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A multimodal pathway including the basal ganglia in
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The purpose of this paper is to give an overview of our present knowledge about the feline tecto-thalamo-basal
ganglia cortical sensory pathway. We reviewed morphological and electrophysiological studies of the cortical areas,
located in ventral bank of the anterior ectosylvian sulcus as well as the region of the insular cortex, the
suprageniculate nucleus of the thalamus, caudate nucleus, and the substantia nigra. Microelectrode studies revealed
common receptive field properties in all these structures. The receptive fields were extremely large and multisensory,
with pronounced sensitivity to motion of visual stimuli. They often demonstrated directional and velocity selectivity.
Preference for small visual stimuli was also a frequent finding. However, orientation sensitivity was absent. It became
obvious that the structures of the investigated sensory loop exhibit a unique kind of information processing, not found
anywhere else in the feline visual system.

Keywords: basal ganglia, anterior ectosylvian visual area, insular cortex, suprageniculate nucleus, caudate
nucleus, substantia nigra

Introduction

In the 1960s and early 1970s of the past century, it seemed that basal ganglia served primarily
to integrate diverse inputs from the entire cortex and to funnel these inputs via the
ventrolateral thalamus to the motor cortex (47). Alexander et al. (2, 3) were the first to
describe parallelly arranged, closed-loop components of neocortical connections with the
basal ganglia and related thalamic nuclei. It was shown that the same thalamic nuclei received
direct projections from the superior colliculi (51). McHaffie et al. (64) proposed that a
phylogenetically older, closed-loop series of subcortical connections exist between the basal
ganglia and brainstem sensorimotor structures, a good example of which is the midbrain
superior colliculus. They found at least three functionally segregated systems, one originating
from the superficial layers and two from the deep layers. Our research group conducted
several studies to investigate the multisensory receptive field properties of various compo-
nents of this system, with an emphasis on the visual modality (6, 11, 73–76). We managed to
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identify both cortical and thalamic areas as parts of this system and described their visual
properties. It turned out that the visual properties of these structures are unique and not
observable in any other part of the visual system.

The pattern of the pathways connected colliculus with cerebral cortex, thalamus, and
basal ganglia
The central element in this pathway is the superior colliculus. The pathway is a closed loop,
in which the superior colliculus accumulates the sensory information and gives rise to
important descending and ascending pathways. The superior colliculus is a multilayered
structure of the mammalian mesencephalon. It collects information directly from the sensory
cortex and indirectly through the basal ganglia. Its cortical afferents arrive from almost the
entire cortex including the banks of the anterior ectosylvian sulcus (AES). The major
ascending output is directed to the extrageniculate visual thalamus [the lateral posterior
nucleus, the suprageniculate nucleus (SG), and the pulvinar] (1, 9, 13). This thalamic region,
in addition to its connections with the extrastriate visual cortex (29, 87, 109), also projects
extensively to head and tail of the caudate nucleus (CN) and dorsolateral putamen (33, 55,
96, 104). The next segment of the loop is the “direct” striatonigral pathway to lateral parts of
the substantia nigra (SN).

In addition to their descending projections of the superior colliculus to the pons and to
the medulla, both the superficial and the deep layers of this structure also have ascending
connections to targets in the thalamus, including the lateral posterior nucleus and the midline
intralaminar nuclear complex (51, 55). It is noteworthy that the ascending projections from
the superior colliculus specifically target regions of the thalamus that provide the major
thalamic input to the two principal input structures of the basal ganglia (23, 25, 104). In the
following, we describe this loop containing the superior colliculus, the multisensory parts of
the thalamus, first of all the SG, the cortical structures along the AES, and the SN pars
reticulata (SNr) as well as the CN.

Anterior ectosylvian visual area
The role of the anterior ectosylvian cortex in visual information processing was first indicated
by evoked potential studies (15, 18, 30). We first described a visual area situated in the cortex
surrounding the deep infolding of the cat (73). Other investigators (81, 97) confirmed our
description. Clarey and Irvine (21, 22) described an auditory area along the AES. Later, a
neighboring insular visual area was also found (6, 7, 35, 36, 110), which overlaps with the
insular auditory area (101) and appears to be a multimodal area. Similar area was described
by Linke and Schwegler (56) in rats, by Malinowska and Kosmal (60) in dogs, and by
Manger et al. (61) in ferrets.

