

sql statements and parameters

logging.level.com.thesis.recruitment=TRACE

logging.level.org.hibernate.SQL=DEBUG

logging.level.org.hibernate.type.descriptor.sql.BasicBinder=TRACE

login level

logging.level.org.springframework.web=INFO

logging.level.org.hibernate=INFO

logging.file=../logs/mylog.log

Code Snippet 1. Database configuration and communication

4.3 Launch Page

The launch page is the starting point for this application any time a user needs to

use this system. It has two pages one for employer and the other for jobseeker. This

page does not need any authentication to be viewed but to proceeds to the

application every user needs to login or register if he/she is a new user.

26

Figure 20. Launch page

4.4 Employer Home Page

After the employer has logged in successfully into the system the employer’s home

page shown below will be displayed so that employer can proceed with features,

such as adding jobs, editing or deleting jobs and viewing added jobs or applications.

Figure 21. Employer home page

27

4.5 Jobseeker Home Page

After the Jobseeker logged in successfully into the system, the jobseeker home page

shown below will be displayed, so that the jobseeker can proceed with features,

such viewing jobs, applying jobs and viewing his/her applied jobs.

Figure 22. Jobseeker home page

28

5. IMPLEMENTATION

This section illustrates how the back-end of this application was implemented.

Before writing any code, a Spring Boot project was created using the Spring tool

suite IDE and all the important dependencies has been added to the project This

section describes and explains major classes and its methods in this application. The

technologies used to implement this application is SPRING BOOT, BOOTSRAP,

TYMELEAF and MySQL.

5.1 Spring Boot Application (Main Method)

The code below snippet is the entry point of this online recruitment application. The

user can run this application by right-clicking the main Java file and clicking on run

as Java application or Spring Boot application.

@SpringBootApplication

public class RecruitmentApplication extends SpringBootServletInitializer{

// override configure method of the SpringBootServletInitializer Class

@Override

protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

 return application.sources(RecruitmentApplication.class);

 }

//main method

public static void main(String[] args) {

 configureApplication(new SpringApplicationBuilder()).run(args);

 }

// turn of the banner

private static SpringApplicationBuilder configureApplication(SpringApplicationBuilder builder) {

 return builder.sources(RecruitmentApplication.class).bannerMode(Banner.Mode.OFF);

 }

}

Code Snippet 2. Main method of the application

29

5.2 Employer Controller

This Employer Controller class handles the registration process for employer. The

Register Form Method returns the registration form shown in Figure 15 when a

registration request is submitted to the server. The Register Employer Method

creates an employer after checking that there is no validation error and the user does

not exist using isUserPresent” method in the EmployerService class and then

returns success page as shown in the code

@Controller

public class EmployerController {

@Autowired

 private EmployerService employerService;

// get the registration page

@GetMapping("/register")

 public String registerForm(Model model) {

 model.addAttribute("employer", new Employer());

 return "views/employer-registration";

}

// registration for a new employer

@PostMapping("/register")

public String registerEmployer(@Valid Employer employer, BindingResult bindingResult, Model

model) {

 if (bindingResult.hasErrors()) {

 return "views/employer-registration";

 }

 //check if user exits already

 if (employerService.isUserPresent(employer.getEmail())) {

 model.addAttribute("exist", true);

 return "views/employer-registration";

 }

 employerService.createEmployer(employer);

 return "views/success";

}

}

Code Snippet 3. Employer registration code

30

The registration process for the jobseeker is the same as the employer registration

process so the researcher will escape to avoid repeating the code that was already

explained.

5.3 Add Job

The code below describes the process of adding jobs into the system. The

addJobForm method returns the form shown in Figure 19 when add job request is

submitted to the server. The addJobForm method creates a new job after checking

that there is no validation error when submitting the form. In this class Logger is

used in order to get the employer’s email so that every employer will see only

his/her posted jobs.

@Controller

public class JobController {

//initialize the logger

private static final Logger LOGGER = LoggerFactory.getLogger(JobController.class);

@Autowired

private JobService jobService;

@Autowired

private JobRepository jobRepository;

@Autowired

 private EmployerService employerService;

// if the user has employer role then show this page

// get job-new page

@PreAuthorize("hasRole('EMPLOYER')")

@GetMapping("/jobs/new")

 public String addJobForm(Model model) {

 model.addAttribute("job", new Job());

 return "views/job-new";

 }

// check if the user has employer role

// adding new job

// get user’s information by using getUserPrincipal

@PreAuthorize("hasRole('EMPLOYER')")

 @PostMapping("/jobs/new")

31

 public String addJobForm(Principal principal, @Valid Job job, BindingResult bindingResult, Model

model){

 if (bindingResult.hasErrors()) {

 return "views/job-new";

