
Portland State University Portland State University 

PDXScholar PDXScholar 

Computer Science Faculty Publications and 
Presentations Computer Science 

2008 

Scalable Concurrent Hash Tables via Relativistic Scalable Concurrent Hash Tables via Relativistic 

Programming Programming 

Josh Triplett 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Triplett, Josh, "Scalable Concurrent Hash Tables via Relativistic Programming" (2008). Computer Science 
Faculty Publications and Presentations. 223. 
https://pdxscholar.library.pdx.edu/compsci_fac/223 

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer 
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more 
information, please contact pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/223
https://pdxscholar.library.pdx.edu/compsci_fac/223?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


Scalable Concurrent Hash Tables via Relativistic
Programming

Josh Triplett

Portland State University
josh@kernel.org

Abstract. Existing approaches to concurrent programming often fail to
account for synchronization costs on modern shared-memory multipro-
cessor architectures. A new approach to concurrent programming, known
as relativistic programming, can reduce or in some cases eliminate syn-
chronization overhead on such architectures. This approach avoids the
costs of inter-processor communication and memory access by permit-
ting processors to operate from a relativistic view of memory provided by
their own caches, rather than from an absolute reference frame of mem-
ory as seen by all processors. This research shows how relativistic pro-
gramming techniques can provide the perceived advantages of optimistic
synchronization without the useless parallelism caused by rollbacks and
retries.

Descriptions of several implementations of a concurrent hash table illus-
trate the differences between traditional and relativistic approaches to
concurrent programming. An analysis of the fundamental performance
bottlenecks in existing concurrent programming techniques, both opti-
mistic and pessimistic, directly motivates the key ideas of relativistic
programming. Relativistic techniques provide performance and scalabil-
ity advantages over traditional synchronization, demonstrated through
benchmarks of concurrent hash tables implemented in the Linux ker-
nel. The demonstrated relativistic hash table makes use of an original
relativistic hash table move operation. The paper concludes with a dis-
cussion of how the specific techniques used in the concurrent hash table
implementation generalize to other data structures and algorithms.

1 Introduction

Moore’s Law predicts that the density of transistors in an integrated circuit will
double every two years. [1] Popular interpretations of Moore’s Law take it as
a statement on processor clock frequencies, which have previously experienced
exponential growth. However, clock frequencies have reached physical limitations
that make this exponential growth unsustainable.

The speed of light provides a hard limit on how far information can travel per
unit time. In a 3 GHz processor, information can travel no more than about 10
cm per clock cycle, and this does not take into account delays caused by actual
computation. A faster processor must therefore occupy a smaller space.



Furthermore, higher clock frequencies consume disproportionately more power,
a problem known as the Power Wall. This increase in power consumption also
increases heat production. Miniaturization further exacerbates this problem by
making it more difficult to dissipate heat. Miniaturization faces its own set of
limitations as well, such as quantum tunneling effects and the sizes of atoms.

Yet Moore’s Law continues to hold: the growth in the number of transistors
continues apace. Many of those transistors now implement hardware parallelism.
[2] Current processors often ship with more than one processing core on a single
processor die, known as a multicore processor. As the state of the art advances,
processors will most likely increase the number of cores per die while holding
clock frequency and eventually transistor density constant.

The same physical limitations that apply to clock frequency also define the
characteristics of present and future parallel systems. The communication la-
tency between processors grows due to increased distance. Processors continue
to consume data faster than memory and busses can supply it, a problem known
as the Processor-Memory Gap [3] or the Memory Wall [4]. Processors have in-
novative ways to hide these costs, such as caching, speculative and out-of-order
execution, and pipelining; however, operations that synchronize across multiple
processors incur the true cost of the increasing communication latency, and thus
run much more slowly than operations that can run locally on a single processor.

Sequential software does not automatically take advantage of hardware par-
allelism as it does of higher clock speeds. To take advantage of hardware paral-
lelism, operating systems and application software must provide multiple threads
of execution, and must efficiently share resources amongst these threads. Both
of these goals require scalable concurrent programming techniques.

Scalable refers to code which can do more work in the same amount of time
by taking advantage of larger numbers of threads and processor cores; ideal
concurrent code will scale linearly with the number of processors. Concurrent
programming techniques allow multiple concurrent threads to coordinate their
accesses to shared resources, such as data structures. Scalable concurrent pro-
gramming techniques coordinate shared resources across many threads running
on many processors, minimizing the amount of overhead above the time required
for accessing the shared resource itself.

This work presents a new approach to scalable concurrent programming,
dubbed relativistic programming. It also presents a new algorithm for a hash
table move operation, which demonstrates the methodology and advantages of
the relativistic programming approach.

This work describes concurrent programming in terms of threads. However,
the same principles apply (with some adaptation) to other forms of concurrent
code running with shared memory, such as processes with limited amounts of
shared memory, interrupt handlers which access the same memory as the code
they interrupt, coroutines, or thunks in a lazy functional language.

This work illustrates synchronization techniques by applying them to the
specific shared resource of a concurrent hash table. Hash tables provide one of
the standard data structures applied to many problems in many programs, and



form part of the standard computer science toolbox. [5, 6] They provide attrac-
tive performance characteristics, with an ideal best-case of constant time for op-
erations on a well-tuned hash table. Many concurrent programs use hash tables,
along with some means to manage concurrent accesses and provide necessary
semantics. In particular, operating system kernels make use of concurrent hash
tables for many performance-critical data structures, such as caches, network
connection tables, and routing tables.