Studies exploring the ventral banks of the anterior ectosylvian cortex revealed that there
are visually sensitive cells along the whole extent of the sulcus (7). In Fig. 1, response curves
for 2° spot stimulation of eight anterior ectosylvian visual area (AEV) neuron (1) and effect of
length of stimulus on the response of these neurons (2) are demonstrated. AEV (73) was
found to be dominated by neurons sensitive to very small stimuli moving rapidly in huge
receptive fields that cover practically the whole visual field of the eye (Fig. 2). These neurons
are also characterized by very high directional sensitivity.

The connections between AEV and other cortical areas are reciprocal. Subcortically,
AEV has reciprocal connections with the ventral medial thalamic nucleus (vertical meridian),
with the medial part of the lateralis posterior nucleus, as well as with the lateral medial-SG
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complex. AEV also projects to the CN, the putamen, the lateral amygdaloid nucleus,
the superior colliculus, and the pontine nuclei (80).

The SG: Location and nomenclature
Retrograde tracing studies showed strong connections between AEV and the SG (80). This
initiated our studies which proved that this thalamic structure is the chain between superior
colliculus and AEV/insular cortex (6, 7, 79).

The SG was identified in cats quite early (43, 90). Its existence has been described in a
wide range ofmammals including rats (58), rabbits (93), dogs (108), andmonkeys (82). The
feline SG is composed of loose clusters of cells dorsomedial to the magnocellular part of the
medial geniculate body (92, 94) (Fig. 3). The SG and caudal LP of the cats receive afferents
from the SC, the nucleus of brachium of the inferior colliculus, the spinal cord (104), the
spinal trigeminal nuclei (12), and the cuneate nucleus (32). It contains neurons responding to
visual (19, 27, 37, 63, 103) and multimodal stimuli (12, 19).

Physiology of the SG
The early physiological studies found overwhelmingly auditory representation in SG, but its
multimodal characteristics were soon discovered (12, 94). Poggio and Mountcastle (85),
however, considered the nucleus as a nociceptive thalamic structure, paying only little
attention to other sensory aspects. Visual properties were not mentioned by these authors
at all, while other groups seem to have found visual units only occasionally in this nucleus
(27, 42, 63). Studies to call attention to the visual properties of the cells in SG appeared only a
decade later (37, 53). Example of directional selective visual neurons in SG is given in Fig. 4.
New perspective for the investigation of the SG was opened after the description of unimodal
visual, auditory, and multisensory areas extending over the ventral bank of the AES, and on
the surface of the anterior sylvian gyrus (21, 22, 48, 71, 73, 81, 105). The idea emerged that
the SG might serve as a relay station between the intermediate and deep layers of the
colliculus superior and these cortical areas (5, 10, 35, 36).

Internal connectional pattern of the basal ganglia
The important elements of the functional system, discussed in this review, are structures of
basal ganglia. The basal ganglia contain two principal input parts: the neostriatum

Fig. 1. (A) Response
curves for spot stimulus
(2° in diameter) of eight
AEV visual neurons. (B)
Effect of length on the

response of AEV
visual neurons
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Fig. 2. Responses to small amplitude stimulation (A) and on–off stimulation (C) in different parts of the receptive
field (B) of neuron 156 (contralateral eye stimulation). The center of the coordinate system in (B) corresponds to the
left area centralis, and the abscissa and ordinate represent the horizontal and vertical meridia, respectively. The
moving stimuli in (A) and (B) were light spots 1.6° in diameter that swept at a speed of 500°/s (A2–6) through parts of
the receptive field. For stationary stimuli, a light square measuring 1.5°× 1.5° was turned on and off at 1-s intervals.
Arrows 1–6 in (B) indicate the position, amplitude, and direction of the stimulus sweeps yielding the corresponding
peristimulus time histograms (PSTHs) in (A). Squares a–d in (B) represent the position of the stationary stimulus and
refer to the respective PSTHs in (C). The analog signal above each histogram represents the stimulus movements (A)
and closing of the shutter for on–off stimulation (C), respectively. PSTHs in (A) show neuronal responses to single
stimulus sweeps. However, the trains of forward/backward stimulus movements were also applied. The PSTHs in (C)

give summed responses obtained from 20 successive stimulus presentations
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(including CN and putamen) and the subthalamic nucleus (STN), and two principal output
nuclei: the SNr and the entopeduncular nucleus (globus pallidus pars interna). The dopami-
nergic neurons of the SN (pars compacta, SNc) project to the neostriatum (nigro-striatal
dopaminergic pathway), and SNc receives afferents principally from the striatum (striato-
nigral GABAergic pathway). The basal ganglia receive inputs predominatly from the cerebral
cortex; however, subcortical (thalamic) inputs also exist. Cortical and thalamic efferent
information enters the striatum to be processed further within the system of the basal ganglia.
Although extrathalamic connections can also be observed, the output nuclei mainly project to
the thalamus, which, in turn, projects back to the cerebral cortex.