 }

 String username = ((User) ((UsernamePasswordAuthenticationToken)

principal).getPrincipal()).getUsername();

LOGGER.debug("username:{}", username);

Employer employer = employerService.findOneByEmail(username);

job.setEmployer(employer);

jobService.addJob(job);

return "redirect:/jobs";

}

}

Code Snippet 4. add job code

5.4 View Job

The code below in the job controller class describes the process of viewing the jobs

in the system when clicking the show jobs link. First the method checks the

employer's email so that every employer will only see his/her posted jobs but

jobseekers will see all available jobs. Employers can edit or delete jobs and

jobseekers can apply for jobs by clicking the apply button.

// get view job page

// check first the user’s role if is employer show only his/her posted jobs, show all jobs to jobseeker

 @GetMapping("/jobs")

public String showJobList(HttpServletRequest request, Model model, @RequestParam(defaultValue

= "") String name) {

boolean isEmployer = request.isUserInRole("ROLE_EMPLOYER");

LOGGER.debug("Is Employer:{}", isEmployer);

List<Job> jobs = null;

if (isEmployer) {

 String username = ((User) ((UsernamePasswordAuthenticationToken)

request.getUserPrincipal()).getPrincipal()).getUsername();

 LOGGER.trace("username:{}", username);

 jobs = jobService.findByEmployerEmailAndName(username, name);

32

 } else {

 jobs = jobService.findByName(name); }

model.addAttribute("jobs", jobs);

return "views/job-list";

}

Code Snippet 5. View job code

5.5 Implementing Update and Delete Job

The code below in the job controller class describes the process of deleting or

updating the job in the system. Here the @PreAuthorize annotation was used to

verify the authorization before entering into this method. Only users who have an

employer role will be allowed to delete or update jobs.

// check if the user is employer

//get a specific job’s form

@PreAuthorize("hasRole('EMPLOYER')")

 @GetMapping("jobs/{id}/update")

 public String showUpdateForm(@PathVariable("id") long id, Model model) {

Job job = jobRepository.findById(id).orElseThrow(() -> new IllegalArgumentException("Invalid Job Id:"

+ id));

 model.addAttribute("job", job);

 return "views/job-edit";

 }

// update a specific job

@PreAuthorize("hasRole('EMPLOYER')")

 @PostMapping("jobs/{id}/update")

 public String updateJob(@PathVariable("id") long id, @Valid Job job, BindingResult result, Model

model) {

 if (result.hasErrors()) {

 job.setId(id);

 return "views/job-edit";

 }

jobRepository.save(job);

 model.addAttribute("jobs", jobRepository.findAll());

 return "redirect:/jobs";

}

33

// delete the specific job

 @PreAuthorize("hasRole('EMPLOYER')")

 @RequestMapping(value = "/jobs/{id}/delete", method = RequestMethod.GET)

 public String deleteJob(Model model, @PathVariable("id") Long id) {

 jobService.deleteJob(id);

 return "redirect:/jobs";

}

Code Snippet 6. Delete and update job code

5.6 Apply Job

The code below in the application controller class describes the process of applying

for jobs in the system. Here the @PreAuthorize annotation was used to verify the

authorization before entering into this method. Only users who have a jobseeker

role will be allowed to apply. When the jobseeker clicks the apply button, the system

prompts only that particular job.

// check if the user is jobseeker by using PreAuthorize annotation

// apply for job

// get user’s information like name, telephone and email by using getUserPrincipal

@PreAuthorize("hasRole('ROLE_JOBSEEKER')")

 @GetMapping("/jobs/{jobId}/apply")

 public String showApplyForm(HttpServletRequest request, @PathVariable("jobId") long jobId,

Model model) {

 String username = ((User) ((UsernamePasswordAuthenticationToken)

request.getUserPrincipal()).getPrincipal())

 .getUsername();

 LOGGER.trace("username:{}", username);

model.addAttribute("jobId", jobId);

Job job = jobService.findById(jobId).orElseThrow(() -> new

IllegalArgumentException("Invalid Job Id:" + jobId));

 model.addAttribute("job", job);

Application application = new Application();

 application.setJobSeekerEmail(username);

 application.setJobId(jobId);

 model.addAttribute("application", application);

34

 return "views/application-new";

}

Code Snippet 7. Apply job code

5.7 View Applications

The code below in the application controller class describes the process of viewing

the applications in the system when clicking the Applications link. The Method

checks both the employer and jobseeker username so that employers will only see

applications for their posted jobs and jobseekers will only see applications for their

applied jobs.

