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Abstract

Fluid-conveying heat-exchanger tubes in nuclear power plants are subjected to a sec-
ondary cross-flow to facilitate heat exchange. Beyond a critical value of the secondary flow
velocity, the tube loses stability and vibrates with large amplitude. The equation govern-
ing the dynamics of a heat-exchanger tube is a delay differential equation (DDE). In all
the earlier studies, only the stability boundaries in the parametric space of mass-damping
parameter and reduced flow-velocity were reported. In this work using Galerkin approxi-
mations, the spectrum (characteristic roots) of the DDE is also obtained. The rightmost
characteristic root, whose real part represents the damping in the heat-exchanger tube is
included in the stability chart for the first time. The highest damping is found to be present
in localized areas of the stability charts, which are close to the stability boundaries. These
charts can be used to determine the optimal cross-flow velocities for operating the system for
achieving maximum damping. Next, the interaction between the tube and the surrounding
cladding at the baffle-plate makes it vital to determine the optimal design parameters for
the baffle plates.

The linear stability of a heat-exchanger tube modeled as a single-span Euler-Bernoulli
cantilever beam subjected to cross-flow is studied with two parameters: (i) varying stiffness
of the baffle-cladding at the free end and (ii) varying flow velocity. The partial delay dif-
ferential equation governing the dynamics of the continuous system is discretized to a set
of finite, nonlinear DDEs through a Galerkin method in which a single mode is considered.
Unstable regions in the parametric space of cladding stiffness and flow velocity are identi-
fied, along with the magnitude of damping in the stable region. This information can be
used to determine the design cladding stiffness to achieve maximum damping at a known
operational flow velocity. Moreover, the system is found to lose stability by Hopf bifurcation
and the method of multiple scales is used to analyze its post-instability behavior. Stable
and unstable limit cycles are observed for different values of the linear component of the
dimensionless cladding stiffness. An optimal range for the linear cladding stiffness is rec-
ommended where tube vibrations would either diminish to zero or assume a relatively low
amplitude associated with a stable limit cycle. Furthermore, heat-exchanger tubes undergo
thermal expansion, and are consequently subject to thermal loads acting along the axial
direction, apart from design-induced external tensile loads.

Nonlinear vibrations of a heat-exchanger tube modeled as a simply-supported Euler-
Bernoulli beam under axial load and cross-flow have been studied. The fixed points (zero
and buckled equilibria) of the nonlinear DDE are found, and their linear stability is analyzed.
The stability of the DDE is investigated in the parametric space of fluid velocity and axial
load. The method of multiple scales is used to study the post-instability behavior for both
zero and buckled equilibria. Multiple limit-cycles coexist in the parametric space, which has
implications on the fatigue life calculations of the heat-exchanger tubes.
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Chapter 1

Introduction

Nuclear power production in India began in 1969 and has grown from an installed
capacity of 320MW in 1969 to 6,780 MW in 2017, and planned to be 9,580 MW by
end of 2022 and 14,380 MW by end of 2027 [10]. In 2016, the Government of In-
dia released a Draft Electricity Plan [11] stating that the capacity of nuclear power
projects would be enhanced by 2,800 MW during 2017-2022 and by another 4,800
MW during 2022-2027. The addition of the estimated 7,600 MW of nuclear power
by end of 2027, would mean an increase of 112% over the installed capacity of March
2017 [10]. This implies that nuclear power is being looked up to as a prospective
resource for addressing the energy needs of this country. Nuclear power has taken the
lion’s share of pros as compared to cons, and it seems to meet the majority of de-
mands with less cost of operation. First, since nuclear power generation does not rely
upon products from fossil fuels, nuclear plants contribute minimally to the greenhouse
effect [12]. Secondly, fully loaded nuclear plants can be in continuous operation for
18 to 24 months with fewer interruptions as compared to thermal plants [13]. Third,
nuclear power plants occupy minimal space when compared to other power plants.
In addition to the Canadian-supplied Canada Deuterium Uranium (CANDU) reac-
tors, India now has six Pressurized Heavy Water Reactors (PHWRs) in operation,
modeled on the Canadian-built CANDU type [14]. In fact, nuclear reactors have also
been an important source of power generation in the Canadian provinces of Quebec
and Ontario. As noted by Khalifa et al. [3], the CANDU reactor, which uses heavy
water as the moderator, was invented by Atomic Energy Canada Limited, Canada’s
largest nuclear technology company and federal Crown corporation in the 1960s. As
of August 2007, the Bruce Nuclear Generating Station in Ontario supplies 4, 700 MW
(24 × 7), which is approximately 20% of the province’s supply of power [15]. As of
2010, Gentilly Nuclear Generating Station in Quebec accounts for 635MW [16].

1



2 Chapter 1 Introduction

Figure 1.1: Schematic of a CANDU-type nuclear power plant.

1.1 Heat Exchangers in PHWR Nuclear Reactors

Figure 1.1 shows a schematic of a CANDU-type nuclear power plant. A typical nuclear
power plant contains a cylindrical vessel called nuclear core (simply “core”), charged
with an array of nuclear fuel pellets cladded in zircaloy metal and equipped with a
graphite-based control-rod. Heavy water (primary coolant) is utilized for cooling the
core and as a moderator to control thermal neutrons that are generated from nuclear
fission. Light water (secondary coolant) is used for generating steam. The exothermic
heat of a fission reaction diffuses to the primary coolant at a high pressure. The
primary fluid passes through long U-shaped tubes of a heat exchanger (Fig. 1.2) [1],
where it exchanges heat with the secondary fluid through conduction and convection.
The secondary coolant, inside the heat exchanger, extracts a fraction of heat from the
primary coolant and is converted to steam. The secondary fluid is fed to the heat
exchanger from the top surface of the tubes. A typical shell-and-tube heat exchanger
(Fig. 1.3) contains a bundle of U-shaped tubes that are enclosed in a cylindrical shell.
Thin baffle plates separate the tubes. They provide structural support and direct
the secondary flow across the tubes. The baffle plates are drilled with marginally
oversized holes to allow for thermal expansion of tubes and for comfortable fitting.
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Figure 1.2: Schematic of a typical steam generator (heat exchanger) showing its
various components including the bundle of U-shaped tubes, as taken from S.F.

Corzo et al. [1].

1.2 Cross-flow-induced Tube Vibrations

Heat-exchanger tube vibration is one of the primary concerns of heat exchanger fail-
ures and sometimes results in plant shutdown, which leads to economic losses. In heat
exchangers, the secondary fluid flows across the tubes, and hence the system is called
a cross-flow heat exchanger. Tubes extract energy from the secondary flowing fluid
and are therefore subject to oscillations in the transverse direction. These oscillations
are called cross-flow-induced vibrations. Higher secondary flow velocities enhance the
rate of heat transfer between primary and secondary fluids. However, they come with
the caveat of increasing the flow-induced vibration (FIV) amplitude. The minimum
velocity at which the amplitude growth begins to occur is called critical flow velocity.
If the amplitude exceeds the baffle hole clearance gap, the tube impacts against the
baffle plate. This results in enlargement of the baffle hole, and fatigue wear-and-tear
of the tube surface. Worse, cylinder impact with baffle supports “wears the tubes
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Figure 1.3: Schematic of a bundle of tubes used in shell-and-tube heat exchangers
of CANDU-type nuclear power plants.

thin till they burst and cuts through the baffle supports, creating a free double-span
resulting in higher amplitude vibration” [17]. The low-stiffness in the U-bend region
makes it particularly vulnerable to large-amplitude vibrations [3] that result in failure
and fretting wear. In some cases of low tube pitch and larger baffle plate distance,
tubes may impact with adjacent tubes. Tube failure causes leakage of fluid that
carries radioactive material, which can be catastrophic. The causes of flow-induced
vibrations are [18]:

• Vortex-shedding: Cylinder-wake instability results in von Karman vortex shed-
ding and causes the cylinder to experience unsteady forces that induce vibra-
tions [19]. The cylinder motion can cause the vortex-shedding frequency to
match the vibration frequency resulting in lock-in, which causes the oscillations
of the tube to increase.
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• Turbulent buffeting: As the flow traverses deep into the array, the detached flow
becomes turbulent due to complex interactions. The tubes extract energy from
the turbulent flow. When the dominant frequency for the turbulent buffeting
matches the natural frequency, a considerable transfer of energy leads to high
vibration amplitudes [18].

• Fluid-elastic Instability (FEI).

Among the above, FEI is the most dangerous and difficult to identify. Further-
more, “fluidelastic instability is particularly crucial, as the damage caused by the first
two mechanisms over years of service can be produced by fluid-elastic instability in a
matter of hours” [3]. According to Chen [20], there are two types of mechanisms for
dynamic FEI, which have been summarized here:

• Damping controlled FEI: This type of FEI is also known as velocity-controlled
FEI, because the dominant fluid force, i.e., fluid-damping is proportional to the
cylinder velocity. This force may act as an energy-dissipation mechanism or an
excitation mechanism for structural oscillations [21]. Past the critical velocity,
the system becomes unstable when the modal damping becomes negative. This
instability can occur in a single elastic cylinder in a rigid array; fluid coupling
with other cylinders is not a necessary condition for instability.

• Stiffness-controlled FEI: This type of FEI is also known as displacement-controlled
FEI. This is because the dominant fluid force, called fluidelastic force, is propor-
tional to the displacement of the cylinder. The system becomes unstable when
the modal damping becomes negative because of the fluidelastic force, at high
flow velocity [20]. The phase difference among different cylinders is the essential
feature of this type of instability and fluidelastic coupling between cylinders is
a necessary condition for stiffness-controlled instability.

Below the critical flow velocity the rate of dissipation of energy is higher than the
rate of energy extracted by the structure from the fluid. At the critical velocity, the
rate of energy-dissipation and the rate of energy-input from the fluid are equal and
undamped oscillation occurs. Beyond the critical velocity, the amplitude of structural
oscillations increases and reaches a steady limit cycle. Since tubes in shell-and-tube
heat exchangers are thin and long, they are more likely to exhibit damping-controlled
FEI [22].
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The reliance of the Canadian provinces of Quebec and Ontario on nuclear energy
and the catastrophic consequences of fluid-elastic instability in heat exchangers have
drawn the attention of researchers at Quebec and Ontario universities. Many of
these studies have been summarized here for reference. It should be noted that the
problem of fluidelastic instability began receiving attention more than three decades
ago. Paidoussis et al. [2] noted: “The existence of fluidelastic instability in cylinder
arrays was not discovered till the 1960s, although failures because of it occurred
before, but were erroneously attributed to vortex-shedding. Insufficient knowledge,
at a time when new designs of nuclear steam generators were being built, with even
higher velocities, caused a proliferation of failures worldwide.” Roberts first developed
a “semi-empirical analytical model for predicting critical flow velocity for the onset of
instability” in a staggered row of cylinders, in 1962 [23]. In 1970, Connors [24] arrived
at the well-known Connors Equation, which relates the dimensionless critical velocity
to the mass-damping parameter for a single row of cylinders:

Figure 1.4: A compendium of characteristic damage to heat-exchanger tube ar-
rays due to fluidelastic instability: (a) from a CANDU steam generator; (b) from
Na2H2O steam generator; (c) from a steam–steam heat exchanger; (d) from a steam
condenser; (e) from another heat exchanger. All figures are taken from Paidoussis

et al. [2].
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Figure 1.5: Examples for tube failure by flow-induced vibrations where (a-b) show
the tube failure at the support due to fretting wear (modified from Atomic Energy
Canada Ltd). (c) Tube failure by clashing between tubes and also fretting wear
between tubes and supports (modified from UK Atomic Energy Authority). Figure

taken from [3].

Ũc
fD

= K

(
Mδ

ρD2

)0.5

, (1.1)

where K is the well-known Connors coefficient, f is the natural frequency of the
cylinder, Ũc is the critical velocity, D is the cylinder diameter, M is its mass per unit
length, ρ is the fluid density and δ is the logarithmic decrement. Connors Equation
was unjustifiably extended to multi-row cylinder arrays and widely accepted by the
industry, leading to severe consequences. It was later discovered that the extension
was only valid if K was taken to be 2.7− 3.9 [17]. This had ended up in several heat
exchangers designed with K = 9.9, which meant that Ũc was taken to be 3 times what
it should have been [17]. To quote [17], “In roughly a decade, the cumulative damages
(including power replacement costs) world-wide are estimated at $1000 M”. A few
illustrations demonstrating the damages caused to heat-exchanger tubes due to FEI [3]
are presented here for reference (Figs. 1.4 and 1.5). Owing to the extensive curiosity
that the phenomenon has generated in the academia and the potential damage that
it causes to heat-exchanger tubes, scientific studies for a deeper understanding of the
instability mechanism continue.
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1.3 Quasi-steady Model

Analytical and semi-analytical models have gained more popularity than Compu-
tational Fluid Dynamics (CFD) due to the challenges involved in modeling fluid-
structure interaction (FSI) problems computationally [25]. First, the differential equa-
tions and boundary conditions affiliated to the fluid domain and structural domain
need to be satisfied at the same time. Secondly, an extremely reliable mesh-moving
scheme must be employed for the fluid domain that changes with change in the struc-
tural displacement. The latter must be computed at every time-step. It becomes
difficult for the mesh-moving scheme to warrant high accuracy and mesh quality at
every time-step, especially for large structural displacements. The computational time
and overhead required to implement this procedure for several flow velocities would
be immense.

Additionally, flow past an array of cylinders is fraught with turbulence. Different
turbulence models yield different pressure responses, which may not comply with
experiments (Shinde et al. [26]). Furthermore, in order to capture the complexity of
the flow a fine mesh is desirable. First off, modeling of large amplitude vibrations
come with the caveat of mesh-element distortion. Furthermore, for a sufficiently fine
mesh i.e., for a sufficiently small ∆x (cell-size), a time step-size ∆t < c∆x/Re would
be needed for convergence, where c is a constant for a given tube geometry and
incompressible fluid. For a large Re, ∆t would have to be very small. For a range of
velocities, the computational cost and time increases considerably.

Finally, incorporating nonlinearities due to supports becomes difficult in compu-
tational studies. Studies like those of Shinde et al. [26], for instance, obtained good
agreement with experiments for the damping ratio by availing LES to address the
problem of FSI for a harmonically oscillating cylinder. However, nonlinearities due to
supports were not accounted for.

For the reasons cited above, this thesis resorts to a semi-analytical approach, in-
stead of a CFD model. The quasi-steady model developed by Price and Paidoussis [4]
is utilized in the present study. The quasi-steady model is essentially the quasi-static
model but with the inclusion of a frequency-dependent term arising out of the time-
delay due to flow retardation (see Section 1.5). The quasi-steady model has several
advantages. It facilitates analytical calculations that are not possible in CFD stud-
ies. It captures some of the most vital characteristics of the FEI problem when the
damping-controlled instability mechanism is more dominant, as is the case in the
current study.
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1.4 Single Flexible Cylinder in an Array of Rigid
Cylinders

In this thesis, a single flexible tube within an array of rigid cylinders subjected to
cross-flow is considered. Experiments by Lever and Weaver [27] demonstrated that
the critical velocity for a single flexible cylinder in an array of rigid cylinders was
virtually the same for an array of 19 flexible cylinders. Later, Khalifa et al. [28]
provided experimental evidence that a single flexible tube located in the third row
of a rigid parallel triangular array becomes fluid-elastically unstable at essentially
the same threshold as for the fully flexible array. Therefore, several modern studies
have analyzed the stability of a single flexible cylinder. These include: nonlinear
models [29–31], CFD models [32, 33], theoretical models [34], as well as empirical and
semi-empirical models [35, 36].

Additionally, the single flexible cylinder is constrained to oscillate only in the
lift direction. Earlier experimental studies by Weaver and Grover [8], and Weaver
and El-Kashlan [9] have concluded that FEI for cylinder arrays is predominant in the
transverse direction. Observations made in ref. [4] for a double row of flexible (varying
from one to seven in number) cylinders in an array of rigid cylinders indicate that the
amplitude of oscillation in the lift direction is larger than the amplitude in the in-line
direction by O(2). Based on these observations, several subsequent analyses [34–37]
have explored the onset of FEI in cylinder arrays only in the lift direction.

1.5 Time Delay

The equation governing the dynamics of the heat-exchanger tube is a delay differential
equation (DDE) [4]. The time-delay has been attributed to various mechanisms in the
literature. For a single flexible cylinder in an array of rigid cylinders, the quasi-steady
model finds that the time-delay between tube displacement and fluid forces is only due
to retardation of the flow as it approaches the cylinder array [4]. The quasi-unsteady
model [38] attributes the time-delay to the reorganization of the flow as downstream
vortices “diffuse-convect” while the tube is in motion. A memory effect of the flow
is proposed, as opposed to the flow-retardation effect to account for the time-delay.
However, experiments by Mahon and Meskell [35] and Sawadogo and Mureithi [36]
were found to be in qualitative agreement with, and of the same order of magnitude
as, respectively, the time-delay proposed by Price and Paidoussis [4]. Therefore, in
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this thesis, the time-delay is assumed to be constant and is given by ∆T = µD/Ũ ,
where Ũ is the flow velocity. Here, µ ≈ O(1), and we take µ = 1 [4]. Owing to
the presence of the time-delayed displacement term, DDEs are infinite-dimensional
systems, and their characteristic equation is a quasi-polynomial that admits infinitely
many characteristic roots.

1.6 Heat-exchanger tube as Euler-Bernoulli beam

Different studies have modeled the tube as a beam with different physical constraints.
Paidoussis and Li [37] modeled a two-span flexible tube within an array of rigid
cylinders, as a clamped beam with a loose support at its mid-point. Impact dynamics
were modeled using cubic and trilinear springs. Limit-cycle motion was found to exist
past the first Hopf bifurcation. For a single-span flexible cantilever in a rigid array,
Wang and Ni [29] placed a loose support, modeled as a cubic spring, at the tip (baffle
gap). For sufficiently high flow velocities, chaotic and quasi-periodic motions were
observed. Xia and Wang [31] explored the post-instability nonlinearity associated
with the mean axial extension of a loosely-supported flexible cylinder within an array
of rigid cylinders subjected to cross-flow. It was discovered that the nonlinearity
related to the force associated with impact against loose supports was more dominant
compared to the nonlinearity due to mean axial tension. Wang et al. [30] studied the
effect of initial axial load on the instability and nonlinear dynamics of a single flexible
tube in an array of rigid cylinders. Numerical simulations indicated the existence of
three regions in the parametric space of dimensionless flow velocity and axial load:
the stable region, the flutter-instability region, and the buckling-instability region.
Recently, Sadath et al. [39] modeled a heat-exchanger tube as a cantilever beam with
two loose supports: one located at the mid-span and the other at one end. The
impact loading with tube baffles (loose supports) was modeled with either a cubic
or a trilinear spring. The analytically-obtained critical velocity at which the system
undergoes a Hopf bifurcation compared well with numerically-obtained bifurcation
diagrams. Sadath et al. [40] later developed a mathematical model for flow past a
simply-supported beam with a loose support at its center (modeled as a cubic spring)
and subjected to axial loads. Related work by Cai and Chen [41] studies a pinned-
pinned-free beam with impact force represented by linear springs.
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1.7 Thesis Outline

The ultimate purpose of this thesis is to obtain a better understanding of the physics
underlying FEI in heat-exchanger tubes, as the discussion above necessitates. Follow-
ing the precedent of most of the studies outlined above, a single flexible cylinder in
an array of rigid cylinders is considered. The damping-controlled FEI is studied and
the tube is constrained to vibrate in the lift direction only.

We have already mentioned that the equation governing the dynamics of a
heat-exchanger tube is a delay differential equation (DDE) [4]. DDEs are infinite-
dimensional systems, and their characteristic equation is a quasi-polynomial that ad-
mits infinitely many characteristic roots. The stability of the DDE is determined by
the location of the real part (damping) of the rightmost characteristic root. In the
literature, none of the studies have reported the damping contours along with the
stability boundaries [4, 32, 33, 42–48]. In Chapter 2 of this thesis, we would like to
fill this gap in the literature. Since DDEs are infinite-dimensional in nature, it is rel-
atively more complex to calculate the characteristic roots of the DDE as compared to
calculating the stability boundary. In this Chapter, Galerkin approximations [49] are
used to obtain the characteristic roots of the DDE. The damping contours within the
stability chart give information about the rate of decay of the vibration response as a
function of mass-damping parameter and reduced flow velocity. Contrary to popular
belief, operating the heat exchanger deep within the stable region (high mass-damping,
low reduced velocity) may not give the best damping behavior. We found that the
highest damping values are present in isolated islands in the stability chart and are
found to be close to the stability boundary. The damping information reported in this
chapter is expected to be useful in the safe and efficient operation of heat exchangers
in the industry.

The presence of baffle-supports introduces nonlinearities in the governing equa-
tion of motion for the tube. Furthermore, the damage due to tube impact on the
surrounding baffle-plates makes it vital to determine the optimal design parameters
for the baffle plates. In Chapter 3, the linear stability of a heat-exchanger tube
modeled as a single-span cantilever beam subjected to cross-flow is studied in the
parametric space of the stiffness of the baffle-cladding at the free end and flow ve-
locity. A mathematical model incorporating the motion-dependent fluid forces acting
on the beam is developed using the Euler-Bernoulli beam theory, under the inexten-
sible condition. Fluid forces acting on the beam are modeled using an added-mass
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coefficient and aerodynamic parameters taken from the literature. The partial de-
lay differential equation (PDDE) governing the dynamics of the continuous system is
discretized to a set of finite, nonlinear DDEs through a Galerkin method in which a
single mode is considered. The fixed points and the critical curves of the model are
derived. The stability chart for the system in the parametric space of dimensionless
flow velocity and linear cladding stiffness is presented, along with the spectrum at the
points of critical cladding stiffness for a fixed value of flow velocity. The system is
found to lose stability by Hopf bifurcation and the method of multiple scales (MMS)
is used to analyze its post-instability behavior. Stable and unstable limit cycles are
observed for different values of the linear component of the dimensionless cladding
stiffness. To the author’s knowledge, this is the first time the free end of a cantilever
has been modeled as a combination of a linear spring and a cubic spring in the context
of research on cross-flow induced instabilities.

Over the past three decades, many researchers have assumed the heat-exchanger
tube to be simply supported. Some examples are found in [50–52]. As quoted by
Paidoussis and Li [37] – “Supports in real heat exchangers are somewhere between a
simple support and a clamped one, and exact integral relationships between frequen-
cies are rather rare.” It should be noted that clamped tubes are stiffer compared to
simply-supported tubes. Therefore, the stability results for simply-supported tubes
will be more conservative as compared to fixed tubes. Furthermore, if the tubes are
long, and if the support thickness is small as compared to the diameter of the tube, a
simply-supported boundary condition can be assumed. Another important consider-
ation is that heat-exchanger tubes undergo thermal expansion, and are consequently
subject to thermal loads acting along the axial direction, apart from design-induced
external tensile loads. Nonlinear vibrations of a heat-exchanger tube modeled as a
simply-supported Euler-Bernoulli beam under axial load and cross-flow have been
studied in Chapter 4. Using the modal-expansion procedure, the governing PDDE
is converted into a nonlinear DDE. The fixed points (zero and buckled equilibria) of
the nonlinear DDE are found, and their linear stability is analyzed. Using Galerkin
approximations, the characteristic roots (spectrum) of the DDE are found and re-
ported in the parametric space of dimensionless flow velocity and axial load. The
damping present in the stable region of the parametric space is obtained from the
real part of the rightmost characteristic roots. The MMS is used to investigate the
behavior of the system post instability. The purpose of this study is to assess the
implication of the post-instability behavior on fatigue life calculations. Furthermore,
for a given flow velocity, axial load can be tuned from the stability chart for achieving
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maximum damping. Finally, Chapter 5 summarizes the important inferences and
the contribution of this PhD dissertation.



