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Abstract: The simulation of complex engineering structures built from magneto-rheological
elastomers is a computationally challenging task. Using the FE2 method, which is based on
computational homogenisation, leads to the repetitive solution of micro-scale FE problems, causing
excessive computational effort. In this paper, the micro-scale FE problems are replaced by
POD reduced models of comparable accuracy. As these models do not deliver the required
reductions in computational effort, they are combined with hyper-reduction methods like the
Discrete Empirical Interpolation Method (DEIM), Gappy POD, Gauss–Newton Approximated
Tensors (GNAT), Empirical Cubature (EC) and Reduced Integration Domain (RID). The goal of
this work is the comparison of the aforementioned hyper-reduction techniques focusing on accuracy
and robustness. For the application in the FE2 framework, EC and RID are favourable due to their
robustness, whereas Gappy POD rendered both the most accurate and efficient reduced models. The
well-known DEIM is discarded for this application as it suffers from serious robustness deficiencies.

Keywords: model order reduction; POD; DEIM; gappy POD; GNAT; ECSW; empirical cubature;
hyper-reduction; reduced integration domain; computational homogenisation

1. Introduction

The ongoing development of so-called smart materials over the last decades has given rise to
the quest for numerical models which enable predictive, fast and accurate simulations of engineering
structures. For smart materials, the desired constitutive behaviour is frequently architectured by
tailoring the microstructure of said material, e.g., fibre-reinforced composites, auxetic materials, metal
foams and many more. An established approach to model such structures is denoted multiscale
modelling for which commonly two scales, the micro- and macro-scale, are introduced. The geometric
complexities and advanced boundary conditions of engineering structures are modelled on the
macro-scale, whereas the microstructure is represented on the micro-scale. One way to consistently
couple micro- and macro-scale is the so-called FE2 method [1]. FE2 is a multi-level finite element
method that derives the constitutive response in every quadrature point of the macro-scale from an FE
simulation incorporating the microstructure using the framework of computational homogenisation [2].

Even though the everlasting increase in computational resources following Moore’s law has
enabled scientists to solve FE problems with 1013 DoFs [3], the numerical cost of FE2 simulations is
still prohibitive for most realistic problems. The idea of replacing the micro-scale FE simulation by a
less expensive model has brought together the fields of multiscale and reduced-order modelling.

In the last several years, several viable models targeted at reducing the multiscale FE simulation
have been developed. In this contribution, we focus on projection-based models using a reduced
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basis, but there are also alternatives like the Nonuniform Transformation Field Analysis [4,5] and
Proper Generalized Decomposition [6,7]. In projection-based reduced models, the reduced basis is
a set of few functions with global support that is constructed to approximate the solution manifold
of the problem in question. Projecting the governing equations onto the reduced basis yields a
considerable reduction in the number of unknowns compared to using the locally supported FE basis
functions. The most commonly used methods to construct the reduced basis are Proper Orthogonal
Decomposition (POD) [8–11] and the Reduced Basis Method [12–15]. Both rely on solutions of the
parametrised partial differential equation (pPDE), for POD, the pPDE is solved for a set of given
parameters, whereas the Reduced Basis Method employs a greedy algorithm equipped with an
a posteriori error estimator to determine the parameters adaptively. As there are hardly any efficient
and reliable error estimators for coupled nonlinear multi-physic problems, POD is the method of
choice in this work. In [16], a POD reduced basis was used for the first time in multiscale analysis of
nonlinear elasticity at finite strains, namely by reducing the micro-scale model. This was extended
in [17] by introducing the computation of a consistent tangent operator based on the reduced model.

For problems with nonlinearities or non-affine parameter dependence, the sole application of a
reduced basis does not render the desired computational savings as the nonlinearity or non-affine
parameter dependence has to be evaluated for the original model and subsequently projected onto
the reduced basis. A widely used method accelerating the computation of the nonlinearity is the
(Discrete) Empirical Interpolation Method (D)EIM [18,19]. DEIM approximates the nonlinearity by
a linear combination of collateral basis functions. The coefficients are computed using interpolation
based on values of the nonlinearity sampled at a relatively small number of points. In order to
improve the approximation, interpolation is replaced by linear regression for Gappy POD [20].
In [21], Petrov–Galerkin projection is used to increase the stability of reduced models. Together
with Gappy POD and possibly differing approximations of the reduced system matrix, this is referred
to as GNAT (Gauss–Newton Approximated Tensors). As DEIM, Gappy POD and GNAT use collateral
basis functions to approximate the nonlinearity, they are classified as collateral basis methods. Both
POD and DEIM have been applied previously to various mechanical problems: a simplified beam
model for multiscale modelling at small strains including damage [22], strain-softening viscoplasticity
at small strains [23] and structural mechanics using a variant of DEIM based on the unassembled
nonlinearity [24]. A collateral basis for the stresses instead of the nonlinearity was used in [25] for
homogenisation of elasto-plastic materials at small strains, together with Gappy POD and a tailored
method to determine the locations at which the stresses are evaluated in the reduced model. A detailed
survey of DEIM, Gappy POD and GNAT for homogenisation of hyper-elastic materials at finite strains
that focus on accuracy and robustness was performed in [26].

Cubature methods are another possibility of reducing the cost of computing the nonlinearity.
In this sense, a problem specific quadrature rule replaces the quadrature used to integrate the weak
form, e.g., Gaussian quadrature. This empirically determined quadrature uses only a subset of
the support points or elements of the original FE model and computes the weights accordingly.
This idea was put forward in [27] and later introduced to the field of computational homogenisation
as Energy-Conserving Sampling and Weighting (ECSW) [28]. A possibility to reduce the cost of
constructing the cubature was introduced in [29] together with the term Empirical Cubature (EC).
The accuracy and efficiency of EC was compared to a variant of DEIM/Gappy POD used in [25] for
homogenisation of elasto-viscoplastic materials in small strains [30].

The Hyper-Reduction method [31] makes use of a reduced integration domain (RID) to speed
up the computation of the nonlinearity. It defines test functions with support confined to the RID,
which in combination with trial functions obtained by POD results in a Petrov–Galerkin projection.
The expression hyper-reduction was coined in [31] but is now used as a term encompassing all
methods aiming at accelerating the computation of nonlinearities in the field of model reduction.
Therefore, we will refer to the Hyper-Reduction method [31] as RID to avoid any notational confusion.
The RID was used for the simulation of elasto-plasticity [32], the simulation of nonlinear thermal and
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mechanical problems involving internal variables [33] and the lifetime assessment of elasto-plastic
structures [34]. An algorithmic comparison with DEIM for the nonlinear heat equation was carried out
in [35]. Similarly, the Missing Point Estimation (MPE) method [36] computes the Galerkin projection
in a small subset of the computational domain to accelerate the assembly of the reduced problem.
An investigation of the MPE method is beyond the scope of this article and accordingly we refer the
interested reader to [37], where a detailed comparison of MPE, DEIM and Gappy POD was performed
for a predator–prey model.

In this contribution, we will show the first application of reduced-order modelling for
computational homogenisation in magneto-mechanics at finite strains. We will focus on reducing
the problem at the micro-scale, using POD to compute the reduced basis and applying following
hyper-reduction methods: DEIM, Gappy POD, GNAT, EC and RID. Through various numerical
studies, a thorough comparison between the techniques with emphasis on accuracy and robustness
will be drawn.

2. Homogenisation in Magneto-Mechanics

The simulation of engineering structures requires evaluations of a material law at the
engineering/macro-scale (≈mm–m). For magneto-rheological elastomers (MREs), the constitutive
behaviour on the macro-scale is determined by the underlying microstructure (≈nm–µm). Usually,
MREs are composite materials consisting of an elastomeric matrix with embedded magneto-active
particles [38] which induce changes in stiffness or deformations due to applied magnetic fields. Due to
the scale separation, a resolution of the microstructure in the discretisation of the macrostructure is
computationally not feasible. The tools of computational homogenisation offer an expedient to the
issue as the constitutive behaviour for any point on the macro-scale is computed from the solution of a
boundary value problem (BVP) representative for the microstructure. The material composition of the
microstructure is described by an RVE (Representative Volume Element) for which the constitutive
behaviour of the constituents is prescribed. In the context of magneto-mechanics, the macroscopic
deformation gradient F and the magnetic field H are the input variables for the microstructural
BVP [39,40]. In the remainder, we use an over-bar to denote macro variables (•).

