
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Mechanical and Materials Engineering Faculty 
Publications Mechanical and Materials Engineering 

9-29-2015 

The Effect of a Reversible Shear Transformation on Plastic The Effect of a Reversible Shear Transformation on Plastic 

Deformation of an Amorphous Solid Deformation of an Amorphous Solid 

Nikolai V. Priezjev 

Follow this and additional works at: https://corescholar.libraries.wright.edu/mme 

 Part of the Materials Science and Engineering Commons, and the Mechanical Engineering Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/286442401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/mme
https://corescholar.libraries.wright.edu/mme
https://corescholar.libraries.wright.edu/mme_comm
https://corescholar.libraries.wright.edu/mme?utm_source=corescholar.libraries.wright.edu%2Fmme%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=corescholar.libraries.wright.edu%2Fmme%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=corescholar.libraries.wright.edu%2Fmme%2F423&utm_medium=PDF&utm_campaign=PDFCoverPages


ar
X

iv
:1

50
5.

03
48

8v
1 

 [c
on

d-
m

at
.s

of
t] 

 1
3 

M
ay

 2
01

5

The effect of a reversible shear transformation on plastic

deformation of an amorphous solid

Nikolai V. Priezjev

Department of Mechanical and Materials Engineering,

Wright State University, Dayton, OH 45435

(Dated: September 28, 2018)

Abstract

Molecular dynamics simulations are performed to investigate the plastic response of a model

glass to a local shear transformation in a quiescent system. The deformation of the material is

induced by a spherical inclusion that is gradually strained into an ellipsoid of the same volume and

then reverted back into the sphere. We show that the number of cage-breaking events increases

with increasing strain amplitude of the shear transformation. The results of numerical simulations

indicate that the density of cage jumps is larger in the cases of weak damping or slow shear

transformation. Remarkably, we also found that, for a given strain amplitude, the peak value of

the density profiles is a function of the ratio of the damping coefficient and the time scale of the

shear transformation.

PACS numbers: 62.20.F-, 61.43.Fs, 83.10.Rs
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I. INTRODUCTION

The mechanical properties of bulk metallic glasses, such as high strength and low ductil-

ity, are both of fundamental scientific interest and technological importance [1]. It is now

well recognized that the plastic deformation of metallic glasses below their glass transition

temperature involves irreversible rearrangements of small clusters of atoms [2]. The plastic

flow of amorphous materials in response to applied shear stress can be described using the

shear transformation zone model, which takes into account the density and internal state of

the localized zones [3]. In recent years, various deformation mechanisms including elemen-

tary plastic events and shear band formation were studied at different length and time scales

using atomistic simulations and finite element modeling [4]. Notably, the energy landscape

analysis had shown that a large strain cycle rejuvenates the glass by increasing the poten-

tial energy, while a small strain cycle overages the glass by moving the system to deeper

energy minima [5]. However, many essential features of the deformation process in strained

amorphous systems including a correlation between localized plastic events and distribution

of avalanches are not fully understood.

The effect of inertia on steadily sheared disordered solids in the athermal quasistatic

limit was examined in two and three dimensions using molecular dynamics simulations [6].

It was found that the distribution of avalanche sizes obeys a power-law decay over about

three orders of magnitude in drops of the potential energy density and shear stress, and

the volume of plastically deformed regions is proportional to the energy dissipated in an

avalanche [6]. In the underdamped regime, the system can be carried over successive energy

barriers to progressively lower minima leading to large avalanches, while in the overdamped

case, avalanches are smaller and they typically consist of several disconnected regions ori-

ented along diagonal lines [6]. It was also shown that at finite strain rates and zero temper-

ature, the correlation between local plastic events remains relevant, and the avalanche size

scales as the inverse square root of strain rate in two dimensions [7].

In the last few years, a number of studies investigated oscillatory shear response of amor-

phous materials using atomistic simulations [8–12], continuum modeling [13], and experi-

mental measurements [14–18]. It was found that below a certain strain amplitude, the dis-

ordered systems gradually evolve into dissipative limit cycles and particle rearrangements

remain reversible, thus retaining memory of the initial conditions [8–10, 12, 14]. The num-
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ber of back and forth cycles required to reach steady state increases as the critical strain

amplitude is approached from below [8, 10]. Surprisingly, it was shown that the cyclic defor-

mation is accompanied by plastic rearrangements of atoms that are reversed by the end of

each cycle [10, 14]. With further increasing strain amplitude, particle displacements become

irreversible leading to a diffusive behavior and structural relaxation [8, 9, 11, 12].