Chapter 2

An Investigation of Damping in
Heat-Exchanger Tubes

2.1 Introduction

In this chapter, contour plots showing the damping in the parametric space of mass-
damping parameter (mδ) and reduced flow-velocity (U = Ũ/fD) are reported for
different values of the flow-retardation parameter (µ) and a normal-triangular array
of cylinders. In all the earlier studies, only the stability boundaries in the parametric
space have been reported, due to the complexity in solving the infinite-dimensional
nonlinear eigenvalue problem associated with characteristic roots of the governing
DDE. In this chapter, using Galerkin approximations, the spectrum (characteristic
roots) of the DDE is obtained. The rightmost characteristic root, whose real part
represents the damping in the heat-exchanger tube is included in the stability chart.
The stability charts for different values of µ can be used to determine the optimal
cross-flow velocities for operating the heat-exchanger tube while achieving maximum
damping.

2.2 Quasi-steady model of Price and Paidoussis

Several studies [29–32, 37] on cross-flow induced instability of cylinder rows are based
on the quasi-steady mathematical model developed by Price and Paidoussis [4]. Since
this theoretical model has been used so extensively, we have re-derived the equation
of motion. Price and Paidoussis [4] arrived at an expression that facilitates obtaining
the fluid forces on a flexible cylinder, numerically. Two geometries were considered,

15
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as seen in Fig. 2.1. Geometry I (Fig. 2.1(a)) denotes a double row of flexible cylinders
in a triangular configuration. Here, Ls/D = 0.688 and Ta/D = 1.191, where Ls

is the streamwise distance between two rows of cylinders and 2Ta is the distance
between two adjacent cylinders in the same row. Geometry II denotes a double row of
flexible cylinders within an array of rigid cylinders in a rotated equilateral triangular
configuration. Here, Ls/D and Ta/D are the same as for Geometry I, and P/D = 1.375
for Geometry II, where P is the cylinder pitch.

(a) (b)

Figure 2.1: Schematic of the two geometries as used in Price and Paidoussis [4].
(a) Geometry I: a double row of flexible cylinders (Ls/D = 0.688, Ta/D = 1.191)
(b) Geometry II: a double row of flexible cylinders within an array of rigid cylinders
(Ls/D = 0.688, Ta/D = 1.191, P/D = 1.375). Orange box encloses the double row

of flexible cylinders. Figures are not to scale.

As shown in Fig. 2.2(a) the flow approaches upstream cylinders i − 1 and i + 1
with the free-stream velocity (Ũ) and downstream cylinder i with gap velocity (ŨG).
Mass-conservation dictates that ŨG(2Ta −D) = Ũ(2Ta). This can be written as

ŨG = aŨ, a = Ta
Ta −D/2

(2.1)

In general, it is expected that the fluid forces on cylinder i are influenced by the
motion of the cylinders adjacent to it, i.e. i+ 1 and i−1, for this geometry. However,
since we are considering a single flexible cylinder within an array of rigid cylinders as
explained in Section 1.4, only the motion of a downstream cylinder is analyzed, and
it is assumed that cylinders i+ 1 and i− 1 are rigid.



Chapter 2 An Investigation of Damping in Heat-Exchanger Tubes 17

(a) (b)

Figure 2.2: Schematic of a double row of flexible cylinders with (a) the cylinder
numbering. (b) The velocity vector diagram for flow approaching a flexible cylinder.

2.2.1 Time Delay due to Flow Retardation

The apparent time taken by the flow to traverse the streamwise distance from −Z1

to −R − ∆R is given by T = (Z1 − R − ∆R)/Ũ∗, where Ũ∗ = Ũ for an upstream
cylinder, R is the radius of the cylinder, and Z = −Z1 is a point in the free-stream.
Considering that the flow decelerates as it approaches the cylinder, the actual time
taken (T + ∆T ) will be given by

T + ∆T =
∫ −R−∆R

−Z1

1
Ũa
dZ, (2.2)

where Ũa is the approach speed. According to potential flow theory, the potential
function (φZ) and speed ∂φZ/∂Z for flow approaching a cylinder along the Z axis is
given by

φZ = Ũ∗

(
Z + R2

Z

)
,
∂φZ
∂Z

= Ũ∗

(
1− R2

Z2

)
(2.3)

Substituting Eq. (2.3) in Eq. (2.2), and integrating w.r.t. Z, we obtain

T + ∆T = 1
Ũ∗

∫ −R−∆R

−Z1

(
1 + R2

Z2 −R2

)
dZ

= 1
Ũ∗

∫ −R−∆R

−Z1

(
1 + R

2

[ 1
Z −R

− 1
Z +R

])
dZ

=Z1 −R−∆R
Ũ∗

+ R

2Ũ∗
ln
(

2R + ∆R
∆R

Z1 −R
Z1 +R

) (2.4a)
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If we choose Z1 � R > ∆R, and substitute D = 2R, where D is the diameter of a
cylinder tube, we get

∆T = D

4U ln
(

2R + ∆R
∆R

)
= µ

D

Ũ∗
, (2.5)

where µ is the time-delay parameter that was first introduced in Section 1.5. If we
choose ∆R = 0.1R, µ ≈ 0.75, while for ∆R = 0.01R, µ ≈ 1.32. Hence, we can safely
assume that µ is of O(1). Later, we discover that the choice of µ changes the stability
threshold by very high percentages, which makes it important to pick an accurate
value for µ. Typically, we choose µ = 1.
Next, we assume a solution of the form Y (T ) = Y0(T )eλ̃T , where λ̃(∈ C) represents
an eigenvalue, and T is time. The above analysis implies that at time T , the actual
displacement of the cylinder in the lift direction is Y (T − ∆T ) = Y (T )e−λ̃∆T =
W (T )gr, where gr = e−λ̃∆T = e

−µλ̃ D
Ũ∗ . It must be noted that for an upstream cylinder,

Ũ∗ = Ũ and gr can be designated as gr∞ = e−µλ̃
D
Ũ . For a downstream cylinder,

Eq. (2.2) becomes

T + ∆T = Z1 − Ls
Ũ

+
∫ −R−∆R

−Ls

1
Ũa
dZ, Ũa = ŨG

(
1− R2

Z2

)
(2.6)

Simplifying Eq. (2.6) in the manner described above, we get

T + ∆T = Z1 − Ls
Ũ

+ Ls −R−∆R
ŨG

+ R

2ŨG
ln
(

2R + ∆R
∆R

Ls −R
Ls +R

)
(2.7)

This would mean that for a downstream cylinder,

∆T = R

2ŨG
ln
(

2R + ∆R
∆R

Ls −R
Ls +R

)
(2.8)

For ∆R = 0.01R and Ls/D = 0.688, we find that ∆T ≈ 0.87 D
ŨG

. It would be
reasonably safe to assume that for a downstream cylinder, i.e. for Ũ∗ = ŨG, gr =
grd = e

−µλ̃ D
ŨG = e−µλ̃

D
aŨ with µ = 1.

2.2.2 Fluid Forces on a Downstream Cylinder

As shown in Fig. 2.2(b), the flow approaches cylinder i at an angle of incidence (αi),
by virtue of the its streamwise velocity (Żi) and transverse velocity (Ẏi). If DF is the
drag force, LF the lift force on cylinder i in the directions as given by Fig. 2.2(b), L
the tube length, and Ũ∗ the resultant approach velocity, the following expression for
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the force in the transverse direction (FYi) can be obtained:

FYi = LF cosαi −DF sinαi = 1
2ρŨ

2
∗LD

[
C̄L

(
ŨG − Żi
Ũ∗

)
− C̄D

(
Ẏi

Ũ∗

)]
(2.9)

where,

sinαi =
(
Ẏi

Ũ∗

)
, cosαi =

(
ŨG − Żi
Ũ∗

)
, (2.10)

Ũ∗ =
√

(ŨG − Żi)2 + Ẏ 2
i = ŨG

√√√√(1− Żi

ŨG

)2

+
(
Ẏi

ŨG

)2

≈ ŨG

(
1− Żi

ŨG

)
. (2.11)

C̄D and C̄L are the drag and lift coefficients based on the gap velocity ŨG for cylinder
i. Equation (2.9) can be re-written as

FYi = 1
2ρLD

[
C̄LŨ∗ŨG

(
1− Żi

ŨG

)
− C̄DŨ∗Ẏi

]
=

1
2ρLDŨ

2
G

C̄L
(

1− Żi

ŨG

)2

− C̄D
(

1− Żi

ŨG

)
Ẏi

ŨG

 ,
which upon further simplification and neglecting the second order terms, gives

FYi ≈
1
2ρLDŨ

2
G

[
C̄L

(
1− 2Żi

ŨG

)
− C̄D

(
Ẏi

ŨG

)]
(2.12)

Now,

FD = 1
2ρLDC̄DŨ

2
G = 1

2ρLDCDŨ
2, FL = 1

2ρLDC̄LŨ
2
G = 1

2ρLDCLŨ
2 (2.13)

where CD and CL are the drag and lift coefficients for cylinder i, associated with the
far-stream velocity Ũ . Substituting Eq. (2.13) in Eq. (2.12) and non-dimensionalizing,
i.e. by defining zi = Zi/D and yi = Yi/D, we arrive at the following expressions:

FYi = 1
2ρŨ

2LD
[
CL

(
1− 2D

aŨ
żi

)
− CD

(
D

aŨ
ẏi

)]
(2.14)

Next, we have:

CLi = CL0i + zi
∂CLi
∂zi

+ yi
∂CLi
∂yi

(2.15a)

CDi = CD0i + zi
∂CDi
∂zi

+ yi
∂CDi
∂yi

(2.15b)



20 Chapter 2 An Investigation of Damping in Heat-Exchanger Tubes

It can be inferred that CL0i corresponds to flow past a stationary cylinder, and due
to the symmetric nature of such flow, CL0i = 0. Similarly, symmetry dictates that
an infinitesimal displacement (dZi) of the cylinder along the +/−Z axis should cause
no change in the lift (which is along the Y axis), which gives us ∂CLi/∂zi = 0.
Next, an infinitesimal displacement (dYi) of the cylinder along the +/−Y axis would
cause an equal change in drag for either direction. This implies that ∂CDi/∂yi =
−∂CDi/∂yi = 0. Substituting Eqs. (2.15a) and (2.15b) in Eq. (2.14), and neglecting
the O(ziżi, yiẏi, ziẏi, yiżi) terms, we get:

FYi = 1
2ρŨ

2LD

[
−CD0i

(
D

aŨ

)
ẏi + grd

∂CLi
∂yi

yi

]
(2.16)

Here, we remember that the actual displacement of cylinder i is yi(T−∆T ) = grdyi(T )
(Section 2.2.1) and therefore replace yi with grdyi. With the understanding that we
are focusing on a downstream cylinder, i.e. cylinder i, we will discard the subscript i
for simplicity. Equation (2.16) can be written in a condensed form as follows:

F = 1
2ρŨ

2LD
[
β̄
(
D

aŨ

)
ẏ + grdκ̄y

]
(2.17)

where β̄ = −CD0, and κ̄ = ∂CL/∂y. It must be noted that ẏ represents the derivative
of the non-dimensional displacement (y) w.r.t. the dimensional time (T ). Using
t = ωnT , where ωn represents the undamped angular frequency of oscillation for the
no-flow condition (ωn = 2πf), and t represents the non-dimensional time, we get:

F = 1
2ρŨ

2LD
[
β̄
(
Dωn

aŨ

)
ẏ + grdκ̄y

]
(2.18)

Here, ẏ now represents the derivative w.r.t non-dimensional time (dy/dt).

2.3 Mathematical Model

Figure 2.3 shows a schematic of a single flexible cylinder in a rotated-equilateral array
of rigid cylinders under cross-flow [4]. The equation of motion for a flexible cylinder
in the lift (Y ) direction is given by:

ML
d2Y

dT 2 + C
dY

dT
+KY = 1

2ρŨ
2LD

[
β̄
(
Dωn

aŨ

)
ẏ + grdκ̄y

]
(2.19)

Here, M is the mass of the tube per unit length, C is the modal damping coefficient,
and K is the modal cylinder stiffness. Again, substituting y = Y/D and t = ωnT on
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the LHS in Eq. (2.19), we get:

MLDω2
nÿ + CDωnẏ +KDy = 1

2ρŨ
2LD

[
β̄
(
Dωn

aŨ

)
ẏ + grdκ̄y

]
, (2.20)

where grd = e−λ̃µD/aU∞ for a single flexible (downstream) cylinder in an array of
rigid cylinders, and λ̃ is an eigenvalue as mentioned in Section 2.2.1. Since ωn is
the undamped radian frequency of oscillation for the no-flow condition, we have
ωn =

√
K/ML [4]. Next, we use the well-known relation C/ML = 2ζωn, where

ζ is the damping ratio. Furthermore, we know that ζ ≈ δ/π for δ � 1, where δ

is the logarithmic decrement. Dividing Eq. (2.20) by MLω2
n throughout, and using

C/MLωn = δ/π, K/ML = ω2
n as outlined above, and U = Ũ/Dωn, where U is the

dimensionless flow velocity, we obtain

ÿ +
[
δ

π
− β̄ U

4πam

]
ẏ +

[
1− grdκ̄

U2

8π2m

]
y = 0. (2.21)

As done in Section 2.2.1, grdy can be recast as y(t)e−λ̃µD/aU∞ = y0e
λ̃te−λ̃µD/aU∞ =

y(t − λ̃µD/aU∞), and Eq. (2.21) can be written as a DDE by separating out the
delay-dependent displacement term:

ÿ + ẏ

[
δ

π
− β̄ U

4πam

]
+ y − κ̄ U2

8π2m
y(t− τ) = 0, (2.22)

Figure 2.3: Schematic of a single flexible cylinder (solid blue color) in an array of
rigid cylinders subject to cross-flow, as used in [4]. Figure not to scale.
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where τ = µωnD/aŨ = µ/aU is the dimensionless time-delay. The characteristic
equation of Eq. (2.22) is given by

D(λ, U) = λ2 + λ

[
δ

π
− β̄ U

4πam

]
+ 1− κ̄ U2

8π2m
e−λτ = 0, (2.23)

Here, λ represents the roots of the characteristic equation and is dimensionless. It must
be noted that the focus of the analysis by Price and Paidoussis [4] was obtaining only
the stability boundary, which was accomplished by assuming <(λ) = 0 in Eq. (2.23).
This is reasonable since the characteristic roots must lie on the imaginary axis as the
system transitions from stable to unstable. Hence, λ = ıωc is substituted in Eq. (2.23),
where ωc = =(λ) at the stability threshold. The resulting expression was separated
into its real and imaginary parts, which were each equated to zero, as follows:

ω2
c − 1 + κ̄U2

c

8π2m
cos

(2πµωc
aUc

)
= 0, (2.24a)

ωc

[
δ

π
− β̄Uc

4πam

]
+ κ̄U2

c

8πm sin
(2πµωc
aUc

)
= 0. (2.24b)

Equations (2.24a) and (2.24b) constituted the characteristic equations, which
were solved numerically to obtain Uc as a function of either m or δ, i.e., the stability
boundary, as it were. Note that the term “stability boundary” is more appropriately
called the critical curve instead. We cannot definitively say that the critical curves
always represent the stability boundary. The only conclusion we can draw is that a set
of characteristic roots are purely imaginary along the critical curve. Let us consider an
example. Equation (2.23) is transcendental and has infinitely many roots. Consider
a case in which a set of characteristic roots lie on the imaginary axis, with another
set of roots lying on the right half of the complex plane. The system would actually
be unstable although there exists a pair of roots that lie on the imaginary axis, which
satisfy Eqs. (2.24a) and (2.24b). These roots would lead us into believing that the
system is at the stability boundary instead. In order to overcome this limitation, we
solve for the roots of the characteristic equation (Eq. (2.23)) on the entire plane of
[mδ, U ] in the following manner.

Equation (2.23) is a transcendental equation and has infinitely many roots. A
large linear eigenvalue problem can be solved to compute the roots of Eq. (2.23).
Although the procedure for converting a DDE into a system of ODEs for obtaining
the characteristic roots has been reported in literature [49], a brief summary has been
offered here for reference. Let y = [y(t), ẏ(t)]T . Substituting this in Eq. (2.22), we get
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ẏ(t) = Ay + By(t− τ), (2.25a)

A =
 0 1
−1 − δ

π
+ β̄U

4πam

 , B =
 0 0
κ̄U2

8π2m
0

 . (2.25b)

Now, a shift-of-time transformation of the form y(t+ s) = z(s, t) is introduced, where
s ∈ [−τ, 0]. Hence, y(t) = z(0, t) and y(t− τ) = z(−τ, t). With the help of the chain
rule for partial differentiation, we get

∂z(s, t)
∂t

= ∂y(t+ s)
∂(t+ s)

∂(t+ s)
∂t

= ∂y(t+ s)
∂(t+ s) (2.26a)

∂z(s, t)
∂s

= ∂y(t+ s)
∂(t+ s)

∂(t+ s)
∂s

= ∂y(t+ s)
∂(t+ s) . (2.26b)

Comparing Eqs. (2.26a) and (2.26b), we get:

∂z
∂t

= ∂z
∂s
, ∀ s ∈ [−τ, 0]. (2.27)

Furthermore, y(t) = z(0, t) and y(t− τ) = z(−τ, t). Substituting the above relations
in Eq. (2.25(a)), we obtain

∂z
∂t

∣∣∣
s=0

= Az(0, t) + Bz(−τ, t). (2.28)

Invoking a Galerkin approximation, z is discretized as follows.

zi(s, t) =
N∑
j=1

φij(s)rij(t) = Φi(s)ri(t); i = 1, 2, (2.29)

where Φi(s) = [φi1(s), φi2(s), ...φiN(s)]T and ri(t) = [ri1(t), ri2(t), ...riN(t)]T are the
basis functions and the independent coordinates, respectively. Eq. (2.29) can be writ-
ten in vector form as

z(s, t) = ΦT (s)χ(t), (2.30a)

Φ =
Φ1(s) 0

0 Φ2(s)

 , χ(t) =
r1(t)
r2(t)

 , (2.30b)

which upon substituting in Eq. (2.27), we get

ΦT (s)χ̇(t) = Φ′(s)Tχ(t), (2.31)
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where Φ′(s) = ∂Φ/∂s. Premultiplying Eq. (2.31) by Φ(s) and integrating with-
respect-to s over [−τ, 0], we get

(∫ 0

−τ
Φ(s)ΦT (s)ds

)
χ̇(t) =

(∫ 0

−τ
Φ(s)Φ′T (s)ds

)
χ(t) (2.32a)

⇒ Cχ̇(t) = Dχ(t), (2.32b)

where C and D are square, block-diagonal matrices of dimension 2N each. We obtain
the matrices on the boundary conditions as follows. From Eq. (2.30a) we have:

∂z

∂t

∣∣∣∣∣
s=0

= ΦT (s)χ̇(t) (2.33a)

z(0, t) = ΦT (0)χ(t) (2.33b)

z(−τ, t) = ΦT (−τ)χ(t). (2.33c)

Substituting the above relations in Eq. (2.28), we get:

ΦT (0)χ̇(t) = [AΦT (0) + BΦT (−τ)]χ(t) (2.34)

In Eq. (2.34), both ΦT (0) and [AΦT (0)+BΦT (−τ)] are matrices of dimension 2×2N .
These matrices contain information on the boundary conditions. Equations (2.32b)
and (2.34) are combined by replacing the Nth and 2Nth rows of matrices C and D
(Eq. (2.32b)) with the first and second rows of ΦT (0) and [AΦT (0) + BΦT (−τ)]
(Eq. (2.34)), respectively. The equations obtained after combining the respective
matrices are written as:

Mχ̇(t) = Kχ(t), (2.35a)

⇒ χ̇(t) = M−1Kχ(t), (2.35b)

where M and K are both square matrices of dimensions 2N . Hence, the DDE given
by Eq. (2.22) has been approximated to a system of ODEs given by Eq. (2.35b). The
basis functions used in this chapter are shifted Legendre polynomials given by

φi1(s) = 1, φi2(s) = 1 + 2s
τ
, (2.36a)

φik(s) = (2k − 3)φi2(s)φik−1(s)− (k − 2)φik−2(s)
k − 1 , (2.36b)

∀ k ∈ {3, 4, ...N} and i = 1, 2. More about this formulation and the entries of C
and D can be found in ref. [49]. As N increases, approximately N/2 eigenvalues of
M−1K converge to the characteristic roots, i.e., the roots of Eq. (2.23). It follows
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from the above analysis that M−1K is a function of the parameters m, δ, and U .
The relevant aerodynamic force coefficients, stiffness and damping coefficients, and
geometric parameters that inform the entries of M−1K and the stability threshold are
taken from [4] and summarized in Tab. 2.1. A grid with approximately 10000× 9000
points is constructed for the [mδ, U ] plane with mδ ∈ [0.1, 103] and U ∈ [0.1, 102]. The
eigenvalues (λ̄) of M−1K are evaluated at each grid point. The system is considered
to be stable at a particular grid point only if <(λ̄) < 0, ∀ λ̄ that satisfies Eq. (2.35b).

Table 2.1: Parametric values borrowed from Price and Paidoussis [4].

Parameter Value Parameter Value
Ls/D 0.688 CD0 6.8
Ta/D 1.191 β̄ −6.8
a 1.724 ∂CL

∂y
−243

δ 0.1 κ̄ −243

2.4 Results

Since large values of N can result in increased computational overload, an optimal
value of N that does not compromise on accuracy is first determined. In this study,
the effect of different values of N (3 ≤ N ≤ 30) required for obtaining eigenvalues
that have converged to the characteristic roots is investigated. Residuals are obtained
at each grid-point by substituting the rightmost eigenvalue (λ̄r) in the characteristic
equation (Eq. (2.23)). The eigenvalues of M−1K are said to be converged if all residual
values are less than 10−6. Since the minimum value of N required for convergence
was found to be 30, all results presented here are for N = 30.

Before proceeding any further, it may be useful to obtain typical values of mδ
from data made available by the industry. Typical tube diameters and their thickness
specifications have been reported by the Tubular Exchangers Manufacturers Associ-
ation Inc. [53]. Typical tube material can be carbon steel, nickel-chromium alloys,
admiralty brass, bronze and alloys of copper-nickel or nickel-chromium [53, 54]. The
specific gravity of these materials can be found in [54]. The combined knowledge
of this information and the specific gravity of heavy water, which is the typical sec-
ondary coolant in the heat exchangers of nuclear reactors, it can be argued that
1 ≤ m ≤ 10 is appropriate for industrial purposes. For δ = 0.1, as is chosen for this
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study, 0.1 ≤ mδ ≤ 1. Hence, lower values of mδ are relevant to nuclear reactors. High
mδ are characteristic of gaseous flows [2].

2.4.1 Damping in the stable region

Figure 2.4(a) shows the stability chart for the system in the [mδ, U ] plane, for µ = 1.
The system is stable in the region of color. The stability threshold as reported by [4]
is obtained by putting Eqs. (2.24a) and (2.24b) through a Newton-Raphson solver and
plotted (red dots) for comparison with the current model. The following preliminary
observations can be made. First, the stability boundary obtained from the Galerkin
approximation gives a more conservative estimate of Uc, as compared to experiments
(data from experiments was extracted from [4]). Secondly, it is in excellent agreement
with the stability boundary obtained from the method used by [4]. The “critical
curve” from [4] is therefore the stability boundary indeed. Third, alternating regions
of negative and positive damping (unstable and stable regions, respectively) are found
to exist for mδ < 2 (Fig. 2.4(b)). Such alternating regions were also reported by [4]
(red dots in Fig. 2.4(b)).

