
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

2010

PVW: Designing Virtual World Server Infrastructure PVW: Designing Virtual World Server Infrastructure

Francis Chang
Portland State University

C. Mic Bowman
Intel

Wu-chi Feng
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Systems Architecture Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Chang, Francis; Bowman, C. Mic; and Feng, Wu-chi, "PVW: Designing Virtual World Server Infrastructure"
(2010). Computer Science Faculty Publications and Presentations. 217.
https://pdxscholar.library.pdx.edu/compsci_fac/217

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Computer
Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more
information, please contact pdxscholar@pdx.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/286447410?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/217
https://pdxscholar.library.pdx.edu/compsci_fac/217?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

 1

PVW: Designing Virtual World Server Infrastructure
Francis Chang*, C. Mic Bowman , Wu-chi Feng*

*Department of Computer Science, Portland State University, Portland, OR

wuchi@cs.pdx.edu

 Intel Research, Intel Corporation, Hillsboro, OR

francis@francischang.com, mic.bowman@intel.com

ABSTRACT

This paper presents a high level overview of PVW

(Partitioned Virtual Worlds), a distributed system architecture

for the management of virtual worlds. PVW is designed to

support arbitrarily large and complex virtual worlds while

accommodating dynamic and highly variable user population

and content distribution density. The PVW approach enables

the task of simulating and managing the virtual world to be

distributed over many servers by spatially partitioning the

environment into a hierarchical structure. This structure is

useful both for balancing the simulation load across many

nodes, as well as features such as geometric simplification and

distribution of dynamic content.

Keywords: Metaverse architecture, 3D Virtual Worlds,

Partitioned Virtual Worlds, Massively Multiplayer

1. INTRODUCTION

Virtual reality systems [aw,croquet,sl,os] have risen in

popularity with readily available high-speed networking and

affordable consumer computer graphics processing hardware.

This paper focuses on metaverses – a shared 3D virtual

space in which people can interact and communicate through

virtual avatars. Unlike massively multiplayer online games

(MMOGs) which strive to simplify their universe to optimize

their implementation for a specific game environment,

metaverses are characterized by a generalized approach to the

problem of 3D worlds. These designs seek to promote

unconstrained user-generated content for services such as social

networking and collaboration, scientific experimentation, e-

commerce, marketing and gaming.

The unconstrained nature of metaverses requires a different

style of architecture to manage computing and networking

resources than online gaming.

This paper introduces PVW (Partitioned Virtual Worlds), an

architecture designed with the goals of managing 3D virtual

space and content in a client-server situation.

In the following section, we describe some of the goals of

our architecture. Related work in is outlined in Section 3.

Section 4 describes our architecture and its algorithms. Section

5 discusses implementation notes and properties of PVW while

Section 6 introduces extensions to this architecture to support

different spatial topologies and administrative requirements.

2. DESIGN GOALS

The following are design considerations for our architecture:

 The design must be a client/server architecture. In this way,

the service provider can guarantee security, availability and

adequate resource provisioning.

 Storage and computing power is large, but no single

computer can handle the computing load.

 Clients have relatively small computing and network

resources. Servers must simplify the world state for each

connected client.

 The virtual environment is a free form universe, and cannot

make strong assumptions about the type of content.

 The world is dynamic and constantly changing and

expanding. User generated content is a fundamental

component of metaverse development, and we cannot rely

on pre-downloaded content.

 There will be many metaverses, both persistent and

temporary. Even though these metaverses will be part of

different administrative domains, there must be a way to

link and embed them in a logical manner.

 The population is large, and unpredictable. The architecture

must accommodate flash crowds as well as vast unused or

unpopulated spaces.

It is the goal of PVW to be an architecture for metaverse-like

entities and to be a foundation for all types of MMO virtual

simulations including online gaming and 3D social networks.

2.1 Elements Not Part of PVW

In designing any large multi-user system there are many

architecture constructs that are only weakly tied to the problem

of managing 3D virtual space. Components such as asset

storage, user profiles, authentication, exploit detection, domain

administration and instant messaging are not discussed in this

paper. These problems can be addressed in by more general

system solutions that are not encumbered by the constraints of

managing a metaverse-style universe.

The PVW architecture only addresses the problems of

managing, streaming and connecting 3D virtual space and the

objects contained within.

