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Abstract

In this paper we describe our methodology for automatic detec-
tion of speaker alcoholization. Our task is restricted to detection
of considerable alcoholization (alcohol blood level ≥ 0.8 per
mille), so that a two-class classification problem is to be solved.
In particular, our attention is focused on the influence of the
alcohol intoxication on the prosodical aspect of the spoken lan-
guage. A new kind of signal intervals underlying the extraction
of prosodic features (phrasal units) is proposed along with a
method for their localization, which makes it possible to avoid
the word segmentation of the speech signal as a preceding stage
of the classification process. We also assess the utility of various
prosodic features computed on such intervals for the task spec-
ified above. In our experiments on unseen data, we achieved
classification rates of almost 69% when discriminating between
alcoholized vs. not alcoholized speech.

1. Introduction
It is a well known fact that diverse qualities of spoken language
can be influenced by factors such as stress experienced by the
speaker [13], his emotions [11], or impairment of his physi-
ological functionality caused by drug or alcohol intoxication
[10, 8, 3].

There have been several efforts to identify and classify
stress and emotions using spoken language [12, 14, 1]. Both
acoustic features (e.g. cepstral coefficients) and prosodic fea-
tures (e.g. evolution of fundamental frequency F0) have been
used in these experiments. To the knowledge of the authors,
no experiments on automated detection of alcohol intoxication
via spoken language have been conducted as yet. Nonethe-
less, we deem these problems to be closely related to each
other. Indeed, in [4] we find a definition of stress as “. . . a
psycho-physiological state characterized by subjective strain,
dysfunctional physiological activity, and deterioration of per-
formance”. On the other hand, similar effects can be attributed
to alcohol intoxication as well. Thus, we expect alcohol intox-
ication to affect several prosodic characteristics of the spoken
language.

One possibility to attack this classification problem by
means of structural prosodic features is to calculate one vec-
tor of prosodic features for each signal interval corresponding
to a lexical unit of speech (e.g. word) occurred in the signal
[7, 9]. Thus, a speech recognition engine must be run prior to
the actual classification. This can be a major bottleneck, since
the word recognition rates of a system drop significantly when
speech abnormalities (for instance emotions [13]) are present.

In this paper we propose a new approach for the determi-
nation of signal intervals which underly extraction of prosodic
features. The strategy suggested in section 2 allows to avoid the
employment of Automated Speech Recognition at the preced-
ing stages of the classification process, by relating the prosodic
structural features to the signal intervals localized by means of
basic prosodic features (e.g. zero-crossing rate, fundamental
frequency and energy) only. We call such intervals phrasal
units.

Another aspect of a classification problem is the set of the
employed prosodic features itself. In section 3 we present four
different groups of features which we use in our classification
experiments. In section 4 an experimental evaluation of phrasal
units as signal intervals underlying the feature extraction and of
the features themselves is given for the task, in which alcohol
intoxication is to be detected. The conclusion given in section 5
summarizes the content of the paper.

2. Phrasal units
When looking for indicators of alcohol intoxication in speech,
we assume that these indicators are stable, i.e. they persist
throughout the entire speech signal. This observation allows for
three strategies to choose intervals (prosodic units) for which
prosodic features will be computed:

• micro-intervals (e.g. 10-msec-frames);

• entire signal as a single interval;

• moderate number of macro-intervals (typical duration of
a few seconds).

From the alternatives above only the last one appears to result in
a time resolution which is fine enough to produce feature vec-
tors accounting for local changes in the prosodic characteristics
of the utterances (such as regression coefficients for F0) but still
allow their meaningful and reliable estimation.

A typical choice for such intervals are linguistically based
units such as words or syllables. However, this presupposes
word or syllable recognition as the preceding step, and in sec-
tion 1 we have pointed out that this is highly error prone. An
alternative to linguistically motivated units are prosodically mo-
tivated units. In our methodology, the corresponding speech
intervals are delimited by silence intervals which, on their
part, are determined by means of frame-wise calculated basic
prosodic features such as:

• fundamental frequency (where possible);

• zero-crossing rate;

• energy.
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Figure 1: An example of syntactically justified phrasal units.

We call the prosodic units that are generated this way
phrasal units (PhU). It is remarkable that the boundaries be-
tween phrasal units correlate strongly with syntactic boundaries
in the underlying text. Indeed, the detected boundaries coincide
most of the time (precision 85%) with full intonational bound-
aries which, according to [2], can take over the role of punctu-
ation marks in spoken language. Picture 1 shows an example
where the speech signal based upon the German text

“Endlich gab der Nordwind den Kampf auf. Nun
wärmte die Sonne die Luft mit ihren freundlichen
Strahlen und schon nach wenigen Augenblicken
zog der Wanderer seinen Mantel aus.”

has been split in three phrasal units which correspond to the first
sentence and to the main and subordinate clauses of the second
sentence. Also, intervals of silence have been localized.

The average length of phrasal units depends strongly on the
speech tempo in the corpus but typically lies between one and
three seconds.

