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Abstract

Accurate predictions of volcanological phenomena, such as the trajectory of blocks accelerated by volcanic explo-
sions, require quantitative skills training. Large outdoor experiments can be useful to convey concepts of volcanic
processes to students in an exciting way. Beyond the fun aspects, these experiments provide an opportunity to
engage with the physics of projectile flight and help promote mathematical learning within the Earth Sciences.
We present a quantitative framework required to interpret ballistic trajectories and the outdoor experiment known
commonly as “trashcano”, taking a step-by-step approach to the physics of this problem, and deriving a range
of mathematical solutions involving different levels of complexity. Our solutions are consistent with the predic-
tions from established computer programs for volcanic ballistic trajectory modelling, but we additionally provide
a nested set of simplified solutions, useful for a range of teaching scenarios as well as downloadable simulated
datasets for use where the full experiment may not be possible.

Keywords: Geoscience education; Vulcanian eruption; Calculus; Science outreach

1 Introduction

Teachers, instructors, and lecturers in geoscience at all
levels face a problem: that geoscience graduates are not
necessarily meeting the needs of an academic or indus-
try workforce in terms of quantitative skill sets [Loudin
2004; Macdonald et al. 2000; Manduca et al. 2008;
Wenner et al. 2009; Wenner et al. 2011]. This problem
has the associated effect that many incoming graduate
students see the geosciences as a more tractable and
less-quantitative study choice compared with other nat-
ural sciences [Manduca et al. 2008; Wenner et al. 2009].
Conversely, a positive aspect of this problem, is that
undergraduate geoscience courses can offer a mecha-
nism for students with less developed physical science
backgrounds to break through some perceived hurdles

*Corresponding author: fabian.b.wadsworth@durham.ac.uk

of “math” and develop quantitative skills necessary for
their future work [Macdonald et al. 2000]. In this way
the geosciences may be a mechanism for understand-
ing physical science in the same way that the ecological
or social sciences often lead into the statistical branch
of mathematics. To this end, we aim to provide an ex-
ample suite of exercises that help students from high
school (secondary education), up to undergraduate and
postgraduate levels, build quantitative skills applied to
a specific problem in the geosciences.

Volcanology is a challenging geoscience topic to teach
at any level, from high school (secondary education)
to post graduate levels in a university. The modern
subject is methodologically broad, incorporating as-
pects of the natural and social sciences (see Sigurds-
son et al. [2015] for an overview of the breadth of sub-
disciplines in volcanology). Even when concentrating
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on physical or thermodynamic problems within vol-
canology, such as the dynamics of lava flow emplace-
ment or large eruption plumes, going beyond superfi-
cial explanations brings in a raft of physical and chem-
ical complexities. Here, we address one such problem:
the trajectory taken by a ballistic volcanic block accel-
erated from an eruptive vent by an explosion. The un-
derstanding of the trajectories of ballistics propelled by
an explosion at a volcanic vent is crucial to our predic-
tion of the distribution of hazards around active vol-
canoes [e.g. Breard et al. 2014; Fitzgerald et al. 2014].
Indeed, the 63 fatalities caused by the September 2014
eruption of Ontake volcano in Japan [Tsunematsu et al.
2016], highlight how hazardous ballistics can be. Bal-
listic analysis of projectile trajectories can also be key
to extracting important information about the source
parameters of the initial explosion, such as the ener-
gies, subsurface geometries, or explosion mechanisms
involved [Blackburn et al. 1976; Chouet et al. 1974; Fa-
gents and Wilson 1993].

In its essence, predicting the flight path of a vol-
canic block is cognate with the problem of predicting
the trajectory of any other projectile in flight; a topic
familiar to students of classical mechanics and calcu-
lus. There exist useful computer programs to solve this
problem at the scales of volcanic environments, such
as Eject! [Mastin 2001], which could be used as teach-
ing tools. However, these do not necessitate proficiency
with, or understanding of, the underpinning mathe-
matics of the problem, divorcing numerical skills from
the output results. To tackle this, we develop a frame-
work in which the full solution to the problem is al-
most identical in its physical aspects to that given by
Eject! [Mastin 2001], but which has nested simplifica-
tions, developed step-by-step. In doing so we provide
solutions with different levels of predictive accuracy,
which are suitable to different levels of mathematical
ability. In their entirety, the nested approach developed
here demonstrates the mathematical steps an instructor
or student can take from an initially complex problem,
to various examples of simpler, more manageable prob-
lems, and how to assess their respective validity.

Additional challenges facing teachers include the
fact that large scale natural phenomena, including vol-
canic eruptions, are not easily adapted to in-classroom
experiments or demonstrations. While volcanic phe-
nomena are pedagogically explicable from a purely
theoretical perspective [e.g. Martin 1993], successful
learning is thought to be increased when hands-on ex-
periments, non-traditional techniques, or active learn-
ing methods are deployed [Beichner et al. 2007; Deslau-
riers et al. 2011; Freeman et al. 2014; Froyd 2007; Froyd
2008; Haak et al. 2011; Hake 1998; Knight and Wood
2005; Prince 2004]. To incorporate an aspect of active
learning, we turn to an experiment commonly called
“trashcano” (or sometimes called “bin-bang”; J. Barclay,
pers. comm.), in which an explosion is caused by the
rapid expansion of over-pressured gas, and drives the

acceleration of particles such as ping pong balls (first
described by Harpp et al. [2005]). This can be used as
a simple demonstration of the phenomenon of projec-
tile motions, or as a rigorous way to compare observa-
tions with mathematical predictions, just as volcanol-
ogists aim to do during explosive eruptions. By using
trashcano, we simplify the problem of projectile trajec-
tories, stripping away many of the complexities asso-
ciated with real volcanic scenarios, but while keeping
the relevant scales and physics and exploring the chal-
lenges associated with visual monitoring of projectiles.

Some examples of successful and widely used, scaled
in-class experiments or exercises for understanding
volcanic systems include fudge factors to explore lava
flow rheology [Rust et al. 2008], the M&M®magma
chamber for Bowen crystallization sequences [Wirth
2003], the volcanic hazards simulation for training in
crisis communication [Dohaney et al. 2015; Harpp and
Sweeney 2002], and the example here, trashcano, for
learning about explosive eruption dynamics [Harpp et
al. 2005]. Rust et al. [2008] found that using such prac-
tical exercises facilitated discussion and improved com-
prehension of volcanological physical concepts, and
better performance in early education within physics or
biology has also been found with practical hands-on ac-
tivities [Penner et al. 1998]. Indeed, many undergradu-
ate volcanology programs involve fun and often large-
scale class activities, not only to inspire and motivate
students but as a serious pedagogic strategy to improve
engagement and learning. While we do not undertake
an evidence-based approach to demonstrate the peda-
gogic efficacy of our framework, we take the evidence
for the success of active learning techniques as a moti-
vating starting point for designing our study.

In this paper, we describe how to perform the trash-
cano experiment, how to easily collect and process data
from video observations of the explosion, and a mathe-
matical and numerical framework to interpret the re-
sults. An illustrative analysis is provided as a guide
for the reader, but also to demonstrate the efficacy of
this exercise. By providing added quantitative value to
a widely used experiment, we also highlight the fit of
physics and mathematics to a modern volcanologist’s
toolbox and promote core STEM (science, technology,
engineering, mathematics) skills that are the corner-
stone of education policy in many countries around the
world.

2 Using Trashcano for teaching in four
levels

Given the range of academic backgrounds encom-
passed by the average undergraduate or postgraduate
cohort in the geosciences in general [Manduca et al.
2008], and volcanology in particular, we provide ma-
terial developed to satisfy teaching needs in a range of
possible teaching scenarios. In Table 1, we break this
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study into 4 levels, each of which has a different sug-
gested teaching level in mind. This table refers to equa-
tions throughout this paper (see, for example, section
4) and should be used as a reference table. The levels
are not designed to be prescriptive and we leave an as-
sessment of the efficacy of the communication of learn-
ing goals in the suggested educational settings to future
work.