Section 2 defines the specific semantics required for the hash table implemen-
tations analyzed in this paper. Section 3 provides an overview and comparison
of existing concurrent programming techniques and the performance problems
associated with each. Section 3.4 introduces the Relativistic Programming ap-
proach to concurrent programming, including the general methodology and ex-
isting examples. Section 4 introduces a new hash table implementation which
forms one of the original contributions of this research. Section 5 presents the
benchmarking methodology and the test harness module. Section 6 presents the
results of this benchmark. Section 7 analyzes the results and draws conclusions.
Section 8 describes future directions for research.

2 Hash Table Semantics

An accurate definition of concurrent programming techniques in terms of hash
tables requires an accurate definition of a hash table, along with a set of opera-
tions and the semantics of those operations.

Consider a standard hash table, using chaining within buckets. The hash
table consists of an array of buckets, each containing a pointer to the head of
the linked list for that bucket. Each bucket contains zero or more items in its
linked list chain. An item present in the hash table will exist in the bucket
corresponding to its hash value. [5, 6]

A hash table can support many different operations, and any given appli-
cation may need some subset of these. Common hash table operations include
insertion, deletion, replacement, resizing, lookup, and moving an item to a new
key. This work will focus on two of those operations: lookup and move. Lookup
provides the only read-only operation, and thus a comparison of concurrent pro-
gramming techniques that differentiate readers and writers must use the lookup
operation in the readers. The move operation seem worthy of interest for two
reasons. First, for a chained hash table, the operations of insertion and deletion
reduce to the equivalent operations on a linked list, and do not demonstrate
any functionality unique to a hash table; the move operation defined here pro-
vides functionality specific to a hash table, and demonstrates the ability to per-
form multiple semantically significant actions without exposing the intermediate
states to concurrent readers. Second, this paper showcases an original contribu-
tion in the form of a relativistic hash table move operation.

The lookup operation will check if an item exists in the hash table with the
specified key. If so, the lookup will return it; if not, the lookup will indicate
that no such item exists in the hash table. To allow for concurrent programming



techniques that permit concurrent modification and deletion, a reader using the
lookup operation may only use the returned item while in a block appropri-
ately delimited using read-side concurrency primitives, and may not hold an
item for later use. Furthermore, the lookup operation will not guarantee that
a subsequent lookup will return the same results, even in the same read-side
synchronization block.

The following pseudocode implements a sequential lookup:

1. Hash the given key to determine the corresponding hash bucket.
2. Traverse the linked list in that hash bucket, comparing the given key to the

key in each node.
3. If a node has the given key, return that node.
4. If the traversal reaches the end of the list, return a lookup failure.

The move operation changes the key associated with an item, and moves
the item to the hash bucket corresponding to the new key. The move operation
guarantees a certain degree of atomicity with respect to concurrent lookups, by
satisfying three requirements:

– If a lookup finds the item under the new key, a subsequent lookup ordered
after the first cannot find the item under the old key.

– If a lookup does not find the item under the old key, a subsequent lookup
ordered after the first must find the item under the new key.

– A move operation must not cause unrelated lookups to fail when they oth-
erwise would have succeeded.

“Subsequent lookup ordered after the first” here means either a lookup running
on the same processor but later in program order, or a lookup ordered after the
first via a memory barrier.

The first two requirements originally arose through reasoning about the use of
concurrent hash tables for directory entry lookups in an operating system kernel,
and the observable effects this would have for userspace programs. The first
requirement guarantees that during a move operation, a concurrent directory
listing cannot show both the old and the new files simultaneously. The second
requirement guarantees that the concurrent directory listing will always show
either the old or the new file.

The following pseudocode implements a sequential move operation:

1. Hash the old key and the new key to determine the corresponding hash
buckets.

2. Look up the node in the old bucket
3. Remove the node from the old bucket
4. Change the node’s key to the new key
5. Insert the node into the new bucket



3 Concurrent Programming Techniques

As shown in section 2, a single-threaded hash table implementation can triv-
ially provide the desired operations and semantics. The resulting hash table, if
used without modification as a shared data structure in a concurrent program,
would at best fail to provide the required semantics, and at worst encounter a
error when attempting to dereference an invalid pointer. For example, unrelated
lookups may fail if a concurrent move operation runs on the current element
in a lookup traversal, because the lookup will traverse the wrong hash bucket.
Furthermore, due to lack of memory ordering, a lookup or move may see an
inserted item before its pointers or data become valid.

Several techniques exist for making a data structure safe for concurrent ac-
cess; however, all of these techniques themselves represent sources of overhead
compared to the single-threaded implementation. Before a concurrent hash table
implementation can demonstrate a performance benefit, it must first overcome
the overhead added by its concurrent programming techniques.

3.1 Mutual Exclusion

Mutual exclusion represents the most commonly applied technique for concur-
rent programming. Dijkstra’s semaphore [7] and Hoare’s monitor [8] provide the
archetypal examples of the locking form of mutual exclusion. Several approaches
exist for mutual exclusion, many of them dependent on features of the underly-
ing hardware and instruction set, but all achieve the same effect: they provide a
lock which many threads may simultaneously attempt to acquire, one of which
will succeed and the rest of which will wait. The term critical section refers to
the section of code between lock acquisition and lock release, during which no
other code using the same lock can run.

Concurrent algorithms using mutual exclusion can safely violate data struc-
ture semantics in a critical section as long as they restore valid semantics before
ending the critical section. Thus, the sequential lookup and move algorithms pre-
sented in section 2 will work in a concurrent program if wrapped in appropriate
critical sections.

A global lock covering all accesses of the hash table provides a simple ap-
proach to make the hash table work correctly. However, this solution provides
no concurrency at all: at most one hash table operation can occur at a time.
Depending on the amount of work the program has to do other than manipulate
the hash table, the concurrent program using a global lock may still run faster,
but all the hash table operations will run serially; this puts a hard minimum
on the best-case execution time of the concurrent program based on the num-
ber of hash table operations in the program. Adding more processors will not
shorten that minimum execution time. This provides an example of one common
performance problem in concurrent programming: lock contention.