As is common in homogenisation, the micro displacement and scalar magnetic potential are
additively split into two parts, the macroscopic fields and the fluctuations:

u = F · X + ũ y = H · X + ỹ. (1)

The macroscopic fields depend linearly on the macroscopic deformation gradient F, the
macroscopic magnetic fieldH and the position vector X.

We use linear boundary conditions to fulfill the Hill–Mandel condition. Using the fluctuations ũ
and ỹ as primary variables allows us to transform the linear into homogeneous boundary conditions.
The RVE occupies the domain B0 ⊂ Rd with its boundary ∂B0, where d denotes the space dimension.
The energy density Ψ (F,H) is expressed in terms of the deformation gradient F and the magnetic
fieldH and used to define the constitutive relations for the Piola stress P and the magnetic inductionB.
The balance of linear momentum and Gauss’s law for magnetism (also known as conservation of
magnetic flux) complete the strong form of magneto-mechanics on the micro-scale [41]:

F = ∇X u = F +∇X ũ H = ∇Xy = H+∇X ỹ in B0,

P =
∂Ψ (F,H)

∂F
B = −∂Ψ (F,H)

∂H
in B0,

Div P = 0 DivB = 0 in B0,

ũ = 0 ỹ = 0 on ∂B0.

(2)
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For the sake of an FE solution, the weak form∫
B0

∇X δũ : P dV = 0 ∀δũ ∈
{

δũ ∈ H1(B0) : δũ = 0 on ∂B0

}
and

∫
B0

∇X δỹ ·BdV = 0 ∀δỹ ∈
{

δỹ ∈ H1(B0) : δỹ = 0 on ∂B0

} (3)

is derived using the test functions δũ and δỹ.
For the spatial discretisation, the standard Bubnov–Galerkin FEM is used. The continuum body

is approximated by a mesh B0 ≈ T =
M⋃

e=1
Ωe with Ωi ∩ Ωj = ∅ for i 6= j and i, j ∈ [1, . . . , M],

where M denotes the number of elements. The displacement and potential fields in any finite
element Ωe are approximated by the piecewise continuous vector-valued polynomials Nu

i (X) and
scalar polynomials Nyi (X), respectively:

ũ
Ωe

:=
du

e

∑
i=1

ũi Nu
i (X), δũ

Ωe
:=

du
e

∑
i=1

δũi Nu
i (X),

ỹ
Ωe

:=
dye

∑
i=1
ỹi N

y
i (X), δỹ

Ωe
:=

dye

∑
i=1

δỹi N
y
i (X).

(4)

The scalars du
e and dye are the numbers of mechanical and magnetic DoFs in the element Ωe. Using

these approximations results in the discrete weak form

R̂ =

[
R̂u ∈ RNu

R̂y ∈ RNy

]
=

M
A

e=1

[
eR̂u ∈ Rdu

e

eR̂y ∈ Rdye

]
= 0 with


eR̂u[i] =

∫
Ωe

∇X Nu
i : P dV

eR̂y[i] =
∫

Ωe

∇X Nyi ·BdV

 for Ωe ∈ T . (5)

The sub-/superscripts (•)u/(•)u and (•)y/(•)y encode whether a variable is associated with
the mechanical or magnetic component and are used throughout the remainder of the paper.
The notation ˆ(•) is consistently used to differentiate between a continuous field and its discrete FE
counterpart, e.g., ũ is the displacement fluctuation and ˆ̃u is the vector containing the nodal coefficients
for the FE discretisation. To refer to single elements of any vector/first-order tensor X and of any

matrix/second-order tensor Y , the notation X[i] and Y [i, j] are used. The operator
M
A

e=1
represents the

assembly of the element contributions and the scalars Nu, Ny and N = Nu + Ny are the numbers of
DoFs employed in the FE discretisation.

The numerical solution of the system of nonlinear Equations (5) using the iterative
Newton–Raphson scheme requires its linearisation

Kk∆ ˆ̃yk = −R̂k with ˆ̃yk+1 = ˆ̃yk + ∆ ˆ̃yk and ˆ̃yk =

[
ˆ̃uk
ˆ̃yk

]
, (6)

introducing the iteration count k.
For the sake of notational clarity, the dependences of R̂k

(
ˆ̃yk; F,H

)
and Kk

(
ˆ̃yk; F,H

)
are dropped.

The tangent stiffness matrix K is given as
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K =

[
Kuu ∈ RNu×Nu Kuy ∈ RNu×Ny

Kyu ∈ RNy×Nu Kyy ∈ RNy×Ny

]
=

M
A

e=1

[
eKuu ∈ Rdu

e×du
e eKuy ∈ Rdu

e×dye

eKyu ∈ Rdye ×du
e eKyy ∈ Rdye ×dye

]

with

eKuu[i, j] =
∫

Ωe

∇X Nu
i :

∂P
∂F

: ∇X Nu
j dV

eKuy[i, j] =
∫

Ωe

∇X Nu
i :

∂P
∂H
· ∇X Nyj dV

eKyu[i, j] =
∫

Ωe

∇X Nyi ·
∂B

∂F
: ∇X Nu

j dV

eKyy[i, j] =
∫

Ωe

∇X Nyi ·
∂B

∂H
· ∇X Nyj dV

for Ωe ∈ T .

(7)

Once the solution of (5) is obtained, the output quantities P and B are computed using

P =
1
V

∫
B0

P dV and B =
1
V

∫
B0

BdV, (8)

where the volume of the RVE is denoted by V.

3. Reduced-Order Modelling

3.1. Reduced Basis

Instead of using a large number N of compact trial functions, projection-based ROMs are built
upon a small number n of global functions spanning the space in which the solution manifold of
the pPDE resides. Consequently, the unknown fluctuation fields ũ and ỹ are expressed as linear
combinations of the global trial functions with the reduced coefficients ũr

i and ỹr
i :

ũ =
nu

∑
i=1

ϕu
i ũr

i and ỹ =
ny

∑
i=1

ϕyi ỹ
r
i . (9)

The reducibility of the problem, namely the conditions nu � Nu and ny � Ny, is accepted
implicitly but has to be confirmed by numerical studies. To avoid scaling issues due to differently
chosen units, separate reduced bases are used for the mechanical and the magnetic fluctuation
fields. The numbers nu, ny and n = nu + ny are the numbers of reduced basis functions to be
taken into account.

A common method to compute the reduced basis for a pPDE is POD [9,42]. In order to do so, we
define the parameter domain of the microscopic problem

P =
(

Fmin
[1, 1], Fmax

[1, 1]
)
× · · · ×

(
Fmin

[d, d], Fmax
[d, d]

)
×
(
H

min
[1],Hmax

[1]
)
× · · · ×

(
H

min
[d],Hmax

[d]
)
⊂ Rd2+d

(10)

with reasonably chosen limits for the components of the macroscopic loading parameters. Each element
pi =

(
F i,Hi

)
∈ P comprises an instance of the macroscopic deformation gradient and magnetic field.

The parameter domain P is sampled using ns parameters gathered in the set

S =
{

p1, . . . , pns

}
⊂ P (11)

and the full-order model (FOM) (5) is solved for all elements in S . The solutions are collected in the
snapshot matrices

Su =
[

ˆ̃u(p1), . . . , ˆ̃u(pns
)
]
∈ RNu×ns and Sy =

[
ˆ̃y(p1), . . . , ˆ̃y(pns

)
]
∈ RNy×ns (12)
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and the subsequent application of

POD (Su)→ Bu =
[
ϕ̂u

1, . . . ,ϕ̂u
nu

]
∈ RNu×nu and POD

(
Sy
)
→ By =

[
ϕ̂y1 , . . . ,ϕ̂yny

]
∈ RNy×ny (13)

gives the discrete reduced bases contained in the matrices Bu and By. For details on POD, we refer
to [9,43].