Figure 2.4: Stability chart obtained from the current model along with the sta-
bility threshold (red dots) from the model by [4], for µ = 1 in (a) the [mδ, U ] plane
and (b) the low mass-damping parameter region demarcated by black dashed-lines
in (a). Color map/contours indicate the damping (real part of the rightmost char-
acteristic root). The white region represents the unstable region where the damping
is not reported. Experimental data: /, Hartlen [5]; ∗, Heilker and Vincent [6]; ◦,

Pettigrew et al. [7]; +, Weaver and Grover [8]; •, Weaver and El-Kashlan [9].
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The most distinguishing result is the damping present in the stable region, repre-
sented by the color contours. These are obtained from the real part of the rightmost
characteristic roots (λ̄r) obtained from the current method. At high values of mδ,
i.e., for mδ ≥ 100, the damping is relatively low. An important feature of Fig. 2.4(a)
is the region of maximum damping around mδ = 1 and U = 0.8. This region has
been magnified in Fig. 2.4(b). More specifically, the highest damping in this region is
found at mδ = 1.333, U = 0.791. The eigenvalues that have converged to the char-
acteristic roots at this point are shown in Fig. 2.5. At this point, <(λr) u −0.2396,
indicating that the peaks of the vibration response will decay at a rate proportional
to e−0.2396t. The region around this point is also a region of relatively low damping
(Fig. 2.4(b)). This means that although (mδ = 1, U = 0.4), for instance, lies in a
region of instability, it is more advisable for the system to operate at double the flow
velocity (U = 0.8) for the same value of mass-damping parameter. This challenges
the notion that operating the system at lower values of U would guarantee a more
stable system.
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-1.5 -1 -0.5 0

ℑ
(λ
)
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0
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Figure 2.5: Characteristic roots at mδ = 1.333, and U = 0.791, with the DDE
given by ÿ + 0.218ẏ + y + 1.444y(t− τ) = 0 as obtained from Eq. (2.22).

In order to obtain an understanding of how the stability behavior of the system
changes with different values of the time-delay, stability charts are obtained for µ = 2
and µ = 0.5. Figure 2.6(a) shows the stability chart for µ = 2, along with the
stability threshold (red dots) for µ = 2, in the [mδ, U ] plane. Both sets of data
are obtained from the current model. A comparison of Fig. 2.4(a) and Fig. 2.6(a)
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shows that at mδ = 1000, Uc is approximately 100% smaller in magnitude than that
for µ = 1. Furthermore, there are twice as many regions of alternate negative and
positive damping as those observed for µ = 1. Figure 2.6(b) shows the stability chart
for µ = 0.5, along with the stability threshold (red dots) for µ = 0.5, in the [mδ, U ]
plane, with both sets of data obtained from the current model. A comparison of
Fig. 2.4(a) and Fig. 2.6(a) shows that at mδ = 1000, Uc is approximately 100% larger
in magnitude than that for µ = 1. This corroborates well with the analysis by [4].
Only one region of alternating negative and positive damping is observed, reiterating
the dependence of the damping-controlled instability on µ. This suggests that the
damping-controlled instability (the dominant instability for low mδ [4]) is contingent
on the flow-retardation parameter, and hence the dimensionless time-delay (τ). The
shift in the region of maximum damping implies that the choice of µ is important from
an operational perspective and that the accepted convention of µ = 1 is questionable,
from a practical point of view.

It must be noted that our analysis pertains to a non-dimensional parametric
space. The advantage of using dimensionless parameters is that it gives us the flex-
ibility of adjusting several dimensional physical quantities for a fixed value of the
dimensionless parameter, with minimal computational overhead. Once the dimen-
sionless parameters (mδ and U) are chosen, the engineer has a host of dimensional
design parameters (tube material, thickness, and diameter) to adjust, in order to get
the desired values of mδ and U . In this manner, the system can be operated in a
region of high damping.
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Figure 2.6: Comparison of the stability chart obtained from the current model
(color map) and the stability threshold from [4] (red dots) for (a) µ = 2 (b) µ = 0.5,
in the [mδ, U ] plane. Color map/contours indicate the damping (real part of the
rightmost characteristic root). The white region represents the unstable region

where the damping is not reported.

2.4.2 Hopf bifurcation

It may be useful to understand the kind of bifurcation through which the system
becomes unstable at the stability threshold. The occurrence of Hopf bifurcation can
be investigated by observing the velocity at which the rightmost characteristic root
(λr) crosses the imaginary axis at the stability threshold. The velocity of root-crossing
can be analytically obtained at follows. Differentiating Eq. (2.23) with respect to U
and applying the chain rule, we get:

dD

dU
(λ, U) = ∂D

∂U
+ ∂D

∂λ

dλ

dU
= 0, (2.37a)

⇒ dλ

dU
= −∂D/∂U

∂D/∂λ
. (2.37b)

Substituting Eq. (2.23) in Eq. (2.37b), we get:

dλ

dU
= β̄λπ + κ̄Uae−

2πλµ
aU + κ̄λµπe−

2πλµ
aU

8aπ2mλ+ 4aπmδ − πβ̄U + κ̄µπUe−
2πλµ
aU

, (2.38)
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At the stability threshold, <(λr) = 0, so λr = iωc is substituted in Eq. (2.38). Upon
further simplification, and using e−iθ = cos θ − i sin θ, where θ = 2πωcµ

aU
, we get:

dλ

dU
=

aU
π

+ µωc tan θ + i
(

β̄ωc
κ̄ cos θ −

aU tan θ
π

+ ωcµ
)

µU + 4amδ−β̄U
κ̄ cos θ + i

(
8aπmωc
κ̄ cos θ − µU tan θ

) . (2.39)
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Figure 2.7: Variation of the real part of the rightmost characteristic roots with
reduced velocity for mδ = 1, in the vicinity of the critical points.

The real part of Eq. (2.39) gives the velocity of root-crossing at a point of interest
on the stability threshold. For the sake of brevity, only the case of mδ = 1 has been
considered to explore the possibility of Hopf bifurcation. Fig. 2.7 shows the variation
of the real part of the rightmost root (<(λr)) of the characteristic equation (Eq (2.23)),
with U , for mδ = 1. It can be seen that the plot of the <(λr) begins from <(λr) < 0,
where the system is stable. The <(λr) then switches signs three times as the system
transitions to the unstable region, back into the stable region and finally, back into the
unstable region (This can be easily corroborated by traveling along the line mδ = 1
in Fig. 2.4(b).). The three points where <(λr) = 0 are referred to as critical points.
The dimensionless critical velocity (Uc) and the imaginary part (ωc) of λr, at these
critical points, is shown in Tab. 2.2. By substituting these values of ωc into Eq. (2.39),
the velocities at which the corresponding λr crosses the imaginary axis in the complex
plane can be obtained analytically. These velocities can also be obtained, numerically,
from evaluating the slope of the curve in Fig. 2.7 wherever it crosses the line <(λr) = 0.
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The values obtained analytically (Γ̄) and numerically (Γ) are compared in Tab. 2.2.
These are within an error of less than 2% from each other, implying that Γ̄ and Γ are
in reasonable agreement. Furthermore, since Γ̄,Γ 6= 0, the three critical points under
consideration are indeed Hopf bifurcation points. At U = 0.4230, Γ̄,Γ > 0, implying
that the system is transitioning from stable to unstable. At U = 0.5520, Γ̄,Γ < 0,
implying that the system is transitioning back from unstable to stable. At U = 1.016,
Γ̄,Γ > 0, implying that the system is finally transitioning into an unstable region.

2.5 Chapter Summary

A stability analysis involving the second-order delay differential equation of motion
from [4] is conducted for a single flexible cylinder in the parametric space of mass-
damping parameter and reduced velocity. Galerkin approximations are used to model
the equation. The stability boundary obtained from the current analysis is more
conservative compared to data from experiments. However, it is in strong agreement
with that obtained from the method used in [4]. This work goes beyond obtaining the
stability threshold to report the damping present in the stable region of the [mδ, U ]
plane, for µ = 0.5, 1, and 2. This is facilitated by the real parts of the rightmost
characteristic roots obtained from the Galerkin method. Three important observations
can be made from the information regarding damping:

1. At high mass-damping parameter (mδ ≥ 100), the damping is relatively low.

2. Alternating regions of positive and negative damping are indeed found to exist
for mδ < 10, which corroborates observations from [4].

3. Finally, and most importantly, the region of the highest damping and therefore,
maximum stability is found to exist around mδ = 1.333 and U = 0.791. The
region of maximum damping is achieved at a comparatively lower mass-damping

Table 2.2: Velocity of root-crossing obtained numerically and analytically for the
rightmost characteristic roots at the critical points, along mδ = 1.

U ωc Γ Γ̄
0.4230 0.9838 0.3047 0.3019
0.5520 1.0386 −0.2528 −0.2578
1.016 0.8288 0.4951 0.4947
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parameter value for µ = 0.5, and a comparatively higher mass-damping param-
eter value for µ = 2.

The velocity of root-crossing is computed, numerically and analytically, at the
three critical points for mδ = 1. Since both methods provide non-zero values that
are in strong agreement with each other, it is inferred that Hopf bifurcation occurs at
the three critical points. Hopf bifurcation can also be proved to exist at other points
on the stability threshold by deploying a similar analysis for different values of mδ,
indicating that the stability threshold is a locus of bifurcation points. The existence
of Hopf bifurcation is important for the purpose of bifurcation control.

Much of the work presented in this chapter is new and very relevant to emerging
studies on heat-exchanger tubes. Contrary to several earlier studies that have reported
only the stability threshold, the information on the damping in the stable region has
been reported here for the first time. Moreover, we report the region of maximum
damping in the parametric space, where the vibration response of the tube will decay
most rapidly. Remarkably, the mass-damping parameter in this region is low (mδ <
10). This is of prime importance from an operational point of view since nuclear
reactors operate at low values of mass-damping parameter. Furthermore, popular
opinion holds that it is safer to operate at a flow velocity lower than the lowest critical
velocity for a given mass-damping parameter. However, the results in this chapter
indicate that the region of maximum damping is a localized region in the parametric
space, where the system is more stable at a higher velocity than the lowest critical
velocity for that mass-damping parameter. This localized region is also close to the
stability boundary. Since the region of maximum damping shifts with change in the
flow-retardation parameter and hence the time-delay, the latter also bears significance
if this region must be leveraged.



Chapter 3

Effect of Nonlinear Cladding Stiffness on
the Stability and Hopf Bifurcation of a
Heat-Exchanger Tube Subject to
Cross-flow

3.1 Introduction

The linear stability of a heat-exchanger tube modeled as a single-span cantilever beam
subjected to cross-flow has been studied with two parameters: (i) varying stiffness of
the baffle-cladding at the free end and (ii) varying flow velocity. A mathematical
model incorporating the motion-dependent fluid forces acting on the beam is devel-
oped using the Euler-Bernoulli beam theory, under the inextensible condition. The
partial delay differential equation governing the dynamics of the continuous system is
discretized to a set of finite, nonlinear delay differential equations through a Galerkin
method in which a single mode is considered. Unstable regions in the parametric
space of dimensionless cladding stiffness and flow velocity are identified, along with
the magnitude of damping in the stable region. This information can be used to
determine the cladding stiffness at which the system should be operated to achieve
maximum damping at a known operational flow velocity. Furthermore, the system is
found to lose stability by Hopf bifurcation and the method of multiple scales is used
to analyze its post-instability behavior. Stable and unstable limit cycles are observed
for different values of the linear component of the dimensionless cladding stiffness. A
global bifurcation analysis indicates that the number of limit cycles decreases with
increasing linear cladding stiffness. An optimal range for the linear cladding stiffness

33
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is recommended where tube vibrations would either diminish to zero or assume a
relatively low amplitude associated with a stable limit cycle.

This chapter is organized as follows. In Section 3.2, a detailed account of model-
ing the heat-exchanger tube as an Euler-Bernoulli cantilever beam is described. Fluid
forces acting on the beam are modeled using an added-mass coefficient and aerody-
namic parameters taken from the literature. Assuming a single dominant mode of vi-
bration, the fixed points and the critical curves of the model are derived in Section 3.3.
Section 3.3.1 establishes the base for the linear stability analysis. In Section 3.3.2, the
procedure for approximating the delay differential equation (DDE) as a set of ordinary
differential equations (ODEs) using Galerkin approximations is given. The stability
chart for the system in the parametric space of dimensionless flow velocity and k1 is
presented, along with the spectrum at the points of critical dimensionless cladding
stiffness for a fixed value of dimensionless flow velocity. Section 3.4 establishes the
presence of Hopf-bifurcation points. In Section 3.5, the method of multiple scales
(MMS) is used to obtain the normal-form equations for both, the supercritical and
subcritical Hopf-bifurcation points. Section 3.6 shows the global bifurcation diagram
along with the limit cycles at selected values of k1. Finally, Section 3.7 summarizes
the contribution of this chapter.
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3.2 Mathematical modeling

(a) (b) (c)

Figure 3.1: Schematic of (a) a section of a heat exchanger with tubes, baffle
plates and claddings, with (b) a top view depicting the square array of tubes, (c) a
cross-sectional view of a tube with claddings, where G1 is the baffle-hole diameter

(figures not to scale).

The single-span flexible tube under consideration is modeled as an Euler-Bernoulli
cantilever beam (Fig. 3.2) supported by a nonlinear spring that simulates the baffle-
cladding at the free end (Fig. 3.1(c)).

Figure 3.2: Schematic of a single flexible tube modeled as a cantilever beam
(figure not to scale).

The tube axis is aligned in the X direction. Fluid with density ρ flows across the
tube and along the z direction with a velocity of Ũ . This flow produces a transverse
deflection W of the tube. The equation that governs the motion of the tube when
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modeled as an Euler-Bernoulli beam [30] is given by:

EI
∂4W

∂X4 + C
∂W

∂T
+M

∂2W

∂T 2 + δ (X −Xb) f̃ (W )

−EA2L
∂2W

∂X2

∫ L

0

(
∂W

∂X

)2

dX = F
(
W, Ẇ , Ẅ

)
,

(3.1)

where EI is the flexural rigidity, C is the damping coefficient, and M is the mass of
the tube per unit length. A is the cross-sectional area of the cylindrical tube, X is
the spatial coordinate, and T is time. The baffle and the support springs are located
at a distance Xb = L from the fixed end. The force due to the support springs is
represented by f̃ , and δ(X − Xb) is the Dirac delta function. F

(
W, Ẇ , Ẅ

)
is the

cross-flow-induced force acting on the tube and is given by [37]:

F
(
W, Ẇ , Ẅ

)
= −π4ρD

2Cma
∂2W (X,T )

∂T 2 − 1
2ρŨDCD

∂W (X,T )
∂T

+1
2ρŨ

2D
∂CL
∂W

W (X,T −∆T ).
(3.2)

CD and CL are the drag and lift coefficients, respectively, which depend on the flow
velocity in the gap between the tubes. Cma is the added-mass coefficient of the fluid
around the tube. ∆T (= µD/Ũ) is the time-delay that arises due to the phase lag
between cylinder motion and fluid dynamic forces, and µ is a parameter related to
tube-array pattern. In order to convert Eq. (3.1) into its non-dimensional form, the
following dimensionless quantities are introduced:

w = W

D
, x = X

L
, t = λ2

1

√
EI

ML4T = Ω1T, ξ = C

Ω1M
, m = M

ρD2 ,

U = 2πŨ
DΩ1

, β = 1
1 + 4m

πCma

, γ = AD2

2Iλ4
1
, and f = f̃

MΩ2
1LD

.

(3.3)

Here, λ1 is the dimensionless eigenvalue of the first mode of the beam in the absence
of nonlinear terms and fluid forces. On substituting the dimensionless parameters
(Eq. (3.3)) into Eq. (3.1), we obtain:

1
λ4

1

∂4w(x, t)
∂x4 +

(
ξ + UCD

4πm

)
∂w(x, t)
∂t

+ 1
1− β

∂2w(x, t)
∂t2

+ δ(x− xb)f(w(x, t))

−γ ∂
2w(x, t)
∂x2

∫ 1

0

(
∂w(x, t)
∂x

)2

dx− U2

8π2m

∂CL
∂w

w(x, t− τ) = 0.
(3.4)

The dimensionless time-delay is given by τ = 2π/U for µ = 1 [37]. The solution w(x, t)
of Eq. (3.4) is approximated using a standard Galerkin expansion and by considering
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only one dominant mode of vibration:

w(x, t) = φ(x)q(t). (3.5)

Here, φ(x) is the shape function of a fixed-free beam of unit length, which is given
by [39]:

φ(x) = −
(

cosλ1 + cosh λ1

sin λ1 + sinh λ1

)
(sinh λ1x− sin λ1x) + (cosh λ1x− cosλ1x) , (3.6)

where λ1 = 1.8751 is the first dimensionless eigenvalue for the first mode [39]. We
have considered a single mode for two of reasons. First, the critical velocity at which
the tube becomes unstable is lowest for the first mode. Secondly, the multiple-scales
analysis for obtaining normal forms (Section 3.5) becomes very complicated when
higher modes are included. On substituting the approximated solution (Eq. (3.5))
into Eq. (3.4) and by defining φI(x) = ∂φ

∂x
, φII(x) = ∂2φ

∂x2 and φIV (x) = ∂4φ
∂x4 , we get:

R(x, t) = 1
1− βφ(x)q̈(t) +

(
ξ + UCD

4πm

)
φ(x)q̇(t) + 1

λ4
1
φIV (x)q(t)

+δ(x− xb)f(w(x, t))− γφII(x)q(t)
∫ 1

0

(
φI(x)q(t)

)2
dx

− U2

8π2m

∂CL
∂w

φ(x)q(t− τ).

(3.7)

In Eq. (3.7), R(x, t) is the residue and error incurred in Eq. (3.1) from substituting
the approximate solution given by Eq. (3.5). Using a Galerkin approximation, the
weighted integrals of the residue are set to zero:

∫ 1

0
R(x, t)φ(x)dx = 0. (3.8)

Upon substituting Eq. (3.7) into Eq. (3.8) and using the following expressions:
∫ 1

0
φ(x)2dx = 1, (3.9a)∫ 1

0
φ(x)φIV(x)dx = λ4

1, (3.9b)∫ 1

0
φ(x)φII(x)

∫ 1

0
φI(x)2dx = µ̄ = 3.9887, (3.9c)∫ 1

0
φ(x)f(w(xb))δ(x− xb)dx = φ(xb)f(w(xb)), (3.9d)
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we get the DDE

q̈(t) + (1− β)
(
δ1

π
+ UCD

4πm

)
q̇(t) + (1− β) q(t)− γ (1− β) µ̄q3(t)

− U2

8π2m

∂CL
∂w

(1− β) q(t− τ) + φ(xb)f(w(xb))(1− β) = 0.
(3.10)

In Eq. (3.10), damping ratio (ξ) has been replaced by the modal damping (δ1/π),
δ1 being the logarithmic decrement. For a square array with pitch-to-diameter ratio
(P/D) of 1.5, the values of the parameters in Eq. (3.10) are β = 0.24, δ1 = 0.06, CD =
0.26, m = 3, ∂CL/∂w = −8.1, and γ = 0.015 [40]. In this chapter, the dimensionless
restraining spring force (f) is chosen to be a combination of a linear spring and a
cubic spring with dimensionless stiffness k1 and k2, respectively. Therefore,

f(w(xb)) = k1w(xb) + k2w
3(xb), (3.11a)

k1 = K1L
4

λ4
1EID

, k2 = K2L
6

λ4
1EID

, (3.11b)

where K1 is the linear spring stiffness and K2 is the cubic spring stiffness. We have
incorporated a cubic nonlinearity in addition to linear stiffness in the cladding force
to account for large deformation at the cladding. It can be seen from Eq. (3.11a) that
for small |w|, the contribution from the nonlinear term is very low, i.e., the spring will
behave predominantly like a linear spring. However, when the amplitudes are large,
the nonlinear stiffness contributes significantly to the force. Therefore, a combination
of a linear and a cubic spring has been used in this study. Next, we introduce the
following parameters

α1 = δ1

π
(1− β) , (3.12a)

α2 = CD
4πm (1− β) , (3.12b)

α3 = (1− β) , (3.12c)

α4 = −γµ̄ (1− β) , (3.12d)

α5 = − 1
8π2m

∂CL
∂w

(1− β) , (3.12e)

α6 = φ1(xb)2 (1− β) , (3.12f)

α7 = φ1(xb)4 (1− β) . (3.12g)

The values of α6 and α7 can be obtained by substituting xb = 1, as would be the case
for support springs at the free end of the cantilever. The expressions and values for
α1 to α7 have been summarized in Table 3.1 for reference.
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Table 3.1: Values of nondimensional parameters α1 to α7 used in the nonlinear
DDE given by Eq. (3.13).

Parameter Expression Value

α1 δ1 (1− β) /π 0.0145

α2 CD (1− β) /4πm 0.0052

α3 (1− β) 0.76

α4 −γµ̄ (1− β) −0.0098

α5 −∂CL
∂w

(1− β) /8π2m 0.026

α6 φ(xb)2 (1− β) 3.04

α7 φ(xb)4 (1− β) 12.1599

Equation (3.10) becomes:

q̈(t) + (α1 + Uα2) q̇(t) + (α3 + k1α6) q(t) + (α4 + k2α7) q3(t) + U2α5q(t− τ) = 0.
(3.13)

In the analysis that follows, care must be taken to choose values of k1 (K1) and
k2 (K2) that are not too small. The effective linear stiffness coefficient in Eq. (3.13)
above is the coefficient of the displacement term, i.e., (α3 + k1α6). Substituting for
α3 and α6, the effective linear stiffness coefficient becomes (0.76 + 3.04k1). Here,
the number 0.76 represents the nondimensional stiffness of the beam and the term
3.04k1 represents the nondimensional linear stiffness of the baffle spring. For the
linear stability and bifurcation analyses in this study, we have varied k1 from 0 to
100, thereby effectively varying 3.04k1 from 0 to 304. Therefore, we have varied the
linear cladding stiffness term up to 400 times the beam stiffness (0.76). Similarly,
the nonlinear nondimensional stiffness coefficient due to cladding is given by α7k2.
For k2 = 50 and α7 = 12.16, α7k2 = 608, which is very high compared to the linear
stiffness of the beam (α3 = 0.76). Therefore, the values of k1 (K1) and k2 (K2)
considered in this chapter are not small (relatively speaking).
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3.3 Stability and bifurcation analysis

The equilibrium points for the system are first determined via a linear stability anal-
ysis. The stability and bifurcation analysis of the tube under varying dimensionless
flow velocity and linear spring stiffness is then carried out.