• Level 1: outreach demonstrations to a public audi-
ence or introductory demonstrations at any level.

Using the trashcano experiment described in sec-
tion 3, without mathematical analysis, may be use-
ful as a simple demonstration of the phenomenon
of ballistics accelerated by explosions, providing a
starting point for discussions of the mechanics in-
volved. However, even in this simplest level, we
propose that discussions of the factors affecting the
heights or maximum range of the ballistic parti-
cles would enrich the experience for an audience
or classroom.

• Level 2: high school (secondary education) or in-
troductory undergraduate students.

We develop a theoretical treatment of projectile
trajectories for the case when the initial velocity
and launch angle are known (section 4). From this
analysis, we arrive at the simple mathematical de-
scription of a projectile trajectory in the limiting
case where drag is negligible. In combination with
the demonstration of the phenomenon using the
trashcano experiment (level 1), these solutions may
be an effective route to discussion of the mechan-
ics of volcanic ballistics and can provide order-of-
magnitude estimates of the range and height of
volcanic blocks. For this simple case, we find the
result for the maximum range and height of a pro-
jectile.

• Level 3: undergraduate or postgraduate students.

If we make a simplifying assumption about the
way drag acts on projectiles, we can additionally
account for drag forces and arrive at an analytical
solution that can be used to quantitatively predict
the trajectory of both the projectiles from trash-
cano, and those from volcanic eruptions. This re-
quires manipulation of equations, and knowledge
of calculus techniques for integration would be ad-
vantageous.

• Level 4: undergraduate or postgraduate students.

The full solution is presented, for which a numer-
ical solution is required. We provide an exam-
ple method to solve the governing equations using
Python™, which may require some background in
computational methods or could be incorporated
into courses specifically designed to teach compu-
tational methods.

The experiment itself can be performed in under 1
hour, including introductory discussion and a safety
briefing, making it ideal for short exercises at level 1.
For level 2, we anticipate that a follow-up 20 minute
data-collection exercise should focus on estimating the
maximum, minimum, and mean range of each particle
type ejected from the explosion. A 1–2 hour laboratory
practical will be essential, in which the simple calcu-
lations required to predict height and range of ballis-
tics are introduced, and those predictions are compared
with the empirical data.

At levels 3 or 4, there are different ways this exer-
cise could be delivered, depending on the context of
the course in which it is deployed, each of which would
require different time allocation and preparation. At
its most basic, levels 3 and 4 would require a first
preparatory laboratory exercise (1–2 hours) to follow
the derivations given in section 4. At these levels, the
data collection is more involved than at level 2, because
individual particles must be tracked using video. For
this reason, the exercise itself is likely to last up to an
hour. A follow-up laboratory practical after the exper-
iment will be required to process and analyze the data
collected during the experiment (1–2 hours). The in-
structor can reduce the time required for this second
practical by having the students prepare a method in
advance (using either Python™, Microsoft® Excel, or
other data manipulation tools) to compare the empiri-
cal data from processed video, with the predictions dis-
cussed in the first preparatory practical. We note that
level 4 requires proficiency on the part of the instruc-
tor with simple computational methods, and the use of
the freely available Python™platform, or equivalent, to
find numerical solutions to coupled equations. If the
instructor does not have the necessary experience with
computational methods, then an alternative for Level 4,
is for the instructor to use the computer program Eject!
[Mastin 2001], which is discussed later.

3 The experiment

Following the classic examples of the trashcano setup
[Harpp et al. 2005], we used a large, 60–80 litre bucket
as the experimental volcanic vent analogue. A 1.5-litre
soft-drink bottle was filled to approximately half-way
with liquid nitrogen using a funnel, sealed, and placed
in the bottom of the bucket. Relevant safety precau-
tions were taken, including the use of protective cloth-
ing and shielding for handling liquid nitrogen. We did
not fill the bucket with water in the experiment, as sug-
gested in some descriptions of trashcano, so that the
projectile velocities were easier to track upon explosion.
This also negates the need for the bricks around the ex-
plosive charge (step 3 in the description from Harpp et
al. [2005]). Without the damping effect of water in the
bucket, the explosion can be particularly energetic, and
often ruptures the bucket wall violently. For this rea-
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Table 1 – Example of compartmentalized uses of this study.

Teaching scenario

Level 0: Outreach Level 1: Simple* Level 2: Intermediate† Level 3: Advanced‡

Description Demonstration
of phenomena
to large groups

Projectile motion
without drag

Projectile motion
with drag

(approximate)

Projectile motion
with drag (full)

Are the results
analytical and
solvable without
computational
methods?

n/a Yes Yes No

D
im

en
si

on
al

eq
u

at
io

ns
§

Acceleration
dvx
dt n/a dvx

dt = 0 Equation 6a Equation 3a¶

dvy
dt n/a

dvy
dt = −g Equation 6b Equation 3b¶

Velocity with time
vx(t) n/a vx = v0 cos(θ) Equation 7a Equation 3a¶

vy(t) n/a vy = v0 sin(θ)− gt Equation 7b Equation 3b¶

Position with time
x(t) n/a Equation 9a Equation 8a Equation 3a¶

y(t) n/a Equation 9b Equation 8b Equation 3b¶

Maximum height and range
H/R n/a Equation 20 Equation 17 Equation 3¶

Potential
interesting
discussion points

What are the
hazards
associated with
ballistics?

Where will
ballistics land
around an
explosive
volcano? How far
away should
people be to
avoid them?

Under what
circumstances are
drag forces
important? Does
drag dominate in
volcanic
scenarios?

Do other forces
become necessary
in volcanic or
experimental
scenarios? What
role does wind
play?

* e.g. various secondary education levels.
† e.g. undergraduate or postgraduate.
‡ e.g. undergraduate or postgraduate
§ Here we state where to find the dimensional solutions and the reader is referred to the main text for the
dimensionless equivalents.
¶ Numerical solution: refer to Listing 1.

son, we advise caution, and the use of a sturdy, thick-
walled bucket. Figure 1 shows a typical trashcano ex-
ample from the Ludwig-Maximilians-Universität.

Onto the bottle of liquid nitrogen, we poured exper-
imental projectiles. In our case we chose ∼350 ping-
pong balls, ∼50 indoor foam balls, ∼170 soft bouncy
balls, and 1 mini-football/basketball (all pictured in
Figure 2; we recommend using projectiles with strong
colours to facilitate easy particle tracking). The time
between the sealing of the plastic bottle and the explo-
sion can vary, dominantly depending on the filling frac-
tion of nitrogen, the bottle volume, the type of plastic

from which the bottle is manufactured, and the thick-
ness of the bottle plastic. Caution is advised as the time
between sealing the bottle and the explosion can be as
short as ∼10 seconds*, but can be as long as 15 minutes.
Once the bottle is sealed and the experiment is started,
no one should touch the bottle. The explosion is loud
and ear protection as well as other safety clothing or
equipment is recommended if observers are standing

*See this video example from the “Magi-
cal Magma” lecture by J. Barclay and R. Herd;
https://www.youtube.com/watch?v=NFp4hbaBkYU (go to time
51:15 for the trashcano demonstration).
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Figure 1: One example of the trashcano experiment as an equally-spaced time-series (from left to right) of pho-
tographs showing the evolution of the projectile trajectories.

relatively close by (within approximately 5 m). We
marked a grid on the grass in radial coordinates around
the bucket vent so that the students could measure the
distribution of particles after the experiment ended.

We divided the student workforce into a “monitoring
team” responsible for video acquisition of the particle
trajectories, a “sedimentology team” or “field volcanol-
ogy team” responsible for investigating the distribution
of ejecta after deposition, and a “hazards team” respon-
sible for safety of fellow students and bystanders.

To make this practical experiment easy to perform
and appealing to students who identify with their own
devices, we used hand-held smartphone cameras as
the video recording tool. The “monitoring team” were
armed with phone cameras and placed at various po-
sitions (not more than 15 m distance) around the im-
pending explosion and recorded continuously from the
moment the bottle was placed in the bucket. The re-
sulting videos were downloaded and the frame rate and
time-stamps were recorded as well as the distance of
the observer from the vent, termed D. Using hand-
held cameras requires post-experiment image process-
ing techniques to stabilize the images (described below)
and so it can be easier to use cameras fixed on tripods,
if available.