The elastic response of a two-dimensional amorphous solid to a localized shear trans-

formation was recently studied via molecular dynamics simulations in different damping

regimes [19, 20]. In this process, about twenty atoms within a circular inclusion were in-

stantaneously sheared in a quiescent system and the time evolution of the displacement field

was measured. It was demonstrated that the stationary solution for the disorder-averaged

displacement field has a quadrupolar symmetry and it agrees well with the predictions of

the continuum elasticity theory [19, 21]. It was further observed that the transient regime is

strongly dependent on the damping dynamics and the time dependence of the displacement

field obtained from molecular dynamics simulations agrees with the continuum solution in

the overdamped case at large times [19]. The numerical analysis based on the finite element

method that takes into account microscopic viscosity and the local elastic constants showed

that the temporal evolution of the disorder-averaged displacement field is similar to the

propagation of the elastic signal in a uniform medium [20].

In the previous study [22], molecular dynamics simulations were carried out to investigate

the influence of a local shear transformation on plastic deformation of a three-dimensional

model glass. The shear transformation was introduced in a quiescent system via a spherical

inclusion that was gradually strained into an ellipsoid and then converted back into the

sphere during a finite time interval. It was demonstrated that at strain amplitudes above a

few percent, the structural relaxation of the material involved localized plastic events that

were identified using the cage detection algorithm [23]. The spatial distribution of clusters

of cage jumps and their radial density profiles were studied for various damping conditions

and durations of the shear event. Interestingly, it was found that the density profiles of

cage jumps are well described by a universal function multiplied by a factor that depends

on the friction coefficient and the shear transformation time scale [22]. It remained unclear,

however, how this factor varies with the strain amplitude and whether it can be expressed

as a function of a single variable.
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In this paper, the plastic response of the amorphous material to a reversible shear trans-

formation is examined over a wide range of damping conditions and oscillation time scales.

The analysis of the density profiles of cage jumps presented in the previous study [22] is

extended further to describe the effect of strain amplitude on the profile shape and the

dependence of the density maximum on the friction coefficient and oscillation period. In

particular, it is demonstrated that, at sufficiently slow transformation rates, the peak value

of the density profiles is a function of the ratio of the friction coefficient and the time scale

of the shear transformation and that it strongly depends on the strain amplitude.

The rest of the paper is structured as follows. The details of molecular dynamics simu-

lation model are described in the next section. The analysis of the radial density profiles of

cage jumps as a function of the time scale of the shear event, friction coefficient, and the

strain amplitude is presented in Sec. III. The conclusions are provided in the final section.

II. MOLECULAR DYNAMICS (MD) SIMULATIONS

The simulated system consists of N = 10 000 particles confined in a three-dimensional cell

as shown in Fig. 1. We used a standard model of a glass-forming Lennard-Jones (LJ) binary

mixture introduced by Kob and Andersen [24]. In this model, any two particles α, β = A,B

interact through the Lennard-Jones (LJ) potential

Vαβ(r) = 4 εαβ

[(σαβ

r

)12

−
(σαβ

r

)6 ]

, (1)

with the parameters εAA = 1.0, εAB = 1.5, εBB = 0.5, σAB = 0.8, σBB = 0.88, and

mA = mB [24]. The LJ potential is truncated at the cutoff radius rc, αβ = 2.245 σαβ [25].

The units of length, mass and energy are chosen σ = σAA, m = mA, and ε = εAA, and,

consequently, the unit of time is defined τ = σ
√

m/ε. The simulations were performed at a

constant density ρ = ρA + ρB = 1.2 σ−3 and the linear size of the cubic box is L = 20.27 σ.

Periodic boundary conditions were applied along the x̂, ŷ, and ẑ directions.

The motion of particles is governed by the classical Langevin dynamics. For example,

the equation of motion in the x̂ direction for the i-th particle of mass m is given by

mẍi +mΓẋi = −
∑

i 6=j

∂Vij

∂xi

+ fi , (2)
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where Γ is the friction coefficient and fi is a random force with zero mean and vari-

ance 〈fi(0)fj(t)〉 = 2mkBTΓδ(t)δij determined by the fluctuation-dissipation theorem [26].

The Langevin temperature is fixed T = 10−2 ε/kB, where kB is the Boltzmann constant.

The equations of motion were integrated numerically using the fifth-order Gear predictor-

corrector algorithm [27] with a time step △tMD = 0.005 τ . Different realizations of disorder

were prepared by quenching the system from the temperature 1.1 ε/kB, which is well above

Tg ≈ 0.45 ε/kB [24], to the final temperature T = 10−2 ε/kB with the rate of 10−5 ε/kBτ .