 2

3. RELATED WORK

There are many examples of massively multiplayer virtual

spaces that each have distinct solutions to the problem of

managing vast virtual spaces that need to service a high number

of simultaneous clients.

In MMOGs, sharding is a popular approach to broadly

partition the user base into disjoint copies of the world. In this

model, replication is easy because users belonging to one shard

cannot interact with users in other shards [uo,wow]. Load

balancing is accomplished by restricting the number of

simultaneous users in a shard. In these environments, only a

minimal amount of functionality is placed at the server to allow

them to scale up. For instance, generalized physics and

dynamic content are usually omitted.

Croquet [croquet] is a decentralized approach to the problem

of virtual spaces relying on a peer-to-peer synchronization

protocol to distribute the contents of the virtual space. A single

croquet instance can become congested with many

simultaneous users since there is no mechanism to subdivide

existing space.

Active Worlds [aw] is another metaverse-like virtual world

that allows dynamic content creation, including a simplified

scripting interface. The Active World universe hosts hundreds

of worlds which can be traversed by users, where each world is

hosted on a single server.

Second Life [sl,kumar] and its open-source counterpart

OpenSimulator [os] are metaverse-like worlds that allow users

to explore and create a dynamic 3 dimensional space. This

space is partitioned into square 256x256m regions, each

managed by a separate sim process. Each sim is tied to a

specific region of land, and cannot be repartitioned to react to a

changing workload. This is the primary reason that scaling up

is such a difficult problem in this architecture. Larger spaces

are created by placing sims adjacent to one another. Shards or

instancing is not supported.

Different topologies of fixed grid spatial subdivision have

been explored, such as triangular, square, hexagonal and

brickworks [presetya]. These systems are not as scalable as

spatial subdivision approaches using hierarchical grids. Either

dynamic resource allocation is not present, or it involves

moving server processes around so that unloaded servers can

time-share a single CPU.

The Project Darkstar (Sun Gamer Server Technology

framework) approach to accommodating massive world state

avoids spatial subdivision in favour of storing object and world

state in a massive database. Actions on objects are performed

through the database.

ALVIC approaches metaverse design by using quad-tree

subdivision for partitioning logic servers and employing many

proxy servers to hide the network topology from clients [quax].

3.1 Algorithms from Computer Graphics

PVW borrows fundamental tree data structures from

computer graphics. All modern ray-tracers rely on acceleration

structures to manage scene and world data to minimize

computationally expensive collision and lighting calculations.

One classic approach to this problem is to divide space into

hierarchical bounding volumes (HBV) [rubin]. In this approach,

the 3D space is divided into rectangular prism hierarchies and

arranged in a tree structure. Child nodes represent space

encompassed by the parent, with leaves being atomic renderable

objects such as triangles and spheres.

kd-trees are a more restrictive type of spatial partitioning,

only allowing partitioning planes to subdivide space,

perpendicular the canonical 3-space axis, resulting in a binary

space partitioning (BSP) tree. This data structure is successfully

used in modern ray-tracing algorithms [reshetov].

Extending these ideas, a recent contribution to the area is the

idea of bounded interval hierarchies (BIH) which modifies kd-

trees allowing two split planes per descendent [wachter]. This

added flexibility allows us to explicitly encode overlapping

regions into our BSP tree.

4. The PVW Tree

The core design motivation of PVW is the assumption that no

single computer has enough resources to manage the entire

metaverse simulation. PVW provides a convenient load splitting

and management mechanism to distribute computation over a set

of servers.

At the core of the PVW architecture is the PVW tree. The

PVW tree is very similar to a BIH tree discussed in Section 3.1.

The most significant difference between the PVW and the BIH

tree is that leaves in a PVW tree represent virtual 3D spaces

instead of objects. Each node in the tree, including interior nodes

and leaves, is managed by a separate server process. Just as in

all HBVs, parent nodes must completely encompass the space

occupied by child nodes.

The root node in the PVW tree represents a simulation

process (sim) managing an entire PVW universe. To distribute

the workload of managing the PVW universe, each node can

divide its managed space in two, and pass off the processing to

two child nodes.

Just as in BIHs, the space managed by the child nodes is

expressed by two partition planes, aligned perpendicularly to

either the x, y or z axis. The left child is responsible for

managing all objects on one side of the first partition plane

while the right child is responsible for managing all objects to

the opposite side of the second partition plane.