3. Features for classification
For each prosodic unit we calculate one vector of features rep-
resenting this signal interval. At this place, we introduce four
groups of features which will be evaluated in our experiments.

The first group PM21 consists of prosodic features which
describe macro-tendencies in the fundamental frequency and
energy. Calculation of these features is a standard component
of the prosody module of the VERBMOBIL-project [9]. In par-
ticular, we consider regression coefficients and positions and
values of maxima and minima for both energy and fundamental
frequency, on- and offset positions and values for fundamental
frequency, durations of pauses around prosodic units and some
other features [7]. Altogether, this group contains 21 features.

Durational characteristics of voiced and unvoiced intervals
within prosodic unit compose the second group VU11. Those
are 11 features, reflecting absolute lengths and numbers of
voiced and unvoiced intervals in the speech signal as well as
their proportions [6].

The only group of non-prosodic features that we use for our
experiments is the set of long-term cepstral coefficients LTM24.
This group is formed by 12 mel-cepstral coefficients along with
their time differences. To calculate these coefficients, we aver-
age the frame-wise computed mel-cepstral coefficients and 12
time differences over the entire signal and assume that all of its
prosodic units possess these average values. We expect these

coefficients to account for specific properties of the alcoholized
speech such as increased nasalization.

Finally, we consider jitter and shimmer, short-term fluctua-
tions in energy and fundamental frequency. Most definitions of
jitter and shimmer are rather descriptive than constructive. For
instance, in [5, p.79] we read:

“Jitter means (stochastic) small frequency
changes and modulations of a signal. . . ”

Several calculation rules have been proposed for jitter and shim-
mer (see for instance [12]). For our experiments we make use
of a linear filtering mechanism. In order to obtain sequence
of jitter values Ji, we consider the sequence of F0-values fi

computed using an ANN-driven period-synchronous method [7,
pp.145–150]. This sequence is highpass-filtered via convolution
and normalized by fi:

Ji =

m�
µ=0

fi−µgµ

fi

. (1)

The employed filter has impulse response g={g0, . . . , gm} set
as a sequence of binomial coefficients. For example, such a fil-
ter of size m = 2 has the impulse response g={−1, 1} and the
filter of size m = 4 the impulse response g= 1

4
{−1, 3,−3, 1}.

The higher the filter size, the larger is the preserved portion of
high frequencies in the spectrum of the sequence of the conse-
quent F0-values. Which filter size is optimal for a classification
is one of the subjects of the discussion in section 4.2. Finally,
the average and variance of the values Ji within the prosodic
unit are computed for the last group of features JS4:

Javg =

�
Ji<Jθ

Ji

#
Ji<Jθ

Ji

; (2)

Jdev =

������
�

Ji<Jθ

(Ji − Javg)2

#
Ji<Jθ

Ji

, (3)

where #
Ji<Jθ

Ji is the number of periods of fundamental fre-

quency detected in the prosodic unit, such that the correspond-
ing jitter value does not exceed the given threshold Jθ (thus,
obvious outliers are not taken into account). Calculation rules
for the shimmer-based features Savg and Sdev are analogous
but based upon the energy values of the localized F0-periods.



Alcohol Blood Level 0.0 < 0.4 < 0.8 < 1.2 < 1.6 < 2.0 < 2.4

Recordings 32 20 20 18 20 7 3

Table 1: Distribution of recordings in the corpus over alcohol blood level.

4. Experiment
4.1. Database

For our experiments we used a collection of alcoholized speech
samples assembled at the Police Academy of Hessen, Germany.
It contains 120 readings (approx. 87 minutes) of the German
version of the fable “The Sun and the Northern Wind”, pro-
duced by 33 male speakers in different alcoholization condi-
tions with alcohol blood level varying between 0 and 2.4 per
mille. The phrasal units obtained from this corpus as described
in section 2 have the following characteristics: average duration
2.3 sec, average speech tempo 20.8 PhU/min.

The distribution of the collected recordings over alcohol
blood level is shown in table 1. For training and classification
purposes the records were further divided in two classes: al-
coholized (AL) and not alcoholized (NAL) with the boundary
value 0.8 per mille.

4.2. Results

We employ Artificial Neuronal Networks (ANN) as classifier,
whereby several Multi-Layer Perceptron (MLP)-topologies are
trained and tested independently1 . Two criteria are used to as-
sess the achieved classification success:

1. RRBEST — the highest recognition rate over different
MLP-topologies obtained for the given set of classifica-
tion features;

2. RRAV G — the average recognition rate over all investi-
gated MLP-topologies.

In both cases recognition rates are defined as the ratio of the
number of correctly classified phrasal units to the total number
of phrasal units in the set.

Due to the data sparsity we start by splitting the corpus in
training and validation set, the latter acting as a test set at the
same time. The neuronal networks are trained with the train-
ing set and the validation set is used to first determine the best
MLP-topology for each combination of features, and then the
best set of features. Both RRBEST and RRAV G are taken into
account when deciding which set of features is the most useful
for classification. However, since we test on the validation set,
we give RRAV G more influence on this decision, arguing that
more useful features are in general capable of better classifica-
tion, no matter how the topology of the neuronal network to be
trained is specified.