3.3.1 Linear stability

In this section, the fixed points of Eq. (3.13) are determined and their linear stability
is analyzed. To determine the fixed points, we substitute q(t) = q(t − τ) = q̄ in
Eq. (3.13), and on further dropping the rate-dependent terms at the fixed points, we
obtain:

(α3 + k1α6) q̄ + α4q̄
3 + k2α7q̄

3 + U2α5q̄ = 0. (3.14)

Solving for q̄ in Eq. (3.14), we get:

q̄1 = 0 and q̄2 = ±

√√√√− (α3 + k1α6)− U2α5

(α4 + k2α7) . (3.15)

In order to study the stability of the system at (around) the fixed points, we substitute
q(t) = r(t) + q̄ in Eq. (3.13), which results in

r̈(t) + (α1 + Uα2) ṙ(t) + (α3 + k1α6) (r(t) + q̄) + (α4 + k2α7) (r(t) + q̄)3

+U2α5(r(t− τ) + q̄) = 0.
(3.16)

From Eq. (3.15) it is clear that equilibrium at the fixed point q̄2 exists only for k2 <

−α4
α7

= 8 × 10−4, which means the value of k2 must be unreasonably low and is
therefore impractical. Hence, only zero equilibrium is studied in this chapter. Upon
substituting q̄ = 0 in Eq. (3.16), the following equation is obtained:

r̈(t) + (α1 + Uα2) ṙ(t) + (α3 + k1α6) r(t) + (α4 + k2α7) r3(t) + U2α5r(t− τ) = 0.
(3.17)

The stability of Eq. (3.17) depends on the roots of its characteristic equation. The
linearized zero equilibrium of the system, after removing the nonlinear terms in r(t)
from Eq. (3.17), is represented by:

r̈(t) + (α1 + Uα2) ṙ(t) + (α3 + k1α6) r(t) + U2α5r(t− τ) = 0. (3.18)
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The characteristic equation for Eq. (3.18) can be obtained by substituting r(t) = r0e
λt:

λ2 + (α1 + Uα2)λ+ (α3 + k1α6) + U2α5e
−λτ = 0. (3.19)

Equation (3.19) is a quasi-polynomial (due to the appearance of the e−λτ term) and
has infinitely many roots. If the real parts of all the characteristic roots of Eq. (3.19)
are negative, then the equilibrium at q̄ is stable. It is generally not possible to obtain
the roots of Eq. (3.19) in closed form. However, information regarding the critical
curves that separate the stable and unstable regions in the [U , k1] parametric space
can be obtained. The stability of Eq. (3.17) around q̄ is lost when its rightmost
characteristic roots cross the imaginary axis (Real(λ) = 0). Therefore, in order to get
the stability boundary, we substitute λ = jωcr and k1 = kcr1 into Eq. (3.19). Next,
using e−jωcrτ = cos(ωcrτ)− j sin(ωcrτ)), and separating the real and imaginary parts
of the resulting equation, the following nonlinear equations are obtained:

− ω2
cr + α3 + kcr1 α6 + U2α5 cos(ωcrτ) = 0, (3.20a)

(α1 + Uα2)ωcr − U2α5 sin(ωcrτ) = 0. (3.20b)

For a given value of the critical dimensionless linear stiffness (kcr1 ), Eqs. (3.20a)
and (3.20b) can be solved numerically to determine the values of U and ωcr along
the stability boundary. The stability boundary so obtained is shown by the critical
curves 1 to 5 in Fig. 3.3. These curves divide the grid into 6 regions, viz. I to VI (see
Fig. 3.3).

Note that the term “stability boundary” is a misnomer in this case. It cannot
be definitively said that the critical curves always represent the stability boundary.
The only deduction that can be drawn is that a set of characteristic roots are purely
imaginary along each of the curves 1 − 5. A simple example that demonstrates this
is a case where a set of characteristic roots lie on the imaginary axis, with another
set lying on the right half of the complex plane, in which case the system is unstable.
To counter this limitation, a Galerkin method is used to obtain information on the
stability in each region (I−VI) and the amount of damping associated with the stable
regions.
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Figure 3.3: Critical curves for Hopf bifurcation for equilibrium point q̄1 = 0.

3.3.2 Spectrum

The detailed procedure for applying the Galerkin method to obtain the characteris-
tic roots of the DDE is provided here. The DDE is converted into a set of finite-
dimensional ODEs. The linearized zero equilibrium of the system (Eq. (3.17)) and
the corresponding characteristic equation are rewritten here for reference:

r̈(t) + (α1 + Uα2) ṙ(t) + (α3 + k1α6) r(t) + U2α5r(t− τ) = 0, (3.21a)

λ2 + (α1 + Uα2)λ+ (α3 + k1α6) + U2α5e
−λτ = 0. (3.21b)

Again, Eq. (3.21b) contains a transcendental term e−λτ and has infinitely many roots.
To determine the roots of Eq. (3.21b), a Galerkin approximation is used. In this
method, the DDE is converted into a set of ODEs whose characteristic roots are
approximately equal to those of the original DDE (Eq. (3.21a)). Although this proce-
dure has been reported in the literature [49, 55] it is repeated here for completeness.
The second-order DDE (Eq. (3.21a)) is first converted into two first-order DDEs by
defining the following vector:

r(t) = [r(t), ṙ(t)]T. (3.22)
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Using Eq. (3.22), Eq. (3.21a) can be written as:

ṙ(t) = Ar(t) + Br(t− τ). (3.23)

We now introduce the time-shift transformation, r(t + s) = y(s, t), s ∈ [−τ, 0]. The
initial-value problem (Eq. (3.23)) is then converted into an initial-boundary value
problem and Eq. (3.23) can be recast as:

∂y(s, t)
∂t

= ∂y(s, t)
∂s

, −τ ≤ s ≤ 0. (3.24)

∂y(s, t)
∂t

∣∣∣∣∣
s=0

= Ay(0, t) + By(−τ, t). (3.25)

Now, we have converted the DDE (Eq. (3.21a)) into an equivalent PDE (Eq. (3.24))
with the boundary conditions given by Eq. (3.25). The solution of the PDE (Eq. (3.24))
is discretized using the following finite-series solution:

yi(s, t) =
N∑
j=1

ψij(s)zij(t) = ψi(s)Tzi(t), i = 1, 2. (3.26)

Here, ψi(s) = [ψi1 (s) , ψi2 (s) , . . . , ψiN (s)]T are the basis functions, and zi(t) =
[zi1(t), zi2(t), . . . , ziN(t)]T. Now, we define the matrix Ψ(s) ∈ R2N×2 and vector Z(t) ∈
R2N×1 as follows:

Ψ(s) =
ψ1(s) 0

0 ψ2(s)

 , Z(t) =
 z1(t)

z2(t)

 . (3.27)

Using Eq. (3.27), Eq. (3.26) can be written in vector form as:

y(s, t) = ΨT(s)Z(t). (3.28)

Substituting Eq. (3.28) into Eq. (3.24), we get:

ΨT(s)Ż(t) = Ψ′(s)TZ(t), (3.29)

where Ψ′(s) is the derivative of Ψ(s) with respect to s. Premultiplying Eq. (3.29) by
Ψ(s) and integrating over the domain s ∈ [−τ, 0], we obtain:

(∫ 0

−τ
Ψ(s)ΨT(s)ds

)
Ż(t) =

(∫ 0

−τ
Ψ(s)Ψ′(s)Tds

)
Z(t). (3.30)
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Equation (3.30) can be rewritten in matrix form as:

CŻ(t) = DZ(t), (3.31)

where {C,D} ∈ R2N×2N are block-diagonal matrices and are defined as:

C ,
∫ 0

−τ
Ψ(s)ΨT(s)ds, D ,

∫ 0

−τ
Ψ(s)Ψ′(s)Tds. (3.32)

The boundary conditions for the system can be obtained by substituting Eq. (3.28)
into Eq. (3.25):

ΨT(0)Ż(t) =
[
AΨT(0) + BΨT(−τ)

]
Z(t). (3.33)

Equation (3.33) has two rows. The boundary conditions are incorporated into Eq. (3.31)
by replacing the N th and 2N th rows of Eq. (3.31) by the first and second rows of
Eq. (3.33), respectively. The resulting equations can be written as:

MŻ(t) = KZ(t) =⇒ Ż(t) = GZ(t), (3.34)

where G , M−1K. Equation (3.34) represents an approximated system of ODEs for
the DDE given Eq. (3.21a). As we increase the number of terms (N) in the series
solution given by Eq. (3.26), the eigenvalues of Eq. (3.34) converge to the characteristic
roots of Eq. (3.21b). Therefore, the stability of the DDE given by Eq. (3.21a) can be
studied by determining the eigenvalues of Eq. (3.34). Shifted Legendre polynomials
are used as basis functions in Eq. (3.26), since the literature shows that they result
in relatively faster convergence to the characteristic roots [49]. Figure 3.4 shows the
stability chart for the system governed by Eq. (3.21a). The entire region of Fig. 3.4
has been discretized into 500× 1000 points. At each of these points, the eigenvalues
of matrix G (see Eq. (3.34)) are evaluated. If all the eigenvalues fall on the left side
of complex plane, the system is considered to be stable; otherwise, it is considered
unstable. Figure 3.4 clearly delineates the unstable regions from the stable ones,
where the system can be safely operated. All the points in the white regions I, III,
and V (Fig. 3.4) are unstable. The color contours indicate the damping present in the
rightmost characteristic root, in the stable regions. The highest damping is present
in the region around U = 23 and k1 = 90. The information regarding damping can be
used to determine the linear cladding stiffness at which the system should be operated
to achieve maximum damping at a known operational flow velocity. Figure 3.4 must
be contrasted with Fig. 3.3 as the boundary curves shown in both the figures are the
same.

Next, we study the distribution of the characteristic roots for different critical
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Figure 3.4: Stability chart in the [U, k1] plane obtained from the Galerkin ap-
proximation, with color contours representing the damping present in the rightmost

root.

points in Fig. 3.4 along U = 7, shown by the dashed vertical line in Fig. 3.4. Points P1

to P5 are the bifurcation points of zero equilibrium. The values of critical dimension-
less linear stiffness (kcr1 ) and frequency (ωcr) at these points are shown in the second
and third columns of Table 3.2, respectively.

Figure 3.5 shows the 12 rightmost characteristic roots of Eq. (3.21a), correspond-
ing to the points P1 to P5, which lie on the stability boundary. In all cases, it is clearly

Table 3.2: Values of kcr1 , ωcr, Γ̄ (numerical), Γ (analytical), and relative error be-
tween the latter ê =

(
Γ̄−Γ

Γ

)
expressed as a percentage, for points P1 to P5 indicated

on the stability chart (see Fig. 3.4).

Point kcr1 ωcr Γ̄ (×10−4) Γ (×10−4) ê (%)
P1 3.85 3.347 −744 −745 0.13
P2 17.05 7.335 140 139 0.72
P3 33.27 10.04 −79 −75 5.3
P4 70.55 14.71 29 33 12.1
P5 91.6 16.68 −23 −25 8.0
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Figure 3.5: Characteristic roots of Eq. (3.21a) obtained using Galerkin approx-
imations for U = 7 and for (a) k1 = 3.85, (b) k1 = 17.05, (c) k1 = 33.27, (d)

k1 = 70.55, and (e) k1 = 91.6.
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Figure 3.6: Variation of the real part of the rightmost characteristic root of
Eq. (3.21a) for U = 7 and for 0 < k1 ≤ 100.

observed that the rightmost roots lie on the imaginary axis. This indicates the possi-
bility of Hopf bifurcation, which is investigated in the next section.

3.4 Hopf bifurcation

The real part of the rightmost characteristic roots of Eq. (3.21a) along the line U = 7 is
plotted against the dimensionless linear stiffness (k1) in Fig. 3.6. To determine whether
points P1 to P5 are those of Hopf bifurcation, the values of Γ̄

(
= Real

(
dλ
dk1

) ∣∣∣
k1=kcr1

)
at

these points are obtained numerically. Γ̄ is approximated as Real
(
λ(kcr1 +δk1)−λ(kcr1 −δk1)

2δk1

)
,

where δk1 is the step size in Fig. 3.6. These are shown in the fourth column of Ta-
ble 3.2. Here, Γ̄ represents the velocity at which the rightmost characteristic root
crosses the imaginary axis, and is hence called the velocity of root-crossing. Fig-
ure 3.6 shows that the real part of the rightmost root crosses the imaginary axis at
points P1, P2, P3, P4 and P5 with a non-zero slope Γ̄ with respect to the param-
eter k1. This clearly indicates the presence of a Hopf bifurcation at each of these
points. We proceed to obtain the analytical values of the velocity of root-crossing for
comparison.The following parameters are introduced into Eq. (3.17):

2ζ = α1 + α2U, ϑ = α5U
2, κ = α4 + k2α7, and σ = α3 + k1α6. (3.35)
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Hence, the zero equilibrium for the system (Eq. (3.17)) and its characteristic equation
can be rewritten as:

r̈(t) + 2ζṙ(t) + σr(t) + ϑr(t− τ) + κr3(t) = 0, (3.36a)

D (λ, σ) = λ2 + 2ζλ+ σ + ϑ

eλ τ = 0, (3.36b)

where the nonlinear terms in r(t) have been dropped from Eq. (3.36a). Since λ is an
implicit function of σ, from the chain rule of differentiation, we have:

dD (λ, σ) = ∂D

∂λ
dλ+ ∂D

∂σ
dσ = 0, (3.37a)

dλ

dσ
= −∂D

∂σ

/∂D
∂λ

= − 1
2λ+ 2ζ − ϑτ

eλτ
. (3.37b)

At a Hopf-bifurcation point, Real
(
dλ
dσ

∣∣∣
σ=σcr,λ=jωcr

)
6= 0. Substituting σ = σcr and

λ = jωcr into Eq. (3.37b) and using the identity e−jωcrτ = cos(ωcrτ)− j sin(ωcrτ), we
get:

dλ

dσ

∣∣∣∣
σ=σcr, λ=jωcr

=
(

2ζ − cos(ωcrτ)ϑτ
Π

)
− j

(
2ωcr + sin(ωcrτ)ϑτ

Π

)
, (3.38a)

Π = −4(ω2
cr + ζ2)− 4ωcrϑτ sin(ωcrτ)− ϑ2τ 2 + 4ζϑτ cos(ωcrτ). (3.38b)

From Eq. (3.35), we have σ = α3 + k1α6, which gives dσ = α6dk1; from the real part
of Eq. (3.38a), we get:

Γ = Real
(
dλ

dk1

) ∣∣∣∣
kcr1 , jωcr

= α6

(
2ζ − cos(ωcrτ)ϑτ

Π

)
. (3.39)

From Eqs. (3.20a) and (3.20b), we have:

U2α5 cos(ωcrτ) = ϑ cos(ωcrτ) = ω2
cr − α3 − kcr1 α6 (3.40a)

U2α5 sin(ωcrτ) = ϑ sin(ωcrτ) = 2ζωcr (3.40b)

Substituting for ϑ sin(ωcrτ) and ϑ cos(ωcrτ) into Eq. (3.38b), we get:

Π = −4(ω2
cr + ζ2)− ϑ2τ 2 − 4ζτω2

cr − 4ζτα3 − 4ζτkcr1 α6. (3.41)

This gives
Γ = − α6 (2ζ − τω2

cr + τα3 + τkcr1 α6)
4ω2

cr + 4ω2
crζτ + 4ζ2 + 4ζτα3 + 4ζτkcr1 α6 + ϑ2τ 2 . (3.42)
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The value of Γ obtained from Eq. (3.42) is evaluated at the points P1 to P5 (see
Fig. 3.4). These values are shown in Table 3.2. The table shows that the values of
the velocity of root-crossing obtained from numerical approximations (Γ̄) are in close
agreement with those predicted analytically (Γ) for the points P1 to P5. This corrob-
orates the numerical procedure outlined above, which not only provides information
on the damping present in the rightmost root in the stable region, but also regarding
the presence of Hopf bifurcation at the stability boundary. Indeed, it can be also be
verified analytically, from Table 3.2, that Γ 6= 0 at all the points P1 to P5, which
guarantees the presence of Hopf bifurcation.

Furthermore, it should be noted that at points P2 and P4, Γ > 0 (Table 3.2)
indicates that the rightmost roots are crossing from left to right in the complex plane,
i.e., the system is transitioning from stable to unstable. Similarly, at points P1, P3

and P5, Γ < 0, which indicates the crossing of purely imaginary roots from right to
left on the complex plane, i.e., the system is transitioning from unstable to stable.
This can also be verified from Fig. 3.6.

3.5 Method of multiple scales

Since we are interested in studying the motions around the Hopf-bifurcation points,
we perturb kcr1 , such that kcr1 = kcr1 + ε∆ and κ̄ = εκ. Here, ε � 1 and ∆ are the
bookkeeping parameter [56] and the detuning parameter, respectively, typically used
in perturbation methods. By substituting σcr = α3 +kcr1 α6 and κ̄ = εκ in Eq. (3.36a),
we get:

d2

dt2
r(t) + 2ζ d

dt
r(t) + σcrr(t) + ϑr(t− τ) + ε

(
∆α6r(t) + κr3(t)

)
= 0. (3.43)

By introducing the new time scale T0 = εt (the slow time scale), and following the pro-
cedure of the method of multiple scales (MMS) proposed by Das and Chatterjee [57],
the solution r(t) of Eq. (3.43) is expanded as follows:

r(t) = r(t, T0) = r0(t, T0) + εr1(t, T0) +O(ε2). (3.44)

The time delay term r(t− τ) in Eq. (3.43) is expanded as:

r(t− τ) = r(t, T0, τ) = r0(t− τ, T0) + ε

(
r1(t− τ, T0)− τ ∂r0(t− τ, T0)

∂T0

)
. (3.45)
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By substituting Eq. (3.44) and Eq. (3.45) into Eq. (3.43), collecting the terms with
coefficients ε0 and ε1, and equating these terms to zero, we get:

∂2r0

∂t2
+ 2ζ ∂r0

∂t
+ σcrr0 + ϑr0(t− τ) = 0. (3.46)

∂2r1

∂t2
+ 2ζ ∂r1

∂t
+ σcrr1 + ϑr1 + 2 ∂2r0

∂t∂T0
+ 2ζ ∂r0

∂T0
+ ∆α6r0 + κr3

0 − ϑτ
∂r0

∂T0
= 0. (3.47)

At a Hopf-bifurcation point, the transient solution of Eq. (3.46) due to the charac-
teristic roots lying on the left half of the complex plane decays with time. The only
solution that persists is due to the roots lying on the imaginary axis with frequency
ωcr. The solution of Eq. (3.46) at a Hopf-bifurcation point can be written as:

r0(t, T0) = A(T0) sin(ωcrt) +B(T0) cos(ωcrt). (3.48)

On substituting Eq. (3.48) into Eq. (3.47) and collecting the terms with similar
trigonometric coefficients, we obtain:

∂2r1

∂t2
+ 2ζ ∂r1

∂t
+ σcrr1 + ϑr1 + L1 sin(ωcrt) + L2 cos(ωcrt)

+L3 sin(3ωcrt) + L4 cos(3ωcrt) = 0.
(3.49)

In Eq. (3.49), coefficients L1, L2, L3, and L4 are given by

L1 = −2 ∂B
∂T0

ωcr + 3
4κAB

2 + 3
4κA

3 + ∆α6A+ 2ζ ∂A
∂T0

− ϑτ ∂B
∂T0

sin(ωcrτ)− ϑτ ∂A
∂T0

cos(ωcrτ), (3.50a)

L2 = 2 ∂A
∂T0

ωcr + 2ζ ∂B
∂T0

+ 3
4κA

2B + ∆α6B + 3
4κB

3

+ ϑτ
∂A

∂T0
sin(ωcrτ)− ϑτ ∂B

∂T0
cos(ωcrτ), (3.50b)

L3 = 3
4κAB

2 − 1
4κA

3, (3.50c)

L4 = 1
4κB

3 − 3
4κA

2B. (3.50d)

Here, A(T0) and B(T0) are represented as A and B for simplicity. The terms L1 and
L2 cause resonance in Eq. (3.49) and are known as secular terms. Since we know
that the solution for r(t) is bounded, the secular terms in Eq. (3.50) must vanish.
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Therefore, by equating L1 and L2 to zero, and solving for ∂A
∂T0

and ∂B
∂T0

, we get:

∂A

∂T0
= −1

4

(
C1 cos(ωcrτ) + C2 sin(ωcrτ) + C3

D1

)
, (3.51a)

∂B

∂T0
= 1

4

(
C4 cos(ωcrτ) + C5 sin(ωcrτ) + C6

D1

)
. (3.51b)

Here,

D1 = 4ω2
cr + 4ωcrϑτ sin(ωcrτ) + ϑ2τ 2 + 4ζ2 − 4ζϑτ cos(ωcrτ), (3.52a)

C1 = 3κϑτAB2 + 3κϑτA3 + 4A∆α6ϑτ, (3.52b)

C2 = −3ϑτκA2B − 3ϑτκB3 − 4ϑτ∆α6B, (3.52c)

C3 = −6ζκAB2 − 8ζ∆α6A− 6ωcrκA2B − 6ζκA3 − 6ωcrκB3 − 8ωcr∆α6B, (3.52d)

C4 = 3ϑτκA2B + 3ϑτκB3 + 4ϑτ∆α6B, (3.52e)

C5 = 3κϑτAB2 + 3κϑτA3 + 4∆α6ϑτA, (3.52f)

C6 = −6κζA2B + 6ωcrκAB2 − 8∆α6ζB + 8ωcr∆α6A− 6κζB3 + 6ωcrκA3. (3.52g)

We now introduce the following polar transformations for A(t) and B(t):

A = R(t) sin (θ(t)) , (3.53a)

B = R(t) cos (θ(t)) . (3.53b)

On substituting Eq. (3.53a) and Eq. (3.53b) into Eq. (3.51a) and Eq. (3.51b), and
using the relations dA(T0)

dt
= ε dA

dT0
+ O(ε2) and dB(T0)

dt
= ε dB

dT0
+ O(ε2), we solve for Ṙ

and θ̇:

Ṙ(t) = Υ (t)
(

2ζ − ϑτ cos(ωcrτ)
Π

)
R(t), (3.54a)

θ̇(t) = Υ (t)
(

2ωcr + ϑτ sin(ωcrτ)
Π

)
, (3.54b)

Υ (t) = ε

4
(
3κR2(t) + 4∆α6

)
. (3.54c)

The approximate solution of the DDE given by Eq. (3.43), accurate to O(ε0), can now
be written using the normal-form equations, Eqs. (3.54a) and (3.54b), as follows:

r(t) ≈ R(t) cos(ωcrt+ θ(t)), (3.55a)

ṙ(t) ≈ R(t) sin(ωcrt+ θ(t))(ωcrt+ θ̇(t))− Ṙ(t) cos(ωcrt+ θ(t)). (3.55b)
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Equation (3.54a) has two fixed points: R∗1 = 0 and R∗2 =
√
−4α6∆

3κ . The fixed point
R∗1 corresponds to zero equilibrium, and the fixed point R∗2 corresponds to the steady-
state amplitude of the limit cycle that exists at the Hopf bifurcation.

Upon analyzing the behavior of the system at the bifurcation points P1 to P5,
the nature of the bifurcation at those points can be determined. From Fig. 3.4, it is
clear that points P1, P3, and P5 exhibit a similar kind of bifurcation, with the system
transitioning from an unstable regime to a stable regime. Also, at points P1, P3,
and P5, the zero equilibrium given by R∗1 = 0 is unstable for ε∆ < 0 and stable for
ε∆ > 0. This can be interpreted as follows. A dimensionless linear stiffness larger
than kcr1 at these points is required for the cantilever system to be stable at U = 7.
Any decrease in k1 would take the cantilever into the unstable regime where it would
vibrate with large amplitude. On the other hand, points P2 and P4 have the same
kind of bifurcation, with the system transitioning from a stable regime to an unstable
regime. At these points, the zero equilibrium given by R∗1 = 0 is stable for ε∆ < 0 and
unstable for ε∆ > 0. Increasing k1 beyond kcr1 at these points (k1 = kcr1 +ε∆) will push
the cantilever into the unstable regime and cause it to vibrate with large amplitude,
while decreasing k1 is more suitable to operate the system in a stable configuration.
These inferences can also be drawn by traveling along the line U = 7 in Fig. 3.4.
The second equilibrium, corresponding to R∗2 =

√
−4α6∆

3κ , does not exist for ∆ > 0
and is stable for ∆ < 0. In the next section, the nature of the Hopf bifurcation,
whether supercritical or subcritical, at points P1 to P5 has been determined. It is
assumed that k2 = 50 for the analysis that follows. In all the bifurcation diagrams
reported in this chapter, solid lines are used to represent stable solutions, while dashed
lines are used to represent unstable solutions. Also, non-zero equilibrium solutions
(R 6= 0, R = R∗2) correspond to the amplitudes of the periodic solutions that arise
from Hopf bifurcation.