Basal ganglia connections with structures involved in analysis of visual information
Pouderoux and Freton (86) were the first to report visual responses in the feline CN.
Morphological findings on cats and rabbits have demonstrated that the corticostriatal
pathways send sensory information to the CN (41, 79, 111). The dorsolateral part of the
CN in the cats may receive its visual afferentation from the tectum via the SG of the thalamus
(34, 75). The excitatory visual inputs of the SN (note that since the overwhelming majority of
neurons collected by us were in the SNr, in the following, we pool our data under the name
substantia nigra SG) may originate from the CN (91) and from direct or indirect tectal
pathways through the STN (45, 49, 107) and the pedunculopontine tegmental nucleus
(57, 89).

Fig. 3. Schematic (A and B) and histological (C) illustration of SG

Fig. 4. Peristimulus time histograms
(PSTHs) of a tonically firing SG neuron
to moving light spot. Shaded areas
illustrate the receptive field and the
arrows in it the direction of spot
movement. Trajectory of the light
stimulus movement is shown on the

top of the figure. Abscissa time (ms) in
an ordinate shows the firing rate during

20 trials
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Multisensory sensitivity of neurons in the pathway
The neurons in basal ganglia exhibit characteristic receptive field properties, as evidenced by
the results obtained in our (8, 73–76) and other (20, 37, 64, 81, 99, 102) studies (Fig. 5). In
our studies, we identified visual, auditory, and somatosensory sensitivities in unimodal,
bimodal, or trimodal neurons. It is an interesting characteristic of the neurons in this
tecto-thalamo-cortico-thalamo-basal ganglia pathway that their sensitivity is not confined
to one sensory modality. Such multimodality was reported also in connection with the
neurons in the intermediate and deeper layers of the superior colliculus (100), the SG (5, 10),
the cerebral cortex along the AES, the AEV, and the insular visual area (6, 7, 35). Examples
of two such neurons are given in Figs 5 and 6. Although the neurons of this pathway often
were multimodal, the visual modality was found to be dominant and the visual-receptive
fields of these neurons were extremely large. Much less neurons show only auditory or
somatosensory preferences (Table I). It is an interesting property of this pathway that there is
an interaction between the different modalities (11, 46, 76) (Fig. 6).

Comparison of Receptive Field Properties in the Structures of the Pathway:
Length, Velocity, and Directional Sensitivity

In this section, we try to compare the length, velocity, and directional sensitivity of neurons
recorded in different parts of the loop. The data were recorded from the studies of Benedek
et al. (5, 10), Mucke et al. (73) Hicks et al. (36), and Nagy et al. (74, 75).

Length sensitivity
Length sensitiviy of neurons means that the cells were stimulated by bars of different lengths
moving orthogonally to the axis in front of the cat’s eye and the responses were compared

Fig. 5. Peristimulus time histograms (PSTHs)
demonstrating a direction-selective caudate single
unit. The thick lines under the PSTHs represent the
duration of the stimulus movement (peristimulus

time). The position and movement of the stimulus in
the visual field of the cat are depicted in the bottom.
Coordinates are given in degrees. The black spot left
to the arrows symbolizes the moving visual stimulus.

The upper and lower PSTHs correspond to 20
responses of the neuron to the stimulus moving along
the trace indicated by the upper and lower arrows,
respectively. VM: vertical meridian; HM: horizontal

meridian; BS: blind spot
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according to the lengths of the stimuli. In all studied structures, the majority of the visually
sensitive cells responded vigorously to the small stimuli (most notably spots of 1° in
diameter), whereas longer bar stimuli (3°, 5°, 10°, and 30°) evoked less intensive responses.
However, some cells showed the phenomenon of length summation; they responded with
increased intensity to increasing stimulus length. Only a negligible proportion of cells were
not sensitive to stimulus size. Proportions of responsiveness in each structure are shown in
Fig. 7.