Partition planes must be chosen to balance the load and

ensure that all objects are fully enclosed within a child sub-

volume.

Figure 1 illustrates the recursive construction of a PVW

graph in a 2 dimensional Cartesian space.

This dual-partition structure has several benefits:

1) It allows us to divide space without duplicating or

partitioning objects. In Figure 1b, objects k and i cross

the first left child boundary, but are fully enclosed by the

right child.

 3

a

b

c

d

m

n
l

e

f

g

k

h

j

i
Virtual Space

PVW Graph

i jh

a)

m n

k

l

b ca

f g

d

e

Metaverse

Root

Metaverse

Root

a

b

c

d

m

n
l

e

f

g

k

h

j

i

PVW Graph

1st Level Sim

i jh

1R 1L

b)

m n

k

l

1st Level Sim

b ca

f g

d

e

Virtual Space

2nd Level Sim

Metaverse

Root

1st Level Sim

2nd Level Sim

a

b

c

d

m

n
l

e

f

g

k

h

j

i

PVW Graph

1st Level Sim

i jh

f gd e

2R

2L

1R 1L

c)

m n

k

l

b ca

Virtual Space

2nd Level Sim

Metaverse

Root

1st Level Sim

2nd Level Sim

a

b

c

d

m

n
l

e

f

g

k

h

j

i

PVW Graph

1st Level Sim

i jhf gd e

2R

2L

2R

2L

1R 1L

d)

2nd Level Sim

m nk l

2nd Level Sim

b ca

Virtual Space

Metaverse

Root

2nd Level Sim

1st Level Sim

2nd Level Sim

a

b

c

d

m

n
l

e

f

g

k

h

j

i

PVW Graph

1st Level Sim

i jh

3rd Level Sim

b c

3rd Level Sim

a

f gd e

3L 3R

2R

2L

2R

2L

1R 1L

e)

2nd Level Sim

m nk l

2nd Level Sim

Virtual Space

Metaverse

Root

2nd Level Sim

1st Level Sim

2nd Level Sim

a

b

c

d

m

n
l

e

f

g

k

h

j

i

PVW Graph

2nd Level Sim

1st Level Sim

3rd Level Sim

i j

3rd Level Sim

h

3rd Level Sim

b c

3rd Level Sim

a

f gd e

3L 3R

3L

3R

2R

2L

2R

2L

1R 1L

f)

2nd Level Sim

f gd e

Virtual Space

Metaverse

Root

2nd Level Sim

1st Level Sim

2nd Level Sim

3rd Level Sim

k l

a

b

c

d

m

n
l

e

f

g

k

h

j

i

PVW Graph

2nd Level Sim 2nd Level Sim

1st Level Sim

3rd Level Sim

m n

3rd Level Sim

i j

3rd Level Sim

h

3rd Level Sim

b c

3rd Level Sim

a

f gd e

3L 3R

3L

3R

3L3R

2R

2L

2R

2L

1R 1L

g) Virtual Space

Figure 1: Recursive PVW partitioning of the virtual space, as well as a graph representing the partitioning. Each circle represents

an object in virtual space, while each box represents a separate server process managing the space. Note in Figure c) that empty

space does not necessarily need to be managed by a specific process, while in figure g) object l could be managed by either of two

different sim processes.

 4

2) It allows us to express empty and unmanaged regions.

In Figure 1c, we’ve partitioned the space in a way that

there is empty space between two sibling PVW nodes.

3) It allows us to express transitional objects. In Figure

1g, object “l” is fully enclosed by the left and right

PVW nodes. This object could be in the process of

being moved between the two peers sims.

4) It allows us to dynamically resize and manage the

space without modifying the topology of the tree,

which is an expensive operation. If an object inside a

volume moves closer to the boundary of a PVW node,

it may be more convenient to simply move the node

boundary rather than to transition the object to another

node.

5. PVW PROPERTIES

A property of PVW volumes that is inherited from the BIH-

derived structure is that all objects will be fully enclosed by a

bounding sub-volume. This is an important property, because it

allows us to assign processing of objects to a hierarchy of sims.

Leaf nodes are responsible for the direct processing of objects

in their enclosing volume, while parents are responsible for

shadowing the state managed by its direct children.

5.1 Load Balancing and Splitting

The most significant motivation to PVW design is the need

to divide and distribute processing load of a metaverse over

many servers. The two most significant operations in managing

PVW systems are node splitting and joining.