3.5.1 Supercritical Hopf bifurcation at points P1, P3, P5

Substituting the values of kcr1 and ωcr at point P1 (see Table 3.2) in Eq. (3.54), we
get:

Ṙ(t) = −11.1654R(t)3 − 0.0744(ε∆)R(t), (3.56a)

θ̇(t) = −64.6292R(t)2 − 0.4309(ε∆). (3.56b)

Figure 3.7(a) shows the local bifurcation diagram (supercritical Hopf bifurcation)
obtained from Eq. (3.56a). The blue circles in Fig. 3.7(a) are the amplitudes of the



Chapter 3 Effect of Nonlinear Cladding Stiffness on the Stability and Hopf
Bifurcation of a Heat-Exchanger Tube Subject to Cross-flow 53

periodic solutions obtained by integrating Eq. (3.43) using the dde23 MATLAB solver.
For numerically integrating Eq. (3.43), a history function must be defined. First, with
the initial conditions R(0) and θ(0), the set of ODEs given by Eqs. (3.56a) and (3.56b)
are solved. Then, r(t) (Eq. (3.55a)) and ṙ(t) (Eq. (3.55b)) obtained for the interval
[0, τ ], where τ = 2π

U
, is given as the history function for Eq. (3.43). Figures 3.7(b) (for

ε∆ = −1) and 3.7(c) (for ε∆ = +1) show R(t) obtained using Eq. (3.56) (red line)
and the system response obtained by integrating Eq. (3.43) using the dde23 MATLAB
solver (blue line).
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Figure 3.7: (a) Local bifurcation diagram at point P1. System response at P1 for
(b) ε∆ = −1 with initial conditions for Eqs. (3.56a) and (3.56b) given by point A1
in Fig. 3.7(a) and (c) ε∆ = +1 with initial conditions for Eqs. (3.56a) and (3.56b)

given by point A2 in Fig. 3.7(a).

Next, substituting for the values of kcr1 and ωcr at point P3 (see Table 3.2) in
Eq. (3.54), we get:

Ṙ(t) = −1.1840R(t)3 − 0.0079(ε∆)R(t), (3.57a)

θ̇(t) = −22.1355R(t)2 − 0.1476(ε∆). (3.57b)
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Figure 3.8: (a) Local bifurcation diagram at point P3. System response at P3 for
(b) ε∆ = −1 with initial conditions for Eqs. (3.57a) and (3.57b) given by point A1
in Fig. 3.8(a) and (c) ε∆ = +1 with initial conditions for Eqs. (3.57a) and (3.57b)

given by point A2 in Fig. 3.8(a).

Figure 3.8(a) shows the local bifurcation diagram (supercritical Hopf bifurca-
tion) obtained from Eq. (3.57a). Figures 3.8(a), 3.8(b) and 3.8(c) are similar to
Figs. 3.7(a), 3.7(b) and 3.7(c), respectively, except that the results shown in Fig. 3.8
are for the bifurcation point P3.
Finally, substituting the values of kcr1 and ωcr for point P5 (see Table 3.2) in Eqs. (3.54a),
(3.54b), and (3.54c), we get:

Ṙ(t) = −0.3519R(t)3 − 0.0023(ε∆)R(t), (3.58a)

θ̇(t) = −13.3505R(t)2 − 0.0890(ε∆). (3.58b)
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Figure 3.9: (a) Local bifurcation diagram at point P5. System response at point
P5 for (b) ε∆ = −1 with initial conditions for Eqs. (3.58a) and (3.58b) given by
point A1 in Fig. 3.9(a) and (c) ε∆ = +1 with initial conditions for Eqs. (3.58a)

and (3.58b) given by point A2 in Fig. 3.9(a).

Figure 3.9(a) shows the local bifurcation diagram (supercritical Hopf bifurca-
tion) obtained from Eq. (3.58a). Figures 3.9(a), 3.9(b) and 3.9(c) are similar to
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Figs. 3.8(a), 3.8(b) and 3.8(c), respectively, except that the results shown in Fig. 3.9
are for the bifurcation point P5. It can be seen from Figs. 3.7, 3.8 and 3.9 that both,
the transient and steady-state solutions of the normal-form equation, obtained using
MMS, match closely with the results from direct numerical integration. This indicates
that both the methods outlined above provide a relatively accurate estimate of the
stability behavior around points P1, P3, and P5. These two methods give consistent
results.

Figures 3.7, 3.8 and 3.9 indicate that P1, P3, and P5 are points of supercritical
Hopf bifurcation. For ε∆ < 0, the zero equilibrium is unstable as is expected (see
Fig. 3.4). For an initial condition given by point A1, the system will move away from
zero equilibrium and settle into a stable limit cycle, where it will oscillate with an
amplitude R∗ that corresponds to that value of ε∆ (Figs. 3.7(b), 3.8(b), and 3.9(b)).
For ε∆ > 0, the zero equilibrium is stable, as expected (see Fig. 3.4). For an initial
condition given by point A2, the system will settle back into zero equilibrium and
the amplitude of oscillations will damp down to zero (Figs. 3.7(c), 3.8(c), and 3.9(c)).
This is consistent with our observations from Fig. 3.4.

3.5.2 Subcritical Hopf bifurcation at points P2 and P4

Substituting for the values of kcr1 and ωcr at point P2 (see Table 3.2) in Eq. (3.54), we
get:

Ṙ(t) = 2.0957R(t)3 + 0.0140(ε∆)R(t), (3.59a)

θ̇(t) = −30.2325R(t)2 − 0.2016(ε∆). (3.59b)
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Figure 3.10: (a) Local bifurcation diagram at point P2. System response at point
P2 for (b) ε∆ = −1 with initial conditions for Eqs. (3.59a) and (3.59b) given by
point A1 in Fig. 3.10(a) and (c) ε∆ = −0.1 with initial conditions for Eqs. (3.59a)

and (3.59b) given by point A2 in Fig. 3.10(a).
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Figure 3.10(a) shows the local bifurcation diagram (subcritical Hopf bifurcation)
obtained from Eq. (3.59a). For a given ε∆, the amplitude of unstable periodic solu-
tions is obtained from Eq. (3.43) as follows. We numerically integrate Eq. (3.43) for
increasing values of constant history function and track the equilibrium solution. The
critical value of the magnitude of the history function, above which the equilibrium
will not approach zero, is considered to be the magnitude of the unstable limit cycle
(blue circle). Figure 3.10(b) shows R(t) obtained using Eq. (3.59a) (red line) and the
system response (r(t)) obtained by integrating Eq. (3.43) using the dde23 MATLAB
solver (blue line). Both cases are for ε∆ = 0.1, and for the magnitude of history
function given by point A1 in Fig. 3.10(a). Figure 3.10(c) shows the same physical
quantities as 3.10(b), except that the magnitude of the history function is given by
point A2 in Fig. 3.10(a).

Next, substituting the values of kcr1 and ωcr at point P4 (see Table 3.2) in
Eq. (3.54), we get:

Ṙ(t) = 0.4379R(t)3 + 0.0029(ε∆)R(t), (3.60a)

θ̇(t) = −15.1416R(t)2 − 0.1010(ε∆). (3.60b)
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Figure 3.11: (a) Local bifurcation diagram at point P4. System response at P4 for
(b) ε∆ = −1 with initial conditions for Eqs. (3.60a) and (3.60b) given by point A1
in Fig. 3.11(a) and (c) ε∆ = −0.1 with initial conditions for Eqs. (3.60a) and (3.60b)

given by point A2 in Fig. 3.11(a).

Figure 3.11(a) shows the local bifurcation diagram (subcritical Hopf bifurca-
tion) obtained from Eq. (3.60a). Figures 3.11(a), 3.11(b) and 3.11(c) are similar to
Figs. 3.10(a), 3.10(b) and 3.10(c), except that the results shown in Fig. 3.11 are for the
bifurcation point P4. It can be seen from Figs. 3.10 and 3.11 that both, the transient
and steady-state solutions of the normal-form equation, obtained using MMS, match
closely with the results from direct numerical integration. Furthermore, it is observed
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that both P2 and P4 are points of subcritical Hopf bifurcation. For ε∆ < 0, the zero
equilibrium is stable, as expected (Fig. 3.4). For an initial condition given by point
A1, the system will settle back into zero equilibrium and the amplitude of oscillations
will damp down to zero (Figs. 3.10(b) and 3.11(b). For an initial condition given by
point A2, the system will move away from the unstable equilibrium and further away
from the stable zero equilibrium. Again, for ε∆ > 0, the zero equilibrium is unstable,
as expected (from Fig. 3.4).

At this point, the response of the system in the unstable regions (white regions
in Fig. 3.4) is still unknown. Furthermore, the MMS only provides information about
the system behavior in the proximity of the bifurcation points. In order to assess
the behavior of the cantilever farther away from points P1 to P5, a global bifurcation
analysis is required. This shall be discussed in Section 3.6.

3.6 Global bifurcation analysis

In this section, the global bifurcation diagram and limit cycles for the system described
by Eq. (3.17) are developed. The system response is obtained by integrating Eq. (3.17)
using the dde23 MATLAB solver for a fixed value of k1, at U = 7, where k1 ∈ (0, 100].
The maximum value of the amplitude of the response is tracked. The process is
repeated for the entire range of k1 considered here. The global bifurcation diagram is
presented in Fig. 3.12(a). Solid black lines represent stable equilibria and dashed black
lines represent unstable equilibria. The red, blue, and green solid lines represent the
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Figure 3.12: Global bifurcation diagram obtained from Eq. (3.17) for U = 7 and
k1 ∈ (0, 100], for (a) k2 = 50 and (b) k2 = 500; vertical dash-dotted lines represent

k1 = 5, k1 = 25, and k1 = 50.
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stable solutions originating from the supercritical Hopf bifurcation at points P5, P3,
and P1, respectively. The red and blue dashed lines represent the unstable solutions
originating from the subcritical Hopf bifurcation at points P4 and P2, respectively. The
stable limit cycles are obtained by directly integrating the DDE given by Eq. (3.13)
and the unstable limit cycles are obtained using the bisection method [58].

The following important observations can be made from Fig. 3.12(a). For the
parameters considered, there exists no cyclic-fold bifurcation (see Fig. 3.12(a)). This
essentially implies that the stable and unstable periodic solutions emerging from the
supercritical and subcritical Hopf bifurcation points do not meet. Next, it must be
noted that the zero equilibrium is stable between P1 and P2, between P3 and P4,
and beyond P5. These regions correspond to k1 ∈ [3.85, 17), k1 ∈ [33, 70), and k1 ∈
[90, 100], respectively. From a design standpoint, k1 ∈ [33, 70) seems most desirable,
which can be explained as follows. At a certain point in time, if the cantilever is
vibrating with a sufficiently small amplitude (the initial condition) in this range of
k1, the system will fall back to zero equilibrium (solid black lines in Fig. 3.12(a)) and
the oscillations will die out. For instance, at k1 = 50, if the cantilever is vibrating
with an initial amplitude of around 0.3, the system will settle into the stable zero
equilibrium and the oscillations will die out. If it is vibrating with an initial amplitude
greater than 0.4, it will settle into the stable limit cycle (solid red line in Fig. 3.12)
originating at point P5 and will vibrate with the corresponding amplitude. If the
system is vibrating with an initial amplitude that corresponds exactly to the unstable
limit cycle for k1 = 50, a small fluctuation in U will take it either to zero equilibrium,
or to the periodic motion associated with the aforementioned stable limit cycle. Even
if the initial amplitude is greater than or equal to 0.7, the beam will settle into the
stable limit cycle and take on periodic motion.

Let us now consider more extreme values of k1. For example, when k1 = 100, if
the system is vibrating at a sufficiently small amplitude, it will settle into the zero
equilibrium state (solid black line in Fig. 3.12(a)). However, the linear stiffness (K1)
is required to be relatively high, which would introduce high stresses on the tube, as
mentioned in Section 3.1. Furthermore, a high cladding stiffness may not be viable
for multiple tubes. For extremely low values of k1, for instance k1 = 5, the system
can settle into periodic motion corresponding to two stable limit cycles depending on
its initial amplitude of oscillation. If the initial amplitude is greater than or equal to
0.7, the beam will settle into the stable limit cycle originating from point P5 (solid red
line in Fig. 3.12(a)). The amplitude of oscillation in this limit cycle at k1 = 5 is much
larger than the amplitude in the same limit cycle for k1 = 50, which makes operating
at k1 = 50 more favorable. Furthermore, while an initial amplitude less than or equal
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to 0.4 will take the system to the more desirable stable, zero equilibrium for k1 = 50,
it will take the system to the relatively less desirable periodic motion associated with
a stable limit cycle (solid blue line in Fig. 3.12(a)) for k1 = 5.

Limit cycles for k1 = 5, k1 = 25 and k1 = 50 are shown in Figs. 3.13(a), 3.13(b)
and 3.13(c), respectively. Four coexisting limit cycles are present for k1 = 5 (Fig. 3.13(a)).
Of these, two unstable limit cycles arise from the subcritical Hopf bifurcation origi-
nating at points P2 (dashed blue line) and P4 (dashed red line), and two stable limit
cycles arise from the supercritical Hopf bifurcation originating at points P3 (solid blue
line) and P5 (solid red line). For k1 = 25, three limit cycles coexist (see Fig. 3.13(b)).
Of these, two stable limit cycles arise from the supercritical Hopf bifurcation originat-
ing at points P3 (solid blue line) and P5 (solid red line), and one unstable limit cycle
arises from the subcritical Hopf bifurcation originating at point P4 (dashed red line).
For k1 = 50, only two coexisting limit cycles are present (Fig. 3.13(c)): one is an
unstable limit cycle arising from the subcritical Hopf bifurcation originating at point
P4 (dashed red line) and the other is a stable limit cycle arising from the supercritical
Hopf bifurcation originating at point P5 (solid red line). This can be easily verified
by comparing Fig. 3.13 with Fig. 3.12(a).
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Figure 3.13: Limit cycles for U = 7 with (a) k1 = 5, (b) k1 = 25 and (c) k1 = 50.

The number of limit cycles decreases with increasing values of k1. From the
discussion regarding Fig. 3.12(a), it is clear that up to k1 = 70, fewer limit cycles are
more favorable. An example of this is seen by comparing Figs. 3.13(c) and 3.13(a).
For an initial amplitude of approximately 0.3 for k1 = 50 (Fig. 3.13(c)), the oscillations
will die out, while for k1 = 5 (Fig. 3.13(a)), the system will settle into periodic motion
associated with a stable limit cycle (solid blue line in Fig. 3.13(a)). Similarly, for
an initial amplitude of approximately 0.2 for k1 = 50 (Fig. 3.13(c)), the oscillations
will likewise die out, while for k1 = 25, the system will settle into periodic motion
associated with the nearest stable limit cycle (solid blue line in Fig. 3.13(a)). Finally,
for an initial amplitude of greater than or equal to 0.7, the system settles into periodic
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motion of a lower amplitude for k1 = 50 (Fig. 3.13(c)) compared to that for k1 = 5
(Fig. 3.13(a)) and k1 = 25 (Fig. 3.13(b)).

The discussion above is for k2 = 50. The effect of change in k2 is investigated
next. The bifurcation diagrams for k2 = 50 and k2 = 500 are compared in Fig. 3.12.
Figure 3.12 shows that the only difference between the two cases is that the limit-cycle
amplitudes decrease when k2 = 500; all other characteristics of the system remain the
same. This suggests that there are no qualitative differences in the behavior of the
system with change in the dimensionless cubic-spring stiffness (k2). Furthermore, it
is evident that k2 = 50 is a stronger choice for our analysis since it corresponds to
larger limit-cycle amplitudes, i.e., the worse case between the two.

It must be noted that our deductions are based on dimensionless parameters
that can be used to back-calculate physically measurable quantities (see Eq. (3.11b)).
The advantage of using dimensionless parameters is that it gives us the flexibility of
adjusting several dimensional quantities for a fixed value of the dimensionless param-
eter, with minimal computational overhead. It can be seen that once k1 and k2 are
chosen, the engineer can adjust the dimensional design parameters (K1, K2, I, L,D)
to get the desired values of k1 and k2 that correspond to the region of fewer limit
cycles or a region of high damping.

3.7 Chapter Summary

Much of the work in this study is new and pertinent to emerging studies on heat-
exchanger tubes. This is the first time that the MMS technique has been employed
to investigate Hopf bifurcation for a single-span heat-exchanger tube supported by
baffle-claddings. The results obtained are consistent with those obtained from di-
rect numerical integration of the DDE, which makes the MMS a suitable tool for
application to this problem and its counterparts.

Additionally, the stability and spectrum in the parametric space of cladding stiff-
ness and flow velocity has also been obtained for the first time. Stable regions of the
spectrum have been clearly delineated from the unstable ones, so that a definitive
stability boundary is obtained. The knowledge of damping in the dimensionless para-
metric space is useful for the control of large-amplitude vibrations. For a given value
of operational flow velocity, the value of k1 can be traced back from a region where
the damping is high. The linear spring stiffness (K1) can then be back-calculated
(Eq. (3.11b)). In this manner, the system can be designed with a K1, so as to operate
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it in a region where the damping is high, thereby guaranteeing maximum stability for
a given operational flow velocity.

Another contribution of this chapter is its relevance to fatigue life calculations of
heat-exchanger tubes. Fatigue life calculations are dependent on the amplitude and
frequency of tube vibrations [59]. Multiple limit cycles (both stable and unstable)
are found to exist for k1 ∈ (0, 100]. In the case of a stable zero equilibrium and a
single stable limit cycle (k1 ∈ (33, 70]), fatigue life calculations are easier. When
there are multiple periodic solutions, fatigue life calculations must be based on the
worst-case scenario, i.e., the largest limit-cycle amplitude. Therefore, this study is
expected to be very useful at the design stage of heat-exchanger tubes. Furthermore,
k1 ∈ (33, 70] provides a range for optimal design values of k1. High values of k1 can
induce high stresses on the tube in response to tube thermal expansion. Moreover,
the analysis above also indicates that high values of k1, i.e., stiffer claddings, do not
necessarily guarantee a more stable system. On the other hand, low values of k1 may
not be effective against impact with baffles, while also subjecting the system to the
risk of multiple periodic solutions. The range k1 ∈ (33, 70] is most desirable for design
purposes since the zero equilibrium is stable and there is only one stable limit cycle
in this range. Finally, it must be noted that increasing the cubic spring stiffness is
found to decrease the limit-cycle amplitudes. However, the qualitative behavior of the
system remains the same.

In the past, Sadath et al. [39] had modeled the impact load on a cantilevered
heat-exchanger tube using a cubic spring. Beyond the critical velocity, limit cycle
motion was observed, similar to the above analysis. After the first Hopf bifurcation,
the tube impacts with the baffle and oscillates locally, before chaotic motion that
sets in beyond a certain value of the flow velocity. Similarly, Wang and Ni [29]
found that the amplitude of their vibrating cantilevered tube increased until impact
with the loose support at the tip, which led to quasi-periodic and chaotic motions
at high velocities. In the sequence of events that transpire when a heat-exchanger
tube undergoes cross-flow-induced oscillations, the current study precedes that of
refs. [29, 39] in the following manner. The system first oscillates with limit cycle
motion; the cladding deforms in time creating a clearance between the tube and the
cladding; the clearance then allows for there to be impact between the tube and the
cladding, which can be investigated using ref. [29, 39].



Chapter 4

Supercritical and Subcritical Hopf
Bifurcations in a Delay Differential
Equation Model of a Heat-Exchanger
Tube Under Cross-flow

4.1 Introduction

Nonlinear vibrations of a heat-exchanger tube modeled as a simply-supported Euler-
Bernoulli beam under axial load and cross-flow have been studied. The compressive
axial loads are a consequence of thermal expansion and tensile axial loads can be
induced by design (prestress). The fluid forces are represented using an added mass,
damping, and a time-delayed displacement term. Due to the presence of the time-
delayed term, the equation governing the dynamics of the tube becomes a partial
delay differential equation (PDDE). Using the modal-expansion procedure, the PDDE
is converted into a nonlinear delay differential equation (DDE). The fixed points (zero
and buckled equilibria) of the nonlinear DDE are found, and their linear stability is
analyzed. It is found that stability can be lost either via supercritical or subcritical
Hopf bifurcation. Using Galerkin approximations, the characteristic roots (spectrum)
of the DDE are found and reported in the parametric space of fluid velocity and axial
load. Furthermore, the stability chart obtained from the Galerkin approximations is
compared with the critical curves obtained from analytical calculations. Next, the
method of multiple scales (MMS) is used to derive the normal-form equations near
the supercritical and subcritical Hopf bifurcation points for both zero and buckled
equilibrium configurations. The steady-state amplitude response equation, obtained
from the MMS, at Hopf bifurcation points is compared with the numerical solution.

63
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The coexistence of multiple limit-cycles in the parametric space is found, and has
implications in the fatigue life calculations of the heat-exchanger tubes.

In this chapter, the tube is modeled as an Euler-Bernoulli beam with simply-
supported boundary conditions [30], as explained in Section 4.2. Heat-exchanger tubes
undergo thermal expansion, and are consequently subject to thermal loads acting
along the axial direction. Further, external tensile loads can be induced by design.
The model includes the effect of this axial load (P0) and nonlinear effects due to
large deformations. The quasi-steady model developed by Paidoussis and Li [37]
is employed to obtain a partial integro-delay differential equation that governs the
tube motion. This partial delay differential equation (PDDE) is converted into a
single nonlinear delay differential equation (DDE) using modal truncation, and its
linear stability is analyzed in Section 4.3. It should be noted that a DDE is an
infinite-dimensional system and therefore, its characteristic equation has infinitely
many eigenvalues. Using Galerkin approximations [49, 55], the spectrum at different
flow velocities and axial loads is obtained in Section 4.3.3. The spectrum contains
information on the dominant frequencies (and their damping) that will be present in
the transient solution. Dominant eigenvalues from the spectrum are used to generate
the stability chart. Furthermore, the normal forms for Hopf bifurcation are derived
using the method of multiple scales (MMS) [57] in Section 4.4. These normal forms
give insights into the nature of Hopf bifurcation (subcritical or supercritical). The
approximate amplitude obtained from the normal-form equations, is compared to
that from the numerical simulation. From a global bifurcation analysis (Section 4.5),
the coexistence of multiple stable and unstable periodic solutions in the parametric
space of flow velocity and axial load is shown. Finally, in Section 4.6, the contribution
of this chapter is summarized. The presence of multiple periodic solutions bears
significance for fatigue life calculations on the tube. Moreover, as explained later in
this chapter, tensile axial loads can be induced to control the dynamic response of the
tube. Therefore, we expect this study on the tube modeled as a beam to be directly
linked to design considerations for heat-exchanger tubes.

4.2 Mathematical modeling

Figure 4.1(a) shows the schematic of the heat-exchanger tube bundle with its isometric
view along with the coordinate axes. In Fig. 4.1(b), the cross-sectional view of the
tube bundle is shown. Figure 4.1(c) shows the idealized model of the heat-exchanger
tube as a simply supported beam under axial loads and cross flow fluid forces.
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Figure 4.1: (a) Schematic of the heat-exchanger tube bundle with its isometric
view along with the coordinate axes, (b) the cross-sectional view of the tube bundle,
and (c) idealized model of the heat-exchanger tube as a simply supported beam

under axial loads and cross flow fluid forces.