Velocity sensitivity
The neurons in each structure of this cortico-thalamo-basal ganglia-cortical system showed
an overall sensitivity to moving objects. The preferred speed of the neurons was much higher
than in A17 and exceeded even the high-velocity sensitivity values of A18, A19, or the visual
areas around the suprasylvian sulcus (72).

Fig. 6. Responses of a trimodal caudate neuron to visual (left), auditory (middle), and somatosensory (right)
stimulation. Below the extents of the visual receptive fields and the sites of stimulation are indicated. The PSTHs
show the single-unit activities before and during stimulation. Time of stimulation is shown by thick black arrows

Table I. Number and proportion of unimodal, bimodal, and trimodal neurons in the studied structures

Sum

Unimodal Bimodal

TrimodalV A S VA VS AS

Ins/AEV 111 50 (45%) 16 (14%) 12 (11%) 11 (10%) 11 (10%) 25 (23%) 10 (9%)

SG 109 74 (68%) 12 (11%) 23 (21%) 8 (7%) 14 (13%) 1 (0.9%) 13 (12%)

CN 111 30 (27%) 9 (8%) 31 (28%) 10 (9%) 5 (5%) 18 (16%) 8 (7%)

SN 124 52 (42%) 6 (5%) 12 (10%) 4 (3%) 16 (13%) 5 (4%) 9 (7%)

The number of neurons is shown in the column “sum,” then the number and proportion of unimodal, bimodal, and
trimodal neurons are depicted. V: visual; A: auditory; S: somatosensory neurons; AEV: anterior ectosylvian visual
area; SG: suprageniculate nucleus; SN: substantia nigra; CN: caudate nucleus
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The velocities tested covered a wide range between 10°/s and 1000°/s. Most of the cells
responded to all the velocities tested, although we found cells that preferred a specific velocity
range. Most of the cells tested responded most vigorously to high velocities (60°/s and
above). A substantial proportion (approximately 20%) of the AEV neurons responded even to
stimuli moving at a speed of 640°/s (8, 45). No other area of the feline cortex contains such a
high proportion of neurons responding to very fast stimuli. None of the CN units showed
optimal responsiveness to the lowest examined velocity (15°/s) (74). The summarized results
of examination of velocity preference in all structures studied in our experiments are given in
Fig. 8.

Directional sensitivity
The visually sensitive neurons in the tectum-related structures preferred moving stimuli, and
neurons along the entire pathway exhibited rather strict directional sensitivity. Directionally
sensitive neurons were detected in the superficial as well as in the intermediate and deep
layers of the superior colliculus. The directional tuning of the neurons in the structures
described in our studies appeared to be rather narrow (5, 10, 36, 73–75) (Fig. 9). We found
that neuronal responses of AEV neurons were independent of stimulus shape: responses to a
moving bar or a round spot could not be distinguished from responses to moving visual noise.

Receptive field size
It is common in the geniculostriate system that receptive fields are small (1°–2°) and partly
overlapping. Therefore, it was surprising that, in AEV, we observed huge receptive fields
without retinotopic organization. Later, we found similarly huge receptive fields in the insular
visual area (6, 7, 36), the SG (5, 10), the CN (74, 75), and the SN (75).

Fig. 7. Sensitivity of neurons to
the length of stimulating light
bars in the structures described
in the review. The proportion
of neurons most sensitive to

different lengths of the
stimulating bars (bar width was
uniformly 1°–1.5°) are given as
pie chart presentations. SN
means the pooled data from
neurons in both SNr and SNc,

n means the number of
cells investigated in the

given structure
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The receptive fields of the neurons in the superior colliculus have been intensively
investigated during the past 40 years (100). Clear retinotopic organization has been described
for all layers. Single units in the superficial layers had relatively small receptive fields.