// get application’s page, check user by using LOGGER and show every user only his data

// get user’s information by using getUserPrincipal

@GetMapping("/applications")

 public String showApplications(HttpServletRequest request, Model model) {

 String username = ((User) ((UsernamePasswordAuthenticationToken)

request.getUserPrincipal()).getPrincipal())

 .getUsername();

 LOGGER.trace("username:{}", username);

boolean isEmployer = request.isUserInRole("ROLE_EMPLOYER");

 LOGGER.debug("Is Employer:{}", isEmployer);

List<Application> applications = null;

 // if the user is employer then display only his/her posted job’s application

 if (isEmployer) {

 applications = applicationService.findAllByEmployer(username);

 }

// for jobseekers display all jobs

else {

 applications = applicationService.findAllByJobSeeker(username);

 }

model.addAttribute("applicashuns", applications);

return "views/application-list";

}

Code Snippet 8. View applications code

35

5.8 Security Configuration

In the login process jdbc authentication and configure method were used. The

configure method takes AuthenticationManagerBuilder as an argument. The

security configuration class has been modified in order to use the jdbc datasource.

Two queries were set up, one for authentication in usersByUsernameQuery and the

other for authorization in authoritiesByUsernameQuery. As shown in the code

snippet below passwords are saved in an encoded format.

public class SecurityConfig extends WebSecurityConfigurerAdapter {

@Autowired

 private DataSource dataSource;

 // jdbc authentication and defining data source

@Override

 protected void configure(AuthenticationManagerBuilder auth) throws Exception {

auth.jdbcAuthentication().dataSource(dataSource)

 .usersByUsernameQuery(

"select email as principal, password as credentails, true from employer where email=?")

 .authoritiesByUsernameQuery(

"select employer_email as principal, role_name as role from employer_roles where

employer_email=?")

 .passwordEncoder(passwordEncoder()).rolePrefix("ROLE_");

 auth.jdbcAuthentication().dataSource(dataSource)

 .usersByUsernameQuery(

"select email as principal, password as credentails, true from job_seeker where email=?")

 .authoritiesByUsernameQuery(

"select jobseeker_email as principal, role_name as role from jobseeker_roles where

jobseeker_email=?")

 .passwordEncoder(passwordEncoder()).rolePrefix("ROLE_");

}

// password hashing

@Bean

 public PasswordEncoder passwordEncoder() {

 return new BCryptPasswordEncoder();}

36

 // enable HTTP security

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()

.antMatchers("/", "/css/**", "/webjars/**", "/register", "/registerJobseekers", "/login").permitAll()

 .anyRequest().authenticated().and().formLogin().loginPage("/login").permitAll()

 .defaultSuccessUrl("/jobs").and().logout().logoutSuccessUrl("/login");

 }

}

Code Snippet 9. Security Configuration code

The last method in the SecurityConfig class was modified in order to define the

request that should be authenticated and the one that should not be authenticated.

37

6. TESTING

This chapter briefly describes the test cases for both the employer and jobseeker

features of this application.

6.1 Employer Registration Page

The following registration form will be shown after clicking the register link, then

the new employer fills up all the fields of this form and clicks submit button, the

registration controller will then save the data into MySQL. If nothing or wrong data

has been entered, then the system will display error message as shown in the figure

below.

Figure 23. Employer registration page

If every thing goes well when a new user registers into the system this success

registration message will be shown.

38

Figure 24. Success registration message

6.2 Jobseeker and Employer Login Page

The login page is for both the jobseeker and employer. It was designed using

Thymeleaf and Bootstrap and allows both the jobseeker and the employer to enter

their valid email and password, then the login controller will redirect to their home

pages respectively. If nothing or wrong data has been entered, then the system will

display error message as shown in the figure below.

Figure 25. Login page

6.3 Add Job

This add job form will be shown after clicking the add job button. If the employer

clicks the submit button without filling up any of these fields, the system will

39

prompt validation error messages as shown below but if the employer fills up all

these required fields of this form and clicks the submit button, the job controller

will then save the data into MySQL.

Figure 26. Add job page

6.4 Show Jobs

The page below shows the list of available jobs in details with editing and deleting

features. After the employer clicks the edit button the system prompts editable form,

the employer can edit every field of the form. The employer can also delete the job

by clicking the delete button. Only those with an employer role can edit or delete

jobs.

40

Figure 27. View jobs page

6.5 Jobseeker Registration Page

The following registration form will be shown after clicking the register link, then

the new jobseeker fills up all the fields of this form and clicks the submit button.

The registration controller will then save the data to MySQL.