When a simulation process is overwhelmed by an

implementation-specific definition of load, it can choose to

split its workload between two child sims (Figure 1). For this

operation, the PVW system will need to assign two servers

(from a pool of idle simulators) to the task, and give them each

a portion of the simulation state to manage.

The converse operation is much simpler – when two sibling

leaf simulators have a small workload, they can choose to

simply synchronize state and revert processing to their parent.

The now vacated child sims can rejoin the pool of idle

simulators.

In PVW, the partitioning borders between sims are dynamic

and reactive to the workload. In the case where two

neighbouring nodes in a PVW tree have an unbalanced

workload, one child can grow while the other shrinks to

distribute the workload evenly between the two nodes. In this

manner, the PVW tree is constantly rebalancing itself, and

avoids the long-term unbalancing problems associated with KD

trees.

5.2 Geometric Simplification

One of the challenges of designing a functional metaverse is

creating a system that can manage a vast collection of objects

while still being able to simplify the world in a way that can be

streamed to a more bandwidth-restricted client.

The canonical example of this behaviour is streaming

avatars – at speaking distances, we prefer describing avatars as

individuals, but at a stadium level it is more appropriate to
describe avatars in terms of crowds.

In PVW, each simulator is responsible for generating a

simplified understanding of the volume they represent (e.g. a

64KB or smaller representation). This representation can take

the form of a textured mesh, a skybox, a voxel cloud, a 3D
texture, a collection of pictures or some combination thereof.

To maximize the utility of available bandwidth, the

simplified understanding of the volume can also be viewer

dependent. For example, in an ocean simulation, the view of the

world to an airborne viewer would be radically different than to
an underwater viewer.

The intrinsic hierarchy of BIHs and PVW lend themselves

naturally to this form of geometric simplification and is one of

the motivational factors for the choice of a hierarchical
metaverse architecture.

5.3 Client Connections

In Figure 2, Client 1 represents the canonical client

connection – in this example, the client interacts only with a

single simulator. Client 2 and Client 3 represent observers –

users who are interested only in viewing (but not interacting

with) this PVW instance in the broadest sense.

For a client to determine which simulators to connect to,

given a location in space and desired level of detail, it will be

necessary to query the PVW tree, searching for areas of interest.

The query must begin at the root of the PVW tree, and traverse

the graph until the desired sims has been located. For efficiency,

sims may track nearby child simulators and create skip lists, so

that clients can skip querying the immediate child sims of a
parent before reaching their desired nodes.

Since the act of locating a desired sim is a non state-

modifying operation, these types of requests can be directed to

shadow sims (discussed in Section 6.1), to avoid burdening the
main sim with servicing these requests.

Root Sim

2LL Sim

1L Simulator

PVW Graph

2RL Sim 2RR Sim

1R Simulator

2LR Sim

Client 4Client 1

3LLL Sim 3LRL Sim 3LRR Sim3LLR Sim 3RRR Sim3RRL Sim

Client 3Client 2

Figure 2: Network connections in a PVW instance. Dotted

lines represent network connections, arrows represent

information flow.

 5

In the PVW architecture, clients may desire to extend their

viewing range past their local simulator. By querying different

simulators, a client can effectively extend their viewing

distance to see more distant regions. Also, by querying up the

PVW tree, clients can choose to only receive the level of visual
detail (as discussed in Section 5.2) they desire.

In the PVW design, a client may have many read-only

connections streams, but only requires one interactive
connection (e.g. Client 4 in Figure 2).

5.4 Terrain and Global Objects

Certain types of objects that can potentially span an entire

metaverse can pose problems to the PVW architecture if not

specifically adapted to the system. A large entity, such as

terrain or clouds & sky could easily cover the entire virtual
space represented by a PVW tree.

These types of objects need to be specially constructed to
allow PVW to split and share the load among many simulators.

6. PVW Extensions

The described PVW structure allows the expression of

virtual spaces in a distributed load-splitting environment. For

performance, stability and administrative reasons, this structure

can be extended to accommodate differing demands of real-

world implementations.

6.1 Shadow Sims and Reduction Engines

In many server-based architectures designed for streaming

large amounts of dynamic 3D data (including PVW) the

workload of managing the data-stream can be significant. This

task involves non-trivial operations such as visibility

calculation, data prioritization, progressive streaming and
keeping track of client state.