Fig. 8. Sensitivity of neurons to
the velocity of stimulating light
bars in the structures described
in the review. The proportion of

neurons most sensitive to
different velocities given in

degree/s values is given as a pie
chart presentation. For the rest
of explanations, see Fig. 7

Fig. 9. Direction sensitivity of
neurons in the structures

described in the review. The
proportion of neurons most

sensitive to different directions
is given as a pie chart
presentation. Direction

sensitivity is classified as the
proportion of velocity sensitive

in the preferred vs. non-
preffered direction.
DSI= 90%–100%,

directionally selective (DSel),
DSI= 50%–90%; directionally
sensitive (DSen), DSI≥ 50%;
non-directionally sensitive

(NDSen), DSI≤ 50%. For the
rest of explanations, see Fig. 7
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The deeper a neuron was located in the superior colliculus, the larger was its receptive field.
In the deep layers, the size of the visual receptive fields could be very large, that is up to 20°.
Simultaneously in the AEV, Olson and Graybiel (81) found signs of retinotopic organization.
We found that the receptive fields of the neurons along the pathway covered the entire visual
field of the eye (73).

To support this claim, we applied brief visual stimuli in random locations in the entire
visual field. We found no silent locations. This was followed by the selective stimulation of
the area centralis, and inversely, the visual field except for the area covered by the area
centralis. Finally, we performed a systematic analysis of the responses elicited in every part of
the receptive field (36), which revealed that the receptive fields in these structures indeed
covered the whole visual field of the stimulated eye. However, the position of the visual
stimulus within the huge receptive fields could strongly influence the discharge rate of the
single neurons. For every neuron in a huge receptive field, it was always possible to find the
best area stimulation that evoked maximal firing rate. The best area locations were
predominantly distributed within 40° around the area centralis. The firing rate declined
monotonously with shift of stimulus toward the periphery of the receptive field. Such
receptive field organization potentially allows stimulus localization, in spite of their immense
receptive field sizes.

Stimulus Localization in the Ascending Tectofugal System: Panoramic Localizers and
the Connected Distributed Population Coding

The panoramic coding ability of single neurons has not been extensively studied, although a
number of studies have quantified the spatial information carried by populations of panoramic
cortical neurons (54, 88). Panoramic coding means that in different parts of the receptive field
of a neuron, different levels of excitation respond to stimuli coming from different locations.
This applies to both auditory and visual neurons.

Neurophysiological studies on the optic tectum in birds demonstrated that single
auditory neurons provide information on the site of the stimulus source within their large
receptive field and this location coincides with retinotopic map of visual neurons in
superficial tectal layers (50). Such panoramic localizers were later described in invertebrates
(14, 77) in visually guided behaviors of crabs (65), owls (50), and in the mammalian superior
colliculus (44, 67).

Not much data have accumulated, however, on the existence of such a panoramic code
in the mammalian cortex. Middlebrooks et al. (67–70) provided evidence of the panoramic
localizing ability of neurons in the non-tonotopic auditory cortex along the AES of the feline
brain. The AES neurons seem to have the potential to encode sound location within their huge
receptive field throughout 360° of azimuth. The accurate source localization is enabled by the
distribution of information among a large population of such panoramic neurons (17, 69).
Our studies revealed that visual neurons in the AES and in SG have similar panoramic
abilities (Fig. 10) [The figure was obtained from Eördegh et al. (24)]. Direction of stimulation
could be coded through panoramic coding in the acoustic cortex of cats (17), similar to the
coding of the direction of movements in the motor cortex of primates (26). It has been
published that ensembles of broadly tuned neurons, located in three distinct areas of the
primate somatosensory cortex, obtain information about the location of a tactile stimulus
almost concurrently (78).
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Fig. 10. Positions of the
sites of maximum

responsiveness in the
receptive fields of

visually responsive 32
AEV single units (A) and
35 SG single units (B)
determined by the

highest firing rate in the
respective window [from
(24)]. Every single unit is
represented by an 8°× 8°
window representing the
motion of the visual

noise and a vector line
between the area

centralis and the center
of the “window” from
where the highest

activity was elicited.
Vertical and horizontal
meridians are presented
as thick lines, with

scaling given in degrees

Multimodal pathway including basal ganglia 105

Physiology International (Acta Physiologica Hungarica) 106, 2019



The visual cortical area along the AES was explored systematically first by
Mucke et al. (73) and Olson and Graybiel (81). Interestingly enough, the two groups
described entirely differing receptive field arrangements. Olson and Graybiel (81)
found moderately small receptive fields that followed a rather strict retinotopic arrange-
ment, while Mucke et al. (73) and the later publications of our group described extremely
large receptive fields that homogenously extended over the entire contra- and ipsilateral
visual field of the respective eye. Similarly contradicting findings were published
regarding the receptive fields in the SG. Krupa et al. (53) found large receptive fields
(greater than 20°) and no retinotopic arrangement. For half of the cells, the receptive
fields extended into both the contralateral and the ipsilateral fields of vision. On the other
hand, Hicks et al. (37) found relatively small receptive fields in a rather well-organized
retinotopic arrangement. The detailed study on the organization of receptive fields of
neurons of the SG by Benedek et al. (5, 10) indicated that the visually responsive neurons
of the SG had uniform, huge receptive fields that covered practically the entire visual field
of the respective eye.