In our experiments, the dominant quantifiable uncer-
tainty comes from camera spatial resolution and cam-
era frame rate. In our case, the two videos used to pro-
cess data were at the same distance from the vent and
used the same camera type and settings, and therefore
these uncertainties could be quantified as resulting in
±0.05 m and ±0.03 s on all lengths and times, respec-
tively. The uncertainty on length and time are max-
ima and are derived from the frame resolution com-
pared with the scale of known length, and frame rate of
normal-speed videos captured with typical phone cam-
eras at the time of writing. From these uncertainties,
we can propagate uncertainties on velocities.

After the explosion, the “sedimentology team”
recorded the distance of the projectiles from the vent.
It is useful for this reason to perform the experiment
on grass because the projectiles do not bounce signifi-
cantly when they land.

If video stabilization is required to correct movement
of the hand-held cameras during filming, a variety of
open-source software can be used. The majority of the
videos of the experiment were stabilized using the mo-
tion tracking feature of Blender†. The motion tracking
feature can follow points in the video as the camera
moves. The program then inverts the apparent scene
motion in the video, to recover the varying camera ori-
entation and produce a stabilized final product. For
tracking to be successful there must be sufficient suit-
able points for the software to track. Placing a number
of brightly colored objects around the area in which the
experiment is to take place will help the software to
successfully track points through camera shake. Stabi-
lization using the motion tracking feature of Blender is
generally unsuccessful for videos taken at close range,
because the particles flying through the video hide the
points being tracked. These videos can be stabilized us-
ing Deshaker [Thalin 2013], a plugin for VirtualDub.
While Blender is potentially easier to use, Deshaker
determines the movement between each frame and at-
tempts to remove it, such that the software can manage
to stabilize those videos where Blender cannot follow
enough tracking points. Once the videos were stabi-
lized, the particles were tracked using MtrackJ [Meijer-
ing et al. 2012], a plugin for ImageJ [e.g. Schneider et
al. 2012], which can be used to manually find the pro-
jectile(s) in each frame and record them as an appar-
ent vertical and horizontal position y(t) and x(t) in the
images. We use the “vent” width in the images as the
scale bar. We note that using a single camera position,
these apparent vertical and horizontal positions are not
the real position of any given projectile. Some aspects
of the relationship between observer and projectile, in-
cluding distortion, 3-dimensional tracking with multi-
ple cameras, and corrections will be discussed later.

A correction to the x- and y-positions in the images
must be made if the projectiles reach large maximum
horizontal distances or heights relative to the observer,
respectively. This correction adjusts for any apparent
difference between the calculated position in an image
and the actual position in reality, of a projectile asso-

†Available from https://www.blender.org/
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A B C D

Figure 2: Images of the experimental projectiles used here. [A] Ping-pong balls with radius a = 0.014 m and bulk
density ρp = 80 kg m−3. [B] Foam indoor balls with a = 0.035 m and ρp = 100 kg m−3. [C] Bouncy balls with
a = 0.02 m and ρp = 94 kg m−3. [D] A mini-football with a = 0.06 m and ρp = 90 kg m−3. We note that colored
ping-pong balls are easier to track in videos.

ciated with the large distances from an observer, and
is x = D tan(sin−1[x∗/D]), in the case of the horizontal
position data, and y = D tan(sin−1[y∗/D]), in the case of
the vertical position data. Here x∗ and y∗ are the appar-
ent recorded horizontal and vertical positions. In de-
tail, we find that we only require the correction to the
y-positions, as the horizontal motion is much less than
the vertical motion, such that the correction to the hor-
izontal positions is within the error of the recorded raw
apparent position data. As well as recording apparent
positions, MtrackJ measures the angle θ relative to an
initial point and a given line (we chose vertical).

4 Theoretical background andmathemat-
ical framework: point-source ballistic
trajectories from a known initial ve-
locity and launch angle

This theoretical section is designed to lay out the solu-
tions around the volcanic ballistics explosion problem,
for either a straightforward natural example, or the out-
door laboratory exercise. We consider a particular case
of a projectile that is subject to drag and gravitational
forces only and which is moving through a stagnant
fluid phase (air in our case). Other forces that may be
relevant in the natural case, as well as the effects of the
fluid (air) velocity, are discussed later.

We develop our solution to the problem of predicting
a projectile’s trajectory in three pedagogic stages: (1) we
develop the equations of motion, (2) we provide an an-
alytical approximation for the equations of motion and
assess the validity of this, (3) we provide limiting sim-
ple cases. Finally we non-dimensionalize the problem
to provide results that can be compared with data at
any scale.

4.1 The full solution

When an object is in motion, such as a projectile track-
ing its course, the sum of forces opposing motion must
balance the force driving motion. If the mass m of a

projectile is constant, from Newton’s second law, we can
assume the force arising from its acceleration ismdv/dt
where v is the velocity of the motion and t is time. In
all cases of practical interest, the forces opposing mo-
tion are the drag force F and the force due to gravity
Fg =mg where g is the local acceleration due to gravity.
By balancing these components, we have:

m
dv
dt

= F+mg (1)

If we assume the density and viscosity of the fluid
through which the projectile is moving are negligible,
then the drag force F can be parameterized as

F =
1
2
ρACvv (2)

where ρ is the density of the fluid (air in this case), A is
the cross-sectional area exposed to the flow streamlines,
C is the coefficient of drag, and v is the norm of the vec-
tor v (see below). Throughout most of what follows, we
assume that C is a constant, consistent with drag in the
“intermediate” regime of Reynolds number [Clift et al.
2005]. In reality, C is a function of the particle Reynolds
number where that dependence is especially important
at low Reynolds number—the Stokes regime—and high
Reynolds number above a critical transition (see Clift et
al. [2005] for a compilation). Later, we will compare our
results to those derived when C is computed continu-
ously as a function of Reynolds number [Mastin 2001].

If we consider that the trajectory of our projectile re-
mains in a 2D Cartesian plane, then the in-plane direc-
tions x (horizontal) and y (vertical) can define the coor-
dinate system for Equations 1 and 2, which, assuming
the force mg only acts in the y-direction, gives

dvx
dt

= −Fx
m

= −
ρAC

2m
vvx (3a)

dvy
dt

= −
Fy
m
− g = −

ρAC

2m
vvy − g (3b)
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where vx and vy are the horizontal and vertical com-
ponents of the projectile velocity. Similarly, Fx and Fy
are the drag force components in the horizontal and
vertical directions, respectively. In these coordinates,
v = ‖v‖ = (v2

x + v2
y )1/2.

Equation 3 is not analytically tractable because the
amplitude of the drag force, F, is proportional to the
square of the speed of the projectile, F ∝ v2. This set
of equations can be solved using numerical methods
(discussed later). Additional complexities can be incor-
porated as additive force vectors in Equation 1, which
may be relevant in volcanic scenarios, such as the lift or
Magnus force [de’Michieli Vitturi et al. 2010; Taddeucci
et al. 2017], which are neglected here and which have
different dependencies on v but are discussed later.

4.2 An approximate solution

As stated, the problem with finding a solution to Equa-
tions 3a and 3b arises from the form of F given in Equa-
tion 2. To solve this more easily, we can replace Equa-
tion 2 with a form in which F is linearly dependent on
v, such as

F = Bv (4)

where B is a constant with dimensions of mass per unit
time (a mass flux). Doing this has the implication that
F ∝ v, and in turn, this implies that the additional ve-
locity that appears in Equation 2 is now set to be con-
stant and included in B. The validity of this approxi-
mation will be assessed later.