3.2. Galerkin ROM

In the Galerkin reduced model, the same ansatz (9) as for the solution is used for the test functions

δũ =
nu

∑
i=1

δũr
iϕ

u
i and δỹ =

ny

∑
i=1

δỹr
i ϕyi . (14)

Inserting (9) and (14) into (5) results in the weak form of the Galerkin reduced model∫
B0

∇Xϕu
i : P dV = 0 ∀i = 1, . . . , nu and

∫
B0

∇X ϕyi ·BdV = 0 ∀i = 1, . . . , ny, (15)

where the dependences P
(

ũ, ỹ; F,H
)

and B
(

ũ, ỹ; F,H
)

are dropped for notational brevity.
Analogously, the discrete weak (16) form and its linearisation (17) are derived:

B>R̂ = 0 with B :=

[
Bu 0
0 By

]
∈ RN×n, (16)

B>KkB∆ỹr
k = −B>R̂k with ỹr

k+1 = ỹr
k + ∆ỹr

k and ỹr
k =

[
ũr

k ∈ Rnu

ỹ
r
k ∈ Rny

]
. (17)

Even though the size of the system of linear Equations (17) is significantly smaller than in
Equation (6) and hence the cost of the linear solver reduces from O(N2) to O(n3), the speed-up is only
marginal as the assembly of (17) depends on the original problem size. The cost for evaluating the
constitutive law for every quadrature point is roughly O(Nn + nel

qpM), where nel
qp is the number of

quadrature points per element. The computational complexities of assembling and projecting B>R̂k
and B>KkB are proportional to O(nN) and O(n2N + nN), respectively. Therefore, the application of
hyper-reduction methods is imperative.

4. Hyper-Reduction

4.1. Discrete Empirical Interpolation Method

The Discrete Empirical Interpolation Method [19] is the standard hyper-reduction method for
non-affine or nonlinear pPDEs, for some problems even equipped with a posteriori and a priori error
estimators [44,45]. The first step is to approximate the discrete residuum

R̂ =

[
R̂u

R̂y

]
≈
[

HRu 0
0 HRy

] [
ru

ry

]
=: HRr,

with HRu =
[
φ̂Ru

1 , . . . , φ̂Ru

ru

]
∈ RNu×ru , HRy =

[
φ̂Ry

1 , . . . , φ̂Ry
ry

]
∈ RNy×ry ,

ru ∈ Rru , ry ∈ Rry , HR ∈ RN×r and r ∈ Rr

(18)

by a linear combination of collateral basis vectors contained in HR with r being the vector of coefficients.
Due to a different number range, it is advisable to approximate the mechanical and magnetic residua
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by two separate collateral bases HRu and HRy . The collateral basis is computed based on snapshots of
the residuum. For that purpose, (16) is solved for every parameter pi ∈ S and the residua

Tu
i =

[
R̂u

1
(
pi
)

, . . . , R̂u
ku

(
pi
)]

and Tyi =
[

R̂y1
(
pi
)

, . . . , R̂yky
(
pi
)]

(19)

are collected in the course of the Newton–Raphson process to build the matrices

SRu =
[

Tu
1 , . . . , Tu

ns

]
and SRy =

[
Ty1 , . . . , Tyns

]
. (20)

As R̂u
j
(
pi
)

and R̂yj
(
pi
)

converge to the null vector during the iterative solution of (16), only residua

fulfilling
∥∥∥R̂u

j (pi)
∥∥∥/∥∥∥R̂u

1(pi)
∥∥∥ > tol and

∥∥∥R̂yj (pi)
∥∥∥/∥∥∥R̂y1 (pi)

∥∥∥ > tol are taken into account. The subsequent
application of POD (SRu)→ HRu and POD (SRy )→ HRy gives the collateral bases.

The coefficients in (18) are determined using interpolation

P>Ru R̂u = P>Ru HRu ru with PRu =
[
eρu

1
, . . . , eρu

ru

]
∈ NNu×ru ,

P>Ry R̂y = P>RyHRyry with PRy =
[
eρy1

, . . . , eρyry

]
∈ NNy×ry ,

(21)

meaning the approximation has to be equal to the residuum at the interpolation indices. The matrices
PRu and PRy are sampling matrices, where eρu

i
for i = 1, . . . , ru and eρyj

for j = 1, . . . , ry are unit vectors

with only one non-zero component in the ρu
i -th and ρyj -th entry.

Application of the DEIM Algorithm A1, provided in Appendix A, to the collateral bases
{

φ̂Ru

i

}ru

i=1

and
{

φ̂Ry
i

}ry

i=1
returns the interpolation indices and guarantees the matrix products

[
P>Ru HRu

]
and[

P>Ru HRu

]
to be non-singular. Consequently, the interpolation coefficients are calculated by

ru =
(
P>Ru HRu

)−1
P>Ru R̂u and ry =

(
P>RyHRy

)−1
P>Ry R̂y. (22)

Introducing (18) and (21) into (16) gives the hyper-reduced weak form

Rr
k := B>HR

(
P>R HR

)−1
P>R R̂k = 0 with PR :=

[
PRu 0

0 PRy

]
∈ NN×r (23)

and its linearisation becomes

B>HR

(
P>R HR

)−1

︸ ︷︷ ︸
precomputed: Rn×r

P>R KkB∆ỹr
k = − B>HR

(
P>R HR

)−1

︸ ︷︷ ︸
precomputed: Rn×r

P>R R̂k.
(24)

The cost for evaluating the constitutive law for every quadrature point in elements containing
interpolation indices is reduced to approximately O(Nevaln + nel

qpm), where m is the number of
elements containing DEIM indices and Neval the number of DoFs associated with this elements.
The computational complexities of computing the residuum and tangent stiffness matrix are
proportional to O(rNeval) and O(nrNeval + rNeval), respectively. It is to be noted that an efficient
computation of the stiffness matrix utilises the sparsity of the FE matrix. Consequently, the assembly
and solution of (24) do not depend on the size of the FOM and should therefore result in the desired
speed-ups.

4.2. Gappy POD

Instead of interpolation, Gappy POD uses linear regression to determine the collateral basis
coefficients, meaning the residual is evaluated at more indices than coefficients. This is particularly
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beneficial for hyper-reduced models originating from FE models, as for the calculation of R̂u or R̂y at
each evaluation index ρu

i or ρyi the solution (ũ, ỹ) and the respective constitutive components have
to be computed for every finite element containing the index. Hence, it is more economical to use all
DoFs attached to a node instead of possibly only one as for DEIM. The collateral basis coefficients are
computed solving

ru = arg min
a∈Rru

∥∥∥P>Ru R̂u −P>Ru HRu a
∥∥∥2

2
with PRu =

[
eρu

1
, . . . , eρu

pud

]
∈ NNu×pud

and ry = arg min
a∈Rry

∥∥∥P>Ry R̂y −P>RyHRya
∥∥∥2

2
with PRy =

[
eρy1

, . . . , eρypy

]
∈ NNy×py .

(25)

The integers pu and py are the numbers of FE nodes at which the residua R̂u and R̂y are
computed and Nu and Ny are the dimensions of the underlying FE model. For (25) to have unique
solutions, pud ≥ ru and py ≥ ry have to hold. The solutions of (25) are obtained by computing the

pseudo-inverses
(
P>Ru HRu

)+
and

(
P>RyHRy

)+
rendering the explicit expressions

ru =
(
P>Ru HRu

)+
P>Ru R̂u and ry =

(
P>RyHRy

)+
P>Ry R̂y (26)

for the collateral basis coefficients.
Inserting (26) into (16) gives the Gappy POD hyper-reduced weak form

Rr
k := B>HR

(
P>R HR

)+
P>R R̂k = 0 (27)

and the linearisation becomes

B>HR

(
P>R HR

)+
︸ ︷︷ ︸
precomputed: Rn×p

P>R KkB∆ỹr
k = − B>HR

(
P>R HR

)+
︸ ︷︷ ︸
precomputed: Rn×p

P>R R̂k,
(28)

introducing p = pud + py. In (28), the only difference to the DEIM hyper-reduced system (24) is
the appearance of the pseudo-inverse (•)+ instead of the inverse (•)−1. The cost for evaluating
the constitutive law is the same as for DEIM O(Nevaln + nel

qpm). The computational complexities
of computing the residuum and tangent stiffness matrix are proportional to O(pNeval) and
O(npNeval + pNeval).

To determine the FE nodes/indices, Algorithm A2, given in Appendix B, which is an advancement
of the algorithm proposed in [21] for multi-physic problems, is applied. Algorithm A2 uses normalised
maxima to cope with distinct domains and different units in multi-physic problems. Algorithm A2
is applied to

{
φ̂Ru

1 , . . . , φ̂Ru
ru

}
and

{
φ̂Ry

1 , . . . , φ̂Ry
ry

}
either separately or combined. In the latter case,

the same FE nodes are used for the gappy reconstruction of the residua R̂u and R̂y, resulting in more
efficient reduced models.

4.3. GNAT

To improve the accuracy and stability [21] of reduced models, the GNAT hyper-reduced model is
not based on Galerkin but on Petrov–Galerkin projection and therefore adopts different spaces for the
test and trial functions.