The classical visual receptive field properties of the caudate neurons (74) make them
very similar to the neurons of the ascending tectofugal system (62, 83, 84). The visual
neurons in the CN have extremely large visual receptive fields that consistently include the
area centralis and cover almost the entire visual field of the contralateral eye (74, 86). The
large size of the receptive fields raised the question whether they were homogenous or
comprised of functionally differing parts.

We attempted to verify the existence of panoramic coding in three ways. In the first
experiments, we stimulated the receptive fields of neurons in the cat’s AEV using visual
stimuli with subsequent lighting of 12 light-emitting diode pairs at 15°–15° distance on the
165° perimeter of the interaural plane. We found visual responsiveness of the single neurons
varying according to the sites in the visual field (12). Later, we investigated the responsive-
ness of the single neurons to visual information arriving from different sites of the entire
receptive field. We divided the whole visual field of the investigated eye to 20 parts of equal
sizes and stimulated the individual parts one-by-one (11). We found that each single visual
neuron could carry information about stimulus locations throughout the whole physically
approachable visual field of the investigated eye. These neurons exhibited significantly
different responses to stimuli appearing in different regions of their huge receptive field (24).
Thus, these neurons appear to have the ability to provide information on the site of the
stimulus via their discharge rate. The huge receptive fields in combination with the spatial
selectivity suggest that these neurons may serve as panoramic localizers. At the population
level, the sites of maximal responsiveness are not confined to any specific area of the visual
field. We argue that groups of these panoramic localizer neurons with different locations of
maximal stimulus preference should have the ability to accurately code the locations of visual
stimuli.

As for the auditory neurons, they were consistently binaural with extremely large
receptive fields. Similar to the visual neurons, the sites of maximal responsiveness of the
auditory and bimodal neurons were distributed over the whole extent of the large receptive
fields. Thus, a large population of such panoramic visual, auditory, and multisensory neurons
could accurately code the locations of the sensory stimuli. Our findings support the notion
that there is a distributed population code of multisensory information in the feline associative
cortex (4, 11, 28).
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Discussion

One of the most impressive features of the central nervous system is its ability to process
information from a variety of stimuli to produce an integrated, comprehensive representation
of the external world. This function is served by the integration of specific sensory channels
developed to analyze signals from the individual sensory organs. In this review, we
concentrated on the visual properties of the neurons in a specific multimodal pathway that
project to the basal ganglia (Fig. 11). The ultimate goal of this multisensory integration is the
sensory guidance of reaching, saccades, grasping, and pursuit functions attributed to the
extrapyramidal system.

The manner this pathway processes sensory information markedly differs from what
comes to mind when talking about classical visual processing. It seems that besides the
traditional and classical sensory pathways, there is also a multisensory pathway in the
mammalian brain that composes an environmental image from visual, auditory, and
somatosensory modalities. It seems that this pathway is unique to the feline brain, although
some components of it have been described in the canine and ferret brain, too. No similar
pathway has been described hitherto in the monkey or in the human brain. An interesting
feature of this pathway is that no clear-cut or specific temporal sequence of activation can be
observed upon visual stimulation (24, 106).

Parallel, largely segregated, closed-loop projections are an important component of
cortical-basal ganglia-cortical connectional architecture (64). The basal ganglia are widely
regarded as structures involved in sensorimotor integration (59, 98). The motor aspects of
their function have been extensively analyzed; despite the fact that multisensory information
processing appears to be critical for the execution of their role in behavior control, little is
known about the sensory background of their function. Electrophysiological, anatomical,
and behavioral studies have clarified the roles of both the striatum and the SN in visual