To compound this problem, we anticipate there will be sims

with a disproportionate amount of non-interactive streaming

read load. Examples such as performers in a stadium simulation

or being the root node of the PVW tree will attract a

disproportionate number of client viewers who will not modify
the state of the sim, but are interested in viewing the simulation.

To address this predicament, we introduce the notion of

ashadow sim – a read-only copy of a sim. A sim with a

disproportionate number of clients can elect to create a shadow

copy of itself, and direct clients to stream data from the shadow

sim. Streaming reads will be directed from the shadow copies,

while interaction that modifies the state of the simulation will be
communicated directly to the main sim.

If streaming load on a sim is extremely large, multiple

shadow sims can be created, potentially structured into a

multicast tree (Figure 3). In larger multicast trees, the root

shadow node could act as a load balancer – instead of servicing

requests directly, it could choose to redirect requests to other the
children shadow sims.

Shadow sims may also be able to act as reduction engines,

approximating and simplifying the data to suit the needs of

individual clients. For example, some shadow sims may only

need to service a sub-volume governed by its parent sim, or may

only service reads of the simplified representation of the world
discussed in Section 5.2.

6.2 Robustness

There are two types of robustness that PVW must be

specifically address: the unexpected failure of a node and

resilience against DDOS style attacks.

To address failure of individual nodes, we require parent sims

to keep track of the state of its children, and for aggregate child

sims to contain the state of their parent.

In the event that a sim might crash, the parent can spawn a

replacement sim, using sim split mechanics (Section 5.1). If the

parent is busy or unavailable, it should also be possible to

reconstruct its state from its child sims. If the lost sim had an

associated shadow sim, it would be possible for the shadow to

simply assume the responsibility of the original sim.

Shadow sims can also act as a convenient defence against

DDOS style attacks. In the PVW architecture it is critically

important that the root of the PVW tree not be exposed to attack.

In this architecture, interior nodes of the PVW tree need only

service state-modifying transactions from other PVW servers,

but not clients – clients need only be directly connected to their
local leaf simulators.

Since all external client requests to interior nodes of the PVW

tree will be read-only in nature, these can be serviced by shadow

sims (Figure 3). In this manner, it will not be necessary for

clients to interact with, or even learn the address of the PVW

root. This allows us to easily construct firewalls to protect the
structure of the PVW tree.

6.3 Extending Beyond 3D Space

For some types of virtual environments, it may be necessary

to extend our definition of space from a regular 3-dimensional

representation to higher-dimensional spaces (for some types of
physics simulations) or non-Cartesian spaces.

For higher-dimensional Cartesian spaces, BIHs can be

naturally extended by using axis-aligned splitting hyperplanes in

place of 3D BIH’s splitting planes.

Root Sim

2LL Sim

1L Simulator

PVW Graph

2RL Sim 2RR Sim

1R Simulator

2LR Sim

Shadow

Sim

Shadow

Sim

Shadow

Sim

Client 2

Shadow Sims

Client 1 Client 3 Client 4

Figure 3: Network connections in a PVW instance, with

shadow root sims. Dotted lines represent network

connections, arrows represent information flow.

 6

In non-Cartesian spaces, it may still be possible to adapt

BIHs in a meaningful way. Figure 4 shows a BIH partitioning

scheme for polar coordinates, splitting on polar angles and

distance from the pole. This concept can be extended to

spherical/geographic coordinates, splitting on distance from the
origin, and latitude and longitude.

Spherical coordinates may be appropriate for planet

simulations for encoding the relative meaning of up and down

in a simulated gravity environment.

6.4 Embedding and Linking Metaverses

PVW metaverses in different administrative domains should

be allowed to interact without requiring the strong trust
relationships that PVW implies.

The simplest solution to joining metaverses is to create

portals - links between PVW virtual spaces. In the PVW tree,

these portals can be represented by objects pairs, having one at

each endpoint of the portal link.

This would facilitate linking both spaces within the same

virtual world and between worlds in potentially different
administrative domains.

In all MMO universes, there is frequent demand to create

disjoint and potentially temporary spaces. In social networks,

these can take the form of private chat rooms or sandboxes. In

massively multiplayer online role-playing games (MMORPGs),

we frequently find instance dungeons, where copies of game

levels are instantiated so that different groups can play
simultaneously without interfering with each other.