The tube is assumed to be of length L, diameter D, and cross-sectional area A,
subjected to cross-flow and axial load P0, and is modeled in this section using the
Euler–Bernoulli beam theory. The governing equation of the transverse displacement
W (x, t) of the tube is written as [30]:

EI
∂4W

∂X4 + C
∂W

∂T
+M

∂2W

∂T 2 −
EA

2L
∂2W

∂X2

∫ L

0

(
∂W

∂X

)2
dX + P0

∂2W

∂X2 = F, (4.1)

where EI and C are, respectively, the flexural rigidity and damping coefficient of the
tube, X is the spatial coordinate, and T is time. As the beam is simply-supported,
the boundary conditions are written as W (0, T ) = W (L, T ) = 0 and ∂2W

∂X2

∣∣∣
X=0

=
∂2W
∂X2
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X=L

= 0. The axial loads P0 on the tube are a consequence of the applied tensile
axial load PA due to prestress and thermal expansion. Defining α as the thermal
expansion coefficient of the heat-exchanger tube material, and ∆θ as the temperature
differential for the heat-exchanger tube, P0 can be written as P0 = EAα∆θ−PA. The
motion dependent cross-flow induced forces F (W, Ẇ , Ẅ ) acting on the tube are given
by [37]:

F (W, Ẇ , Ẅ ) = −Mf
∂2W

∂T 2 − Cf
∂W
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, and ∆T = µ
D

Ũ
. (4.3)
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In Eq. (4.3), ρ and Ũ are, respectively, the density of the fluid and the free-stream
velocity. CD, CL, and Cma are, respectively, the drag, lift, and added-mass coeffi-
cients; µ is a parameter which relates to the tube-array pattern; D is the diameter
of the heat-exchanger tube; and ∆T is the time-delay that arises due to the phase
lag between cylinder motion and fluid dynamic forces. By introducing the following
non-dimensional quantities in Eq. (4.1):

w = W

D
, x = X

L
, t = λ2

1

√
EI

ML4T = Ω1T, ξ = C

Ω1M
, m = M

ρD2 , (4.4a)
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DΩ1

, p0 = P0L
2

EI
, β = πCma
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2Iλ4
1
. (4.4b)

we obtain:
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(4.5)

where λ1 = π is the first non-dimensional natural frequency of the tube and the
dimensionless time-delay τ is given by τ = 2π/U , for µ = 1 [37]. By considering only
the first vibrational mode, the solution w(x, t) of Eq. (4.5) can be written as:

w(x, t) =
√

2 sin(πx)q(t). (4.6)

Substituting Eq. (4.6) into Eq. (4.5), pre-multiplying the resulting equation by
√

2 sin(πx),
and then integrating with respect to x over the domain [0, 1] results in the following
DDE:

1
1− β q̈(t)+

(
ξ+ UCD

4πm

)
q̇(t)+

[
1− p0

π2

]
q(t)+γπ4q3(t)− U2

8π2m

∂CL
∂w

q(t− τ) = 0. (4.7)

Following the procedure outlined in [30], substituting α1 = (1 − β)ξ, α2 = (1−β)CD
4πm ,

α3 = (1− β), α4 = (1− β)γπ4, and α5 = − (1−β)
8π2m

∂CL
∂w

into Eq. (4.7), we get:

q̈(t) + (α1 + α2U)q̇(t) + α3

[
1− p0

π2

]
q(t) + α4q

3(t) + α5U
2q(t− τ) = 0. (4.8)

In Eq. (4.8), p0 and U are the parameters of interest, as shall be seen in the next
section. It should be noted that the dimensionless time-delay is a derived quantity
and is given by τ = 2π/U . In this chapter, the following numerical values are used
for the parameters in Eq. (4.8): α1 = 0.0145, α2 = 0.00524, α3 = 0.76, α4 = 1.1105,
and α5 = 0.026. These parameters are the same as those used by Wang et al. in [30].
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4.3 Linear stability

In this section, the fixed points of Eq. (4.8) are determined and their linear stability
is analyzed. To find the fixed points, we substitute q(t) = q(t− τ) = q̄ into Eq. (4.8).
Next, by dropping the rate-dependent terms at the fixed points, we get:

α3

[
1− p0

π2

]
q̄ + α4q̄

3 + α5U
2q̄ = 0. (4.9)

Solving for q̄ in Eq. (4.9), we get:

q̄1 = 0, and q̄2 = ±
√
−α3[1− p0

π2 ]− α5U2

α4
. (4.10)

In Eq. (4.10), fixed points q̄2 will be real only if the following condition is satisfied:

p0 >
α5π

2U2 + α3π
2

α3
. (4.11)

To study the stability around these fixed points, we substitute q(t) = r(t) + q̄ in
Eq. (4.8), which results in

r̈(t)+(α1+α2U)ṙ(t)+α3

[
1− p0

π2

]
r(t)+3α4q̄

2r(t)+3α4q̄r
2(t)+α4r(t)3+α5U

2r(t−τ) = 0.
(4.12)

By retaining only the linear terms in Eq. (4.12), we obtain the following equation:

r̈(t) + (α1 + α2U)ṙ(t) + α3

[
1− p0

π2

]
r(t) + 3α4q̄

2r(t) + α5U
2r(t− τ) = 0. (4.13)

The stability of Eq. (4.13) depends on the roots of its characteristic equation. By
substituting r(t) = eλt in Eq. (4.13), we obtain the following characteristic equation:

D(λ, U, p0) = λ2 + (α1 + α2U)λ+ α3

[
1− p0

π2

]
+ 3α4q̄

2 + α5U
2e−λτ = 0. (4.14)

The above Eq. (4.14) is a quasipolynomial (due to the presence of the e−λτ term) and
has infinitely many roots. If the real parts of all the characteristic roots of Eq. (4.14)
are negative, then the equilibrium at q̄ is stable. It is generally not possible to obtain
the rightmost characteristic roots of Eq. (4.13) in closed form. However, we can get
information about the critical curves that separate the stable and unstable regions in
the parametric space of p0 and U . The stability of Eq. (4.13) around q̄ is lost through
Hopf bifurcation when its rightmost characteristic roots cross the imaginary axis (see
Fig. 4.2(a)). Alternatively, stability can be lost through a static bifurcation, when
the rightmost root crosses the imaginary axis along the real line (see Fig. 4.2(b)).
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Therefore, to get the stability boundary, we substitute λ = jωcr and p0 = pcr in
Eq. (4.14) to obtain the following:
[
−ω2

cr+α3

(
1−pcr

π2

)
+3α4q̄

2+α5U
2 cos(ωcrτ)

]
+j
[
(α1+α2U)ωcr−α5U

2 sin(ωcrτ)
]

= 0.

(4.15)
Equation (4.15) will now be used to obtain the critical curves for different equilibrium
points.

4.3.1 Critical curves for the equilibrium at q̄ = q̄1 = 0

Substituting q̄ = q̄1 = 0 in Eq. (4.15) and setting the real and imaginary parts to zero,
the following equations are obtained:

− ω2
cr + α3

[
1− pcr

π2

]
+ α5U

2 cos(ωcrτ) = 0, (4.16a)

(α1 + α2U)ωcr − α5U
2 sin(ωcrτ) = 0. (4.16b)

(a) (b)

Figure 4.2: Two ways in which the rightmost characteristic roots of Eq. (4.13)
can cross the imaginary axis, leading to the loss of stability of equilibrium at q̄: (a)
ωcr 6= 0 (Hopf bifurcation) and (b) ωcr = 0 (static bifurcation). It should be noted
that in both (a) and (b), only the first few rightmost roots of the infinite spectrum

of the DDE given by Eq. (4.13) are shown.

For various values of the axial load pcr, Eqs. (4.16a) and (4.16b) can be solved
numerically to determine the variables U and ωcr along the stability boundary. The
stability boundary so obtained is represented by curves 1 and 2 in Fig. 4.3. As
discussed earlier, the stability at q̄1 = 0 can also be lost through a static bifurcation
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(buckling). To determine the critical curve along which the static bifurcation may
occur, we substitute ωcr = 0 in Eq. (4.16a). Then, the expression relating pcr and U

is obtained as follows:
pcr = α5π

2U2 + α3π
2

α3
. (4.17)

The relationship between pcr and U , given by Eq. (4.17) with ωcr = 0, is graphically
shown by curve 3 in Fig. 4.3. It should be noted that the equilibrium at q̄2 exists only
above curve 3 (see Eq. (4.11)) in the p0 and U parameter space.

4.3.2 Critical curves for the equilibrium at q̄ = q̄2

In this section, the stability boundary for equilibrium at q̄2 is discussed. Substituting
q̄ = q̄2 (Eq. (4.10)) in Eq. (4.15), and setting the real and imaginary parts of the
resulting expression to zero, we get:

− ω2
cr − 2α3

(
1− pcr

π2

)
− 3α5U

2 + α5U
2 cos(ωcrτ) = 0, (4.18a)(

α1 + α2U
)
ωcr − α5U

2 sin(ωcrτ) = 0. (4.18b)

For different values of U , one can solve Eqs. (4.18a) and (4.18b) numerically for the
values of pcr and ωcr on the stability boundary. This boundary is shown by curves 4
and 5 in Fig. 4.3. The stability of the equilibrium at q̄ = q̄2 can also be lost through a
static bifurcation (see Fig. 4.2(b)), where ωcr = 0. Substituting ωcr = 0 in Eq. (4.18a),
the equation relating pcr and U is obtained as follows:

pcr = α5π
2U2 + α3π

2

α3
. (4.19)

Equation (4.19) is the same as Eq. (4.17) and hence the stability boundary is given
by curve 3 in Fig. 4.3.
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Figure 4.3: Critical curves for Hopf and static bifurcation for equilibrium points
q̄1 = 0 and q̄2. Curves 1, 2, 4, and 5 correspond to Hopf bifurcation (ωcr 6= 0) and
curve 3 corresponds to static bifurcation (ωcr = 0). Six regions are labeled (I to VI)

for later discussion.

In Fig. 4.3, all the stability boundaries are shown. However, one must exercise
caution when determining the stable and unstable regions from Fig. 4.3. For example,
the conditions for Hopf bifurcation given by Eqs. (4.16a) and (4.16b) or by Eqs. (4.18a)
and (4.18b) are satisfied as long as a pair of roots lie on the imaginary axis. In
Fig. 4.4(a), although the system is unstable, the second pair of eigenvalues lie exactly
on the imaginary axis and satisfy the analytical conditions imposed on the stability
boundary. Similarly, the condition ωcr = 0, imposed on the characteristic roots for
the case of static bifurcation, is satisfied even for the case shown in Fig. 4.4(b) for
which the system is unstable. Therefore, it is difficult to determine the stable and
unstable regions directly from Fig. 4.3. For understanding the stability behavior of
the tube, we divide the stability chart into six regions, shown as I-VI in Fig. 4.3.
In the next section, we shall develop Galerkin approximations for the linear DDE
given by Eq. (4.13) and numerically obtain its characteristic roots, after which it is
straightforward to comment on stability. The distribution of the characteristic roots
(spectrum) of Eq. (4.13) for different flow velocities and axial loads will also be studied.
The spectrum will also give us insights into the regions of maximum damping in the
p0 and U space.
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(a) (b)

Figure 4.4: Possible locations of the characteristic roots on the critical curves for
the case of (a) ωcr 6= 0 and (b) ωcr = 0. It should be noted that in both (a) and
(b), only the first few rightmost roots of the infinite spectrum of the DDE given by

Eq. (4.13) are shown.

4.3.3 Spectrum

Several methods exist in the literature to study the stability of time-delayed systems
(TDS) by obtaining their characteristic roots. Some of these methods are Lambert
W function [60–63], Galerkin approximations [64–66], semi-discretization [67], pseu-
dospectral collocation [68–70], continuous-time approximation [71, 72], and quasi-
polynomial root finder algorithm (QPmR) [73]. Cluster treatment of characteris-
tic roots approach is another powerful tool to obtain accurate stability charts for
TDS [74]. Pekař and Gao have recently presented an exhaustive list of various methods
to study the stability of DDEs [75]. In this section, using a Galerkin method [49, 55],
we derive an ODE-based approximation for Eq. (4.13), thereby converting the DDE
into a finite-dimensional ODE system. Equation (4.13) is converted into the following
form:

r̈(t) + A1ṙ(t) + A2r(t) + A3r(t− τ) = 0. (4.20)

The procedure for converting a DDE into a system of ODEs has already been
reported in the literature [49, 55]; however, the procedure is repeated here for com-
pleteness. By defining the state variables r(t) = [r(t), ṙ(t)]T in Eq. (4.20), we get:

ṙ(t) = Ar(t) + Br(t− τ). (4.21)
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In Eq. (4.21), the following time-shift transformation is introduced:

r(t+ s) = y(s, t). (4.22)

Differentiating Eq. (4.22) with respect to s and t, and using the chain rule, we obtain:

∂y(s, t)
∂t

= ∂y(s, t)
∂s

, −τ ≤ s ≤ 0. (4.23)

From Eq. (4.22), we have r(t) = y(0, t) and r(t − τ) = y(−τ, t). Substituting these
relations in Eq. (4.21), we get:

∂y(s, t)
∂t

∣∣∣∣∣
s=0

= Ay(0, t) + By(−τ, t). (4.24)

In essence, we have converted the DDE given by Eq. (4.20) into an equivalent PDE
(Eq. (4.23)) and its boundary condition (Eq. (4.24)). Now, we approximate the solu-
tion of Eq. (4.23) as follows:

yi(s, t) =
N∑
j=1

ψj(s)zij(t) = ψ(s)Tzi(t), i = 1, 2. (4.25)

Here ψ(s) = [ψ1(s), ψ2(s), . . . , ψN(s)]T and zi(t) = [zi1(t), zi2(t), ..., ziN(t)]T are the
basis functions and the independent coordinates, respectively. By defining Ψ(s) ∈
R2N×2 and β(t) ∈ R2N×1 as follows:

Ψ(s) =
ψ(s) 0

0 ψ(s)

 , β(t) = [zT
1 (t), zT

2 (t)]T, (4.26)

Eq. (4.25) can be written as:

y(s, t) = [ψT(s)z1(t),ψT(s)z2(t)]T = ΨT(s)β(t). (4.27)

Substituting Eq. (4.27) into Eq. (4.23), we get:

ΨT(s)β̇(t) = Ψ′(s)Tβ(t), (4.28)

where Ψ′(s) is the derivative of Ψ(s) with respect to s. Pre-multiplying Eq. (4.28)
by Ψ(s) and integrating with respect to s over the domain [−τ, 0], we obtain the
following: (∫ 0

−τ
Ψ(s)ΨT(s)ds

)
β̇(t) =

(∫ 0

−τ
Ψ(s)Ψ′(s)Tds

)
β(t). (4.29)
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Equation (4.29) can be rewritten as:

Cβ̇(t) = Dβ(t), (4.30)

where C and D are square, block-diagonal matrices of dimension 2N , given by:

C =
C(1) 0

0 C(2)

T

, D =
D(1) 0

0 D(2)

T

. (4.31)

Submatrices C(i) and D(i) are defined as follows:

C(i) ,
∫ 0

−τ
ψi(s)ψT

i (s)ds, D(i) ,
∫ 0

−τ
ψi(s)ψ′i(s)Tds, i = 1, 2. (4.32)

The matrix of boundary conditions, of dimension 2 × 2N , can be derived by substi-
tuting Eq. (4.27) into Eq. (4.24) as follows:

ΨT(0)β̇(t) = [AΨT(0) + BΨT(−τ)]β(t). (4.33)

Equations (4.30) and (4.33) can be combined as follows:

Mβ̇(t) = Kβ(t). (4.34)

Matrices M and K are of dimension 2N × 2N , and are obtained by replacing the
N th and 2N th rows of Eq. (4.30) with the 1st and 2nd rows of Eq. (4.33), respectively.
Defining G , M−1K, Eq. (4.34) can be written as follows:

β̇(t) = Gβ(t). (4.35)

The system of ODEs given by Eq. (4.35) approximate the DDE given by Eq. (4.20),
and the eigenvalues (λ̂i) of G approximate the characteristic roots of Eq. (4.14). As
N is increased, the eigenvalues of G converge to the rightmost characteristic roots of
Eq. (4.14) [49, 55]. The error Ei, ∀ i = {1, 2, ..., 2N}, is defined as the absolute value
of D(λ̂i) (Eq. (4.14)), obtained by substituting the eigenvalues of G into Eq. (4.14).
All λ̂i for which Ei < 10−4 are considered to be converged to the characteristic roots
of Eq. (4.14). In this chapter, shifted Legendre polynomials are used to approximate
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the solution (Eq. (4.25)) and are defined as follows:

ψ1(s) = 1 (4.36a)

ψ2(s) = 1 + 2s
τ

(4.36b)

ψk(s) = (2k − 3)ψ2(s)ψk−1(s)− (k − 2)ψk−2(s)
k − 1 , k = 3, 4, . . . , N. (4.36c)

In the literature, it is reported that shifted Legendre polynomials have shown good
convergence properties [49]. The entries of matrices C(p) and D(p) can be expressed
in closed form as follows:

C(p)
ij =


τ

2i−1 , if i = j

0, otherwise
, D(p)

ij =

2, if i < j and i+ j is odd

0, otherwise
, p = 1, 2.

(4.37)
where i = 1, 2, . . . , N and j = 1, 2, . . . , N . If we consider N terms in the series
solution given by Eq. (4.25), approximately N/2 eigenvalues of matrix G converge to
the rightmost roots of the characteristic polynomial (Eq. (4.14)). In this chapter, we
use N = 100 and this value of N was found to be sufficient for generating an accurate
stability chart for Eq. (4.20).

Figure 4.5: Stability chart in the [U, p0] plane, generated using the Galerkin
approximation method, with N = 100. Color contours indicate the damping present

in the rightmost root.

Figure 4.5 shows the stability chart for Eq. (4.14) in the [U, p0] plane, obtained
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using the Galerkin approximation method. To generate the stability chart, the region
of Fig. 4.5 has been discretized into 300 × 4500 points. At each of these points, the
eigenvalues of matrix G (see Eq. (4.35)) are evaluated. If all the eigenvalues fall on
the left half of complex plane, the system is considered to be stable; otherwise, it
is considered unstable. All the white regions shown in Fig. 4.5 (i.e., I, III, IV, and
VI) are unstable. The color contours in Fig. 4.5 indicate the damping present in
the rightmost root in the stable region. It should be noted that for a retarded delay
differential equation (RDDE), the decay rate will depend on the real parts of all the
infinite roots. However, the contribution to the solution from the rightmost root is
the highest and is the last to decay. Therefore, we have assumed the real part of
rightmost root to be the damping in the system. The highest damping (λ furthest
into the left half-plane) is present around U = 2.34 and for p0 = 30. Figure 4.5 must
be contrasted with Fig. 4.3 as the boundary curves shown in these figures are same.
From the stability chart, we can conclude that the zero equilibrium (q̄ = q̄1 = 0) is
stable only in region II. The buckled equilibrium at q̄ = q̄2 exists in regions IV, V,
and VI, but it is stable only in region V. An important observation from the stability
chart is that curve 3, which separates regions III and IV, does not represent the critical
curve for static bifurcation since the system is unstable in both regions III and IV.

Table 4.1: Values of pcr, ωcr, Γ̄ (numerical), Γ (analytical), and relative error
between the latter ê =

(
Γ̄−Γ

Γ

)
expressed as a percentage, for different bifurcation

points as shown in the stability chart (see Fig. 4.5).

Point pcr ωcr Γ̄ (×10−4) Γ (×10−4) ê (%)

P1 −11.652 1.285 5.7416 5.7274 0.2479

P2 −7.923 1.175 −6.6533 −6.6375 0.2380

P3 6.978 0.445 144.5214 144.5937 0.0500

P5 11.822 0.445 −289.5746 −288.7426 0.2881

P6 19.273 1.175 13.2800 13.2417 0.2892

P7 21.137 1.285 −11.3442 −11.3089 0.3121

As discussed in Section 4.2, for a given flow velocity, from the stability chart,
the axial tension PA can be adjusted for maximum damping. For example, if the heat
exchanger is operated at U = 2, the induced axial load can be selected to p0 = −15
for optimal damping of vibrations. It should be noted that with p0 = −15, the beam
settles at zero equilibrium.
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Now, we study the distribution of the characteristic roots for different critical
points in Fig. 4.5 along U = 1, shown by the dashed vertical line. Points P1, P2, and
P3 in Fig. 4.5 are the bifurcation points of zero equilibrium. Similarly, P5, P6, and
P7 are the bifurcation points of buckled equilibrium. The value of critical axial load
pcr and frequency ωcr at these points is shown in the second and third columns of
Table 4.1, respectively.

Figures 4.6(a) – 4.6(f) show the 12 rightmost characteristic roots of Eq. (4.14)
corresponding to points P1, P2, P3, P5, P6, and P7. It can be seen from Figs. 4.6(a) –
4.6(f) that the rightmost roots are purely imaginary indicating the possibility of Hopf
bifurcation. In Fig. 4.7, the spectrum corresponding to point P4 is shown. It can be
seen that there is a characteristic root at the origin, which is expected as this point
falls on curve 3 in Fig. 4.5. However, the system is already unstable (see Fig. 4.7).
Therefore, P4 is not a bifurcation point.

In Fig. 4.8, we show the real part of the rightmost root in the region −15 ≤ p0 ≤
10.207 for the zero equilibrium (q̄ = q̄1 = 0), represented by the red line. The blue
dotted-line shows the real part of the rightmost root in the region 10.207 ≤ p0 ≤ 30 for
the buckled equilibrium (q̄ = q̄2). We can clearly see from Fig. 4.8 that the real part of
the rightmost root crosses the imaginary axis at points P1, P2, P3, P5, P6, and P7 with
non-zero slope (Γ̄) with respect to the parameter p0. This clearly indicates the presence
of a Hopf bifurcation. The value of Γ̄ = Real

(
dλ
dp0

)∣∣∣∣
p0=pcr

≈ Real
(
λ|(pcr+σ)−λ|(pcr−σ)

2σ

)
at

these points is shown in the fourth column of Table 4.1.
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Figure 4.6: Characteristic roots of Eq. (4.14), obtained using Galerkin approxi-
mations for U = 1 and for (a) p0 = −11.652, (b) p0 = −7.923, (c) p0 = 6.978, (d)

p0 = 11.822, (e) p0 = 19.273, and (f) p0 = 21.137.
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Figure 4.7: Characteristic roots of Eq. (4.14) obtained using Galerkin approxi-
mations for U = 1 and for p0 = 10.207.
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Figure 4.8: Variation of the real part of rightmost characteristic root of Eq. (4.14)
for U = 1 and for −15 ≤ p0 ≤ 30.
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4.4 Hopf bifurcation

In this section, the Hopf bifurcation of Eq. (4.12) is studied. Equation (4.12) is
rewritten here for reference:

r̈(t)+(α1+α2U)ṙ(t)+α3

[
1− p0

π2

]
r(t)+3α4q̄

2r(t)+3α4q̄r
2(t)+α4r(t)3+α5U

2r(t−τ) = 0.
(4.38)

From the stability chart (see Fig. 4.5), we can see that by fixing U (at 1) and increasing
p0, the stability of the equilibrium at r = 0 switches when we cross curves 1 and 2. It
should be noted that curves 1 and 2 in the stability chart correspond to the stability
boundary for q̄ = q̄1 = 0 in Eq. (4.12). Similarly, for a fixed value of U , the stability
of the equilibrium at r = 0 switches when we cross curves 4 and 5 in the stability
chart. It should be noted that curves 4 and 5 in the stability chart correspond to
the stability boundary for q̄ = q̄2, i.e., for the buckled equilibrium case of Eq. (4.12).
In order to determine the nature of Hopf bifurcation (supercritical or subcritical),
one must obtain the normal forms of Eq. (4.38) at the Hopf bifurcation points. The
normal forms near the Hopf bifurcation can be obtained using the MMS [57] or the
method of averaging [76, 77] or center manifold reduction [78]. These normal forms
can be used to study the stability of the limit-cycles born out of Hopf bifurcation. In
this section, the normal-form equations are obtained using the MMS.