Several approaches exist to reduce lock contention. Reader–writer locks pro-
vide one such approach, without relying on any properties specific to hash tables.



A reader–writer lock (sometimes written as readers–writer lock) provides two dif-
ferent sets of locking primitives: one for use by writers, which may modify the
data structure, and one for use by readers, which may only inspect the data
structure. A writer blocks both readers and other writers, making it the only
critical section running, as with mutual exclusion locking. However, since readers
do not affect the data structure, more than one reader may run at once; read-
ers need only block writers. Mellor-Crummey and Scott [9] offer many forms of
reader–writer synchronization.

However, while a reader–writer lock allows some degree of parallelism, it
encounters another problem in addition to lock contention: critical section over-
head. The critical section has a certain fixed time needed to implement the
locking primitive, and at least part of this time does not parallelize, due to the
need to coordinate among processors. Reader–writer locks have more state to
track than plain locks, such as reader counts, and thus incur more overhead.
Given a sufficiently short critical section body, the critical section overhead can
dominate the execution time, nullifying the effect of the additional parallelism,
and potentially making a reader–writer lock less efficient than a standard lock.
(The global lock approach suffers from critical section overhead as well, but
it has no parallelism to begin with.) Furthermore, a naive implementation of
reader–writer locks allows a series of readers to indefinitely delay a writer; more
advanced reader–writer locks that avoid this problem have higher critical section
overhead.

McKenney [10] describes four additional sources of overhead in concurrent
programs, other than lock contention: instruction execution overhead, pipeline
stall overhead, memory latency, and contention for resources such as memory.
Critical section overhead can arise from any combination of these sources. The
synchronization instructions used to implement critical sections have high over-
head compared to normal instructions, due to the high communication latency
mentioned in section 1. [10, 11] These synchronization instructions can also lead
to pipeline stalls. Synchronization instructions may decrease the effectiveness of
caching, and may thus incur the cost of memory latency. Finally, critical section
implementations tend to compete for the same resources, such as locks. Several
approaches exist to mitigate the last effect [12, 13], but these approaches do not
mitigate the remaining three sources.

A much larger reduction in contention comes from data partitioning. If a
data structure consists of multiple substructures, and an algorithm need only
access some subset of those substructures to work, the algorithm can acquire
fine-grained locks on the substructures it needs, rather than locking the entire
structure. In the case of a hash table, the global lock can become one lock
per hash bucket. A lookup or move operation can then lock only the bucket
or buckets it accesses. This approach allows multiple operations on different
buckets to proceed concurrently. Given a sufficiently large and evenly accessed
hash table, this can almost entirely eliminate contention as a source of overhead.
However, data partitioning and fine-grained locking still do not eliminate the
other sources of critical section overhead.



3.2 Non-Blocking Synchronization

Mutual exclusion introduces several potential pitfalls which can lead to poor
performance or incorrect behavior. These include deadlock, priority inversions in
the scheduler, and relatively long windows of data-structure inconsistency. These
problems occur due to blocking acquisition of locks. For these reasons, several
researchers have proposed the use of non-blocking synchronization instead, which
addresses all of these problems. [14–16]

In non-blocking synchronization, algorithms to modify a shared data struc-
ture begin by observing necessary values from the structure, such as a node
pointer within a linked list. The algorithms prepare their modification separately,
using these values; they then apply the changes using atomic instructions, such
as compare-and-swap or load-linked and store-conditional, to ensure that the
data structure has not changed between observation and modification.

While non-blocking synchronization eliminates many problems with mutual
exclusion, it does not fully address scalability. Non-blocking synchronization does
not have lock and unlock operations, but it has a corresponding set of operations
with almost exactly the same effect on scalability. The read or load-linked in-
struction corresponds to the lock, and the compare-and-swap or store-conditional
instruction corresponds to the unlock; the region between the two thus corre-
sponds to the critical section. If multiple threads execute the critical section
simultaneously, only one can succeed, and the others must retry. This effectively
serializes executions of the critical section.

Non-blocking synchronization does have the advantage of providing similar
scalability to fine-grained mutual exclusion without the particular complexity
of lock ordering and deadlock avoidance. However, the use of non-blocking syn-
chronization cannot improve scalability beyond that point. While non-blocking
synchronization allows many threads to run in parallel, that parallelism may
consist of threads which conflict with each other but have not yet rolled back.
This gave rise to the term useless parallelism. Useless parallelism, in addition to
taking up processor time on work that will not complete, can harm the perfor-
mance of other threads by causing memory contention and cache misses.

3.3 Software Transactional Memory

Michael and Scott [17, 15], among others, have proposed various non-blocking
algorithms. Unlike mutual exclusion, which supports a broad class of operations
with a few primitives, each non-blocking algorithm tends to involve application-
specific or data-structure-specific functionality, and these algorithms tend to-
ward higher complexity for more intricate data structures. Herlihy [18] proposed
a generic approach to transform lock-based algorithms to use non-blocking syn-
chronization, but this approach requires copying a full data structure to make any
modification to it, and thus does not perform well. Achieving good performance
requires a data-structure-specific non-blocking algorithm, and as Michael and
Scott [17] describe, “Good data-structure-specific multi-lock and non-blocking



algorithms are sufficiently tricky to devise that each has tended to constitute an
individual publishable result.”

For these reasons, Herlihy [19] proposed the abstraction of software transac-
tional memory. This abstraction provides transactions—separate groupings of
operations that must occur atomically. Since their proposal, much research on
synchronization has focused on software transactional memory [20].