Fig. 11. Connections of the tecto-thalamo-cortico-basal ganglia circuitry. Connections within the tectal visual system
are marked with dark arrows. SC: superior colliculus; SN: substantia nigra; SG: suprageniculate nucleus; LGN:
lateral geniculate nucleus; Pul: pulvinar; LP: nucleus lateralis posterior; CN: caudate nucleus; IVA: insular visual

area; AEV: anterior ectosylvian visual area
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information processing (16, 22, 33, 34, 38, 45, 62, 74, 75). Data on the representation of other
sensory modalities in the basal ganglia are scarcely available. Although some observations
have been published on the existence of auditory and somatosensory neurons in the
neostriatum (20, 38, 86) and in the SN (39, 98, 102), description of the auditory and
somatosensory receptive field properties of the caudate and nigral neurons was still missing.
Similarly, little is known about the multisensory receptive field properties of the neurons in
the CN (20, 86). Furthermore, we have no information about the neural code of auditory,
somatosensory, and multisensory information processing in the CN and the SN. Does a
traditional topographical code exist? Or, similarly to the absence of retinotopy in these two
structures (73, 74), are they characterized by the absence of topographical coding of auditory
and somatosensory stimulus source location? The particular receptive field properties of the
caudate and nigral neurons were found to be quite similar to those reported earlier in those
thalamic and cortical areas that receive multisensory information from the intermediate and
deep layers of the superior colliculus. Thus, a comparison of the receptive field properties in
the SN and CN with those of the tecto-thalamo-cortical pathway described earlier could
contribute to elucidation of the sensory afferentation of the basal ganglia.

The visual properties of this pathway differ from those described in the geniculo-striate
system. The differences include multisensory processing, sensitivity to velocity, directional
preference, and the lack of retinotopy. Furthermore, stimulus localization is based not on the
merging of the small receptive fields; instead, it seems to be based on panoramic population
coding. As the composing structures have important role in practically every action, they
could be responsible for automatic movements like saccadic eye movements, pursuit,
reaching, and grasping.

The receptive field properties reflect motion sensitivity. The high velocity and direc-
tional sensitivity observed in the studied structures is rather uncommon in the geniculo-striate
system. Another outstanding property is the extremely large receptive field size, which,
together with the lack of orientation sensitivity, indicates that no high-resolution analysis
takes place in the structures of the pathway.

AEV lacks global retinotopic organization in its huge receptive fields. Similar large
receptive fields have been found upon the exploration of the insular visual area that lies on the
rostral, gyral surface of the Sylvian cortex. In addition to the uniformly extensive receptive
fields, the Blakemore group described some regular arrangement of neighboring neurons in
the “center” of the receptive fields (97). It is interesting in this aspect that Benedek et al. (4)
found that the most responsive sites of the receptive fields were located mostly around the
area centralis but were dispersed in differing regions, providing the neuronal basis for a
possible panoramic coding process. The Wallace group (52, 95) approached this question in a
bit different way, but they reached a similar conclusion regarding the large receptive fields
and panoramic coding in AEV and SN.

The receptive field properties of neurons in the CN (74) and SN (75) were found to be
rather similar to those observed earlier in the SG and in the neurons along the AES. The
receptive fields in both structures were extremely large, covered the contralateral and part of
the ipsilateral hemifields.

This pathway appears to be unique in its exceptional physiological properties, multi-
modality, receptive field structures, and the very high velocity and directional sensitivity.
Extremely large receptive fields are well known in monkeys, whose inferotemporal cortex,
medial superior temporal, and middle temporal area receptive fields are known to include a
large portion of the visual fields (66). Nuclei belonging to the accessory optic system of
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monkeys are also reported to have huge receptive fields (40). Guirado et al. (31) described an
ascending tectofugal visual system in amniotes.

Summing up our results, we described a neural pathway of the feline brain that processes
multimodal tectal information toward the basal ganglia through a thalamo-cortico-thalamic
loop (Fig. 11). Our results fit well into the theory published by McHaffie et al. (64)
concerning subcortical loops through the basal ganglia. McHaffie’s paper describes three
parallelly running subcortical loops including the superior colliculus, some midline thalamic
nuclei, and the basal ganglia. The reference given in this paper about the participation of
midline thalamic structures refers to rat studies (53). The loop described by us concerns the
cat’s brain and includes SG, which is the target of the cortical neurons along the AES, and
most notably that of the insular visual area. The physiological function of the two pathways
appears to be completely overlapping. Our report seems to be the first detailed description of
receptive field properties of the cortico-thalamo-basal ganglia-cortical pathway in the feline
brain. The uncommon receptive field properties might shed light on the function of this
pathway including basal ganglia in humans, too.
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