Combining Equation 4 with Equation 1 and project-
ing onto our coordinate system yields

dvx
dt

= −Fx
m

= − B
m
vx (5a)

dvy
dt

= −
Fy
m
− g = − B

m
vy − g. (5b)

Another conceptual tool that will become useful in
our understanding of the problem is to define a termi-
nal velocity scale that is vt = mg/B. Then Equation 5
becomes

dvx
dt

= −g vx
vt

(6a)

dvy
dt

= −g
(
vy
vt

+ 1
)
. (6b)

Defining an initial launch velocity of v0 and an ini-
tial launch angle θ, such that vx,0 = v0 cos(θ) and
vy,0 = v0 sin(θ), we can integrate Equation 6 from t = 0

to t and find that

vx = v0 cos(θ)exp
(
−
g

vt
t

)
(7a)

vy = v0 sin(θ)exp
(
−
g

vt
t

)
− vt

[
1− exp

(
−
g

vt
t

)]
. (7b)

If we integrate a second time to convert vx(t) and vy(t)
to the two components of the position x(t) and y(t), we
get

x = v0 cos(θ)
vt
g

[
1− exp

(
−
g

vt
t

)]
(8a)

y = (v0 sin(θ) + vt)
vt
g

[
1− exp

(
−
g

vt
t

)]
− vtt. (8b)

such that Equation 8 would allow us to predict the tra-
jectory of a projectile as a function of time, knowing v0
and θ and having empirical constraint of vt .

4.3 Useful limiting behaviour of the approximate so-
lution

There are limits in which the behaviour of a projec-
tile will be simpler than predicted by Equation 8. The
first is when t � vt/g, which is when dvx/dt = 0 and
dvy /dt = −g, leading to the solutions in which F is neg-
ligible (zero drag in a vacuum):

x = v0 cos(θ)t (9a)

y = v0 sin(θ)t − 1
2
gt2. (9b)

which can also be derived from first principles via
Equation 1 by setting F = 0. If drag were negligible
throughout the flight, Equation 9 defines the classic
parabola of a projectile in the simplest case.

In the opposite limit when t� vt/g, then

x =
vt
g
v0 cos(θ) (10a)

y =
vt
g

[v0 sin(θ) + vt]− vtt. (10b)

which has the desirable limiting property that vx = 0
and vy = −vt , such that in the limit of long times and
when drag is important, the projectile falls vertically
downward at terminal velocity.

4.4 Dimensionless solutions

Dimensional analysis is a powerful tool for scaling nat-
ural phenomena and predicting expected behaviour,
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particularly to a first-order approximation. In our
problem, a useful substitution would be to define the
characteristic timescale of the projectile λ = v0/g and
a characteristic length scale of the flight as L = v2

0 /g.
This leads to a dimensionless time as t̄ = t/λ and a
dimensionless x- and y- coordinate scale as x̄ = x/L
and ȳ = y/L. These scales can be used to non-
dimensionalize the governing equations presented in
the previous sections.

We also introduce dimensionless control parameters
K1 and K2, which will contain all of the material-
property constants in our problem for the full and ap-
proximate solution, respectively. These are

K1 =
2mg

ρACv2
0

and K2 =
vt
v0

=
mg

Bv0
. (11)

We can see that K1 and K2 are similar and would be
identical if B = ρACv0/2: the definition of our approxi-
mation made earlier. The full solution (Equation 3) now
becomes

dv̄x
dt̄

= − 1
K1
v̄v̄x (12a)

dv̄y
dt̄

= − 1
K1
v̄v̄y − 1, (12b)

where we use a bar above a parameter to denote it is
dimensionless.

To non-dimensionalize the approximate solutions
given in Equations 7 and 8, we have that

v̄x = cos(θ)exp
(
− t̄
K2

)
(13a)

v̄y = sin(θ)exp
(
− t̄
K2

)
−K2

[
1− exp

(
− t̄
K2

)]
, (13b)

and that

x̄ = K2 cos(θ)
[
1− exp

(
− t̄
K2

)]
(14a)

ȳ = K2

[
(sin(θ) +K2)

[
1− exp

(
− t̄
K2

)]
− t̄

]
. (14b)

The case of zero drag has the simple dimensionless lim-
iting form x̄ = cos(θ)t̄ and ȳ = sin(θ)t̄ − t̄2/2, and in
the case where drag is dominant, x̄ = K2 cos(θ) and
ȳ = K2[(sin(θ) +K2)− t̄].

4.5 Comparison of the full and approximate solutions

In Figure 3 we provide solutions of the full and approx-
imate models, plotted as the evolution of the two com-
ponents of velocity, or as the full trajectory to demon-
strate how the limiting behaviour is met at small and

large times as described above. In Figure 4 we demon-
strate how the two models diverge whenK1 = K2, which
is useful for assessing the validity of the approxima-
tion made earlier. This assessment is cast as the differ-
ence between the solutions using a weighted sum of the
difference in ȳ, where the full model is termed ȳf and
the approximation is termed ȳa, and the weighted sum
of the difference is

∑i=N
i=1 (ȳa,i − ȳf ,i)/N , where N is the

number of data points at ȳ = 0 for t̄ > 0. Large devia-
tions from zero represent large discrepancies between
the two solutions where negative values imply that the
approximation of the full model underestimates the
trajectory of the projectile compared with the full so-
lution. Of course, in any real situation, K1 need not be
equal to K2 and both could be treated as fit parameters
to measured data.

4.6 Solutions for the maximum height and range of a
projectile

During a projectile’s flight, the maximum height and
range (the point at which the projectile lands) can be
empirically determined easily. Therefore, it is infor-
mative to extract solutions for these positions from the
equations presented above. These are especially useful
quantities to derive for classroom exercises where the
full treatment (section 6) may not be appropriate.

For simplicity, we assume that the launch position
and the position at which the projectile lands are at the
same y, implying flat ground. With this assumption, we
can solve the approximate solution for the maximum
height H (when vy = 0) and the range R (when y is zero
excluding the trivial solution of y = 0 at t = 0)

H =
v2
t

g
(β − 1− lnβ) (15)

R =
v2
t

g

β − 1
tan(θ)

(1− exp[−(W [−β exp(−β)] + β)])−1 (16)

H
R

=
(
1−

lnβ
β − 1

)
tan(θ)(1− exp[−W [−β exp(−β)] + β)])−1

(17)
where β = sin(θ)/K2 +1 andW is known as the Lambert
W-function (or sometimes known as the omega func-
tion). The use of W may render Equations 16 and 17
less easily tractable, and so it is useful to also consider
the limiting cases. As before, the limiting case where
t� vt/g refers to when the drag force is negligible and
the height and range become

H =
v2

0
2g

sin2(θ) (18)

R =
v2

0
g

sin(2θ) (19)
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Figure 3: The predictions of the [A]–[B] full and [C]–[D] approximate model where the approximate model can
be compared with limiting solutions for end-member conditions. In both cases, we use θ = π/4 and we use K1
and K2 of 1/4. The models would be more similar to one another if K1 and K2 were > 101 (see Figure 4) but we
choose a value of K1 and K2 that demonstrates how different the models can be.

H
R

=
1
4

tan(θ) (20)

And when the other limit is met, such that t � vt/g
and drag can come to dominate, we have

R =
v0vt
g

cos(θ) (21)

where, in this limit, there is no result for H .

4.7 Relating the initial velocity to source parameters
of the explosion

Since the well-known example of how G.I. Taylor esti-
mated the source parameters for the nuclear explosive
used in the Trinity bomb test carried out in 1945 [Taylor
1950], the utility of dimensional analysis to scale for the

energetics of an explosion has been established. In our
case, extracting source parameters from the observed
behaviour of the explosion, can be rendered somewhat
simpler. In the previous section, the equations of mo-
tion rely on an initial velocity (and launch angle) in or-
der to find solutions for the trajectory of the projectile.
While initial velocities are observables that we can mea-
sure, in applying the results of the previous section to
real examples of projectile trajectories, the initial ve-
locities do not immediately tell us something about the
explosion itself. It is important to make this connection
between the distribution of initial velocities of projec-
tiles and the explosion energy because, for problems of
volcanic interest, this explosion energy typically relates
to the overpressure state of the magma prior to explo-
sion [Linde et al. 2010; Mueller et al. 2008], an impor-
tant source parameter.
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Figure 4: Comparison between the full numerical solu-
tion and the approximation where θ is quoted in radi-
ans for convenience. Here the difference between the
solutions is cast as the weighted sum of the difference
in ȳ, where the full model is termed ȳf and the approxi-
mation is termed ȳa, and the weighted sum of the differ-
ence is

∑i=N
i=1 (ȳa,i − ȳf ,i)/N . We note that the difference

is negligible in the limit of K1→∞ (and K2→∞), cor-
responding to small v0 or negligible drag, and in the
limit K1→ 0 (and K2→ 0) where drag dominates or v0
is very large. The latter limit occurs simply because the
projectile motion is small. The maximum discrepancy
is at K1 ∼ O(1)(K2 ∼ O(1)).