4.4.1 Hopf bifurcation for the case of q̄ = q̄1 = 0

Substituting q̄ = q̄1 = 0 into Eq. (4.38), we get:

r̈(t) + (α1 + α2U)ṙ(t) + α3

[
1− p0

π2

]
r(t) + α4r(t)3 + α5U

2r(t− τ) = 0. (4.39)

The following parameters are now introduced into Eq. (4.39):

2ζ = α1 + α2U, k1 = α3, k2 = α3

π2 , k4 = α5U
2. (4.40)

Equation (4.39) now becomes:

r̈(t) + 2ζṙ(t) + k1r(t)− k2p0r(t) + α4r
3(t) + k4r(t− τ) = 0. (4.41)
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Dropping the nonlinear term in Eq. (4.41) and introducing the parameters ζ, k1, k2

and k4 (Eq. (4.40)) into the characteristic equation of the linearized problem, we have:

D(λ, p0) ≡ λ2 + 2ζλ+ k1 − k2p0 + k4

eλτ = 0, (4.42)

where λ is an implicit function of p0. From the chain rule of differentiation, we have:

dD

dp0
= ∂D

∂p0
+ ∂D

∂λ

dλ

dp0
= 0. (4.43)

Solving Eq. (4.43) for dλ
dp0

, we get

dλ

dp0
= −∂D

∂p0

(
∂D

∂λ

)−1
= k2

2λ+ 2ζ − k4e−λττ . (4.44)

At a Hopf bifurcation, we have to show that Γ = Real
(
dλ
dp0

)∣∣∣∣
p0=pcr,λ=jωcr

6= 0. Sub-

stituting p0 = pcr and λ = jωcr in Eq. (4.44) and using the identity e
−jωcrτ =

cos(ωcrτ)− j sin(ωcrτ), we get:

Γ = k2(−2ζ + k4τ cos(ωcrτ))
−4ζ2 + 4ζk4τ cos(ωcrτ)− k2

4τ
2 − 4ω2

cr − 4ωk4τ sin(ωcrτ) . (4.45)

Substituting sin(ωcrτ) and cos(ωcrτ) obtained from Eqs. (4.16a) and (4.16b) in Eq. (4.45),
we get:

Γ = k2(2ζ − τωcr2 + τk1 − τk2pcr)
4(ζτ + 1)ωcr2 + 4ζ2 + 4ζτk1 − 4ζτk2pcr + k4

2τ 2 . (4.46)

It can be seen from Table 4.1 that the analytically predicted values of Γ (velocity
of root crossing) at the Hopf bifurcation points are in close agreement with those
obtained numerically from Galerkin approximations. At points P1, P2, and P3, we
have Γ 6= 0. This guarantees the occurrence of the Hopf bifurcation at these points.
It should be noted that Γ > 0 indicates the crossing of purely imaginary roots from
left to right (stable to unstable) in the complex plane. Conversely, Γ < 0 indicates
the crossing of purely imaginary roots from right to left (unstable to stable) in the
complex plane.

As the focus of this section is to study the motion around the Hopf bifurcation
points, we perturb the parameter p0 using a detuning parameter ∆. Substituting
p0 = pcr + ε∆, κ = k1 − k2pcr and k3 = α4/ε in Eq. (4.41), we get:

r̈(t) + 2ζṙ(t) + κr(t) + k4r(t− τ) + ε[k3r
3(t)− k2∆r(t)] = 0. (4.47)
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Using the MMS for DDEs as proposed by Das and Chatterjee [57], the solution r(t)
of Eq. (4.47) is expanded as follows:

r(t) = r(t, T0) = r0(t, T0) + εr1(t, T0) + . . . . (4.48)

In Eq. (4.48), t = ε0t is the actual time-scale, and T0 = ε1t is the slow time-scale. The
time-delay term r(t− τ) is expanded as follows:

r(t− τ) = r0(t− τ, T0) + ε

(
r1(t− τ, T0)− τ ∂r0(t− τ, T0)

∂T0

)
+ . . . . (4.49)

Upon substituting Eqs. (4.48) and (4.49) into Eq. (4.47), the terms with coefficients ε0

and ε1 respectively are collected. Equating them each to zero, the following equations
are obtained:

O(ε0) : ∂
2r0

∂t2
+ 2ζ ∂r0

∂t
+ κr0 + k4r0(t− τ) = 0, (4.50a)

O(ε1) : ∂
2r1

∂t2
+ 2ζ ∂r1

∂t
+ κr1 + k4r1(t− τ)− k2∆r0

+ 2ζ ∂r0

∂T0
− k4τ

∂r0(t− τ)
∂T0

+ 2 ∂2r0

∂T0∂t
+ k3r

3
0 = 0. (4.50b)

At the Hopf bifurcation point, the transient solution of Eq. (4.50a) decays with
time since the characteristics roots lie on the left half of the complex plane (see
Figs. 4.6(a), 4.6(b), and 4.6(c)). The only solution that persists is the one due to
the roots lying on the imaginary axis, with frequency ωcr. Therefore, the solution of
Eq. (4.50a) is assumed as follows:

r0(t, T0) = A(T0) sin(ωcrt) +B(T0) cos(ωcrt). (4.51)

Substituting Eq. (4.51) in Eq. (4.50b), we get:

∂2r1

∂t2
+ 2ζ ∂r1

∂t
+ κr1 + k4r1(t− τ) + Z1 cos(3ωcrt) + Z2 sin(3ωcrt)

+Z3 cos(ωcrt) + Z4 sin(ωcrt) = 0,
(4.52)
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where Z1, Z2, Z3, and Z4 are given as follows:

Z1 = 1
4k3B

3 − 3
4k3A

2B, (4.53a)

Z2 = 1
4k3A

3 + 3
4k3AB

2, (4.53b)

Z3 = (k4τ sin(ωcrτ) + 2ω) ∂A
∂T0

+ (2ζ − k4τ cos(ωcrτ)) ∂B
∂T0

+ 3
4k3A

2B + 3
4k3B

3 − k2∆B, (4.53c)

Z4 = (2ζ − k4τ cos(ωcrτ)) ∂A
∂T0
− (2ωcr + k4τ sin(ωτ)) ∂B

∂T0

+ 3
4k3AB

2 + 3
4k3A

3 − k2∆A. (4.53d)

The terms with coefficients Z3 and Z4 cause resonance in Eq. (4.52) and are known
as secular terms. Since the solution of r(t) is bounded, these terms should vanish.
Setting Z3 = 0 and Z4 = 0, the expressions for ∂A

∂T0
and ∂B

∂T0
are obtained. Then,

using the relations Ȧ = ε ∂A
∂T0

+ O(ε2) and Ḃ = ε ∂B
∂T0

+ O(ε2), the complex amplitude
modulation relations are obtained as follows:

Ȧ(t) = ε

(
A1 sin(ωcrτ) + A2 cos(ωcrτ) + A3

4A4

)
, (4.54a)

Ḃ(t) = ε

(
B1 sin(ωcrτ) +B2 cos(ωcrτ) +B3

4B4

)
. (4.54b)

In Eq. (4.54a), the variables A1 to A4 are given by:

A1 = 3k4τk3B
3 − 4Bk4τk2∆ + 3Bk4τk3A

2, (4.55a)

A2 = −3k3AB
2k4τ − 3k3A

3k4τ + 4k2∆Ak4τ, (4.55b)

A3 = 6k3AB
2ζ + 6k3A

3ζ − 8k2∆Aζ + 6ωcrk3B
3 − 8Bωcrk2∆ + 6Bωcrk3A

2, (4.55c)

A4 = −k4
2τ 2 + 4k4τ cos(ωcrτ)ζ − 4ζ2 − 4ωcr2 − 4ωk4τ sin(ωcrτ). (4.55d)

In Eq. (4.54b), the variables B1 to B4 are given as follows:

B1 = −3k3AB
2k4τ − 3k3A

3k4τ + 4k2∆Ak4τ, (4.56a)

B2 = 4Bk4τk2∆− 3k4τk3B
3 − 3Bk4τk3A

2, (4.56b)

B3 = −6ωcrk3A
3 + 6k3B

3ζ − 8Bk2∆ζ − 6ωcrk3AB
2 + 8ωcrk2∆A+ 6Bk3A

2ζ,

(4.56c)

B4 = −k4
2τ 2 + 4k4τ cos(ωcrτ)ζ − 4ζ2 − 4ωcr2 − 4ωcrk4τ sin(ωcrτ). (4.56d)

Now, using the polar transformation A(t) = R(t) sin(θ(t)) and B(t) = R(t) cos(θ(t)) in
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Eqs. (4.54a) and (4.54b), the amplitude and phase modulation equations are obtained
as follows:

Ṙ(t) = εe1(4k2∆R(t)− 3k3R(t)3), (4.57a)

θ̇(t) = εe2(4k2∆− 3k3R(t)2), (4.57b)

where e1 and e2 are defined as follows:

e1 = (k4τ cos(ωcrτ)− 2ζ)e3, (4.58a)

e2 = (2ωcr + k4τ sin(ωcrτ))e3. (4.58b)

Here, e3 = 4(−k2
4τ

2 + 4k4τ cos(ωcrτ)ζ − 4ζ2 − 4ω2
cr − 4ωcrk4τ sin(ωcrτ)). The approx-

imate solution of the DDE presented in Eq. (4.47), accurate to O(ε0), can now be
written using the normal-form equations (Eqs. (4.57a) and (4.57b)) as follows:

r(t) ≈ R(t) cos(ωcrt+ θ(t)), (4.59a)

ṙ(t) ≈ Ṙ(t) cos(ωcrt+ θ(t))−R(t) sin(ωcrt+ θ(t))(ωcr + θ̇(t)). (4.59b)

4.4.1.1 Hopf bifurcation at point P1

Substituting the values of pcr and ωcr for point P1 (see Table 4.1) in Eqs. (4.57a)
and (4.57b), we get:

Ṙ(t) = 5.7073× 10−4(ε∆)R(t)− 6.1730× 10−3R(t)3, (4.60a)

θ̇(t) = 2.8203× 10−2(ε∆)− 30.5050× 10−2R(t)2. (4.60b)

Figure 4.9(a) shows the local bifurcation diagram (supercritical Hopf bifurcation) ob-
tained from Eq. (4.60a). In all the bifurcation diagrams reported in this chapter, solid
lines are used to represent stable solutions, while dashed lines are used to represent
the unstable solutions. Also, non-zero equilibrium solutions (R 6= 0) correspond to
the amplitudes of the periodic solutions that arise from the Hopf bifurcation. The
blue circles in Fig. 4.9(a) are the amplitudes of the periodic solutions obtained by
integrating Eq. (4.47) using the dde23 MATLAB solver. Equation (4.47) is a DDE
for which the history function must be defined for numerical integration. First, with
initial conditions R(0) and θ(0), the set of ODEs given by Eqs. (4.60a) and (4.60b)
are solved. Then, r(t) (Eq. (4.59a)) and ṙ(t) (Eq. (4.59b)) obtained for the interval
[0, τ ] (τ = 2π

U
) is given as the history function for Eq. (4.47). Figures 4.9(b) (for

ε∆ = −0.1) and 4.9(c) (for ε∆ = 0.1) show R(t) obtained using Eq. (4.60a) (red
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line) and the system response r(t), obtained by integrating Eq. (4.47) using the dde23
MATLAB solver (blue line).

Figures 4.9(a) and 4.9(b) indicate that for ε∆ < 0, the system settles at the zero
equilibrium (solid black line in Fig. 4.9(a)) for any initial condition. For ε∆ > 0 (see
Figs. 4.9(a) and 4.9(c)), the system settles into a periodic motion whose amplitude is
given by R∗ corresponding to the value of ε∆.
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Figure 4.9: (a) Local bifurcation diagram at point P1. System response at local
bifurcation point P1 for (b) ε∆ = −0.1 with initial conditions for Eqs. (4.60a)
and (4.60b) given by point A1 in Fig. 4.9(a) and (c) ε∆ = 0.1 with initial conditions

for Eqs. (4.60a) and (4.60b) given by point A2 in Fig. 4.9(a).

4.4.1.2 Hopf bifurcation at point P2

Substituting the values of pcr and ωcr for point P2 (see Table 4.1) in Eqs. (4.57a)
and (4.57b), we get:

Ṙ(t) = −6.7009× 10−4(ε∆)R(t) + 7.2477× 10−3R(t)3, (4.61a)

θ̇(t) = 3.0835× 10−2(ε∆)− 33.3519× 10−2R(t)2. (4.61b)
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Figure 4.10: (a) Local-bifurcation diagram at point P2. System response at local
bifurcation point P2 for ε∆ = 0.1 with initial conditions for Eqs. (4.61a) and (4.61b)

given in Fig. 4.10(a) by point (b) A1 and (c) A2.

Figure 4.10(a) shows the local bifurcation diagram (subcritical Hopf bifurcation)
obtained from Eq. (4.61a). For a given ε∆, the amplitude of unstable periodic solu-
tions is obtained from Eq. (4.47) as follows. We numerically integrate Eq. (4.47) for
increasing values of constant history function and track the equilibrium solution. The
critical value of the magnitude of the history function, above which the equilibrium
will not approach zero, is considered to be the magnitude of the unstable limit cycle
(blue circle). Figure 4.10(b) shows R(t) obtained using Eq. (4.61a) (red line) and the
system response r(t) obtained by integrating Eq. (4.47) using the dde23 MATLAB
solver (blue line). Both cases are for ε∆ = 0.1 and for the magnitude of history
function given by point A1 in Fig. 4.10(a). Figure 4.10(c) shows the same physical
quantities for the magnitude of the history function given by point A2 in Fig. 4.10(a).

Figures 4.10(a) and 4.10(b) indicate that for a given value of ε∆(> 0), any initial
condition greater than R∗ results in a diverging solution. Conversely, for a given value
of ε∆(> 0), any initial condition less than R∗ (see Figs. 4.10(a) and 4.10(c)) results
in the system settling at the zero equilibrium (solid black line in Fig. 4.10(a)).

4.4.1.3 Hopf bifurcation at point P3

Substituting the values of pcr and ωcr for point P3 (see Table 4.1) in Eqs. (4.57a)
and (4.57b), we get:

Ṙ(t) = 144.5864× 10−4(ε∆)R(t)− 156.3844× 10−3R(t)3, (4.62a)

θ̇(t) = 7.8807× 10−2(ε∆)− 85.2384× 10−2R(t)2. (4.62b)
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Figure 4.11: (a) Local bifurcation diagram at point P3. System response at
local bifurcation point P3 for (b) ε∆ = −0.1 with initial conditions for Eqs. (4.62a)
and (4.62b) given by point A1 in Fig. 4.11(a) and (c) ε∆ = 0.1 with initial conditions

for Eqs. (4.62a) and (4.62b) given by point A2 in Fig. 4.11(a).

Figure 4.11(a) shows the local bifurcation diagram (supercritical Hopf bifurca-
tion) obtained from Eq. (4.62a). Figures 4.11(a), 4.11(b) and 4.11(c) are similar to
Figs. 4.9(a), 4.9(b) and 4.9(c), except that these results are for the bifurcation point
P3. Figures 4.11(a) and 4.11(b) indicate that for ε∆ < 0, the system settles at the zero
equilibrium (solid black line in Fig. 4.11(a)) for any initial condition. For ε∆ > 0 (see
Figs. 4.11(a) and 4.11(c)), the system settles into a periodic motion whose amplitude
is given by R∗ corresponding to the value of ε∆.

It can be seen from Figs. 4.9, 4.10 and 4.11 that both the transient and the
steady-state solutions of the normal-form equation obtained using the MMS, match
closely with the results from direct numerical integration.

4.4.2 Hopf bifurcation for the case of q̄ = q̄2

To study the Hopf bifurcation at buckled equilibrium (q̄ = q̄2), we substitute the
value of q̄2 from Eq. (4.10) into Eq. (4.38). It should be noted that the “ ± ” sign
in front of the expression for q̄2 in Eq. (4.10) corresponds to the upward/downward
buckled configuration of the beam. Here, we study the bifurcation corresponding to
the upward configuration (+ve sign). Due to the symmetric nature of the buckling
problem, the results are equally valid for the downward configuration (−ve sign). It
must be noted that the underlying assumption in this analysis is that the buckling
and fluid-elastic instabilities are in the same plane and phase. Therefore, it is implicit
in this analysis that buckling, which is predominantly attributed to axial loads, and
fluid forces are coupled.
The characteristic equation corresponding to the linearized version of Eq. (4.38)
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around the equilibrium q̄ = q̄2 is given by:

D(λ, p0) = λ2 + 2ζλ− 2k1 + 2k2p0 − 3k4 + k4e−λτ = 0. (4.63)

The characteristic equation D(λ, p0) satisfies Eq. (4.43); therefore, we have:

dλ

dp0
= −2k2

2λ+ 2ζ − k4τe−λ τ . (4.64)

At the Hopf bifurcation point we have p0 = pcr and λ = jωcr. Substituting these
values in Eq. (4.64) we get:

dλ

dp0

∣∣∣∣
p0=pcr, λ=jωcr

= −2k2

2jωcr + 2ζ − k4τe−jωcrτ
. (4.65)

With Γ = Real
(
dλ
dp0

)∣∣∣∣
p0=pcr, λ=jωcr

, we have:

Γ = −2k2(−2ζ + k4τ cos(ωcrτ))
−4ζ2 + 4ζk4τ cos(ωcrτ)− k2

4τ
2 − 4ω2

cr − 4ωk4τ sin(ωcrτ) . (4.66)

Substituting sin(ωcrτ) and cos(ωcrτ) obtained from Eqs. (4.18a) and (4.18b) in Eq. (4.66),
we get:

Γ = −2k2(−2ζ + τ(ω2 + 2k1 − 2k2p0 + 3k4))
−4ζ + 4ζτ(ω2

cr + 2k1 − 2k2p0 + 3k4)− k2
4τ

2 − 4ω2
cr − 8ω2

crτζ
. (4.67)

The velocity of root-crossing (Γ), calculated from Eq. (4.67), at points P5, P6, and
P7 (Fig. 4.5) is shown in the fourth column of Table 4.1. It can be seen from Ta-
ble 4.1 that the analytically predicted values of Γ at the Hopf bifurcation points are
in close agreement with those obtained numerically using Galerkin approximations.
Furthermore, at the critical points (P5, P6, and P7), we have Γ 6= 0 in both cases.

Next, the normal form equations for Eq. (4.38), around the Hopf bifurcation
points for the equilibrium at q̄ = q̄2, are derived. As there is a quadratic nonlinearity
in Eq. (4.38), we substitute p0 = pcr + ε2∆ and α4 = ε2k3 in Eq. (4.38) to obtain the
normal form near the Hopf bifurcation point. Substituting the parameters ζ, k1, k2,
k4 (as defined in Eq. (4.40)), p0 and α4 in Eq. (4.38), we obtain:

r̈(t)+2ζṙ(t)+[k1−(pcr+ε2∆)k2+3ε2k3q̄
2
2]r(t)+3ε2k3q̄2r(t)2+ε2k3r(t)3+k4r(t−τ) = 0.

(4.68)
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Substituting the parameters k1, k2, k3, k4, ε2 and ∆ in Eq. (4.10), we get:

q̄2 =
√
−α3[1− p0

π2 ]− α5U2

α4
=
√
−k4 − k1 + k2pcr + k2ε2∆

ε2k3
. (4.69)

Substituting Eq. (4.69) into Eq. (4.68), we get:

r̈(t) + 2ζṙ(t) + (2k2pcr − 2k1 − 3k4 + 2k2ε
2∆)r(t) + ε2k3r(t)3

+ 3ε
√
k3(−k4 − k1 + k2pcr + k2ε2∆)r(t)2 + k4r(t− τ) = 0.