Fundamentally, software transactional memory works the same way that
other forms of non-blocking synchronization do, by atomically checking for other
modifications to the data structure before committing its own modifications. If
other modifications have occurred, the transaction can roll back and retry. Un-
like other forms of non-blocking synchronization, software transactional memory
sometimes runs optimistically, modifying the data structure before the transac-
tion has finished; thus, transactions must avoid changes that cannot easily roll
back, and must avoid catastrophic failures even if another transaction temporar-
ily violates data-structure invariants.

The abstraction of the transaction substantially reduces the complexity of
non-blocking synchronization by removing the need for data-structure-specific
synchronization, at the cost of performance. However, software transactional
memory has no positive impact on scalability over non-blocking synchroniza-
tion or mutual exclusion. As with other forms of non-blocking synchronization,
software transactional memory still has an equivalent to lock and unlock op-
erations that delimit a critical section (the transaction), and any parallelism
between transactions does not help, as either the transactions reference inde-
pendent memory (and thus fine-grained mutual exclusion would work at least as
well), or all but one of the transactions must roll back. Furthermore, software
transactional memory still requires expensive synchronization instructions, and
its critical section involves significant overhead.

3.4 Relativistic Programming

Consider a reader and writer coordinating via a reader–writer lock. Assume the
reader has already taken the read lock and started a lookup operation, when
the writer wishes to acquire the write lock. The reader–writer lock will block
the writer until the reader finishes. The equivalent situation using non-blocking
synchronization or transactional memory may follow the same pattern by rolling
back the writer, or may allow the writer to run and then roll back the reader.

However, a third possibility exists: why not allow the writer to run without
rolling back the reader? Furthermore, why not allow readers to proceed concur-
rently with a running writer? Writers can keep the data structure in a consistent
state at all times, either by using atomic operations, or by copying (parts of)
data structures to new versions and leaving the old versions undisturbed. With
the structures perpetually consistent, readers can always safely proceed without
waiting. Thus, readers need not use any form of critical section, and thus incur
no critical section overhead.

This approach provides an example of a broader class of concurrent program-
ming techniques and data structures, which share the common theme of allowing



additional parallelism by permitting concurrent access to shared data without
a critical section. By avoiding critical sections and minimizing or eliminating
the use of expensive synchronization instructions, each processor can take full
advantage of the technologies described in section 1 to hide memory latency.
As a result, each processor may see a different view of memory as presented by
its own cache and access order. For example, a thread may walk a linked list
concurrently with a sequence of insertions, and observe a set of items which do
not correspond to any state the list passed through as a result of those inser-
tions: it may see items inserted later in time (from the perspective of the thread
performing the insertions) without seeing items inserted earlier.

We refer to this property as relativity, by analogy with physics; the avoidance
of these instructions allows processors to see a relative view of memory, rather
than an absolute reference frame. Furthermore, actions taken by one processor
may appear to other processors at different times. We refer to parallel code that
has this property as relativistic, and to the concurrent programming techniques
associated with it as relativistic programming.

Relativistic programming techniques provide the potential for greater paral-
lelism than fine-grained mutual exclusion by allowing accesses to a shared data
structure to run concurrently even when one or more of those accesses includes
a modification. By extension, these techniques provide greater parallelism than
either non-blocking synchronization or software transactional memory, since nei-
ther of those permits any greater parallelism than fine-grained mutual exclusion.
Benchmarks of code implemented via relativistic programming provide some
highly compelling scalability results. [21–23]

Relativistic approaches to concurrent programming share a common method-
ology. Modifications to a shared data structure consist of only one semantically
significant operation at a time, which may become visible at any time, including
immediately. Multiple modifications may become visible in different orders to
different processors. Modifications which need to become visible in a particular
order to satisfy the semantic requirement of a higher-level operation must use
memory barriers to constrain the potential ordering of these modifications. How-
ever, rather than forcing the programmer to deal with the complexity of directly
using memory barriers, relativistic programming techniques provide higher-level
primitives which provide memory barriers as needed.

Several existing concurrent programming techniques make use of relativity.
As a simple example, the common technique of splitting numeric variables across
CPUs or threads can take advantage of relativity by accumulating these values
without synchronization. In exchange for performance, this approach may ac-
cumulate snapshots of the values from slightly different times in each thread.
Liskov mentions this approach in [24]: “Conflicts with deposits and withdrawals
are necessary if the reported total is to be up to date. They could be avoided by
having total return a sum that is slightly out of date.”

More generally applicable relativistic techniques include those based on de-
ferred destruction. Deferred destruction addresses one of the problems associated
with concurrent modifications: how to free memory without disrupting a con-



current thread reading that memory. Deferred destruction allows a writer to
wait until no readers hold references to the removed item before reclaiming and
reusing its memory.

Several techniques exist for deferred destruction [11], including epoch-based
reclamation [25], hazard-pointer-based reclamation [26], and quiescent-state-
based reclamation [10, 21, 27]. Epoch-based reclamation divides execution into
explicit epochs, and allows memory reclamation after an epoch has passed.
Hazard-pointer-based reclamation requires readers to indicate their references
explicitly as hazard pointers, and allows reclamation of any memory not pointed
to by a hazard pointer. Quiescent-state-based reclamation notes the passage of
quiescent states in which readers cannot run, and uses these quiescent states
to wait until all existing readers have finished before reclaiming memory. Of
those techniques, implementations of epoch-based reclamation and quiescent-
state-based reclamation exist which do not make use of synchronization instruc-
tions.

Many common data structures have relativistic implementations which use
deferred destruction. These include linked lists, radix trees, and tries. A relativis-
tic hash table implementation exists [28, 29], but this implementation does not
supply a relativistic move operation; instead, the move operation makes use of
the Linux sequence lock, which provides a means for a reader to check whether
it raced with a move operation and retry if so. While semantically correct, it
still involves synchronization instructions, and it can potentially delay a reader
indefinitely.

