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Abstract

This paper presents an analysis of the gas turbine real process (with all losses included) before and 
after a major maintenance. The analysis of both gas turbine operating regimes is based on data 
measured during its exploitation. Contrary to authors’ expectations, the major maintenance process 
did not result either in any decrease in losses or increase in efficiencies for the majority of the gas 
turbine components. However, the major maintenance influenced positively the gas turbine combustion 
chambers (reduction in losses and increase in the combustion chambers efficiency). After the major 
maintenance, the overall process efficiency decreased from 43.796% to 41.319% due to a significant 
decrease in the air mass flow rate and to an increase in the fuel mass flow rate in combustion chambers. 
A decrease in the gas turbine produced cumulative and useful power after a major maintenance also 
increased the specific fuel consumption.
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1. Introduction

Gas turbines nowadays have application in many power systems. They are essential 
components of combined power plants [1, 2] where used as a primary element for the 
power and heat production [3]. Operation of the steam part of the combined power 
plant along with all of its components [4] is highly dependable on gas turbine process 
and exhaust gas parameters [5]. The wide usage of gas turbines today also includes 
various cogeneration plants [6].
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In marine power systems diesel engines prevail in general [7, 8], while the usage 
of gas turbines in such systems is usually limited due to many important factors [9]. 
Gas turbines in marine power systems can be used as independent components [10] 
or in various combinations with internal combustion engines or steam turbines along 
with all necessary equipment required for such plant operation [11-14]. 

Several researchers have analyzed gas turbines as stand-alone devices either 
without any upgrades [15] or with several upgrades [16]. One specific upgrade of gas 
turbine cycles concerns the air bottoming cycle, presented in [17].

An interesting comparison of four different gas turbine cycles is presented in [18], 
in addition to the advanced exergy analysis presented in respect of the most effective 
gas turbine cycle. Exergy analysis is a commonly used technique for research and 
analysis of various steam and gas turbines [19-21] which shows that highest losses of 
the gas turbine cycle occur in combustion chambers [22, 23] regardless of gas turbine 
operation characteristics and power output. 

Several methods have been developed for improving the efficiency of power plants 
having a gas turbine as an essential component. One of such efficiency improvement 
methods is based on the specific entropy generation [24].

This paper presents an analysis of a gas turbine without any upgrades included, 
taking into account all the losses occurring during the gas turbine operation. Based on 
measured operating parameters, the gas turbine performance was investigated before 
and after a major maintenance. Usually, it would be expected that the major maintenance 
process reduces losses and increases efficiencies of gas turbine components. It will be 
interesting to investigate whether such expectations are also valid for the observed 
gas turbine.

2. Description of the gas turbine operating process

The main scheme of the gas turbine operating process along with four characteristic 
operating points is presented in Figure 1. The turbo-compressor compresses the air from 
the atmosphere and brings it with increased pressure to combustion chambers, where 
fuel combustion takes place. Fuels in the gas turbine process must be of high-quality 
and therefore very expensive, so the majority of gas turbine operational costs are 
dependable on current fuel prices (also valid for other power producers where fuels of 
lower quality can also be used [25-27]). The maximum process temperature (maximum 
combustion gas temperature) occurs at the combustion chamber outlet (gas turbine 
inlet) - point 3, Figure 1. After the combustion gas expansion through a turbine, gases 
are released from the gas turbine process into the atmosphere. One part of the produced 
turbine cumulative power (usually about 50%) is used for the turbo-compressor drive, 
while the other part of the produced cumulative power (useful power) drives any power 
consumer. The beginning of the gas turbine operation from its dead-state is ensured 
with a starting electro-motor. The temperature-specific entropy diagram of the real gas 
turbine process that includes losses on each gas turbine component is shown in Figure 2.
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Figure 1 - Gas turbine main scheme (SEM = Starting Electro-Motor; TC = Turbo-
Compressor; CC = Combustion Chambers; T = Turbine; PC = Power Consumer)

Figure 2 - Temperature-specific entropy (T-s) diagram of the gas turbine real process 
with included losses 

3. Gas turbine analysis – main equations

The majority of equations for the gas turbine process analysis can be found in [28] 
and [29]. Each operating point of the gas turbine process, Figure 1, can be calculated 
the specific enthalpy of the operating medium (air or combustion gases) as:
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	 (1)

where cp is the specific heat capacity of the operating medium at constant pressure 
and T is the current operating medium temperature. Specific heat capacity at constant 
pressure (cp) is a function of the current operating medium temperature. 