We next describe the deformation protocol for the reversible shear transformation. The

inclusion atoms were identified within a sphere of radius ri = 3 σ, which is located at the

center of the simulation cell (see Fig. 1). The average number of atoms in the inclusion is

about 135. First, the positions of the inclusion atoms were kept fixed while the system was

aged for about 500 τ at the temperature 10−2 ε/kB. The spherical inclusion was gradually

strained into an ellipsoid and then converted back into the sphere during the time interval

τi. Note that the major axis of the ellipsoid was oriented along one of the diagonals of the

simulation box, and the volume of the inclusion was kept constant during the transformation.

In our study, the shear strain is defined as the ratio of the ellipsoid semi-major axis to the

sphere radius ri = 3 σ. The variation of stain as a function of time from zero to τi is described

by the following equation

ǫ (t) = ǫ0 sin(πt/τi), (3)

where ǫ0 is the strain amplitude and τi is the time scale of the shear event. After the shear

transformation, the positions of inclusion atoms were kept fixed at their original positions

and the system was allowed to equilibrate for the additional time interval 103 τ . This time

interval is larger than the damping time 1/Γ for the smallest value of the friction coefficient

Γ = 0.01 τ−1 considered in the present study. Several test simulations were performed

when the system was equilibrated for a larger time interval of 2 × 103 τ after the shear

transformation in order to verify that the results remain unchanged. Finally, the average

atom positions were computed before and after the shear transformation and then analyzed

in 768 independent samples.
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III. RESULTS

At mechanical equilibrium, the atomic structure of the model glass shows no long-range

order while each atom remains trapped in a cage composed of its neighbors during the time

scale of the computer simulation at the studied temperature. The plastic deformation of the

amorphous material was induced by a reversible shear transformation of a spherical inclusion

and studied at different damping conditions and time scales of the shear event. In our setup,

the inclusion atoms were displaced to form an ellipsoid with the major axis parallel to the

(1, 1, 1) direction (see Fig. 1) in order to reduce the effect of periodic boundary conditions. It

was observed that at sufficiently small strain amplitudes (below a few percent), the system

response is elastic and all atoms return to their cages after the shear transformation [19, 22].

In the present study, the analysis of particle positions was performed in the plastic regime

when the strain amplitude was varied in the range 0.2 6 ǫ0 6 0.4. We find that at smaller

values of ǫ0, an accurate analysis of particle displacements requires averaging over larger

number of independent systems, while at larger strain amplitudes, the relative distance be-

tween inclusion atoms becomes comparable to the molecular diameter, thus creating voids

at the surface of the inclusion during the shear transformation process. Irreversible rear-

rangements of atoms in the material triggered by the shear transformation were identified

using the cage detection algorithm [23]. Visual inspection of snapshots of the simulated

system revealed that cage jumps tend to aggregate into relatively compact clusters, which

are predominantly located near the inclusion where the deformation of the material during

the shear transformation is larger [22].

It was shown in the previous study [22] that the clusters of cage jumps are approximately

power-law distributed with an exponent that depends on the strain amplitude. In general,

it is expected that the density of cage jumps will decay away from the center of the inclusion

because the maximum local strain in the material during the reversible shear transformation

decreases as a function of the radial distance. For example, the displacement and strain fields

were calculated analytically for a spherical inclusion that was strained into an ellipsoid in a

two-dimensional plane, while the third direction reminded neutral [28]. It was shown that

in a stationary regime, the strain field has a quadrupolar symmetry and it decays as 1/r3

from the center of the inclusion in three dimensions [28].

Averaged density profiles of cage jumps as a function of the radial distance from the
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center of the inclusion are plotted in Fig. 2 for the strain amplitude ǫ0 = 0.3 in the regime

of intermediate damping Γ = 1.0 τ−1. Several important features are evident. First, the

density of cage jumps is reduced within about two atomic diameters from the surface of

the inclusion. This effect originates from the reversible motion of the inclusion atoms that

effectively form a part of a cage for the neighboring atoms of the material, thus reducing

the probability of their irreversible displacements [22]. Second, the density profiles exhibit

a maximum at r ≈ (5− 6) σ and then decay with further increasing radial distance. It was

previously shown that the rate of decay for r & 6 σ correlates well with the local deformation

of the material, which was estimated from the relative displacement of neighboring particles

after the spherical inclusion was irreversibly strained into an ellipsoid [22].