4 Relativistic Hash Tables

As a first approximation, since hash chains consist of a linked list, a relativistic
hash table could simply use relativistic linked lists as hash buckets. However,
a simple combination of the linked list insert and delete operations in series,
in any order, cannot satisfy the required move semantics; inserting first will
violate the first semantic by allowing a reader to see both items, and deleting
first will violate the second semantic by allowing a reader to see neither item.
This necessitates a new relativistic move operation specific to hash tables, such
as the one presented here.

The new relativistic hash table move operation relies on two key behaviors
of a hash table lookup.

First, after using the hash of the search key to find the appropriate bucket,
a reader must compare the individual keys of the nodes in the list for that
bucket to the actual search key. Thus, if a node shows up in a bucket to which
its key does not hash, no harm befalls any reader who comes across that node
while searching that bucket, apart from a marginal amount of extra time spent
traversing the hash chain for that bucket.

Second, when traversing the list for a given hash bucket, a reader will stop
when it encounters the first node matching the search key. If a node occurs twice
in the same bucket, the search algorithm will simply return the first such node



when searching for its key, or ignore both nodes if searching for a different key.
Thus, multiple nodes with the same key can safely appear in a given hash bucket.

Both of the possible requirements violations, appearing in neither bucket
or appearing in both buckets, occur when the writer does not simultaneously
remove the node from the old bucket and add it to the new bucket with the
new key. Most modern architectures do not feature memory-to-memory swaps
or simultaneous writes to multiple locations, so the writer cannot simultaneously
and atomically change more than one pointer or key.

However, if the writer can make the moving node appear in both buckets
simultaneously, it can in one operation remove the node from the old bucket and
add it to the new bucket, by atomically changing the key. Before the change,
searches in the old bucket using the old key will find the node, and searches
in the new bucket using the new key will always skip over it; after the change,
searches in the old bucket with the old key will always skip over the node, and
searches in the new bucket with the new key will find it. This satisfies both
requirements for the move operation.

Because nodes can safely appear in buckets to which their keys do not hash,
the writer can make the node appear in both buckets by cross-linking one hash
chain to the other. The writer can then change the node’s key to the new value,
and must then un-cross-link the chains. However, when removing the cross-link,
the writer must ensure that it does not disturb any writer currently traversing
the old hash bucket, even if that reader currently references the node getting
moved. The remainder of the algorithm consists of safely resolving the cross-
linking via deferred destruction.

The lookup operation consists of a standard hash table lookup, except that
it makes use of the appropriate primitives to support deferred destruction:

1. Hash the given key to determine the corresponding hash bucket.
2. Start deferring write-side destruction.
3. Traverse the linked list in that hash bucket, comparing the given key to the

key in each node.
4. If a node has the given key, do the computation that required the node.
5. If the traversal reaches the end of the list, indicate a lookup failure.
6. Stop deferring write-side destruction.

Figure 1 shows a sample configuration of a hash table, used to illustrate the
move algorithm. The following steps illustrate the move algorithm on this hash
table.

1. Perform the appropriate synchronization to modify hash buckets a and b.
For instance, obtain the locks for hash buckets a and b, in hash bucket order
to avoid deadlocks. Note that this step only exists to synchronize with other
concurrent moves, not with lookups.

2. Make a copy of the target node n2; call the copy n′
2.

3. Set n′
2.next to NULL.

4. Execute a write memory barrier to ensure that the new value of n′
2.next will

become visible to other processors before n′
2 does.



Fig. 1. Initial hash table configuration used to illustrate move algorithm. n1.key,
n2.key, and n3.key hash to a. n4.key and n5.key hash to b. The move operation will
change n2.key from “old” to “new”. “new” hashes to b.

a

...

b

n1 n2 n3

n4 n5

ke
y

“old”

5. Set n3.next to n′
2.

6. Execute a write memory barrier to ensure that n′
2 will become visible to

other processors before n2 disappears.
7. Remove n2 from a by pointing n1.next to n3. a now has the target node n′

2

at the end.
8. Point the tail of bucket b (n5.next) to the new target node (n′

2). Both hash
bucket chains now include n′

2. Figure 2 shows the state of the hash table
after this step.

9. Execute a write memory barrier to ensure the removal of n2 and the cross-
linking will appear before n′

2.key changes.
10. Atomically change n′

2.key to “new”.
11. Execute a write memory barrier to ensure that n′

2.key will change before n′
2

disappears from bucket a.
12. Point n3.next to null, un-cross-linking the chains. Figure 3 shows the state

of the hash table after this step.
13. Release the write-side synchronization for hash buckets a and b.
14. Use deferred destruction to remove the original n2 and the old key “old”

after all current readers have finished.

Fig. 2. State of the hash table after cross-linking hash chains in step 8 of the relativistic
hash table move algorithm.

a

...

b

n1 n2 n3 n′
2

n4 n5

ke
y

“old”
ke
y

“old”



Fig. 3. State of the hash table after un-cross-linking hash chains in step 12 of the
relativistic hash table move algorithm.

a

...

b

n1 n2 n3 n′
2

n4 n5

ke
y

“old”
ke
y

“new”

This operation meets the required move semantics. First, “If a lookup finds
the item under the new key, a subsequent lookup ordered after the first cannot
find the item under the old key.” Suppose a reader finds the item under the new
key. It must find n′

2, because n2.key never changes. The writer writes the new
key in step 10, so the reader must observe the result of this step. To subsequently
find an item under the old key, the reader must find n2, because n′

2 no longer
has the old key. To find n2, the reader must not see the change to n1.next in
step 7 removing it. However, the write memory barrier in step 9 ensures that a
reader cannot see the result of step 10 and not step 7.