Figure 28. Jobseeker registration page

41

6.6 Jobseeker Show Jobs Page

When the jobseeker clicks the show jobs link, the system will display the list of

available jobs in details with the apply feature that allows the jobseeker to apply

his/her desired job in the list. The show jobs page also has a search feature which

can be used to filter jobs by typing the name of the job. Figure 29 shows how the

jobseeker show jobs page looks like after the link has been clicked.

Figure 29. Jobseeker show jobs page

6.7 Jobseeker Apply Job Page

If the jobseeker clicks the Apply now button in the job list, then the system will

display the clicked job with its uneditable unique details and one editable tex tarea.

The jobseeker can add more information about his/her application if needed and

click submit, then the application will be added to the list of applications. Figure 30

illustrates the view when the Apply Now button is clicked.

42

Figure 30. Apply to Job

6.8 Applications

The Applications page displays the list of applied jobs. After clicking the

applications page the system displays to the jobseeker only the lists of his/her

applied jobs, while the employer views applications of only his/her posted jobs

based on their roles and emails.

Figure 31. Applications

43

7. CONCLUSION

This recruitment application allows both the employer and jobseeker to sign up,

sign in and log out of the application. When the employer registers to the system,

the inputted data is first validated. The employer can add jobs to the system and

his/her posted jobs are stored in the database and the employer can view and filter

his/her job history at any time. On the other hand, when the jobseeker registers to

the system, the inputted data is also validated. The jobseeker can apply for jobs

through the system and his/her applied jobs are stored in the database and finally

can view his/her applied job history.

The challenges faced while creating this application included that the used

technology was not familiar to me before engaging in the research. I started learning

Spring Boot and Thymeleaf from scratch which was a huge task and time

consuming and then using them to build the application. This was the first time that

I have created a complete application from start to finish for real use. However, the

application is set to be simple for both employers and job seekers and all the

required steps that had to be delivered for the project in order to be considered

successful were achieved and tested.

7.1 Future work

This application can be improved by adding all optional requirement features in the

application description chapter. Specific features should also be allocated,

implemented and tested. For instance, features, such as a communication tool

between the employers and job seekers could help in minimizing the processing

time. Before submitting the application, the job seeker might need details about the

specific requirements and tasks. At the same time, the employer could have

inquiries about the submitted application. Therefore, creating a communication tool

such as a chatting window could help both sides.

44

REFERENCES

/1/ Hormuud Telecom Somalia. Accessed 24.01.2019

https://www.hormuud.com/personal/services/evc-plus.aspx

/2/ Recruitment definition. Accessed 29.01.2019.

http://www.businessdictionary.com/definition/recruitment.html

/3/ Java programming language. Wikipedia. Accessed 30.1.2019.

https://en.wikipedia.org/wiki/Java_(programming_language)

/4/ What is spring framework. Wikipedia. Accessed 01.01.2020

https://en.wikipedia.org/wiki/Spring_Framework

/5/ What is Spring boot. Accessed 10.2.2019

https://dzone.com/articles/what-is-spring-boot

/6/ Spring Initializr. Accessed 09.01.2020

https://www.javatpoint.com/spring-initializr

/7/ Thymeleaf. Accessed 10.2.2019 https://www.thymeleaf.org/

/8/ Turorial: Using Thymeleaf

https://www.thymeleaf.org/doc/tutorials/2.1/usingthymeleaf.html

/9/ Bootstrap. Wikipedia. Accessd 10.3.2019

https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)

/10/ Bootstrap. Sitepoint. Accessed 10.1.2020 https://www.sitepoint.com/why-

i-love-bootstrap-you-should/

/11/ MySQL. Wikipedia. Accessed 14.4.2019

https://en.wikipedia.org/wiki/MySQL

/12/ Relational database management system. Wikipedia. Accessed 12.5.2019

https://en.wikipedia.org/wiki/Relational_database_management_system

/13/ Eclipse Overview. Accessed 12.7.2019

https://www.tutorialspoint.com/eclipse/eclipse_overview.htm

/14/ Eclipse tutorials. Accessed 09.01.2020

https://www.vogella.com/tutorials/Eclipse/article.html

https://www.hormuud.com/personal/services/evc-plus.aspx
http://www.businessdictionary.com/definition/recruitment.html
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Spring_Framework
https://dzone.com/articles/what-is-spring-boot
https://www.javatpoint.com/spring-initializr
https://www.thymeleaf.org/
https://www.thymeleaf.org/doc/tutorials/2.1/usingthymeleaf.html
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
https://www.sitepoint.com/why-i-love-bootstrap-you-should/
https://www.sitepoint.com/why-i-love-bootstrap-you-should/
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/Relational_database_management_system
https://www.tutorialspoint.com/eclipse/eclipse_overview.htm
https://www.vogella.com/tutorials/Eclipse/article.html