If we allow a PVW universe to be represented by disjoint

PVW trees, it would be possible to support these types of
private rooms/instance dungeons.

Another mechanism that we can use to join virtual worlds is

to allow one PVW instance to be embedded in another. An

object in one PVW space could represent an entire PVW tree,

potentially run by an entirely different administrative domain

with different spatial topologies.

It is easy to imagine the desire to have a space simulated by

one PVW instance (e.g. Planet Intel), embedded in another (e.g.

the ICANN galaxy), both administered by separate domains. In

this manner, users would have a cohesive way to explore
different worlds.

If we allow a transformation between embedded worlds, such

as relative avatar/world scaling, it would be possible to support

Alice-In-Wonderland-style adventures – visiting miniature

worlds inside worlds. This mechanism could even allow a PVW
universe to be embedded within itself in a recursive fashion.

6.5 Multiple and Extended Partitioning

 One characteristic of PVW trees is that they only allow a

single global partitioning topology. While this is a convenient

mechanism to divide the processing and streaming workload, it

will not provide an optimal partitioning for all aspects of the

simulation, such as physics or sound processing which favour
interactions that do not cross boundaries.

These secondary processing operations can be implemented

sing a second set of servers, ideally using hardware optimized

for the task. (E.g. Physics servers can be enhanced with physics

coprocessors or faster CPUs.)

These secondary processing engines could interact with the

main PVW tree as privileged clients, updating the state of
objects managed by the primary simulators.

For some tasks, such as physics processing, it may be useful

to construct a secondary PVW tree to divide the workload of
processing this aspect of metaverse.

6.6 Proxy Servers Mitigation

In a real-world implementation of a PVW world, network

latency between client and server may become an issue,
especially during interactive sessions.

Introducing a proxy server inside the datacenter where the

PVW servers are located can have multiple advantages. First,

connection setup and teardown costs can be drastically reduced,

since client will only need to establish a session between itself

and the PVW proxy. Secondly, this may simplify the

construction of the client. The proxy can be constructed in a way

that obscures the complexity of the PVW world topology – the

client will only have to communicate with a single server. This

is similar to the approach used in ALVIC-NG [quax]. Thirdly,

this can be used as a security measure. If all communication

between a client and a sim must use trusted proxy server, the

PVW core itself does not need to be globally routable. This

defensive measure is similar, but more powerful than the
approach discussed in Section 6.2.

If a PVW proxy server is introduced on a high-speed network

link near the client, it would help minimize client latency. The

proxies could be constructed with an internal reduction engine

(similar to that discussed in Section 6.1). Since priority

streaming algorithms are sensitive to network latency, this
would allow more efficient and reactive data streaming.

Metaverse

Root

2nd Level Sim

1st Level Sim

2nd Level Sim

3rd Level Sim

k l

a

PVW Graph

2nd Level Sim 2nd Level Sim

1st Level Sim

3rd Level Sim

m n

3rd Level Sim

i j

3rd Level Sim

h

3rd Level Sim

b c

3rd Level Sim

a

f gd e

Virtual Space

b

c

e

d

f

g

h

i

j

k

l

m

n

1

1

2

3

3

3
2

Figure 4: PVW partitioning on a non-rectangular space. A 3-

dimensional extension of this 2 dimensional topology may be

appropriate for some planet-shaped simulations.

 7

6.7 Upper Level Object Allocation

One problem with dynamic, reactive, spatial partitioning is

that it will lead to a high number of small, concentrated

simulators to handle highly concentrated object loads (crowds).

High-speed moving objects in the world, such as a rocket in a

battlefield simulation, will need to quickly traverse many

simulators. This can be a problem because migration of objects

between simulators must be marshalled through the network,
which is much slower than intra-simulator travel.

One approach to address this shortcoming is to allow high-

speed objects to be handled by parent simulators. In this

manner, high-speed objects can still travel quickly through
virtual space but avoid crossing simulator boundaries.

Since parent nodes in a PVW tree already contain a

representation of the contents of child sims, they can anticipate

potential object interactions, and communicate necessary

information to its child sims.

7. FUTURE WORK

The most significant area in need of development in PVW is

designing an efficient partitioning strategy.

One operation that we should seek to minimize is region

splits and merges. During these operations, the entire region
state must be distributed to new simulators over the network.