Second, “If a concurrent lookup does not find the item under the old key, a
subsequent lookup ordered after the first must find the item under the new key.”
Suppose a reader does not find the item under the old key. It must not see n2,
and it must not see n′

2 before its key changes. Since it does not see n2, it must
see the result of step 7. Since it does not see n′

2, it must either see the result of
step 10 or not see the result of step 5. Since the reader saw the result of step
7, the memory barrier in step 6 ensures that the reader must see the result of
step 5, and therefore the reader must see the result of step 10. However, if the
reader sees the result of step 10, it will find n′

2 with the new key on a subsequent
lookup.

Finally, “A move operation must not cause unrelated lookups to fail when
they otherwise would have succeeded.” For a lookup to fail, a reader must fail
to see an item that it otherwise would have seen. Placing n′

2 at the end of
buckets a and b, and removing it from bucket a, cannot cause a reader to miss an
item, which leaves only the removal of n2. This removal can only affect a reader
traversing bucket a. The removal of n2 does not free n2 until existing readers
exit, so a reader can only notice the change of n1.next to n3. This change does
not prevent a reader traversing bucket a from seeing the other items, n1 and n3.
Thus, a reader will never fail to see an item it would otherwise have seen, so
unrelated lookups will not fail.

Comparing these relativistic lookup and move algorithms to the locking al-
gorithms described in section 3.1 suggests several likely performance differences
to test via benchmark. The relativistic lookup algorithm involves no synchro-



nization instructions, and it does not block at all, even when running concurrent
moves. Thus, it should allow significantly more lookups per unit time than the
lock-based lookup operation. The corresponding move algorithm performs four
extra write memory barriers, a memory allocation, and a deferred destruction op-
eration, as well as various additional non-synchronizing operations. This should
result in fewer moves per unit time than the lock-based move operation.

However, since the relativistic move operation only uses locking to synchro-
nize with other moves, a single writer thread can dispense with locking syn-
chronization entirely. This should result in more moves per unit time than the
single-writer case of either the locking move algorithm or the relativistic move
algorithm with locking between writers.

Section 5 defines the benchmark methodology used to test these hypotheses.
Section 6 presents the results of this benchmark.

5 Benchmark Methodology

Read-Copy Update (RCU) provides the most mature and popular concurrent
programming framework that supports relativistic programming techniques. The
Linux kernel contains several mature and widely used implementations of RCU,
as well as implementations of all of the standard forms of locking. Thus, a
Linux kernel module provided the most practical and straightforward target
for a benchmark.

I created the rcuhashbash benchmark module to benchmark relativistic and
non-relativistic hash implementations. rcuhashbash consists of two main com-
ponents: a set of concurrent hash table implementations implementing a defined
hash table interface, and a test harness which runs the hash table operations
and tracks statistics. For each hash table reader and writer implementation, the
benchmark contains a structure with a set of pointers to functions implementing
the hash table interface.

As mentioned in section 2, this comparison of concurrent hash table imple-
mentations will focus on two operations: a read-only lookup, and a move oper-
ation. Execution time represents the only relevant performance metric for these
operations. Executing one of these operations takes very little execution time,
so following common practice, the benchmark will execute these operations as
quickly as possible over a longer time period and record the number of operations
performed. Measuring several hash table implementations over equal-length pe-
riods of time will provide operation counts in the same proportion as the average
execution times of those operations. To avoid extraneous synchronization, the
accumulation of statistics occurs via per-thread counters summed up at the end
of the benchmark run.

rcuhashbash begins by constructing a hash table of a specified size, and
loading it with integer values from 0 to a specified maximum. The experiment
in this paper used a hash table with 1024 buckets and 4096 entries. rcuhashbash
then spawns a specified number of reader and writer threads at startup. Each
writer thread repeatedly chooses an old key and a new key from the range of 0



to twice the maximum initial value ([0, 8192) for this experiment), and attempts
to move the item with the old key to the item with the new key. Each reader
thread repeatedly chooses a key from the same range and performs a lookup.

The machine used for testing has an Intel Core 2 Quad Q6600 processor.
To obtain enough samples for statistical analysis, the benchmark ran each hash
table implementation 30 times, for 30 seconds each time. To observe the effect
of a varying read to write ratio, each benchmark ran with 4 readers and 1, 2, or
4 writers.

In the absence of any systematic variation caused by system interference,
each measurement of the same operation for the same hash table implementa-
tion should represent an independent sample from the same statistical distri-
bution. Thus, the central limit theorem applies, and the measurements should
approximate a normal distribution. [30]

The average lookup and move counts for each implementation provide keys to
sort the implementations by read and write performance respectively. If adjacent
entries appear closely tied, application of a two-tailed Welch’s t-test at the p <
0.05 level will determine whether the higher-ranked implementation represents a
statistically significant improvement over the lower-ranked implementation. [30]

6 Benchmark Results

Tables 1, 2, and 3 show the hash table implementations ranked by the average
number of lookups completed, for 1, 2, and 4 writers respectively. (The single-
writer no-synchronization case appears in all tables as a basis for comparison.)
The results show strong stratification and consistency. The relativistic hash table
implementations consistently top the list, followed by the implementations using
per-bucket locking, and ending with the implementations using global locking.

The near tie for first place in table 1 between the relativistic implementation
using a global spinlock and the one using no writer synchronization do indeed
show no evidence of statistical distinguishability via a t-test at the p < 0.05
level.

Table 1. Hash implementations by average lookups completed with 4 readers and 1
writer. Each row gives statistics from 30 samples of 30 seconds each. Units in millions.