For accuracy reasons, the state-dependent test functions K
(

Byr) B are chosen and the discrete
weak form

B>K>R̂ = 0 (29)
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and its linearisation

B>K>k KkB∆ỹr = −B>R̂k with ∑
i

R̂[i]
∂2R̂[i]

∂ŷ2 ≈ 0 (30)

are obtained. Equation (30) is the normal equation for the associated least-squares problem

∆ỹr
k = arg min

a∈Rn

∥∥∥KkBa + R̂k

∥∥∥2

2
(31)

and therefore the solution of (29) is equivalent to solving the minimisation problem

minimise
a∈Rn

∥∥∥R̂ (Ba)
∥∥∥

2
(32)

with the Gauss–Newton method.
As the computation of (31) still depends on the original problem size, GNAT similarly to

Gappy POD uses collateral bases to approximate the nonlinearities and linear regression to determine
the coefficients:

R̂ = HRr and KB = HKk,

with r =
(
P>R HR

)+
P>R R̂ and k =

(
P>K HK

)+
P>K [KB] .

(33)

Numerical experiments have shown that the choice HR = HK and consequently PR = PK

renders reduced models of superior accuracy compared to models employing a separate basis for HK .
Putting (33) into (31) and multiplying from the left with H>R renders the least-squares problem to be
solved in every Gauss–Newton iteration

∆ỹr
k = arg min

a∈Rn

∥∥∥∥∥ (P>R HR

)+
︸ ︷︷ ︸

precomputed: Rr×p

P>R [KkB] a +

Rr
k︷ ︸︸ ︷(

P>R HR

)+
︸ ︷︷ ︸

precomputed: Rr×p

P>R R̂k

∥∥∥∥∥
2

2

(34)

and recalling p = pud + py.
The complexity of assembling and solving (34) is similar to (28). As the Gauss–Newton method

does not converge quadratically like the classical Newton–Raphson scheme, more iterations are
necessary to minimise (32).

The computation of the collateral basis is similar to DEIM except that the residua are gathered
during the solution of (31). The matrix PR is determined using Algorithm A2 with the collateral bases
as input.

4.4. Empirical Cubature

Cubature methods aim at reducing the cost of computing the nonlinearity in (15) by defining an
empirical quadrature, which evaluates the integrand only in a limited number of quadrature points or
elements. Instead of summing up all element contributions, the nonlinearities are computed only in
the elements of the so-called reduced meshes Eu and Ey and multiplied by positive weights:

[
B>u R̂u

]
[i] =

M

∑
e=1

∫
Ωe

∇Xϕu
i : P dV ≈ ∑

e∈Eu

ωu
e

∫
Ωe

∇Xϕu
i : P dV for i = 1, . . . , nu

and
[

B>yR̂y
]
[i] =

M

∑
e=1

∫
Ωe

∇X ϕyi ·BdV ≈ ∑
e∈Ey

ωye

∫
Ωe

∇X ϕyi ·BdV for i = 1, . . . , ny,

with Eu =
{

e ∈ {1, . . . , M} : ωu
e > 0

}
and Ey =

{
e ∈ {1, . . . , M} : ωye > 0

}
.

(35)
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In (35), each element e in Eu or Ey is equipped with a positive weight ωu
e or ωye , whereas all the

other elements are assigned weights ωu
e = ωye = 0.

The approximation in (35) induces the errors

ueij = ∑
e∈Eu

ωu
e

∫
Ωe

∇Xϕu
i : Pj dV −

M

∑
e=1

∫
Ωe

∇Xϕu
i : Pj dV

and yeij = ∑
e∈Ey

ωye

∫
Ωe

∇X ϕyi ·Bj dV −
M

∑
e=1

∫
Ωe

∇X ϕyi ·Bj dV

(36)

for snapshots of the stress field
{

Pj

}ns

j=1
and the magnetic induction

{
Bj

}ns

j=1
. The reduced meshes Eu

and Ey equipped with the weights {ωu
e }mu

e=1 and
{

ωye
}my

e=1 are constructed by minimising the errors (36),
with mu and my being the number of elements in the reduced meshes. Different algorithms for the
minimisation of (36) are discussed in [46].

Since this minimisation is numerically expensive, collateral bases [29]

P =
nP

∑
j=1

cP
j φP

j and B =
nB

∑
j=1

cBj φBj (37)

for the stress and induction fields are introduced, where nP � ns and nB � ns should hold. For that
reason, (15) is solved for the parameters in S (11) and the snapshots of the stress and induction fields
are gathered in the matrices SP and SB. A successive application of POD gives the collateral bases HP

and HB:

POD (SP)→ HP =
[
φ̂P

1 , . . . , φ̂P
nP

]
∈ Rnqpd2×nP with SP =

[
P̂(p1), . . . , P̂(pns

)
]
∈ Rnqpd2×ns ,

POD (SB)→ HB =
[
φ̂B1 , . . . , φ̂BnB

]
∈ Rnqpd×nB with SB =

[
B̂(p1), . . . , B̂(pns

)
]
∈ Rnqpd×ns .

(38)

The column vectors
{

P̂i

}ns

i=1
and

{
B̂i

}ns

i=1
contain the components of P and B at the nqp

quadrature points of the FE model.
By introducing (37) to (36) and recalling that the coefficients in (37) do not depend on the position

of the elements in the reduced meshes, we obtain alternative errors

uĕij = ∑
e∈Eu

ωu
e

∫
Ωe

∇Xϕu
i : φP

j dV −
M

∑
e=1

∫
Ωe

∇Xϕu
i : φP

j dV

and yĕij = ∑
e∈Ey

ωye

∫
Ωe

∇X ϕyi ·φBj dV −
M

∑
e=1

∫
Ωe

∇X ϕyi ·φBj dV.

(39)

For the details on minimisation of (39) in order to obtain the reduced meshes and the weights, the
interested reader is referred to Appendix C or [29]. In contrast to the method put forward in [29], the
EC introduced here uses elements instead of single Gauss points, resembling the ECSW method [28].
By doing so, the effective number of quadrature points employed in the reduced model increases, but
the implementation is less code invasive.

The linearisation of the weak form of the EC hyper-reduced model (35) becomes ∑
e∈Eu

ωu
e

eB>u eKuu
k

eBu ∑
e∈Eu

ωu
e

eB>u eKuy
k

eBy

∑
e∈Ey

ωye
eB>y eKyu

k
eBu ∑

e∈Ey
ωye

eB>y eKyyk
eBy

 [∆ũr
k

∆ỹr
k

]
= −

 ∑
e∈Eu

ωu
e

eB>u eR̂u
k

∑
e∈Ey

ωye
eB>y eR̂yk

 , (40)
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where eBu and eBy are the restrictions of Bu and Bu to the finite element Ωe. For EC, the reduced system
matrix has the same properties, e.g., symmetry and positive definiteness, as the system matrix of the FE
model, as the weights are strictly positive. This property is not shared by the collateral basis methods.

The cost for evaluating the constitutive law in the elements of Eu ∪ Ey is roughly
O(Nevaln + nel

qpm), where m is the number of elements in the union of the reduced meshes and Neval
the number of associated DoFs. The assembly of the residuum and the tangent matrix is proportional
to O(nNeval) and O(n2Neval + nNeval), respectively.

4.5. Reduced Integration Domain

For RID, two reduced integration domains Ωu
RID ⊂ T and ΩyRID ⊂ T are introduced, which are

used to define test functions δũ and δỹ with support only in Ωu
RID and ΩyRID. Hence, the nonlinearities

will be computed solely in Ωu
RID and ΩyRID, which provides the desired reduction of computational cost.

In the discrete setting, the test functions in BRID with confined support are expressed in terms of
the reduced bases B as

BRID :=

Pu
RID
(
Pu

RID
)> 0

0 PyRID

(
PyRID

)>
 [Bu 0

0 By

]
= PRIDP

>
RIDB

with Pu
RID =

[
eρu

1
, . . . , eρu

lu

]
∈ NNu×lu , PyRID =

[
eρy1

, . . . , eρyly

]
∈ NNy×ly

and PRID :=

[
Pu

RID 0
0 PyRID

]
∈ NN×l,

(41)

where eρu
i
∈ RNu for i = 1, . . . , lu and eρyj

∈ RNu for j = 1, . . . , ly are unit vectors with only one

non-zero component in the ρu
i -th and ρyj -th entry. The indices

{
ρu

i

}lu

i=1
and

{
ρyi

}ly

i=1
are the interior

DoFs of Ωu
RID and ΩyRID.