Regarding the air, the specific heat capacity at constant pressure is calculated 
according to [30] by using Eq. 2:

	 (2)

while for combustion gases (cg), the specific heat capacity at constant pressure is also 
calculated according to [30] by using Eq. 3: 

	 (3)

In Eq. 2 and Eq. 3 temperature T must be inserted in (K) to obtain cp in (kJ/kg·K).
By using Figure 1 and Figure 2, the gas turbine process operating parameters are 

as follows:
- Turbo-compressor real power:

	 (4)

Air temperature after the ideal (isentropic) compression is calculated using 
equation Eq. 5:

	 (5)

where κair is according to [31] is equal to 1.4.

- Turbo-compressor isentropic power:

	 (6)

- Turbo-compressor power losses:

	 (7)

- Turbo-compressor efficiency:

	 (8)
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- Turbine real cumulative power:

	 (9)

Temperature of combustion gases after the ideal (isentropic) expansion is 
calculated using equation Eq. 10:

	 (10)

where κcg is equal to 1.3 according to [31] .

- Turbine isentropic cumulative power:

	 (11)

- Turbine power losses:

	 (12)

- Turbine efficiency:

	 (13)

It should be noted that gas turbine power losses (Eq. 12) and efficiency (Eq. 13) 
are calculated identically as power losses and efficiency of a steam turbine [32, 33] or 
of each steam turbine cylinder (for multi-cylinder steam turbines) [34].

- Useful power (real):

	
	 (14)

- Useful power (isentropic):

	 (15)

- Chemical energy delivered by fuel in the combustion chambers:

	 (16)
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where LHV is the lower heating value of the fuel used and Fm�  is the combustion 
chambers fuel mass flow rate.

- The amount of heat transferred in combustion chambers:

	 (17)

- The amount of the heat released from the process:

	 (18)

- Heat transfer losses in the combustion chambers:

	 (19)

- Combustion chambers efficiency:

	 (20)

- Gas turbine process overall efficiency:

	 (21)

- Specific fuel consumption (based on the useful power):

	 (22)

- Specific fuel consumption (based on the cumulative produced power):

	 (23)

4.	Operating parameters of the gas turbine process before and after a 
major maintenance

Operating parameters of the gas turbine process at each characteristic operating 
point, Figure 1 and Figure 2, before and after a major maintenance are found in 
[35]. Table 1 presents the gas turbine process operating parameters before a major 
maintenance and Table 2 presents the gas turbine process operating parameters after 
a major maintenance.
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Table 1 - Operating parameters of the gas turbine before a major maintenance [35]

BEFORE MAJOR MAINTENANCE

Operating point*
Medium 

operating mass 
flow rate (kg/s)

Medium 
operating 

pressure (MPa)

Medium 
operating 

temperature (K)
1 434.753 0.1033 288.15
2 434.753 1.6099 662.08
3 443.706 1.5536 1509.13
4 443.706 0.1071 819.99

Used fuel Natural gas
Fuel lower heating value (LHV) 50000 kJ/kg

Fuel mass flow rate 8.953 kg/s

* According to Figure 1 and Figure 2

Table 2 - Operating parameters of the gas turbine after a major maintenance [35]

AFTER MAJOR MAINTENANCE

Operating point*
Operating 

medium mass 
flow rate (kg/s)

Operating 
medium 

pressure (MPa)

Operating 
medium 

temperature (K)
1 407.776 0.1026 295.70
2 407.776 1.5400 679.00
3 416.884 1.5400 1600.15
4 416.884 0.1070 898.18

Used fuel Natural gas
Fuel lower heating value (LHV) 50000 kJ/kg

Fuel mass flow rate 9.108 kg/s

* According to Figure 1 and Figure 2

5.	Results of the gas turbine process analysis before and after a major 
maintenance

The developed or used power for each gas turbine component is shown in Figure 
3. Turbo-compressor as a power consumer in the real process always uses more power 
for its operation compared to an ideal (isentropic) process. After a major maintenance, 
turbo-compressor used a lower power amount than before a major maintenance and 
this was mostly caused by a reduction in the air mass flow rate, Table 1 and Table 2.

Unlike a turbo-compressor, turbine is a power producer which in the real process 
always produced lower cumulative power compared to an ideal (isentropic) one. After 
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a major maintenance, the real cumulative power produced by the turbine was lower 
than before a major maintenance, which was again mostly caused by a reduction in the 
combustion gas mass flow rate, Table 1 and Table 2.

Reduction in air and combustion gas mass flow rates after a major maintenance 
resulted in a decrease in real useful power produced by a gas turbine process (from 
189.62 MW before a major maintenance to 184.02 MW after a major maintenance), 
Figure 3.