Lookups
Implementation Writers Average Std. Dev

RCU, global spinlock 1 523. 9.9

RCU, no writer sync 1 523. 7.7

RCU, per-bucket spinlocks 1 501. 13.

per-bucket spinlock 1 299. 6.0

per-bucket rwlock 1 276. 6.4

global rwlock 1 59.0 2.6

global spinlock 1 29.5 0.68



Table 2. Hash implementations by average lookups completed with 4 readers and 2
writers. Each row gives statistics from 30 samples of 30 seconds each. Units in millions.

Lookups
Implementation Writers Average Std. Dev

RCU, no writer sync 1 523. 7.7

RCU, global spinlock 2 470. 14.

RCU, per-bucket spinlocks 2 431. 13.

per-bucket spinlock 2 242. 5.0

per-bucket rwlock 2 227. 3.7

global rwlock 2 42.2 2.2

global spinlock 2 23.8 0.48

Table 3. Hash implementations by average lookups completed with 4 readers and 4
writers. Each row gives statistics from 30 samples of 30 seconds each. Units in millions.

Lookups
Implementation Writers Average Std. Dev

RCU, no writer sync 1 522. 7.7

RCU, global spinlock 4 322. 7.7

RCU, per-bucket spinlocks 4 276. 6.2

per-bucket spinlock 4 178. 2.0

per-bucket rwlock 4 166. 1.6

global rwlock 4 23.5 4.0

global spinlock 4 17.4 0.24

Tables 4, 5, and 6 show the hash table implementations ranked by the average
number of moves completed, for 1, 2, and 4 writers respectively. The results for
2 and 4 writers again show clear stratification and consistency: the implemen-
tations using per-bucket locking top the rankings as expected, followed by the
relativistic implementations, and ending with the implementations using global
locking. The results for 1 writer have the synchronization-free writer case top-
ping the rankings, again as expected. Curiously, the relativistic implementation
using a global spinlock follows at second place; a t-test shows statistical distin-
guishability between the second and third place implementations at the p < 0.05
level. The rest of the rankings for 1 writer match those for 2 and 4 writers.

7 Conclusions

This work presented a new class of techniques for scalable concurrent program-
ming, dubbed relativistic programming. Relativistic programming techniques
share a common methodology: to avoid the use of expensive synchronization
instructions and allow processors to see a relative view of memory, rather than
an absolute reference frame. Modifications to a relativistic data structure consist
of only one semantically significant operation at a time, which may become vis-



Table 4. Hash implementations by average moves completed with 4 readers and 1
writer. Each row gives statistics from 30 samples of 30 seconds each. Units in millions.

Moves
Implementation Writers Average Std. Dev

RCU, no writer sync 1 23.7 1.2

RCU, global spinlock 1 20.4 1.4

per-bucket spinlock 1 19.4 1.2

per-bucket rwlock 1 17.7 1.4

RCU, per-bucket spinlocks 1 11.9 0.87

global spinlock 1 3.67 0.28

global rwlock 1 0.120 0.036

Table 5. Hash implementations by average moves completed with 4 readers and 2
writers. Each row gives statistics from 30 samples of 30 seconds each. Units in millions.

Moves
Implementation Writers Average Std. Dev

per-bucket spinlock 2 32.0 0.97

per-bucket rwlock 2 28.4 0.81

RCU, no writer sync 1 23.7 1.2

RCU, global spinlock 2 22.1 2.6

RCU, per-bucket spinlocks 2 16.7 1.3

global spinlock 2 5.89 0.15

global rwlock 2 1.99 0.18

Table 6. Hash implementations by average moves completed with 4 readers and 4
writers. Each row gives statistics from 30 samples of 30 seconds each. Units in millions.

Moves
Implementation Writers Average Std. Dev

per-bucket spinlock 4 46.3 0.43

per-bucket rwlock 4 41.5 0.34

RCU, per-bucket spinlocks 4 28.8 0.81

RCU, no writer sync 1 23.7 1.2

RCU, global spinlock 4 23.7 3.1

global spinlock 4 8.43 0.098

global rwlock 4 4.60 0.19



ible at any time, including immediately; such modifications must therefore keep
the data structure in a consistent state at all times.

Section 2 introduced the hash table structure used to illustrate this new
methodology, including the specific lookup and move operations considered, and
the required semantics of those operations. Section 3 surveyed existing concur-
rent programming techniques, culminating with the introduction of relativistic
programming in section 3.4. Section 4 provided a relativistic algorithm for im-
plementing the hash table in section 2, including an original move algorithm,
along with an informal argument for the correctness of this algorithm. Section 5
presented a new benchmark, rcuhashbash, designed to compare relativistic and
non-relativistic hash implementations. Section 6 documents the results of this
benchmark.

The results in section 6 show that the relativistic hash table implementa-
tion achieves significantly better lookup performance than lock-based hash table
implementations, even with relatively low read to write ratios. Furthermore,
the relativistic implementation allows a single writer to coordinate with multi-
ple readers without using any locks, providing better move performance than a
lock-based writer.

8 Future Directions

The performance of the relativistic hash table shows promise for the relativistic
programming approach to scalable concurrency. Further research will expand
the breadth of relativistic programming into new areas.

Several uses of relativistic hash tables in operating system kernels such as
Linux would benefit from the ability to resize such a hash table while allowing
concurrent reads. Given the typical approach of a hash function with a larger
output range than the size of the hash table, shrinking a hash table simply
requires coalescing buckets by concatenating linked lists, which does not require
reader synchronization. A variation on the move operation proposed in this paper
may support growing a hash table dynamically without reader synchronization.

The existing implementations of relativistic programming via deferred de-
struction focus primarily on read-mostly data structures. Many applications
would benefit from data structures optimized for more balanced workloads, or
for write-mostly data such as logs.

Other data structures could potentially benefit from relativistic implementa-
tions, including heaps, priority heaps, balanced trees, skip lists, and Judy arrays.