In general, we find that the average density of cage jumps increases with increasing time

scale of the shear transformation (e.g., see Fig. 2). At small values of τi = 5 τ and 10 τ ,

the time scale of the shear event is comparable with the time it takes for sound waves

to propagate across the system, and thus the probability of formation of large clusters is

reduced. In contrast, when τi & 50 τ , the shear stress from the deforming inclusion can

induce larger clusters of cage jumps, which in turn might trigger other irreversible events in

the system. In addition, as the damping rate decreases, the effect of inertia becomes more

important, leading to larger avalanches during the shear transformation process, and, as a

result, larger density of cage jumps. This trend was also identified in sheared disordered

solids in the athermal quasistatic limit by examining the critical scaling of avalanches at

different damping rates [6].

It was further noticed in the previous study [22] that the density profiles of cage jumps

for different values of τi and Γ can be made to collapse onto a master curve if ρ(r) is

divided by a scaling factor. In Fig. 3, we plot the average density profiles normalized by

the corresponding density peak ρm for different values of Γ and strain amplitudes ǫ0 = 0.2,

0.3 and 0.4. It is evident that for each value of the strain amplitude, the rescaled density

profiles ρ(r)/ρm collapse on the master curves. Note that the data in Fig. 3 for the two

lower values ǫ0 = 0.2 and 0.3 are shifted for clarity. It can be seen that the location of the

maximum of ρ(r)/ρm and the slope of decay for r & 6 σ depend of the strain amplitude.

The deviation from the 1/r3 dependence, which describes the decay of the local strain away

from an elliptical inclusion [28], for larger strain amplitudes ǫ0 = 0.3 and 0.4 might be due
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to the finite system size. Remember that at r & L/2 ≈ 10 σ some atoms interact with their

neighbors via periodic boundary conditions but the local strain is in general not the same

across periodic boundaries during the shear transformation.

In our study, the maximum of the density profiles of cage jumps ρm was estimated in

a wide range of parameter values, i.e., 0.01 6 Γτ 6 10 and 5 τ 6 τi 6 103τ . Figure 4

shows a contour plot of the density peaks ρm as a function of the friction coefficient and

the shear transformation time scale for the strain amplitude ǫ0 = 0.3. It can be seen that

the density landscape is quite complex, but the trends are clear. Namely, at small τi in the

overdamped regime, the deformation of material during the shear transformation is minimal,

and thus the density of cage jumps is relatively small. In the opposite limit, when the shear

transformation is very slow and the system dynamics is underdamped, the deformation of

material is largest, facilitating the formation of large clusters, and the density of cage jumps

saturates to a maximum value of about 0.037 σ−3 (see Fig. 4).

It can be further observed that the contour lines in Fig. 4 approximately follow a linear

dependence between the friction coefficient and the time scale of the shear event (see the

straight line with unit slope in Fig. 4). This correlation holds over the whole range of

parameters Γ and τi, except for the data points within the dashed region in Fig. 4. This,

in turn, implies that the ratio Γ/τi computed along a contour level will correspond to the

same value of the density peak. Therefore, it is expected that the data reported outside of

the dashed region in Fig. 4 can be collapsed onto a master curve if replotted as a function

of Γ/τi. Another argument for using Γ/τi is that the time dependence of the continuum

displacement field after an instantaneous shear transformation in the overdamped regime is

roughly proportional to the factor e−r2 Γ/µt, where µ is the shear modulus [19]. Therefore, it

follows that the local displacement field, which can trigger an irreversible rearrangement of

atoms at a distance r from an inclusion, depends on the ratio Γ/t.

The density peaks of cage jumps are first plotted in Fig. 5 as a function of the ratio Γ/τi

for the strain amplitudes ǫ0 = 0.2, 0.3 and 0.4 and the same range of parameter values as in

Fig. 4. The collapse of the data on three distinct master curves is satisfactory; however, the

data are somewhat scattered at intermediate values of Γ/τi. As anticipated, the scattered

data in Fig. 5 were evaluated for the parameters Γ and τi within the dashed region in Fig. 4.

Without these data points, the dependence of the density peaks on the ratio Γ/τi is shown in
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Fig. 6. It is evident that for Γ/τi . 0.01, the density peak saturates to a constant value that

corresponds to the largest plastic deformation for each strain amplitude. In contrast, with

increasing Γ/τi, the density peak gradually crosses over to a power-law decay as a function

of Γ/τi. In this regime, the density of cage jumps is reduced due to either small time scale

τi or large friction coefficient.