Figure 3 - Changes in the real and isentropic useful, turbo-compressor and turbine 
power before and after a gas turbine major maintenance

The increase in the fuel mass flow rate after a gas turbine major maintenance 
resulted in a higher chemical energy amount delivered by fuel in combustion chambers, 
Figure 4. After major gas turbine maintenance, a higher fuel mass flow rate also 
resulted in a higher heat amount transferred in combustion chambers, compared with 
the performance before a major maintenance. The turbine major maintenance also 
resulted in a higher heat amount released from the gas turbine process. The released 
heat amount can be used for additional heating purposes, therefore the gas turbine major 
maintenance offers a higher amount of heat that can be used in several heat consumers.
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Figure 4 - Heat amounts (delivered by fuel, transferred in combustion chambers and 
released from the process) before and after a major maintenance

Compared with the gas turbine performance before major maintenance, the process 
of major maintenance resulted in a small increase in turbo-compressor power losses 
and in significant increase in turbine power losses, Figure 5. Increased power losses 
for turbo-compressor and turbine lead to the conclusion that the major maintenance 
process made the compression and expansion processes worse.

The major maintenance process had a positive influence on combustion chambers 
losses that decreased from 14.675 MW before a major maintenance to 10.002 MW 
after a major maintenance, Figure 5.

Figure 5 - Losses at gas turbine components before and after a major maintenance
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Increase in power losses of turbo-compressor and turbine after a major maintenance 
compared with the process before a major maintenance leads to a decrease in the turbo-
compressor and turbine efficiency (from 91.534% to 89.767% for turbo-compressor 
and from 99.199% to 95.686% for turbine), Figure 6. The major maintenance process 
increases combustion chambers efficiency from 96.722% before to 97.804% after a 
major maintenance.

The major maintenance process decreases the overall process efficiency from 
43.796% to 41.319%. This fact is a result of the decrease in the useful gas turbine 
power produced along with a simultaneous increase in the heat amount transferred in 
combustion chambers.

Figure 6 - Efficiencies of gas turbine parts and the overall process efficiency before 
and after a major maintenance

Specific fuel consumption for the gas turbine process can be defined using any of 
two different approaches – either in regards to the useful produced power or in regards 
to the cumulative developed power. The comparison of gas turbine processes before and 
after a major maintenance resulted in the conclusion that the increase in the fuel mass 
flow rate with a simultaneous decrease in the cumulative and useful produced power 
resulted in an increase in both specific fuel consumptions after a major maintenance, 
Figure 7. The specific fuel consumption in regards to the useful produced power is a 
much often used operating parameter for comparison with other gas turbine processes.
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Figure 7 - Gas turbine specific fuel consumption based on the useful and cumulative 
developed power before and after a major maintenance

Further investigation of the gas turbine presented in this paper will be based on 
the research and possible optimization of its operating parameters and characteristics 
by using several machine learning methods such as convolutional and multi-layer 
perceptron (MLP) neural networks [36, 37], genetic algorithm (GA) [38, 39], particle 
swarm optimization (PSO) [40], and many others.

6. Conclusions

The paper presents an analysis of a gas turbine based on measured operating 
parameters before and after a major maintenance. The major maintenance process did 
not offer any expected results, because usually it would be expected that the major 
maintenance process reduces losses on each gas turbine component with a simultaneous 
increase in the efficiency. 

The most important conclusions that can be derived from the presented analysis 
are:

After the turbine major maintenance, there occur lower air and combustion gas 
mass flow rates in the gas turbine process that cause a decrease in the turbo-compressor 
real used power and decrease in the real turbine cumulative developed power. A 
decrease in the turbine real cumulative developed power is higher than the decrease in 
the turbo-compressor real used power, so as a result, the turbine real useful produced 
power decreases after a major maintenance.

After the turbine major maintenance, the fuel mass flow rate delivered to 
combustion chambers increases compared with the process before a major maintenance, 
whereby the heat amount transferred in combustion chambers and the heat amount 
released from the process increase.
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Turbo-compressor and turbine losses increase after a major maintenance, what 
means that the compression and expansion processes deviate from the ideal ones much 
more after than before a major maintenance. The result of that occurrence is also a 
decrease in the turbo-compressor and turbine efficiency after a major maintenance 
process.

The major maintenance process positively influences combustion chambers, 
because it causes a decrease in combustion chambers heat losses and increases their 
efficiency.

The overall gas turbine process efficiency decreases after a major maintenance 
due to the decrease in the turbine useful produced power and simultaneous increase in 
the heat amount transferred in combustion chambers.

The increase in the combustion chambers fuel mass flow rate and simultaneous 
decrease in the turbine cumulative or useful developed power after a major maintenance 
increases the gas turbine specific fuel consumption.
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