We take the explosion energy to be E and the kinetic
energy of each projectile to be Ek and Ek,0 = mv2

0 /2 is
the initial kinetic energy of each projectile that is an
observable parameter. Initially, we make a crude sim-
plifying assumption that the explosion energy should
be close to the sum of all the projectile kinetic energies
E '

∑
Ek,0. This is likely to result in an underestimate

of E given that in reality there are energetic losses in
the sound and heat produced in the explosion and the
acceleration of the gas phase. However, finding

∑
Ek,0

from observable data is tractable and will provide us
with a scaling argument for E that can be tested against
other estimates of E later.

5 Experimental results and analysis

Here we analyze our results as an example of the out-
puts that can be found using the model and experiment
described. Processed data is supplied as a supplemen-
tary data file for use in classrooms where the experi-
ment may not be feasible.

5.1 The evolution of the vertical component of veloc-
ity

Tracking of x(t) and y(t) can be converted to v, vx and
vy . We confine our analysis of velocities to vy(t) because

there is a large uncertainty on vx(t) due to the unknown
3-dimensional aspect, which is analyzed in detail later.
Although the uncertainty in vx(t) also conveys an un-
certainty on vy(t), the latter is deemed much less be-
cause the launch angles tend to be high. In Figure 5,
we show the evolution of vy for each clast type. In all
cases there is a non-linear decay in the vertical com-
ponent of the velocities that goes through zero when
the projectiles reach the apex of their trajectory. The
whole process is complete in ∼4 seconds. All datasets
for each particle type appear reasonably similar, proba-
bly due to the similar density of the particles used. Nor-
malizing the vy data by v0 sin(θ) allows them to decay
from unity. We take a two-step approach to the com-
parison between the data and the models. First, we use
all data together to compare the full and approximate
models, and second, we use each projectile-type sepa-
rately. In both cases, we fit for v0 using a least-squares
regressive approach (follow Kemmer and Keller [2010]
for a user-friendly procedural introduction) because de-
termination of v0 from the videos is hampered by the
initial phase of nitrogen evaporation that obscures the
projectiles. Fitting for v0 does not significantly affect
the result, compared with empirically determining it.
In the case of the full model, we additionally fit for
K1, and, in the case of the approximate model, we fit
for K2. When we use all data, we find a global aver-
age 〈v0〉 = 31.6m s−1 using the full model (Equation 3
or Equation 12), and 〈v0〉 = 24.0ms−1 using the approx-
imate model (Equation 7 or Equation 13; Figure 5A).
These values are not significantly different when we an-
alyze the individual projectile types (see Figure 5B–E).
In detail, we fit using the dimensional models (Equa-
tion 3 and Equation 7) rather than the dimensionless
forms, but this does not affect the solution.

The values of K2 from the approximate solution are
simply used to adjust the model and can’t be clearly
interpreted. However, the values of K1 contain infor-
mation that can be decomposed using Equation 11. In
the relationship K1 = 2mg/(ρACv2

0 ), ρ, A, m and g are
known quantities. As stated, v0 is an independent fit
parameter. Therefore, the remaining unknown that can
be interpreted from the values of K1 is the drag coeffi-
cient C. We find that all the projectiles have a similar
value 0.05 ≤ K1 ≤ 0.38, which, given the appropriate
values of the constants in Equation 11, would relate to
0.35 < C < 0.48. All the particles are spheres, and so we
can compare these values with the standard drag curve
[Clift et al. 2005], which predicts that at intermediate
Reynolds numbers, C ∼ 0.5. Clearly, our fitted values of
C are in reasonably good agreement with intermediate-
Reynolds number flow (within a factor of 2). Differ-
ences between the fitted C and the value C = 0.5 may be
due to a non-zero gas velocity u that is not given in our
model [see Taddeucci et al. 2017]. If the gas velocity is
positive (in the same direction as the particle motion),
then we would expect the apparent C we compute to be
less than the value in stagnant air. We have not incor-
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Figure 5: Results for vy(t) for our four types of projectile compared with model results. The fitted parameters
used in the model curve results are given in Table 2 and are discussed in the text. Panel [A] describes the data as
vy /(v0 sin(θ)) for all particles, showing that the evolution can be described similarly in all cases with a global fit.
Panels [B]–[E] show individual fits for individual particle populations.

porated an account of u(t) in our analysis because it is
not easily measurable nor is it easy to predict from first
principles. However, by rearranging Equation 11, and
incorporating a non-zero initial gas velocity u0 we have

C =
2mg

ρAK1(v0 −u0)2 . (22)

We can set C = 0.5 [Clift et al. 2005] in Equation 22
to find that 0.8 ≤ u0 ≤ 7.5 m s−1 for our range of fit-
ted K1 given above. This implies that the expanding
cloud of nitrogen (see Figure 1) has a small effect on
the projectile motion. A similar conclusion of “reduced
drag” effects in situations where gas velocities are non-
zero and in the direction of motion of the projectiles,
was reached when analysing complex eruption ballistic
data [Lube et al. 2014] and may be common in a range
of explosive blasts [Fagents and Wilson 1993]. How-
ever, the particles quickly overtake the cloud of nitro-
gen and enter the region of air that we assume is close
to being stagnant, in the absence of wind.

5.2 Height and range

The “sedimentology team” measured the distribution
of distances from the source vent for each projectile
assuming they did not bounce significantly upon im-
pact with the grass. This is equivalent to the distri-
bution of ranges R, which are given as a histogram in
Figure 6. The arithmetic mean 〈R〉 is marked and oc-
curs at 〈R〉 = 2.9m from the vent. From the video anal-
yses, we can find the maximum value of y, which is H .
For the white ping pong balls, the mean of all mea-
sured maximum heights is 〈H〉 = 8.4m, for the small
bouncy balls, this value is 〈H〉 = 14.0m, for the foam
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Figure 6: The frequency distribution of R for each pro-
jectile type, with an arithmetic mean range 〈R〉 = 2.9m.
The soft football is not plotted as there was only a single
projectile, however, its range was R = 4.1 m.

balls, this value is 〈H〉 = 15.0m and for the soft football,
this was 〈H〉 = 18.4m. We can use Equation 17, with
the fitted values of K2 to predict H/R, which provides
a useful test. We find that H/R should vary from 2.7
to 5.8 for our projectiles with the fitted inputs from Ta-
ble 2, which, to a first-order corresponds with 〈H〉/〈R〉
of 2.9, 4.5, 6.0, and 4.5, for the ping pong balls, the
small bouncy balls, the foam tennis balls, and the mini
football/basketball, respectively.
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Table 2 – Observed or fit parameters from data analysis.