(4.70)

Next, expanding the square-root term in Eq. (4.70) using the Taylor series around
ε = 0, we get: √

k3(−k4 − k1 + k2pcr + k2ε2∆) ≈ a1 − a2ε
2∆, (4.71)

where a1 =
√
−k3(k4 + k1 − k2pcr) and a2 = 1

2

√
−k3(k4+k1−k2pcr)k2
k4+k1−k2pcr

. Substituting Eq. (4.71)
into Eq. (4.70), we get:

r̈(t)+2ζṙ(t)+(a3+a4ε
2∆)r(t)+3ε(a1−a2ε

2∆)r(t)2+ε2k3r(t)3+k4r(t−τ) = 0, (4.72)

where a3 = 2k2pcr − 2k1 − 3k4 and a4 = 2k2. Now introducing the new time scales
T0 = ε1t and T1 = ε2t, r(t) is expanded as follows:

r(t) = r(t, T0, T1) = r0(t, T0, T1) + εr1(t, T0, T1) + ε2r2(t, T0, T1) + . . . . (4.73)

In Eq. (4.73), t = ε0t is the actual time-scale; T0 and T1 are the slow time-scales.
The time-delay term r(t− τ) is expanded up to O(ε2) using the Taylor series similar
to Eq. (4.49). Upon substituting the expressions for r(t − τ) and r(t) in Eq. (4.72),
terms with coefficients of ε0, ε1 and ε2 are collected and are each equated to zero to
obtain the following equations :

O(ε0) : ∂
2r0

∂t2
+ 2ζ ∂r0

∂t
+ a3r0 + k4r0(t− τ) = 0, (4.74a)

O(ε1) : ∂
2r1

∂t2
+ 2ζ ∂r1

∂t
+ a3r1 + k4r1(t− τ)

= τk4
∂r0(t− τ)

∂T0
− 2 ∂2r0

∂T0∂t
− 2ζ ∂r0

∂T0
− 3a1r

2
0, (4.74b)

O(ε2) : ∂
2r2

∂t2
+ 2ζ ∂r2

∂t
+ a3r2 + k4r2(t− τ) = K1 +K2 +K3 − 6r0r1a1, (4.74c)
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where K1, K2 and K3 are given as follows:

K1 = −
(
a4∆r0 + k3r

3
0 + 2 ∂2r0

∂T1∂t
+ ∂2r0

∂T 2
0

)
, (4.75a)

K2 = −
(

2ζ ∂r0

∂T1
− k4τ

∂r0(t− τ)
∂T1

+ 1
2τ

2k4
∂2r0(t− τ)

∂T 2
0

)
, (4.75b)

K3 = −
(

2 ∂2r1

∂T0∂t
+ 2ζ ∂r1

∂T0
− k4τ

∂r1(t− τ)
∂T0

)
. (4.75c)

Since the only non-decaying solution at the Hopf bifurcation point is the one due to
the roots lying on the imaginary axis with frequency ωcr, the solution of Eq. (4.74a)
can be written as follows:

r0(t, T0, T1) = A(T0, T1) cos(ωcrt) +B(T0, T1) sin(ωcrt). (4.76)

Substituting Eq. (4.76) into Eq. (4.74b), we get:

∂2r1

∂t2
+2ζ ∂r1

∂t
+ a3r1 + k4r1(t− τ)

= −Z5 cos(ωcrt)− Z6 sin(ωcrt)− Z7 cos(2ωcrt)− Z8 sin(2ωcrt)− Z9,

(4.77)

where Z5, Z6, Z7, Z8, and Z9 are given by:

Z5 = −k4τ
∂A

∂T0
cos(ωcrτ) + k4τ

∂B

∂T0
sin(ωcrτ) + 2ζ ∂A

∂T0
+ 2 ∂B

∂T0
ωcr, (4.78a)

Z6 = 2ζ ∂B
∂T0
− 2 ∂A

∂T0
ωcr − k4τ

∂A

∂T0
sin(ωcrτ)− k4τ

∂B

∂T0
cos(ωcrτ), (4.78b)

Z7 = 3
2a1A

2 − 3
2a1B

2, (4.78c)

Z8 = 3a1AB, (4.78d)

Z9 = 3
2a1A

2 + 3
2a1B

2. (4.78e)

In order to eliminate the secular terms, we set Z5 = 0 and Z6 = 0. Equations (4.78a)
and (4.78b) then give us:

∂A

∂T0
= 0, (4.79a)

∂B

∂T0
= 0. (4.79b)

Equation (4.77) is now rewritten as:

∂2r1

∂t2
+ 2ζ ∂r1

∂t
+ a3r1 + k4r1(t− τ) + Z7 cos(2ωcrt) + Z8 sin(2ωcrt) + Z9 = 0. (4.80)
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The solution r1(t, T0, T1) of Eq. (4.80) is assumed as follows:

r1(t, T0, T1) = C1(T0, T1) + C2(T0, T1) cos(2ωcrt) + C3(T0, T1) sin(2ωcrt). (4.81)

Substituting Eq. (4.81) in Eq. (4.80) and solving for C1 , C2 and C3, we get:

C1 = −3
2
a1(A2 +B2)
k4 + a3

, (4.82a)

C2 = h1 cos(2ωcrτ) + h2 sin(2ωcrτ) + h3

h4
, (4.82b)

C3 = h5 cos(2ωcrτ) + h6 sin(2ωcrτ) + h7

h8
, (4.82c)

where h1 to h8 are defined as follows:

h1 = −3a1k4B
2 + 3a1k4A

2, (4.83a)

h2 = 6a1ABk4, (4.83b)

h3 = −24a1ABωcrζ − 12a1ω
2
crA

2 + 12a1ω
2
crB

2 − 3a1a3B
2 + 3a1a3A

2, (4.83c)

h4 = (−4k4a3 + 16ω2
crk4) cos(2ωcrτ)− 2k2

4 + 16k4ζωcr sin(2ωcrτ)

− 32ζ2ω2
cr − 2a2

3 − 32ω4
cr + 16ω2

cra3, (4.83d)

h5 = 3a1B
2k4 − 3a1A

2k4, (4.83e)

h6 = 6a1ABk4, (4.83f)

h7 = −24a1ABω
2
cr + 12a1A

2ζωcr − 12a1B
2ζωcr + 6a1a3AB, (4.83g)

h8 = (−4k4a3 + 16ω2
crk4) cos(2ωcrτ)− 2k2

4 + 16k4ζωcr sin(2ωcrτ)

− 32ζ2ω2
cr − 2a2

3 − 32ω4
cr + 16ω2

cra3. (4.83h)

Substituting Eq. (4.73) and (4.81) in Eq. (4.74c) and by setting the coefficients of
secular terms to zero, we solve for ∂A

∂T1
and ∂B

∂T1
. Then, using the relations Ȧ =

ε ∂A
∂T0

+ ε2 ∂A
∂T1

and Ḃ = ε ∂B
∂T0

+ ε2 ∂B
∂T1

, and substituting ∂A
∂T0

= ∂B
∂T0

= 0 (see Eqs. (4.79a)
and (4.79b)) in Ȧ and Ḃ, we note that:

Ȧ = ε2
∂A

∂T1
, (4.84a)

Ḃ = ε2
∂B

∂T1
. (4.84b)

Now, substituting the polar transformationA(t) = R(t) sin(θ(t)) andB(t) = R(t) cos(θ(t))
in Eqs. (4.84a) and (4.84b) and simplifying, the amplitude and phase modulation
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equations can be written as follows:

Ṙ(t) = R1ε
2∆R(t) +R2R

3(t), (4.85a)

θ̇(t) = θ1ε
2∆ + θ2R

2(t). (4.85b)

The approximate solution of the DDE presented in Eq. (4.72), accurate to O(ε0), can
now be written using the normal form equations (Eqs. (4.85a) and (4.85b)) as follows:

r(t) ≈ R(t) cos(ωcrt+ θ(t)), (4.86a)

ṙ(t) ≈ Ṙ(t) cos(ωcrt+ θ(t))−R(t) sin(ωcrt+ θ(t))(ωcr + θ̇(t)). (4.86b)

4.4.2.1 Hopf bifurcation at point P5

Substituting the values of pcr and ωcr for point P5 (see Table 4.1) in Eqs. (4.85a)
and (4.85b), we get:

Ṙ(t) = −289.1699178× 10−4(ε2∆)R(t) + 498.7098850× 10−3R(t)3, (4.87a)

θ̇(t) = 15.76079909× 10−2(ε2∆)− 3.121840462R(t)2. (4.87b)
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Figure 4.12: (a) Local bifurcation diagram at point P5. System response at
local bifurcation point P5 for ε2∆ = 0.01 with initial conditions for Eqs. (4.87a)

and (4.87b) given in Fig. 4.12(a) by point (b) A1 and (c) A2.

Figure 4.12(a) shows the local bifurcation diagram (subcritical Hopf bifurcation)
obtained from Eq. (4.87a). To obtain the amplitude of unstable periodic solutions,
we numerically integrate Eq. (4.72) for a given ε2∆ and for increasing values of the
constant history function, and track the equilibrium solution. The critical value of the
magnitude of the history function above which the equilibrium will not approach zero
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is considered the magnitude of the unstable limit cycle (blue circle). Figure 4.12(b)
shows R(t) obtained using Eq. (4.87a) (red line) and the system response (blue line)
obtained by integrating Eq. (4.72) using the dde23 MATLAB solver. Both cases
are for ε2∆ = 0.01 and the magnitude of the history function given by point A1 in
Fig. 4.12(a). Figure 4.12(c) shows the same physical quantities for the magnitude of
the history function given by point A2 in Fig. 4.12(a).

Figures 4.12(a) and 4.12(b) indicate that for a given value of ε2∆(> 0), any
initial condition greater than R∗ results in a diverging solution. On the contrary,
for a given value of ε2∆(> 0), any initial condition less than R∗ (see Figs. 4.12(a)
and 4.12(c)) results in the system settling at the buckled equilibrium (solid black line
in Fig. 4.12(a)).

4.4.2.2 Hopf bifurcation at point P6

Substituting the values of pcr and ωcr for point P6 (see Table 4.1) in Eqs. (4.85a)
and (4.85b), we get:

Ṙ(t) = 13.18331333× 10−4(ε2∆)R(t)− 30.54194023× 10−3R(t)3, (4.88a)

θ̇(t) = 6.161982410× 10−2(ε2∆)− 1.331671312R(t)2. (4.88b)
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Figure 4.13: (a) Local bifurcation diagram at point P6. System response at local
bifurcation point P6 for (b) ε2∆ = −0.01 with initial conditions for Eqs. (4.88a)
and (4.88b) given by point A1 in Fig. 4.13(a) and for (c) ε2∆ = 0.01 with initial

conditions for Eqs. (4.88a) and (4.88b) given by point A2 in Fig. 4.13(a).

Figure 4.13(a) shows the local bifurcation diagram (supercritical Hopf bifurca-
tion) obtained from Eq. (4.88a). Figures 4.13(b) (for ε2∆ = −0.01) and 4.13(c) (for
ε2∆ = 0.01) show R(t) obtained using Eq. (4.88a) (red line) and the system response
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obtained by integrating Eq. (4.72) using the dde23 MATLAB solver (blue line). Fig-
ures 4.13(a) and 4.13(b) indicate that for ε2∆ < 0, the system settles at the buckled
equilibrium (solid black line in Fig. 4.13(a)) for any initial condition. For ε2∆ > 0 (see
Figs. 4.13(a) and 4.13(c)), the system settles into a periodic motion whose amplitude
is given by R∗ corresponding to the value of ε2∆.

4.4.2.3 Hopf bifurcation at point P7

Substituting the values of pcr and ωcr for point P7 (see Table 4.1) in Eqs. (4.85a)
and (4.85b), we get:

Ṙ(t) = −11.35943198× 10−4(ε2∆)R(t) + 20.63464775× 10−3R(t)3, (4.89a)

θ̇(t) = 5.641822544× 10−2(ε2∆)− 1.215852977R(t)2. (4.89b)
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Figure 4.14: (a) Local bifurcation diagram at point P7. System response at
local bifurcation point P7 for ε2∆ = 0.01 with initial conditions for Eqs. (4.89a)

and (4.89b) given in Fig. 4.14(a) by point (b) A1 and (c) A2.

Figure 4.14(a) shows the local bifurcation diagram (subcritical Hopf bifurca-
tion) obtained from Eq. (4.89a). Figures 4.14(a), 4.14(b) and 4.14(c) are similar to
Figs. 4.12(a), 4.12(b) and 4.12(c), except that these results are for the bifurcation
point P7. Figures 4.14(a) and 4.14(b) indicate that for a given value of ε2∆(> 0),
any initial condition greater than R∗ results in a diverging solution. On the contrary,
for a given value of ε2∆(> 0), any initial condition less than R∗ (see Figs. 4.14(a)
and 4.14(c)) results in the system settling at the buckled equilibrium (solid black line
in Fig. 4.14(a)).

It can be seen from Figs. 4.12, 4.13 and 4.14 that the transient and the steady-
state solutions of the normal-form equations for buckled equilibrium, obtained using
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the MMS, both match closely with the results obtained from direct numerical integra-
tion. This implies that both the methods are appropriate choices for this study. The
mutual consistency of the results also serves to authenticate the results themselves.
It should also be noted that for this study, the results obtained using the MMS were
computationally less expensive than the results obtained from direct numerical inte-
gration. This makes MMS a candidate approach for studying the Hopf bifurcations
of such systems.

All the results obtained using the MMS reported in this section are valid for small
values of ε. To study the behaviour of the system far from the bifurcation points,
we resort to numerics and generate a global bifurcation diagram. These results are
described in the next section.

4.5 Global bifurcation analysis
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Figure 4.15: Global bifurcation diagram of Eq. (4.8) for U = 1 and p0 ∈ [−15, 30].
Stable limit-cycles arising from points P1, P3 and P6 are denoted by SLC and the
unstable limit-cycles arising from points P2, P5 and P7 are denoted by ULC. Stable
zero equilibrium is represented by blue solid line (SZE) and the unstable zero equi-
librium is represented by dotted blue line (UZE). Magenta solid line represents the
stable buckled equilibrium (SBE) and magenta dotted line represents the unstable

buckled equilibrium (UBE).

Figure 4.15 shows the global bifurcation diagram obtained by integrating Eq. (4.8)
using the dde23 MATLAB solver, for U = 1 and varying the axial load p0, with
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p0 ∈ [−15, 30]. It can clearly be seen from Fig. 4.15 that P1, P2, P3, P5, P6, and
P7 are the Hopf bifurcation points. Furthermore, it should be observed that from
point P4, a second equilibrium (q̄ = q̄2) coexists with the equilibrium given by q̄ = q̄1.
Solid blue lines indicate the stable equilibrium points and dotted blue line indicate
the unstable equilibrium points for q̄ = q̄1 = 0. Solid magenta lines are the stable
equilibrium points and dotted magenta lines are the unstable equilibrium points for
q̄ = q̄2 = ±

√
−α3[1− p0

π2 ]−α5U2

α4
. In Fig. 4.15, solid and dashed-lines represent the stable

and unstable solutions, respectively. The stable and unstable periodic solutions are
tracked using the same method as described in Section 4.4.

It can be seen from Fig. 4.15 that the stable and unstable periodic solutions aris-
ing from P1 and P2 meet at the cyclic-fold bifurcation point SN1. At SN1, p0 = 20.41,
after which both stable and unstable periodic solutions arising from P1 and P2 cease
to exist. SN2 is the cyclic-fold bifurcation point for the stable and unstable periodic
solutions arising from P3 and P5, respectively. SN3 is the cyclic-fold bifurcation point
for the stable and unstable periodic solutions arising from P6 and P7, respectively. The
axial loads at SN2 and SN3 are 25.8 and 24.15, respectively. The following important
observations can be made from Fig. 4.15.

1. For p0 ∈ (P1, SN2] there exist multiple limit-cycles (both stable and unstable)
for the system, due to Hopf bifurcation at different points.

2. The zero equilibrium is unstable in the intervals [P1, P2], and P3 and beyond.
The buckled equilibrium is unstable over intervals [P4, P5] and [P6, P7]. Since no
stable static equilibrium exists in these regions, the system can only settle in a
stable limit-cycle.

Figures 4.16(a), 4.16(b), and 4.16(c) show the limit-cycles for p0 = 1, p0 = 13 and
p0 = 20, respectively. For p0 = 1 (Fig. 4.16(a)), two coexisting limit-cycles are
present: one originating from supercritical Hopf bifurcation at P1 (stable limit-cycle,
red solid-line) and the other from the subcritical Hopf bifurcation at P2 (unstable
limit-cycle, red dashed-line). For p0 = 13 (Fig. 4.16(b)), four limit-cycles coexist. Of
these, two stable limit-cycles arise from the supercritical Hopf bifurcation originating
at points P1 (red solid-line) and P3 (brown solid-line), and two unstable limit-cycles
arise from the subcritical Hopf bifurcation originating at points P2 (red dashed-line)
and P5 (brown dashed-line). For p0 = 20 (Fig. 4.16(c)), five limit-cycles coexist. Of
these, three stable limit-cycles arise from the supercritical Hopf bifurcation originating
at points P1 (red solid-line), P3 (brown solid-line) and P6 (black solid-line), and two
unstable limit-cycles arise from the subcritical Hopf bifurcation originating at points
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P2 (red dashed-line) and P5 (brown dashed-line). Figure 4.16 should be contrasted
with Fig. 4.15. All stable limit-cycles for p0 = 1, p0 = 13 and p0 = 20 are obtained
by directly integrating the DDE given by Eq. (4.8). Obtaining unstable limit-cycles
for a system is a challenging task and hence the bisection method is used [58].
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Figure 4.16: (a) Limit-cycles for U = 1 with (a) p0 = 1, (b) p0 = 13 and (c)
p0 = 20.

It can be seen that for U = 1, at lower axial loads (see Fig. 4.16(a)), the amplitude
of stable limit-cycle oscillations is relatively less than that for higher axial loads (see
Figs. 4.16(b) and 4.16(c)) making p0 ≤ P1 a more favorable region to operate as the
beam settles to zero equilibrium. The existence of multiple limit-cycles at higher axial
loads pose operational challenges because there are more than one settling amplitudes,
that depend on the initial conditions. Multiple limit-cycles at higher values of axial
load make fatigue life calculations more complicated in that region of the parametric
space. However, if the operational conditions push the system into multiple limit-
cycles region, fatigue-life calculations should be based on the worst case scenario of
the limit-cycle amplitudes. It should be noted from the global bifurcation diagram
that by inducing tensile loads, we can change p0 from positive to negative and can
control the region of operation of the heat exchanger. For example, if we apply
sufficient tension and make p0 = −5, the tube will be stable around zero equilibrium
for flow velocity of U = 1.

Another important observation that can be made from Figs. 4.16(b) and 4.16(c) is
regarding the small margin between the larger stable and unstable limit cycles. For the
system lying exactly on the larger unstable limit cycle, a small external perturbation
will take the system to either the outer larger stable limit cycle or the inner smaller
stable limit cycle. The inner and outer stable limit cycles have remarkably different
amplitudes; this makes the behavior of the system in the vicinity of the larger unstable
limit cycle highly unpredictable. This further reinforces the argument that predictive
fatigue-life calculations must be based on the worst-case scenario.
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4.6 Chapter Summary

The nonlinear dynamics of a heat-exchanger tube subjected to cross-flow has been
studied. The critical curves for the resulting DDE is first obtained using an analytical
approach. A Galerkin method is then used to analyze the stability of the system in
the parametric space of flow velocity and axial (thermal) load. The analytical tech-
nique only gives the possible critical curves at which a stability switch may happen.
However, using Galerkin approximations, the rightmost characteristic roots of the
DDE in the [U, p0] plane are obtained to generate a more comprehensive stability
chart. Furthermore, the damping present in the rightmost root, in the stable region,
is obtained. The highest damping is present around U = 2.34 and p0 = 30. The
possibility of Hopf bifurcation has been investigated for U = 1. It is found that both
zero and buckled equilibria can lose stability through supercritical or subcritical Hopf
bifurcation. Using the method of multiple scales (MMS), normal forms near the bi-
furcation points have been obtained analytically. The results from local-bifurcation
analysis using the MMS are in close agreement with numerical results indicating that
both methods are appropriate for this study. The consistency of the results also serve
to authenticate them. However, since the MMS is valid only in the immediate vicinity
of the Hopf-bifurcation points, a global-bifurcation diagram has been generated using
numerical simulations to analyze the tube motion farther away from the bifurcation
points.

The presence of multiple co-existing limit-cycles at higher axial loads (p0 = 13,
and p0 = 20) present operational challenges. This is due to the uncertainty in the
settling amplitude that is contingent on the initial conditions of the vibrating tube,
which in turn are hard to capture. Furthermore, the global-bifurcation diagram indi-
cates that apart from Hopf bifurcations, three cyclic-fold bifurcation points also exist
where the stable and unstable periodic solutions meet and cease to exist thereafter.
The presence of cyclic-fold bifurcations implies that at certain values of axial load,
the system can switch from one limit-cycle to another, which makes the behavior of
the beam unpredictable.

The stability studies carried out in this chapter are expected to be useful in
the designing of heat-exchanger tubes for greater tube life and safety. Therefore, for
a given flow velocity, axial load can be tuned from the stability chart for maximum
damping. Further, from the global bifurcation diagram, for a given flow velocity, axial
load can be adjusted to suppress the limit cycle oscillations.
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In the past, Sadath et al. [40] obtained the stability regions for a simply-supported
tube under axial loads and cross-flow. Contrary to the present study, a flutter insta-
bility region was also found to exist. More importantly, the present study indicates
the presence of more and smaller unstable regions within previously discovered stable
regions [40]. Furthermore, the present work also reports the damping in the paramet-
ric space of the axial load and flow velocity, which has not been done in ref. [40]. The
results obtained in the present study can also be contrasted with those by Xia and
Wang [31]. In the latter study, it was found that the impact-related force contributes
principally to the nonlinearity in the system. The effect of the nonlinearity induced
by axial tension was not pronounced.



Chapter 5

Conclusions and Future Work

Cross-flow-induced vibrations of a single flexible heat-exchanger tube in an array of
rigid cylinders has been studied. This study is expected to be useful at the design
stage of heat-exchanger tubes, with the intention of safe and efficient operation in the
power-plant industry. Based on the results presented in Chapters 2 to 4, the following
important conclusions are made:

• A stability analysis involving the second-order DDE of motion from [4] is con-
ducted for a single flexible cylinder in the parametric space of mass-damping
parameter and reduced velocity.

• Contrary to several earlier studies that have reported only the stability thresh-
old, the information on the damping in the stable region has been reported here
for the first time. The region of the highest damping and therefore, maximum
stability is found to exist around mδ = 1.333 and U = 0.791, where the vibration
response of the tube will decay most rapidly.

• Contrary to popular opinion, this work indicates that the region of maximum
damping is a localized region in the parametric space, close to the stability
boundary.

• The region of maximum damping is achieved at a comparatively lower mass-
damping parameter value for µ = 0.5, and a comparatively higher mass-damping
parameter value for µ = 2, and hence shifts with a shift in the value of the time
delay, calling into the question the choice of µ = 1.

• In the study that models a heat-exchanger tube as a cantilever beam, the stabil-
ity and spectrum in the parametric space of cladding stiffness and flow velocity
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has been obtained for the first time. The knowledge of damping in the para-
metric space is useful for the control of large-amplitude vibrations. For a given
value of operational flow velocity, the value of k1 can be traced back from a
region where the damping is high. In this manner, the system can be designed
with a k1, so as to operate it in a region where the damping is high, thereby
guaranteeing maximum stability for a given operational flow velocity.

• Multiple limit cycles (both stable and unstable) are found to coexist for k1 ∈
(0, 100]. In the case of a stable zero equilibrium and a single stable limit cycle
(k1 ∈ (33, 70]), fatigue life calculations are easier. When there are multiple
periodic solutions, fatigue life calculations must be based on the worst-case
scenario, i.e., the largest limit-cycle amplitude.

• k1 ∈ (33, 70] provides a range for optimal design values of the linear spring
stiffness. High values of k1 can induce high stresses on the tube in response to
tube thermal expansion. Moreover, our analysis indicates that high values of k1,
i.e., stiffer claddings, do not necessarily guarantee a more stable system. On the
other hand, low values of k1 may not be effective against impact with baffles,
while also subjecting the system to the risk of multiple periodic solutions.

• The range k1 ∈ (33, 70] is most desirable for design purposes since the zero
equilibrium is stable and there is only one stable limit cycle in this range.

• For a simply-supported heat-exchanger tube, the damping present in the right-
most root, in the stable region, is obtained in the parametric space of flow veloc-
ity and axial (thermal) load. The highest damping is present around U = 2.34
and p0 = 30. Using the damping information for a given flow velocity, the axial
load can be tuned from the stability chart for maximum damping.

• The possibility of Hopf bifurcation has been investigated for U = 1. It is found
that both zero and buckled equilibria can lose stability through supercritical or
subcritical Hopf bifurcation.

• The presence of multiple co-existing limit-cycles at higher axial loads (p0 = 13,
and p0 = 20) present operational challenges. This is due to the uncertainty in
the settling amplitude that is contingent on the initial conditions of the vibrating
tube, which in turn are hard to capture. However, for a given flow velocity, the
axial load can be adjusted to suppress the limit cycle oscillations.

• Apart from Hopf bifurcations, three cyclic-fold bifurcation points also exist
where the stable and unstable periodic solutions meet and cease to exist there-
after. The presence of cyclic-fold bifurcations implies that at certain values of
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axial load, the system can switch from one limit-cycle to another, which makes
the behavior of the beam unpredictable.

5.1 Open problems and future work

A few open problems that are yet to be addressed are the following:

• The damping in the parametric space of mass-damping parameter and flow
velocity needs to be computed in the case of the more realistic two-phase flow.

• The effect of mode-coupling can be investigated with the inclusion of multi-
ple modes in the Galerkin approximations employed while modeling the heat-
exchanger tube as a cantilever or a simply-supported beam.

• The baffle-cladding tends to deform over time, resulting in there being a gap
between the tube and the cladding. In such a case, the impact of the beam with
the cladding must be taken into consideration.

• Studies for the control of the vibration response of the tube are required. As is
evident from this thesis, parameters such as the cladding stiffness and the axial
loads can be adjusted, either at the design stage or during the course of operation
for system stability. The control problem for time-delayed systems is challenging
and stabilization techniques need to be developed to address the issue. Shanti et
al. [?] devised a pole-placement technique for time-delayed systems, which com-
bined the advantages of the method of receptances and an optimization-based
strategy. The objective was to design a controller that places the closed-loop
poles at specific locations, to achieve stability. More techniques for stabilizing
time-delayed systems are currently being investigated by our group.
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