First of all, we compared the strategy which uses phrasal
units as prosodic units against the strategy which acquires
prosodic units by splitting the speech signal in equal time inter-
vals (with a length equal to the average length of phrasal units
in the corpus). Using group PM21 we found that the decrease
in performance in the latter case amounted to almost 3 percent-
age points for both RRBEST and RRAV G, which proved the
meaningfulness of phrasal units.

Our next goal was to determine the optimal size of the
highpass-filter used to calculate the four jitter- and shimmer-
based classification features. For this purpose we conducted a

1We employ MLP with no hidden layers, one hidden layer with 3 or
5 nodes and two hidden layers with respectively 5 and 3 nodes.

n = 2 n = 3 n = 5
RRBEST 70.8% 68.6% 68.0%

Table 2: Influence of the filter size in the calculations of jitter
and shimmer on the classification performance.

PM21 JS4 VU11 LTM24 RRAV G RRBEST

% %
+ – – – 69.9 72.8
– + – – 67.6 70.8
– – + – 59.8 62.7
– – – + 67.1 84.7
+ + – – 72.2 74.8
+ – + – 69.0 72.5
+ – – + 65.3 73.0
+ + + – 70.8 73.7
+ + + + 64.6 77.6

Table 3: Recognition rates on the validation data set using dif-
ferent classification features; used groups are marked as “+”,
unused as “–”.

series of experiments using only these four features for train-
ing and classification. Table 2 shows the achieved values of
RRBEST for filter sizes m = 2, 3, 5. We see that the sim-
ple definition of jitter and shimmer as the normalized difference
of two neighbor F0- and energy-values, respectively, yields the
best classification rates. In the following, we therefore keep
these definitions.

Next, we focused our attention on the optimal choice of the
set of features for our task domain. We simplified the problem
by looking for the optimal combination of the feature groups
as they were defined in section 3, instead of ascertaining the
usability of each feature for itself. Table 3 shows classification
results for various combinations of feature groups.

We see that the combination of groups PM21 and JS4 on av-
erage leads to the best recognition rates, even though there was
one MLP-topology which resulted in the absolutely best recog-
nition rates when using classification features from LTM24.

For practical applications, it suffices to provide the entire
speech signal (record) with only one label identifying the alco-
holization of the speaker. Since the alcoholization is a stable
speaker characteristic, the straightforward majority-voting so-
lution can be applied, labeling the whole speech signal as alco-
holized (AL) if the majority of the phrasal units it consists of
are labeled so, and not alcoholized (NAL) otherwise. With this
method we obtained recognition rates RRBEST = 80.2%, us-
ing the combination of feature groups PM21 and JS4. Table 4
presents the confusion matrices for this combination, based on
the phrasal units as well as on the entire records.

The purpose of our next experiment was to obtain classifi-
cation results on unseen data using the features from the groups
PM21 and JS4. Because of the small size of the corpus we
followed a Leave-One-Out strategy. The corpus was split into 5
equal parts, and 5 independent tests with the MLP-topology cor-
responding to RRBEST were conducted. The resulting recog-



Phrasal units
Reference Hypothesis

NAL AL
NAL 155 (79.1%) 41 (20.9%)
AL 42 (29.6%) 100 (70.4%)

Entire records
Reference Hypothesis

NAL AL
NAL 15 (93.8%) 1 (6.2%)
AL 3 (33.6%) 6 (66.7%)

Table 4: Confusion matrices for phrasal units and entire
records; groups PM21 and JS4.
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Figure 2: Distribution of record-based recognition rates over
alcohol blood level.

nition rates amounted to 61.7% when considering each phrasal
unit for itself, and to 68.8% when classifying record-wise.

Finally, the diagram in figure 2 makes clear that most dif-
ficulties occur when dealing with alcohol blood level close to
0.8 per mille, the threshold that we have chosen as a boundary
between two classes (AL and NAL). Almost all records exhibit-
ing very high or very low degree of alcoholization were classi-
fied correctly, whereas the vast majority of mistakes were made
within close proximity of the boundary.

5. Conclusion
We have shown that the problem of automated recognition of
alcohol intoxication in human speakers can be tackled using
prosodic speech characteristics. We also have demonstrated
how to extract prosodic features with good classification abil-
ities from a speech signal without a lexical segmentation of the
signal (e.g. word extraction). Indeed, it appears to be suffi-
cient for a successful classification to relate vectors of struc-
tural prosodic features to signal intervals localized solely by
means of basic prosodic features. Moreover, we have shown
that such intervals (called phrasal units) often correspond to
syntactic structures of the language.

We also determined the set of structural prosodic features
capable of the best classification in the domain of automated
detection of alcoholization. Along with features which de-
scribe macro-tendencies in the fundamental frequency and en-
ergy, jitter- and shimmer-based characteristics turned out to be

important for successful classification.
In our experiments on a two-class classification problem

(alcoholized vs. not alcoholized), we achieved a recognition
rate of almost 69% on unseen data, most problems being en-
countered in the region close to the boundary between the two
classes.
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