Parameter Unit Ping pong balls Small bouncy balls Foam tennis balls Mini football Average

〈R〉 m 2.9 3.1 2.5 4.1 3.2
〈H〉 m 8.4 14.0 15.0 18.4 14.0

Full solution Global fit values
v0 m s−1 39.7 ± 2.6 45.0 ± 3.8 28.5 ± 1.7 28.4 ± 1.7 31.6 ± 1.2
K1 - 0.052 ± 0.010 0.072 ± 0.017 0.280 ± 0.068 0.385 ± 0.097 0.136 ± 0.016

v0 sin(θ) m s−1 38.8 ± 2.5 44.9 ± 3.8 28.3 ± 1.7 28.3 ± 1.6 31.2 ± 1.1
Approximation

v0 m s−1 27.3 ± 0.9 27.3 ± 0.9 24.9 ± 0.9 24.7 ± 0.6 24.0 ± 0.5
K2 - 0.270 ± 0.027 0.560 ± 0.070 0.767 ± 0.130 1.060 ± 0.160 0.561 ± 0.010

v0 sin(θ) m s−1 26.7 ± 0.8 27.2 ± 0.9 24.8 ± 0.9 24.6 ± 0.6 23.7 ± 0.4

5.3 The limitations of observing in 2-dimensions only

There are many unknown parameters in our set up.
One of the most striking is the use of 2-dimensional
video footage to track a phenomenon that is clearly oc-
curring in 3-dimensions. This is a problem not un-
known to volcanologists who often record footage of ex-
plosive phenomena from a single location and use that
footage to track projectiles [Clarke et al. 2002; Gaudin
et al. 2014; Taddeucci et al. 2017]. There are notable ex-
ceptions where 3-dimensional videography techniques
have been deployed [Gaudin et al. 2015]. When work-
ing with the limit of 2-dimensions, as might be typical
of classroom scenarios, we must explore how uncertain
our predictions can be.

We consider we are an observer standing at a dis-
tance D from the explosion point-source. If we imag-
ine this scene from above, the projectile is emitted from
the point-source along a trajectory that is at an angle
α from the direct line between observer and explosion
(Figure 7A). The true value of x, the horizontal dis-
tance of the projectile from the explosion, corresponds
to an apparent distance x∗ on the apparent x − y plane.
The apparent x−y plane is the 2-dimensional reference
plane that contains the scale used by the observer to
measure horizontal distances. Assuming this plane is
the same as the plane in which the explosion occurs,
then this geometry is given by Figure 7A (top-down
view).

The ratio x∗/x is therefore a measure of how wrong
our values of x∗ are compared with the true value x.
Using trigonometry, we can solve for x∗/x as a function
of α, x and D

x∗

x
=

sin(α)
1− xcos(α)/D

, (23)

which is plotted in Figure 7. Here we can see that
the angle π/2 is optimal for minimizing the error on x.
Conversely, an angle of 0 or π render the problem ill-
posed as there is no longer any apparent x∗. Figure 7B
shows that as a general rule, if the observer is more than
approximately a factor of 10 of the total range of a pro-

jectile away from the explosion (x/D < 0.1), the result is
only slightly dependent on D and dominantly depen-
dent on α. A proper quantification of this for a given
dataset of projectiles, would require more information
than we can gather using 2-dimensional observations.
Nonetheless, the visualization of the limitations of this
problem is useful for understanding the magnitude of
the uncertainties in x and confirms our concerns about
our uncertainties in our data presented (Figure 5).

5.4 Extracting source parameters from an observed
explosion

It is a key goal of volcanologists to understand how en-
ergetic explosive volcanism can be, because this is di-
rectly related to the energy stored in the magma im-
mediately prior to explosive events. In turn, that en-
ergy stored is related to the overpressure state of the
magma. Output values from this experiment include
v0 (see Table 2). These values can be converted into
kinetic energy Ek at the point of explosion—termed
Ek,0—assuming Ek,0 = mv2

0 /2. From Table 2 we can use
the average v0 andm (Figure 4) for each particle type to
find average values of Ek,0, which we term 〈Ek,0〉. Then,
making broad assumptions that all of the population of
particles of each type are accelerated to v0 with energy
〈Ek,0〉, then the total kinetic energy recorded by the par-
ticles of each type is

Ek =
N∑
i

〈Ek,0〉i (24)

where there are N particles of type i. Then the sum
of all Ek for each class of particle is the total kinetic
energy.

The total value of Ek must be equal to or less than
the total energy produced by the explosion E. Energy is
clearly lost in the form of (1) the sound wave(s) produc-
ing the audible “bang”; (2) acceleration of the bucket,
which flies upward from the ground; (3) momentum
transferred to the air (see discussion above about the
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Figure 7: An assessment of the uncertainty associated with 2-dimensional tracking of a 3-dimensional explosion.
[A] The geometry of the problem where the projectile position is p and the apparent projectile position projected
onto the apparent x − y plane at p∗. The distance from the explosion and p is x, while the distance from the
explosion and p∗ is x∗. [B] The error contoured as x∗/x in shaded colours (binned gradations at increments of x∗/x
= 0.25) is a function of the relative distance of the observer from the explosion x/D and the angle at which the
projectile is launched α. We note that the minimum error is x∗/x = 1, which occurs for all distances when α = π/2.

air velocity); (4) the energetics of rupturing the bottle;
(5) other losses such as minor amounts of heat.

We can estimate E from first principles and compare
with the total Ek , knowing what produces the explo-
sion (the pressure changes associated with the phase
change of nitrogen). We assume that the explosion ini-
tiates when the elastic stresses tangential to the wall of
the bottle σχ exceed the elastic strength of the bottle in
tension σ0. We used a standard bottle of 1.5-litre vol-
ume made from polyethylene terephthalate. The ten-
sile strength of this material is σ0 = 60 MPa [Brydson
1999]. We can approximate the geometry of our bottle
as a cylinder with radius J = 5 cm, height M = 25 cm
and wall thickness δ = 0.8 mm [Snyder and Wechsler
1982]. Assuming the bottle walls do not deform, then
the tangential stresses on the cylinder wall are

σχ =
P J
δ
, (25)

where P is the pressure inside the bottle, which in-
creases as progressively more liquid nitrogen transi-
tions to gaseous nitrogen during heating to ambient
temperature. Rupture will occur when σχ = σ0, there-
fore we can rearrange for P at the time of rupture,
which we call P0:

P0 =
σ0δ
J

(26)

and the energy released at rupture can be scaled to

E = P0V = πσ0δJM. (27)

Using Equation 27, we find that the value of
E = O(103) J and can be dculated for our setup as 1887 J.
Equation 27 is built from the assumption that the bottle

contains a pressurized ideal gas, which clearly is not the
case in our experiment and ignores the phase change of
nitrogen from liquid to vapour. However, if the filling
fraction of liquid nitrogen is initially low, then Equa-
tion 27 is a better approximation. We make the sim-
plifying assumption that all the energy is radiated up-
ward to accelerate the projectiles rapidly to v0 and ne-
glect the fact that there are losses associated with the
response of the bucket, which moves during the exper-
iment.

In the case of the experiment conducted here, we find
that E derived from the sum of the particle velocities
v0 (as described) is 758 J. This has the desirable result
that it is less than the expected value of the bottle rup-
ture energy and provides an estimate of the energetic
losses not considered here. We note that in the broad-
est terms, the energy value calculated from the sum of
particle kinetic energies is approximately half the max-
imum explosion energy, implying that the ‘efficiency’ of
the explosion in terms of its ability to impart kinetic en-
ergy to the projectiles is ∼0.5. This is a demonstration
of how the kinetic energy of projectiles can be scaled
to the source parameters of the explosion. Here, ev-
ery parameter was known, but the same exercise could
be conducted where we would ask, what is the approx-
imate volume of the pressurized gas pocket that was
released in the explosion? The answer to such a ques-
tion would be a desirable quantity in volcanic settings
as it contains information about what caused the erup-
tion; e.g. a volcanic Taylor bubble in the case of many
Strombolian explosions [Bello et al. 2012].
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6 Discussion