Section 4 provided an informal argument for the correctness of the proposed
hash table algorithm with respect to the specified semantics. A formal proof
would give a higher degree of confidence in the correctness of the algorithm.
Furthermore, future formal proofs of relativistic algorithms may benefit from a
library of relativistic programming constructs for use with an automated proof
engine.



Relativistic programming imposes several constraints on the correct imple-
mentation of readers and writers. Extending static analysis tools to check these
constraints would ease the task of implementing relativistic algorithms.

9 Acknowledgments

Thanks to Paul E. McKenney for suggesting the original problem that led to the
invention of this new hash table algorithm. Thanks to Paul E. McKenney, Scott
Nelson, Ray Harney, Darren Hart, and the IBM Linux Technology Center for
the opportunities to build multiple internships around RCU and Linux. Thanks
to Johnathan Walpole and Phil Howard for discussions leading to the realization
that typical reader-writer locks permit stale data. Thanks to Jonathan Walpole,
Paul E. McKenney, and Jamey Sharp for much review, feedback, and advice on
drafts of this paper.

The statistical analysis in section 6 made use of the R statistical computing
package. Thanks to the R project and its contributors.

Funding for this research provided by a Maseeh Graduate Fellowship and by
the National Science Foundation under Grant No. CNS-0719851.

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics
38(8) (April 1965)

2. Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal 30(3) (March 2005)

3. Hennessy, J.L., Patterson, D.A.: Computer Architecture: a Quantitative Approach.
Fourth edn. Morgan Kaufmann (2007)

4. Wulf, W.A., McKee, S.A.: Hitting the memory wall: Implications of the obvious.
Computer Architecture News 23(1) (March 1995) 20–24

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Chapter 11: Hash Tables.
In: Introduction to Algorithms. Second edn. MIT Press (2001)

6. Knuth, D.: Section 6.4: Hashing. In: The Art of Computer Programming. Second
edn. Addison-Wesley (1998)

7. Dijkstra, E.W.: The structure of the “THE”-multiprogramming system. Commu-
nications of the ACM 11(5) (1968) 341–346

8. Hoare, C.A.R.: Monitors: an operating system structuring concept. Communica-
tions of the ACM 17(10) (1974) 549–557

9. Mellor-Crummey, J.M., Scott, M.L.: Scalable reader-writer synchronization for
shared-memory multiprocessors. In: Proceedings of the Third ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ACM Press (April
1991) 106–113

10. McKenney, P.E.: Exploiting Deferred Destruction: An Analysis of Read-Copy-
Update Techniques in Operating System Kernels. PhD thesis, OGI School of
Science and Engineering at Oregon Health and Sciences University (2004)

11. Hart, T.E., McKenney, P.E., Brown, A.D., Walpole, J.: Performance of mem-
ory reclamation for lockless synchronization. Journal of Parallel and Distributed
Computing 67(12) (2007) 1270–1285



12. Anderson, T.E.: The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE Transactions on Parallel and Distributed Systems 1(1)
(1990) 6–16

13. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems 9(1)
(1991) 21–65

14. Greenwald, M., Cheriton, D.: The synergy between non-blocking synchronization
and operating system structure. In: Second Symposium on Operating Systems
Design and Implementation, USENIX Association (1996) 123–136

15. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Symposium on Principles of
Distributed Computing. (1996) 267–275

16. Massalin, H., Pu, C.: A lock-free multiprocessor OS kernel. Technical Report
CUCS-005-91, Computer Science Department, Columbia University (1991)

17. Michael, M.M., Scott, M.L.: Relative Performance of Preemption-Safe Locking and
Non-Blocking Synchronization on Multiprogrammed Shared Memory Multiproces-
sors. In: Proceedings of the 11th International Symposium on Parallel Processing,
IEEE Computer Society (1997) 267–273

18. Herlihy, M.: A methodology for implementing highly concurrent data objects.
ACM Transactions on Programming Languages and Systems 15(5) (November
1993) 745–770

19. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Proceedings of the Twentieth Annual International Sym-
posium on Computer Architecture. (1993)

20. Marathe, V.J., Scott, M.L.: A qualitative survey of modern software transactional
memory systems. Technical report, Department of Computer Science, University
of Rochester (June 2004)

21. Guniguntala, D., McKenney, P.E., Triplett, J., Walpole, J.: The read-copy-update
mechanism for supporting real-time applications on shared-memory multiprocessor
systems with Linux. IBM Systems Journal 47(2) (April 2008)

22. McKenney, P.E.: RCU vs. locking performance on different CPUs. In: linux.conf.au,
Adelaide, Australia (January 2004) (accessed April 28, 2008).

23. Morris, J.: SELinux scalability and analysis patches (November 2004) (accessed
April 28, 2008).

24. Liskov, B.: Distributed programming in Argus. Communications of the ACM 31(3)
(1988) 300–312

25. Fraser, K.: Practical Lock-Freedom. PhD thesis, University of Cambridge Com-
puter Laboratory (2004) (accessed April 28, 2008).

26. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Transactions on Parallel and Distributed Systems 15(6) (June 2004) 491–504

27. McKenney, P.E., Slingwine, J.D.: Read-Copy Update: Using Execution History to
Solve Concurrency Problems. In: Parallel and Distributed Computing and Systems.
(October 1998) 509–518

28. McKenney, P.E., Sarma, D., Soni, M.: Scaling dcache with RCU. Linux Journal
2004(117) (2004)

29. Linder, H., Sarma, D., Soni, M.: Scalability of the directory entry cache. In: Ottawa
Linux Symposium. (June 2002) 289–300

30. Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K.: Probability & Statistics for
Engineers & Scientists. Seventh edn. Prentice Hall (2002)


	Scalable Concurrent Hash Tables via Relativistic Programming
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1578516552.pdf.cmRH1