The most obvious spatial partitioning algorithm is to simply

choose a partition that evenly divides objects in the simulation.

While this approach will guarantee an even workload among

world simulators, it has the unfortunate characteristic that it

often chooses partitions that divides groups of interacting

objects. The goal of a good partitioning algorithm should be to

partition the world in such a way as to allocate interacting

groups of objects on a single server. If this guideline is ignored,

nearby objects in different simulators will incur an additional

network cost when interacting, which creates more work for the

system.

Additionally, the portioning strategy should seek to

minimize object simulator crossings. Any object that travels

between regions hosted on different servers will need to be

synchronized and marshalled across the network, which has a

high cost compared to travelling to a new location in the same
simulator.

This research is ongoing.

Another component of PVW that has not been explored in

detail is the communication protocol necessary to support the

types of interaction we anticipate. It will be necessary to

develop synchronization and transaction primitives, as well as

combining all the components of metaverse design (such as

user authentication and asset management) which are not part
of PVW.

8. CONCLUSION

The growing domain of metaverse applications use a variety

of "scale-out" mechanisms to make ever larger virtual worlds.

While these approaches provide a means to support

increasingly large numbers of simultaneous users, they do not

accommodate the demand for additional richer, simultaneous

interactions. To drive new usages, what we want is to remove

the limitations of current approaches so that the simulation

architecture is driven by the content, rather than having the

content limited by the architecture.

In this paper we described PVW, a hierarchical space

partitioning architecture used to distribute a simulation workload

in infinitely scaling chunks so that any simulation requirements

can be met. PVW borrows acceleration structures from modern

ray tracing algorithms to maintain a tree that successively

divides the virtual space into manageable collections of objects

and avatars. The unique benefit of the PVW hierarchy is that

the simulation scales to accommodate both the limitations of the

simulation and the requirements of the application. That is, the

PVW architecture enables metaverse interactions to scale

arbitrarily to accommodate the requirements of simulation by

distributing the simulation across all available compute and

communication resources.

9. Acknowledgements

 We would like to thank the Jim Snow, Ed Kaiser, and Rob

Knauerhase for their suggestions and advice.

10. References
 [croquet] Croquet Project http://www.opencroquet.org/

 [darkstar] Sun, Game Server Ttechnology White Paper,

http://www.sun.com/solutions/documents/white-

papers/me_sungameserver.pdf

 [kumar] Sanjeev Kuma r, Jatin Chhugani, Changkyu Kim,

Daehyun Kim, Anthony Nguyen, Christian Biania, Youngmin

Kim, Pradeem Dubey. Chracterization and Analysis of Second

Life Virtual World. IEEE Computer Graphics & Applications,

(March 2008)

 [os] OpenSimulator, http://opensimulator.org

 [presetya] Kusno Prasetya and Zheng da Wu. Performance

Analysis of Game World Partitioning Methods for Multiplayer

Mobile Gaming. In Proceedings of the Workshop on Network

and Systems Support for Games (NetGames), (October 2008).

 [reshetov] Alexander Reshetov, Alexei Suoupikov and Jim

Hurley. ACM Transactions on Graphics 24,3, pp. 1176-1185

(2005)

 [rubin] Steven M. Rubin and Turner Whitted. A 3-Dimensional

Representation for Fast Rendering of Complex Scenes. In

Computer Graphics (Proceedings of SIGGRAPH 80) vol. 14,

pp.110-116 (1980)

 [sl] Second Life, http://secondlife.com

 [uo] Ultima Online, http://www.uo.com

 [wachter] Carsten Wächter and Alexander Keller. Instant ray

tracing: The bounding interval hierarchy. In Proceedings of the

Eurographics Symposium on Rendering, pages 139--149, 2006.

[wow] World of Warcraft, http://www.worldofwarcraft.com

[quax] Peter Quax, Jeroen Dierckx, Bart Cornelissen, Gert

Vansichem and Wim Lamotte. Dynamic server allocation in a

real-life deployable communications architecture for networked

games. In Proceedings of the Workshop on Network and Systems

Support for Games (NetGames), (October 2008).

http://www.opencroquet.org/
http://opensimulator.org/
http://secondlife.com/
http://www.uo.com/
http://www.worldofwarcraft.com/

	PVW: Designing Virtual World Server Infrastructure
	Let us know how access to this document benefits you.
	Citation Details

	Approximate Packet Classification Caching