6.1 Comparison with other ballistic models

A tool used commonly in volcano-monitoring efforts
to predict the trajectory of ballistics is Eject! [Mastin
2001]. This computer program solves Equation 3 in
combination with other governing equations that ac-
count for the thermodynamics involved in the ejection
of ballistics with hot gases in eruption scenarios. Eject!
also incorporates a variable drag coefficient that evolves
as the Reynolds number of the projectile evolves. For
these reasons, Eject! accounts for more of the possi-
ble physical processes involved in ballistic ejection at
volcanic sites, compared with our solutions explored
here. However, in incorporating these additional pro-
cesses, the mathematical steps and overarching frame-
work presented here is potentially obfuscated, making
it a useful tool in real volcano monitoring scenarios, but
less useful in trying to build a numerate pedagogic ex-
ercise.
Eject! requires input parameters from the user. These

include, projectile shape, projectile density, projectile
diameter, the speed of a tailwind, the initial velocity
and launch angle, the temperature of the fluid (air), the
distance of the landing point below the takeoff point,
and some information about the rate at which the tem-
perature drops outside the ejection zone and the size
of the zone of “reduced drag”. We run the software
with these inputs set to be relevant to our experiment,
namely, spherical projectiles of the known density and
diameter (Figure 4), ambient Munich air temperature
of 25 ◦C, the fitted velocity and launch angle presented
for the global fit in Figure 5, and flat ground between
take-off and landing. We assume the thermal lapse rate
and the reduced drag zone are both zero. Eject! can
run in either a constant drag mode, or a variable drag
mode. Using constant drag mode, we find reasonable
agreement between the software output and our data
using C ' 0.5, which is the value predicted assuming a
non-zero gas velocity for intermediate Reynolds num-
bers (see section 5.1; after Clift et al. [2005]). Using
variable drag mode, we find excellent agreement be-
tween the software output and our data (Figure 8). This
comparison demonstrates that our analysis and frame-
work is consistent with sophisticated software designed
for volcano monitoring scenarios.

6.2 The 3-dimensional tracking of particles

It is clear from our example analysis presented above
that the use of a single camera precludes the predic-
tion of full trajectories of projectiles. Indeed, the use
of multiple cameras placed at different angles to the
analogue volcanic vent would provide 3D information.
At the lowest complexity, this would allow students to
use some camera angles to estimate which projectiles
really do fall in the Cartesian plane of interest for the
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Figure 8: All data as plotted in Figure 5, but compared
with output results from Eject! [Mastin 2001]. The val-
ues of C (in the figure, termed Cd after Mastin [2001])
are given for the constant-C result, and in red is the full,
variable-C result, consistent with our full solution from
Figure 5.

master camera. A more complex solution would be to
use resources available online to reconstruct the full 3-
dimensions of the velocity vectors of the projectiles. We
do not discuss exactly how to do this full 3-dimensional
tracking as it is less appropriate for in-classroom de-
ployment. Nonetheless, as an example of the efficacy of
these techniques, we show the results of 3-dimensional
multi-camera tracking using a trashcano experiment in
which the bucket was filled with a combination of wa-
ter and projectiles (Figure 9).

6.3 Working through the solutions in an undergradu-
ate or postgraduate class

To solve the full equations, we require a numerical solu-
tion, as discussed above. Some classroom goals will be
focused on data analysis and not necessarily on the de-
tails of solving ordinary differential equations. There-
fore, to render this experiment of the widest utility, we
provide a coded solution written for Python™, which
is freely available and therefore advantageous for use
in all classrooms (Listing 1). We use NumPy 1.13.0

and SciPy 1.0.0 packages here, which the user/stu-
dent will need to install. The code given in Listing 1
is a tool for solving Equations 19 and 20, which are in
dimensionless form, and then transforms them into di-
mensional form (equivalent to Equations 3 and 4 and
records vx(t) and vy(t) for a given set of input param-
eters g, v0, K1 and θ. This does not include plotting
or exporting the result for use outside of the Python
environment, which would need to be added. List-
ing 1 could be used as a tool in-class prior to the ex-
periment to explore the range of expected behaviour
and to build hypotheses about (1) the effect of drag
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Figure 9: 3-dimensional vector distributions for projectiles (red lines) and water obscuring the explosion (black
points) tracked in an experiment where the bucket contained both water and particles. The individual frames in
[A]–[H] are 0.5 s apart and the axes are not scaled as this is for qualitative purposes only.

or particle density by altering the value of K1, and
(2) the effect of launch velocity or angle by altering
those relevant inputs. Listing 1 can also be used to
compare against data collected and processed to ex-
tract vy(t). Alternatively, the derivation of the approx-
imate solution (Equations 7 and 8) requires basic cal-
culus (from Equation 6 to Equations 7 and 8), mak-
ing a useful exercise for practicing quantitative skills.
Using Kemmer and Keller [2010], the least squares re-
gression fit procedure, applying Equation 7 to the pro-
cessed data provided as a supplementary file, can be
achieved using Microsoft® Excel without the need for
code-development or management skills.

6.4 Additional considerations or discussion

Above, we outlined a scaled example of a projectile
problem where we make some implicit omissions of
complexities. In this section, we acknowledge those
omissions and discuss them.

We omitted other forces that affect the trajectory of
a moving projectile. Many of these are demonstrably
negligible in both the experimental and natural cases,
such as the centrifugal or Coriolis forces due to the
rotation of the Earth, or the Basset force due to the
lag in boundary layer formation at the walls of accel-
erating projectiles in viscous fluids (see Taddeucci et
al. [2017] for a review). Additionally, there is the vir-
tual mass force Fv and the pressure-gradient force Fp,
both of which are relevant when inertia of the ambi-
ent fluid is especially important [Taddeucci et al. 2017].
de’Michieli Vitturi et al. [2010] demonstrated that pres-
sure gradients travelling over volcanic ballistic parti-
cles can be neglected, implying that Fp→ 0 and Bertin
[2017] found that the Fv can be neglected. Therefore,
we do not consider these here. Were these force com-
ponents necessary, they would be additive to the right-
hand side of Equation 1.

The force of buoyancy Fb occurs due to the density
difference between the projectile and the ambient fluid

and is relevant if the projectile is of sufficiently low
density. It is given by Fb = ρV g, where V is the vol-
ume of the projectile. This force is often included in
the calculation because it does not depend on v and is
simply a correction to the term g. A useful scaling to
work out if Fb must be considered is that Fb/Fg ∼ ρ/ρp,
where ρp is the density of the particles, and values of
this ratio far in excess of unity would imply that Fb is
non-negligble. In our case, ρ/ρp ∼100 (see Figure 4 for
densities ρp) and so the value of Fb could be a valuable
addition to the analysis by adding its contribution to
the right side of Equation 1. In the volcanic scenario,
ρp ∼ 103 kg m−3 and so Fb/Fg ∼ 10−3 and the buoyancy
force can be neglected.

The Magnus force FM is the sideways force generated
by rotation of a projectile moving in a fluid, and is most
commonly discussed in relation to a footballer’s ability
to curve the trajectory of the ball around other players
by subjecting the ball to spin at the moment of launch.
This force is given by

FM =
1
2
ρClAv

2 ωnv
|ωnv|

(28)

where ω is the angular velocity of the projectile, Cl
is the lift coefficient, and n is a unit vector normal to
the x − y plane of launch. Clearly, FM becomes non-
negligible at high ω. There has been little direct anal-
ysis of how important the Magnus force could be in
volcanic scenarios and it is not an easy-to-measure pa-
rameter without 3-dimensional observations of curved
trajectories in either the laboratory or in nature [Bertin
2017; Taddeucci et al. 2017].

As an engineering approximation of the complex
phenomenon of lift, the lift force Fl can account for the
forces that act perpendicular to the angle of attack or an
object subjected to a bypassing fluid stream. The form
for Fl is similar to F and is

Fl =
1
2
ρClAv

2 (29)

which includes the lift coefficient Cl , found by experi-
ment for different shaped objects. At low velocities, this
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force is usually negligible compared with drag forces F
and in both the natural and the experimental case, this
is rarely considered [c.f. Bertin 2017; Taddeucci et al.
2017].

6.5 Volcanic projectiles

Herein we use the scaling for the maximum range R
that a projectile can reach. This is often the most impor-
tant first-order scaling required at volcanoes because
it represents the blast-zone in which ballistic hazards
are high. Once these physical concepts are taught to
a class, it is a simple extension to discuss the hazards
associated with typical volcanic eruptions, given a rea-
sonable range of values for v0, θ, A and C [Breard et
al. 2014; Fitzgerald et al. 2014]. Large eruptions with a
high intensity convey a large v0 and therefore their typ-
ical blast radius at which the maximum R occurs can be
large [Fitzgerald et al. 2014].