The reduced domains are generated from the gradients of the reduced bases

H∇X u :=
[
∇Xϕ̂u

1, . . . ,∇Xϕ̂u
nu

]
∈ Rnqpd2×nu and H∇Xy :=

[
∇Xϕ̂y1 , . . . ,∇Xϕ̂yny

]
∈ Rnqpd×ny . (42)

The columns
{
∇Xϕ̂u

i

}nu

i=1
and

{
∇Xϕ̂yi

}ny

i=1
contain the components of the gradients of

{
ϕu

i

}nu

i=1

and
{

ϕyi

}ny

i=1
in the nqp quadrature points of the FE model. Applying the DEIM Algorithm A1 to

H∇X u and H∇Xy returns the indices used to construct the reduced domains Ωu
RID and ΩyRID. Strictly

speaking, the reduced domains are the unions of elements containing these indices.
Using (41) in (16) renders the discrete weak from of the RID hyper-reduced model

Rr
k := B>PRIDP

>
RIDR̂k = 0 (43)

and its linearisation becomes

B>PRID︸ ︷︷ ︸
precomputed: Rn×l

P>RIDKkB∆ỹr
k = − B>PRID︸ ︷︷ ︸

precomputed: Rn×l

P>RIDR̂k. (44)

The cost for evaluating the constitutive law is roughly O(Nevaln + nel
qpm), where m is the number

of elements of the union Ωu
RID ∪ΩyRID and Neval the number of DoFs associated with those elements.

The approximate costs of assembling the residuum and tangent stiffness matrix are O(lNeval) and
O(nlNeval + lNeval), respectively.
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For (43) to be a well-posed problem, BRID is required to have full column rank. If that is not
fulfilled or the accuracy of the model is poor, the l element layers surrounding Ωu

RID and ΩyRID are
included (cf. Algorithm A4 in Appendix D).

5. Numerical Results

5.1. Test Problem

The magneto-mechanical material model chosen for the numerical studies is of Neo-Hookean type

Ψ(F,H) =
1
2

λ2 [F : F − d− 2 ln J] +
1
2

λ1 ln2 J − 1
2

µJH · C−1 ·H

using J = det F and C = F> · F,
(45)

combining isotropic elastic with linear isotropic magnetic material properties. For further details
including expressions of the Piola stress P and the magnetic induction B, see [41].

The mesh used for all numerical tests is displayed in Figure 1, where 1840 quadratic finite elements
are used to discretise the continuum body B0, resulting in N = Nu +Ny = 14,882 + 7441 = 22,323 DoFs.
For numerical integration, a 4× 4 Gaussian Quadrature is employed. The implementation of the tests
is based on the open–source FE library deal.II [47].

Figure 1. FE mesh of a Unit Cell discretised using M = 1840 elements with quadratic Ansatz functions
resulting in Nu = 14, 882 and Ny = 7441 DoFs.

In Table 1, the dimensionless Lamé parameters λ1 and λ2 and magnetic permeability µ are given.
The inclusion/particle has ten times stronger material parameters than the matrix.

Table 1. Material parameters.

Matrix Inclusion

λ1 12 120
λ2 8 80
µ 0.001 0.01

Additionally, the parameter domain for the two-dimensional problem to be investigated is
prescribed by

P = (0.9, 1.2)︸ ︷︷ ︸
F[1,1]

× (−0.2, 0.2)︸ ︷︷ ︸
F[1,2]

× (−0.2, 0.2)︸ ︷︷ ︸
F[2,1]

× (0.9, 1.2)︸ ︷︷ ︸
F[2,2]

× (−10, 10)︸ ︷︷ ︸
H[1]

× (−10, 10)︸ ︷︷ ︸
H[2]

⊂ R6. (46)
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The output of interest from the reduced-models are the homogenised Piola stress P and magnetic
induction B, for which the relative error measures

ErrP(V) = median


∥∥∥PFOM

i − PROM
i

∥∥∥
F∥∥∥PFOM

i

∥∥∥
F


|V|

i=1

and ErrB(V) = median


∥∥∥BFOM

i −BROM
i

∥∥∥
2∥∥∥BFOM

i

∥∥∥
2


|V|

i=1

(47)

are defined for any set of validation parameters V .
To validate the accuracy and robustness of the reduced models, two sets of randomly

chosen parameters

VI =
{

p1, . . . , p200
}
⊂ P and VII =

{
p1, . . . , p2000

}
⊂ P (48)

are defined and used in combination with (47).
The computation of PROM and BROM (8) requires ũ and ỹ to be computed in all cells of the

FE mesh using (9). This can be done more efficiently using an auxiliary basis for P and B together
with gappy reconstruction, but this renders an additional error. As our focus is on the numerical study
of the performance of the hyper-reduction methods, ũ and ỹ are computed for the whole mesh and the
constitutive law is subsequently employed to obtain PROM and BROM.

It is established in the field of computational homogenisation that the application of linear
boundary conditions overestimates the energy compared to e.g., periodic boundary conditions,
in particular for small RVEs like the Unit Cell. This has been investigated extensively in [40] for
magneto-mechanics. As the choice of boundary conditions does not affect the hyper-reduction
methods, the findings from the numerical studies are expected to be valid for different types of
boundary conditions. Therefore, due to their simplicity, linear boundary conditions have been chosen
to carry out the numerical studies.

5.2. Validation of Galerkin ROM

In order to construct the reduced basis, the parameter space P has to be sampled. As the number
of sampling points increases exponentially with the dimension of the parameter domain for full tensor
grids, sparse grids [48,49] are employed. Sparse grids are based on one-dimensional quadrature rules
and a sparse tensor product, which alleviates the curse of dimensionality. For that reason, sparse grids
are frequently used in sampling, interpolation and integration of high dimensional functions.

In Figure 2, the sampling of the unit square using a full tensor grid and sparse grids is displayed.
Sparse grids built from the one-dimensional Gauss–Legendre quadrature are used to sample the
six-dimensional parameter domain P (46).

As the hyper-reduced models are built on top of an existing reduced basis, the accuracy of the
Galerkin reduced model (16) for varying cardinalities nu and ny of the reduced bases for the fluctuation
fields is displayed in Figure 3. For increasing nu and ny, the errors ErrP (VI) and ErrB (VI) decrease
monotonously, though the impact of ny on ErrP (VI) becomes negligible for ny ≥ 10. The reduced
basis was constructed from ns = 4541 training simulations. As a compromise between accuracy and
efficiency, a reduced basis with nu = 20 and ny = 10 is chosen for all following numerical studies.
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Figure 2. Sampling of the two-dimensional parameter domain [0, 1]× [0, 1] using a full tensor grid and
two sparse grids based on a one-dimensional Gauss–Legendre quadrature with different sampling
densities.
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Figure 3. Errors in homogenised quantities of interest for varying sizes of reduced bases nu and ny
computed from ns = 4541 training simulations.

The error of the Galerkin ROM is not only caused by the truncation of the POD basis but also
by an insufficient selection of training parameters S . In this case, insufficient refers to a too sparse
sampling of the parameter domain P . In Table 2, the errors ErrP (VI) and ErrB (VI) for nu = 20 and
ny = 10 for three different training sets are given. The training set S with ns = 4541 is considered
sufficiently large as the errors for the two sets with greater cardinality are not significantly smaller.

Table 2. Output error for different numbers of training parameters ns for a reduced basis of fixed size
nu = 20 and ny = 10.

|S| 4541 12,841 33,193

ErrP (VI) 2.75× 10−6 2.59× 10−6 2.53× 10−6

ErrB (VI) 1.55× 10−6 1.51× 10−6 1.62× 10−6

The results of a ROM for one element in VI are displayed in Figure 4. The errors in the
homogenised quantities are small O(10−6) and differences between the ROM and FOM in the primary
fields ũ and ỹ can not be seen with the unaided eye. Due to the inclusions ten times larger mechanical
and magnetic material parameters, the Piola stress and magnetic induction inside the inclusion are
significantly larger.
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a) ‖ũ‖2 b) ỹ c) ‖P ‖F d) ‖B‖2

Figure 4. Results of a reduced model for F =

[
1.132 0.182
0.144 1.145

]
and H =

[
−8.231
0.129

]
rendering

PROM
=

[
5.875 2.943
2.756 6.026

]
andH

ROM
=

[
−1.123× 10−2

3.520× 10−3

]
using a reduced basis with nu = 20 and

ny = 10. The norm of the displacement fluctuations (a) the potential fluctuations; (b) the Frobenius
norm of the element averaged Piola stress; (c) and the norm of the element averaged magnetic
induction; (d) are depicted in the deformed Unit Cell. The errors for the homogenised quantities
‖PFOM − PROM‖F

‖PFOM‖F
= 3.4× 10−6 and

‖BFOM −BROM‖2

‖BFOM‖2

= 3.1× 10−6 are small. For better quality, we

point to the online version of the article.