It is apparent that the shape of the curves shown in Fig. 6 is very similar, suggesting that

they might be different by a factor that depends on the strain amplitude. Indeed, we found

that when the density peaks for each strain amplitude are divided by ǫ 5
0
, the data collapse

onto a single master curve (see Fig. 7). The resulting master curve extends over about five

orders of magnitude in Γ/τi. Notice that the slope of the decay at Γ/τi & 0.01 depends

slightly on the strain amplitude. The existence of the plateau in Fig. 7 implies that the

largest value of ρm can be obtained in the limiting case of a very slow shear transformation

for any damping conditions, i.e., when Γ/τi → 0. The significance of the value 5 for the

exponent is at present not clear. We note, however, that the exponent was estimated based

only on three data points for ǫ0 and the critical value of the strain amplitude that marks

the onset of irreversible deformation was not determined in our study. The relatively strong

dependence of ρm on the strain amplitude might be due the quadrupolar symmetry of the

strain field that can trigger increasingly large clusters of cage jumps around the inclusion

upon increasing strain amplitude.

IV. CONCLUSIONS

In this paper, we have examined the structural relaxation in a three-dimensional amor-

phous material induced by a reversible shear transformation using molecular dynamics simu-

lations. The material was deformed by straining a spherical inclusion into an ellipsoid of the

same volume and then converting it back into the sphere. We found that at sufficiently large

strain amplitude of the shear transformation, some particles undergo irreversible displace-

ments that were identified using the cage detection algorithm. The density profiles of cage

jumps exhibit a distinct maximum near the surface of the inclusion followed by a power-law

decay as a function of the radial distance. At a given strain amplitude, the density profiles

are self-similar when scaled by the density maximum, which in turn depends on the damping

rate and duration of the shear transformation. Moreover, it was demonstrated that the data
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for the peak value of the density profiles can be collapsed onto a master curve when plotted

as a function of the ratio of the friction coefficient and the oscillation period. Overall, these

findings indicate that the density of cage jumps around the inclusion becomes larger in the

cases of weakly damped dynamics or slow shear transformation.
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FIG. 1: (Color online) A snapshot of the instantaneous configuration of atoms of type A (large blue

circles) and type B (small red circles) in the binary (80:20) LJ mixture. The spherical inclusion

is located at the center of the periodic cell (black circle). The reversible shear transformation is

applied to the inclusion atoms, which are gradually strained into an ellipsoid of the same volume

(dashed ellipse) and then returned to their original positions.
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FIG. 2: (Color online) Averaged radial density profiles of cage jumps for the friction coefficient

Γ = 1.0 τ−1 and the strain amplitude ǫ0 = 0.3. The time scale of the shear transformation is

τi/τ = 5, 10, 50, 100, 300, 500, and 1000 from bottom to top.
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FIG. 3: (Color online) Log-log plot of the rescaled density profiles of cage jumps for the strain

amplitudes ǫ0 = 0.2, 0.3, and 0.4 and the shear transformation time scale τi = 100 τ . For each

strain amplitude, the friction coefficient is Γτ = 0.01 (solid black curve), 0.1 (dashed blue curve),

1.0 (dash-dotted red curve), and 10 (solid green curve). The data for ǫ0 = 0.2 and 0.3 are displaced

vertically for clarity. The straight solid and dashed lines indicate slopes −3 and −4 respectively.
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FIG. 4: (Color online) A contour plot of the density peaks ρm (in units of σ−3) as a function of the

friction coefficient Γ and the time scale of the shear event τi for the strain amplitude ǫ0 = 0.3. The

contour levels are specified in the legend. Open square symbols indicate individual data points.

The straight line with unit slope is shown as a reference. The data points within the dashed region

were excluded in the analysis of ρm presented in Figs. 6 and 7 (see text for details).
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FIG. 5: (Color online) The variation of the density peak ρm as a function of the ratio Γ/τi for the

strain amplitudes ǫ0 = 0.2 (⋄), 0.3 (◦), and 0.4 (△). The friction coefficient and the time scale of

the shear event vary in the ranges 0.01 6 Γτ 6 10 and 5 τ 6 τi 6 103τ , respectively. Error bars

are about the size of the symbols.
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FIG. 6: (Color online) The variation of the density peak ρm as a function of the ratio Γ/τi for the

strain amplitudes ǫ0 = 0.2 (⋄), 0.3 (◦), and 0.4 (△). The same data as in Fig. 5 except for Γτ 6 1

and τi 6 10 τ (i.e., except for the data points within the dashed region shown in Fig. 4).
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FIG. 7: (Color online) Master plot of ρm/ǫ 5
0
versus Γ/τi. The same data as in Fig. 6. The straight

line with a slope −0.5 is shown for reference.

19


	The Effect of a Reversible Shear Transformation on Plastic Deformation of an Amorphous Solid
	I Introduction
	II Molecular dynamics (MD) simulations
	III Results
	IV Conclusions
	 Acknowledgments
	 References
	 Figures