Field evidence for volcanic projectiles can be found
in recent eruptions and in the geological record. For ex-
ample, ballistic volcanic bombs produce impact craters
whose size typically scales with the size of the bomb
and the speed with which it impacted the ground
[Breard et al. 2014; Fitzgerald et al. 2014]. In ign-
imbrites, proximal facies often contain ballistic bombs
that can be recognised by the sag-features of distorted
surrounding bedding or by the fact that their size is in-
consistent with the finer matrix [Branney et al. 2002].

Observations of the distribution of impact craters
around a vent yields information about the distribution
of θ from a given eruption. Such information has been
used to infer that the subsurface vent is inclined with
respect to the vertical [Gurioli et al. 2013; Kilgour et al.
2010].

6.6 How effective can trashcano be as a teaching tool?

In order to explore the efficacy of this teaching tech-
nique in classrooms and laboratory practical sessions,
we provide some anecdotal evidence from laboratories
in different countries around the world. We spoke to
4 staff members at different universities, all of whom
have deployed variants of the trashcano model in a
teaching environment. In each case, while the exper-
iment itself was broadly similar, the details of the level,
complexity, and depth to which the results were inter-
rogated varies (see Table 1 for a range of possible com-
plexity levels and Figure 10 for examples of the trash-
cano experiment performed as part of teaching pro-
grams around the world). Here we summarize each
deployment of this exercise and provide some anecdo-
tal evidence for its efficacy, leaving a quantitative ap-
proach to future work.

1. Example 1 (A. Graettinger pers. comm.)

Here trashcano is used for an introductory geo-
science course as part of an undergraduate curricu-

lum. The experiment is used as a mechanism to en-
tice students to be active learners, and as an oppor-
tunity to practice observational, hypothesis-driven
science, including data collection from large scale
phenomena. The instructor reports that they typ-
ically set the students the task of measuring the
height and range of the projectiles, and, as a math-
ematical component, of calculating the pressure
that drove the eruption using the technique de-
scribed in Harpp et al. [2005]. When asked if the
exercise is effective as a teaching tool, this instruc-
tor reflects, “I gauge the success of the demonstra-
tions for classroom methods through student en-
gagement (through question asking, talking about
the experiment even after it is over, and com-
mentary on submitted assignments) and it [is] fre-
quently one of the favorite activities in class.”

2. Example 2 (S. Schneider pers. comm.)

In this example trashcano is used as a general out-
reach activity or as a part of a half- or full-day
workshop on natural hazards. Interestingly, this
instructor feels that the spectacle of the experi-
ment can spark interest in volcanic phenomena in
those who are not especially interested in the ap-
plication of mathematics to physical problems. In
their teaching practice, they have noticed that stu-
dents benefit from having an active break from the
classroom in what they describe as “learn stops” or
periods of non-classroom learning. They highlight
that the fun aspects of the experiment are essen-
tial in terms of the feedback about the experience
from both the extended teaching staff involved, the
students, and even the parents of younger students
involved.

3. Example 3 (B. Kennedy pers. comm.)

Here trashcano is used as part of an undergraduate
university curriculum in volcanology. The instruc-
tor has experimented with different formal tasks to
accompany the experimental demonstration in or-
der to best engage the students. Direct quotes from
students and feedback forms extracted by the in-
structor reflect the enthusiasm that can be engen-
dered with this experiment.

4. Example 4 (J. Barclay pers. comm.)

This instructor has used trashcano at a wide range
of levels, from demonstrating some physical prin-
ciples (such as changes from liquid to a gas and
the resultant implications for pressure and vol-
ume) to students in primary education (approxi-
mately in the age range 6–11), to a more complex
level (secondary education), as a mechanism to vi-
sually convey the concepts of momentum transfer
as the projectiles initially collide with one another
before being finally ejected on ballistic trajecto-
ries. At the university undergraduate level, this
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Figure 10: Trashcano is carried out in laboratories around the world as a teaching tool and demonstration of
aspects of volcanic eruption dynamics. Panels [A]–[C] show examples of trashcano in which water is used in the
bucket along with the particles, with example [A] from the University of East Anglia in the U.K., courtesy of
Prof. Jenni Barclay, and examples [B] and [C] from the University of Canterbury in Christchurch, New Zealand.
In panel [D] we give an example of a volcanic ballistic projectile (red marker) tracked through time in frames
prior to the frame presented (yellow points) during explosive volcanism at Batu Tara volcano, Indonesia (see
Taddeucci et al. [2017] for details). The image in [D] is reproduced from Taddeucci et al. [2017] with permission
of the American Geophysical Union.

instructor deploys trashcano as a way to demon-
strate the concepts involved in Vulcanian volcanic
eruptions, ideas of clast size distribution in de-
posits from eruptions, eruption size or magnitude,
or hazards from ballistics around volcanoes. This
demonstrates the diversity of possible applications
of the experiment.

None of the instructors we spoke to reported the
use of trashcano as a tool for developing predictions
of ballistic trajectories, nor the use of calculus associ-
ated with the trashcano experiment. We propose, there-
fore, that our framework can complement existing uses
of the experiment, adding mathematical value to a fun
demonstration, and thereby going some way to improv-
ing “quantitative literacy” in the geosciences [Manduca
et al. 2008; Wenner et al. 2009; Wenner et al. 2011].

7 Conclusions

We give a quantitative framework—and example code
for Python™—for solving ballistic trajectory problems
in 2-dimensional Cartesian coordinates. We discuss
the problem of dealing with a 2-dimensional plane
in what is actually a 3-dimensional problem and pro-
vide a method for assessing the discrepancies associ-
ated with this limitation. For classes aimed at under-
graduate level, we propose that the full framework de-
veloped is useful along with previously developed com-
puter programs such as Eject! [Mastin 2001]. How-
ever, for classes aimed at different levels of complex-
ity, we provide limiting simpler solutions that recover
the basic behaviour of the full solution. We show how
this problem can be related to volcanic phenomena and

how source parameters can be calculated from this in-
class experiment, similar to the way in which they are
computed for volcanic phenomena. Useful future work
would include providing open-source and easy-to-use
computational tools to track ballistic trajectories in 3-
dimensions using multiple cameras or drones.
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Listing 1 – Example code solution to the full model given in Equations 3 and 4 written for Python™.

1 import numpy as np
2 from sc ipy . i n t e g r a t e import odeint
3
4 # the d e f i n i t i o n of the coupled system of ordinary
5 # d i f f e r e n t i a l equations in dimensionless form ( see t e x t )
6 def ve l_deq_ful l ( v , t , K1 ) :
7 vx , vy = v
8 v = np . s q r t ( vx**2+vy * *2 )
9 return [−v*vx/K1 , −v*vy/K1−1]

10
11 # the funct ion that s o l v e s f or the coupled system of equations
12 def v e l _ f u l l ( t , K1 , the ta ) :
13 v = odeint ( vel_deq_ful l , [ np . cos ( theta ) , np . s in ( theta ) ] , t , args =(K1 , ) )
14 return v [ : , 0 ] , v [ : , 1 ]
15
16 # user inputs [ change the numbers for g , v0 , K1 , theta ]
17 # g i s the a c c e l e r a t i o n of g r a v i t y ( in m. s ^−2)
18 # v0 i s the i n i t i a l p a r t i c l e v e l o c i t y ( in m. s ^−1)
19 # K1 i s the c o n t r o l parameter
20 # theta i s the launch angle ( in rad )
21 g , v0 , K1 , theta = 9.81 , 50 , 20 , np . pi /4
22
23 t = np . l i n s p a c e ( 0 , 5 , 501) # time ( in s )
24 vx , vy = v e l _ f u l l ( g* t /v0 , K1 , theta ) # s o l v e s f or dimensionless v e l o c i t i e s
25 vx *= v0 ; vy *= v0 # recovers the dimensional v e l o c i t i e s
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