5.3. DEIM

Based on a reduced basis with nu = 20 and ny = 10, the results of the DEIM hyper-reduced
model (23) are summarised in Figure 5, where the collateral basis HR is computed based on residua
collected during the solution of (16) for ns = 4541 training parameters. For the POD computations,
only residua fulfilling

∥∥∥R̂u
j (pi)

∥∥∥/∥∥∥R̂u
1(pi)

∥∥∥, ∥∥∥R̂yj (pi)
∥∥∥/∥∥∥R̂y1 (pi)

∥∥∥ > 10−4 with i ∈ [1, 4541] and the iteration
index j were taken into account.

It is well-established that DEIM models lack robustness for nonlinear pPDEs [26], which is
exposed in Figure 5a. There is just a small region of combinations of numbers of collateral reduced
basis functions

(
ru, ry

)
, for which the reduced model converged for all parameters in the validation

set VI. There are two possible causes that prevent the convergence of a model. The first is the occurrence
of unphysical deformations expressed by det F ≤ 0 during the solution process and the second is an
insufficient reduction of the residuum Rr

max/Rr
0 > 10−6, where max = 10 is the highest admissible

number of nonlinear solver iterations. From the 135,200 solutions of (23) for 676 different combinations
of
(
ru, ry

)
computed in this study, 11,992 failed to converge. It is remarkable that larger ru and ry

do not result in more robust models. Figure 5b,c show the output errors, where we have to note
that, for the calculation of ErrP (VI) and ErrP (VII), only the converged runs are taken into account.
The errors decrease with increasing ru and ry but certainly not monotonously. For a ROM with ru = 37
and ry = 25, small errors ErrP (VI) = 1.2× 10−3 and ErrB (VI) = 5.5× 10−4 are obtained with one
simulation failing to converge. It is not reasonable to use greater ru and ry as the achievable reduction
of the errors is disproportionate to the increasing numerical cost of the ROM.
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Figure 5. (a) robustness and (b,c) output error analysis for varying numbers of DEIM indices ru and ry
for a reduced basis of size nu = 20 and ny = 10.

5.4. Gappy POD

For the Gappy POD study, the same collateral basis HR as in the DEIM study is used. In order to
have a fair comparison with DEIM, two sets of gappy points, one for the approximation of R̂u and the
other for R̂y in (28), are determined by applying Algorithm A2 separately to the collateral bases.

In Figure 6, the robustness and accuracy of Gappy POD is studied for different combinations
of
(
ru, ry

)
. To facilitate an adequately accurate approximation of the nonlinearities, large enough

numbers of gappy points
(
pu, py

)
are employed. Figure 6a shows that linear regression improves

the robustness as more combinations of
(
ru, ry

)
exhibit no convergence failures compared to DEIM

(c.f. Figure 5). Nonetheless, 11,339 out of 135,200 simulation runs failed, mostly for smaller values of ru

and ry. For the failed runs, either the condition Rr
10/Rr

0 < 10−6 is not fulfilled after ten iterations or
unphysical deformations det F ≤ 0 are predicted.
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Figure 6. (a) robustness and (b,c) output error analysis for varying numbers of residuum modes ru and
ry for sufficiently large numbers of gappy points pu = dru/2 + 10e and py = ry + 20 for a reduced
basis of size nu = 20 and ny = 10.

For ru = 36 and ry = 24, a combination yielding supposedly robust and accurate models is
chosen to investigate the errors for varying numbers of gappy points

(
pu, py

)
(see Figure 7). Except

for pu ≤ 20, no robustness deficiencies occur. The error ErrP (VI) decreases with increasing pu and is
hardly affected by changes of py. Similarly, ErrB (VI) reduces for larger py and is only minorly affected
by pu. For a reduced model using pu = 50 and py = 58 gappy points, the errors ErrP (VI) = 3.6× 10−4

and ErrB (VI) = 3.0× 10−4 were achieved.
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Figure 7. Influence of gappy point numbers pu and py on (a) robustness and (b,c) accuracy for a
reduced basis of size nu = 20 and ny = 10 using ru = 36 and ry = 24 residuum modes.

5.5. GNAT

For the study of GNAT, the collateral bases contained in HRu and HRy are constructed by gathering
the residua from the solution of (32) and a subsequent application of POD. Only residua fulfilling∥∥∥R̂u

j (pi)
∥∥∥/∥∥∥R̂u

1(pi)
∥∥∥, ∥∥∥R̂yj (pi)

∥∥∥/∥∥∥R̂y1 (pi)
∥∥∥ > 5× 10−3 with i ∈ [1, 4541] and the iteration index j were taken

into account. The gappy points are obtained by applying Algorithm A2 separately to the collateral
mechanical and magnetic basis.

Similarly to the previous studies, the robustness and accuracy of GNAT is tested for different
combinations of

(
ru, ry

)
using a large enough number of gappy points. The results are depicted

in Figure 8. We never observed unphysical deformations det F ≤ 0 for GNAT hyper-reduced
models, the unsuccessful runs are due to reduced models failing to sufficiently reduce the residuum
Rr

15/Rr
0 < 10−3. As the Gauss–Newton scheme does not exhibit quadratic convergence, we allow

for up to 15 iterations to minimise the residuum. Furthermore, the solution of the nonlinear least
squares problem (32) does not render Rr ≡ 0 in general and consequently the convergence criterion is
set to 10−3. While the error ErrP (VI) in Figure 8b reduces with increasing ru and values in the order
of 10−3 can be achieved, the error ErrB (VI) in Figure 8c increases for greater ru up to a certain point
and ErrB (VI) ≈ 5× 10−2 seems feasible.
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Figure 8. (a) robustness and (b,c) output error analysis for varying numbers of residuum modes ru and
ry for sufficiently large numbers of gappy points pu = dru/2 + 10e and py = ry + 20 for a reduced
basis of size nu = 20 and ny = 10.
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5.6. Empirical Cubature

In Figure 9, the accuracy of EC hyper-reduced models for different numbers of elements in the
reduced mesh is depicted. To construct the EC model 4541 snapshots of P and B are taken from
the solution of (15) and processed into nP = 120 and nB = 100 POD modes. The singular value
distribution of the snapshot matrices is depicted in Figure 10, indicating that nP = 120 and nB = 100
POD modes are sufficient to represent the stress and induction state.

Thereafter, the weights and elements of the reduced meshes are determined by approximately
solving (A3) using Algorithm A3, given in Appendix C. Figure 9a shows that ErrP (VI) decreases for
greater mu and is barely affected by my, whereas ErrB (VI) decreases for greater values of both mu and
my, but the dependence on my is more pronounced. As EC does not employ collateral bases combined
with linear regression or interpolation, no convergence issues occur for the EC hyper-reduced models.

90 95 100 105 110 115
80

85

90

95

100

105

mu

m
y

1 2 3 4

×10−2

a) ErrP (VI)

90 95 100 105 110 115
80

85

90

95

100

105

mu

m
y

1 2 3 4

×10−2

b) ErrB (VI)
Figure 9. Output error analysis for varying numbers of elements mu and my constituting the reduced
meshes Eu and Ey built using nP = 120 stress and nB = 100 induction modes for a reduced basis of
size nu = 20 and ny = 10.
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Figure 10. Normalised singular values of the stress SP and induction snapshot matrix SB.

In Figure 11a, the weights used in a reduced mesh are plotted. Only a small number of elements
accumulate more than half of the total weight sum and that is the reason why the errors depicted in
Figure 9 decrease slowly with increasing mu and my. The distribution of elements in the reduced
meshes with a focus on elements equipped with relatively large weights is shown in Figure 11b,c. It is
remarkable that the elements with large weights are all located inside the inclusion, whereas all the
other hyper-reduced models (DEIM, GappyPOD and RID) evaluate the nonlinearities in elements at
the boundary or in the vicinity of the interface between matrix and inclusion (c.f. Figure 12).
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Figure 11. (a) values and distribution of weights (b) ωu and (c) ωy in T for reduced meshes Eu and Ey
with mu = 120 and my = 110 elements. The yellow circles mark the boundary between matrix and
inclusion. For better quality, we point to the online version of the article.
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Figure 12. Elements in T relevant for the hyper-reduced models in Table 4.

5.7. Reduced Integration Domain

To construct the reduced integration domain, the gradients of
{

ϕu}nu=20
i=1 and

{
ϕy
}ny=10

i=1 are
computed and the application of Algorithm A4 yields the reduced domains Ωu

RID and ΩyRID. The errors
for three different choices of the number of surrounding layers l are listed in Table 3. As expected,
the errors decrease with increasing l but solving (43) becomes computationally more expensive. If no
surrounding layers are included, the reduced bases

{
ϕu}nu=20

i=1 and
{

ϕy
}ny=10

i=1 in Ωu
RID and ΩyRID are

linearly dependent and consequently (43) is not well-posed.

Table 3. Accuracy of RID depending on the number of neighbouring layers l for nu = 20 and ny = 10.

l 1 2 3

ErrP (VI) 9.5× 10−4 3.3× 10−4 1.5× 10−4

ErrB (VI) 8.0× 10−4 3.2× 10−4 1.8× 10−4

As for EC, no convergence problems have been observed for RID hyper-reduced models.

5.8. Comparison of the Hyper-Reduction Methods

In Table 4, the performance statistics of reduced models for each hyper-reduction method except
GNAT are provided. The parameters for the models, which are listed in Table 5, were chosen based
on the results from the previous sections to achieve high accuracy at moderate computational cost.
We except GNAT from the comparison as these reduced models are inferior to Gappy POD models
with respect to robustness and accuracy. Most importantly, the error ErrB(V) produced by GNAT
models is too large.
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The number of elements in which either the mechanical or magnetic nonlinearity have to be
computed are denoted by mu and my, respectively. The aforementioned elements are highlighted
in Figure 12. It is possible to use the same elements for the evaluation of the nonlinearities for all
hyper-reduction methods except DEIM, rendering supposedly slightly less accurate but more efficient
reduced models. However, for the sake of comparison of all introduced Hyper-Reduction methods, the
nonlinearities are treated separately, resulting in two distinct sets of elements. In all these elements, the
solution (ũ, ỹ) has to be computed based on the reduced solution (ũr, ỹr) with Nu

eval and Nyeval denoting
the number of DoFs involved in these operation performed in every iteration of the nonlinear solver.

The errors obtained by DEIM, Gappy POD and RID are in the same range, whilst the errors for EC
are at least of one order of magnitude larger. The accuracy of Gappy POD is superior to DEIM as linear
regression performs better than interpolation and additionally increases the robustness. For DEIM, 18
out of 2000 runs failed to converge, whereas no such deficiencies are observed for the other methods.

The computation times were measured on a single core (AMD™ Ryzen™ 1950X CPU @4 GHz)
without using any kind of parallelisation. The speed-up is defined as the ratio of time needed to
solve the FOM and the ROM for the 2000 parameters in VII, which does not include the time to
calculate the homogenised quantities. The speed-up for DEIM is the greatest as the least number of
solution and nonlinearity evaluations had to be performed, with Gappy POD being second due to
more evaluations. The EC and RID reduced models are considerably slower as both methods need to
evaluate the nonlinearities for a larger number of elements to gain comparable accuracy.

Table 4. Comparison of selected hyper-reduced models using a reduced basis with nu = 20 and
ny = 10.

DEIM Gappy POD EC RID

mu & my → m 50 & 33→ 71 69 & 75→ 112 120 & 110→ 219 129 & 72→ 183
Nu

eval & Nyeval 1000 & 500 1468 & 734 3400 & 1700 1938 & 969

ErrP (VII) 1.14× 10−3 3.86× 10−4 1.85× 10−2 5.99× 10−4

ErrB (VII) 4.71× 10−4 2.78× 10−4 4.63× 10−3 5.18× 10−4

nfail 18 0 0 0
speed-up 208 131 23 32

Table 5. Parameters of the hyper-reduced models used in Table 4.

DEIM ru = 37 and ry = 25
Gappy POD ru = 36 and ry = 24, pu = 50 and py = 58
EC mu = 120 and my = 110
RID l = 1

6. Conclusions

In this work, we applied the tools of reduced-order modelling to the problems arising in
computational homogenisation in magneto-mechanics. The main focus was the investigation and
comparison of different hyper-reduction techniques with respect to accuracy and robustness. Collateral
basis methods like DEIM and Gappy POD are the fastest and most accurate, but are susceptible to
robustness deficiencies. This is particularly true for DEIM, for which we could not build sufficiently
robust models in the course of this work. Gappy POD diminishes that issue by using linear regression,
providing adequately robust models. Additionally, unlike Gappy POD, DEIM does not offer the option
to evaluate the mechanical and magnetic nonlinearity in the same elements, resulting in more expensive
reduced models. For those reasons, DEIM will not be considered in future studies. A disadvantage
shared among the collateral basis methods is that instances of the FE residuum have to be collected
from non-equilibrated states, which results in more expensive POD computations.

EC and RID solve the weak form in a subdomain, to which the first refers to reduced mesh and
the latter to reduced integration domain. To obtain similar accuracy as collateral basis methods, EC
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and RID have to perform more function evaluations and are therefore more expensive. However,
their robustness is superior to the collateral basis methods and hence they are particularly suitable for
multi-query frameworks like the FE2 method. For problems with stronger nonlinearities, e.g., due to
complex material models, rate-dependence, plasticity and many more, the robustness superiority will
be even more pronounced.

The next step is to equip the reduced models with an auxiliary basis to efficiently compute
the homogenised Piola stress and magnetic induction, which can be utilised in a perturbation-type
method [50] to obtain the macroscopic tangent moduli. Similarly, the macroscopic tangent moduli
could be computed adapting the method described in [51] for the reduced model.
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Abbreviations

The following abbreviations are used in this manuscript:

MRE Magneto-Rheological Elastomer
BVP Boundary Value Problem
RVE Representative Volume Element
ROM Reduced-Order Model
FEM Finite Element Method
DoF Degree of Freedom
FOM Full-Order Model
pPDE parametrised Partial Differential Equation
POD Proper Orthogonal Decomposition
SVD Singular Value Decomposition
EIM Empirical Interpolation Method
DEIM Discrete Empirical Interpolation Method
GNAT Gauss–Newton with Approximated Tensors
EC Empirical Cubature
ECSW Energy-Conserving Sampling and Weighting
RID Reduced Integration Domain

Appendix A. DEIM

The classical DEIM Algorithm A1 [19] determines the interpolation indices iteratively. In iteration
i, the index ρi to be added is the entry where the approximation of the basis vector φi by the preceding

vectors
{

φj

}i

j=1
exhibits the largest error. The basis vectors

{
φi
}r

i=1 have to be linearly independent,

which is guaranteed by using a basis computed by POD.
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Algorithm A1: DEIM Algorithm

Input:
{

φi
}r

i=1 ⊂ RN

Output: ρ =
[
ρ1, . . . , ρr

]
∈ Nr, P

ρ1 = arg max
a=1,...,N

∣∣φ1[a]
∣∣

S =
[
φ1
]
, P =

[
eρ1

]
, ρ =

[
ρ1
]

for i=2 to r do

Solve for c in
(
P>S

)
c = P>φi

r = φi − Sc
ρi = arg max

a=1,...,N

∣∣φi[a]
∣∣

ρ←
[
ρ, ρi

]
, P←

[
P, eρi

]
, S←

[
S, φi

]
end

Appendix B. Gappy POD and GNAT

Like the DEIM Algorithm A1, the adapted point search Algorithm A2 [21] seeks to minimise

the error in approximating the bases
{{

φc
i

}rc

i=1

}ncomponents

c=1
and chooses the gappy points accordingly.

The algorithm processes nodes instead of indices and is therefore well-suited for vector-valued or
multi-physic problems. Differences in scale are taken care of by using normalised maxima for the
different fields.
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Algorithm A2: Greedy Point Search

Input: reduced bases
{{

φc
i

}rc

i=1

}ncomponents

c=1
, number of sampling points p

Output: {Pc}ncomponents
c=1

number of greedy iterations: g = min
({

r1, . . . , rncomponents , p
})

number of sampling points at iteration i: s(i)

s(i) =

⌊
w · p

g

⌋
with w =

⌈
g
p

⌉
; if w = 1 and i ≤ (p mod g) : s(i)← s(i) + 1

number of basis vectors to be added/processed at iteration i:

qc(i) =

⌊
rc

g

⌋
; if i ≤ (rc mod g) : qc(i)← qc(i) + 1 for c = 1, . . . , ncomponents

for c=1 to ncomponents do[
Sc

1, . . . , Sc
qc(1)

]
←
[
φc

1, . . . , φc
qc(1)

]
// vectors to be processed in first iteration

end
for i=1 to g do

for j=1 to s(i) do
for c=1 to ncomponents do

nc
max ← arg max

l∈{1,...,npoints}

qc(i)

∑
q=1

∥∥∥Sc
q [l]
∥∥∥2

// location of component maximum

end

n← arg max
l∈{1,...,npoints}\N

ncomponents

∑
c=1

qc(i)

∑
q=1

∥∥∥Sc
q [l]
∥∥∥2

∥∥∥Sc
q [nc

max]
∥∥∥2 // location of combined maximum

for c=1 to ncomponents do
Ic = DoFsc (n) // get set of component DoFs attached to point

Pc ←
[
Pc,
[
eIc [1], . . . , eIc [|Ic |]

]]
end
N ← N + n // update set of selected points

end
for c=1 to ncomponents do

for j=1 to qc(i) do

φ̃c
Qc+j = arg min

a

∥∥∥P>c [φc
1, . . . , φc

Qc

]
a−P>c φc

Qc+j

∥∥∥2

2

Sc
j ← φc

Qc+j −
[
φc

1, . . . , φc
Qc

]
φ̃c

Qc+j // vectors processed in next iteration

end
Qc ← Qc + qc(i)

end
end

Appendix C. Empirical Cubature

To determine the reduced meshes and the weights, the minimisation problems based on (39)
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(ωu, Eu) = arg min
w∈Rmu

+
E⊂T

√√√√ nP

∑
j=1

nu

∑
i=1

(
uĕij(w, E)

)2
and

(
ωy, Ey

)
= arg min

w∈Rmy
+

E⊂T

√√√√nB

∑
j=1

ny

∑
i=1

(
yĕij(w, E)

)2
(A1)

have to be solved and read in matrix format as

(ωu, Eu) = arg min
w∈Rmu

+
E∈T

∥∥∥ J̆u
Ew− b̆u

∥∥∥
2

and
(
ωy, Ey

)
= arg min

ω∈Rmy
+

E∈T

∥∥∥ J̆yEw− b̆y
∥∥∥

2
, (A2)

with J̆u ∈ RnunP×M, J̆y ∈ RnynB×M, b̆u ∈ RnunP and b̆y ∈ RnynB ,

J̆u =



∫
Ω1

∇Xϕu
1 : φP

1 dV · · ·
∫

ΩM

∇Xϕu
1 : φP

1 dV

...
. . .

...∫
Ω1

∇Xϕu
nu

: φP
1 dV · · ·

∫
ΩM

∇Xϕu
nu

: φP
1 dV

...
. . .

...∫
Ω1

∇Xϕu
nu

: φP
nP

dV · · ·
∫

ΩM

∇Xϕu
nu

: φP
nP

dV


b̆u =

M

∑
e=1



∫
Ωe

∇Xϕu
1 : φP

1 dV

...∫
Ωe

∇Xϕu
nu

: φP
1 dV

...∫
Ωe

∇Xϕu
nu

: φP
nP

dV



J̆y =



∫
Ω1

∇X ϕy1 : φB1 dV · · ·
∫

ΩM

∇X ϕy1 ·φB1 dV

...
. . .

...∫
Ω1

∇X ϕyny ·φB1 dV · · ·
∫

ΩM

∇X ϕyny ·φB1 dV

...
. . .

...∫
Ω1

∇X ϕyny ·φBnB dV · · ·
∫

ΩM

∇X ϕyny ·φBnB dV


b̆y =

M

∑
e=1



∫
Ωe

∇X ϕy1 ·φB1 dV

...∫
Ωe

∇X ϕyny ·φB1 dV

...∫
Ωe

∇X ϕyny ·φBnB dV


.

Note that the problems in (A2) allow for the trivial solutions ωu = 0 and ωu = 0. Any POD
mode φ̂P

j or φ̂Bj is a linear combination of the snapshots
{

P̂1, . . . , P̂ns

}
or
{
B̂1, . . . , B̂ns

}
and, as the

snapshots are taken from states of equilibrium, the right-hand sides become b̆u = 0 and b̆y = 0.
Therefore, problems (A2) are regularised by adding the constraints ∑

e∈Eu

ωu
e = V and ∑

e∈Ey
ωye = V.

By subtracting the volume averaged row-sums, the regularised minimisation problems (A3) are
obtained and approximately solved using Algorithm A3:
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(ωu, Eu) = arg min
w∈Rmu

+
E∈T

∥∥Ju
Ew− bu∥∥

2 and
(
ωy, Ey

)
= arg min

ω∈Rmy
+

E∈T

∥∥∥JyEw− by
∥∥∥

2
, (A3)

with Ju =

[
J̄u

1>

]
∈ R(nunP+1)×M, Jy =

[
J̄y

1>

]
∈ R(nynB+1)×M, bu =

[
0
V

]
∈ RnunP+1

and by =

[
0
V

]
∈ RnynB+1

J̄u =



∫
Ω1

∇Xϕu
1 : φP

1 dV − 1
V
∫
Ω
∇Xϕu

1 : φP
1 dV · · ·

∫
ΩM

∇Xϕu
1 : φP

1 dV − 1
V
∫
Ω
∇Xϕu

1 : φP
1 dV

...
. . .

...∫
Ω1

∇Xϕu
nu

: φP
1 dV − 1

V
∫
Ω
∇Xϕu

nu
: φP

1 dV · · ·
∫

ΩM

∇Xϕu
nu

: φP
1 dV − 1

V
∫
Ω
∇Xϕu

nu
: φP

1 dV

...
. . .

...∫
Ω1

∇Xϕu
nu

: φP
nP

dV − 1
V
∫
Ω
∇Xϕu

nu
: φP

nP
dV · · ·

∫
ΩM

∇Xϕu
nu

: φP
nP

dV − 1
V
∫
Ω
∇Xϕu

nu
: φP

nP
dV


,

J̄y =



∫
Ω1

∇X ϕy1 : φB1 dV − 1
V
∫
Ω
∇X ϕy1 : φB1 dV · · ·

∫
ΩM

∇X ϕy1 ·φB1 dV − 1
V
∫
Ω
∇X ϕy1 : φB1 dV

...
. . .

...∫
Ω1

∇X ϕyny ·φB1 dV − 1
V
∫
Ω
∇X ϕyny : φB1 dV · · ·

∫
ΩM

∇X ϕyny ·φB1 dV − 1
V
∫
Ω
∇X ϕyny : φB1 dV

...
. . .

...∫
Ω1

∇X ϕyny ·φBnB dV − 1
V
∫
Ω
∇X ϕyny : φBnB dV · · ·

∫
ΩM

∇X ϕyny ·φBnB dV − 1
V
∫
Ω
∇X ϕyny : φBnB dV


.

Algorithm A3: Greedy Mesh Sampling
Input: J, tol, m
Output: ω, E
initialisation: E← ∅, set of candidates C ← {1, . . . , M}, r ← b
do

e = arg max
ẽ∈C

〈
J[ẽ]/

∥∥J[ẽ]
∥∥

2, r/‖r‖2

〉
// determine new element

E← E ∪ e, C ← C \ e
build JE from columns of J based on E
ω = arg min

w∈R|E|
‖JEw− b‖2

2 // solve least-squares

if ω[i] < 0 for i = 1, . . . , |E| then
ω = arg min

w∈R|E|+

‖JEw− b‖2
2 // solve non-negative least-squares

E← E \ E0 with E0 =
{

e ∈ E : ω[e] = 0
}

C ← C ∪ E0

ω← ω(E)
end
r ← b− JEω // update residual

while
‖r‖
‖b‖ > tol ∧ |E| < m
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Appendix D. Reduced Integration Domain

Algorithm A4 constructs the reduced integration domain for a basis
{

φi
}r

i=1. The application of
the DEIM Algorithm A1 helps to identify areas of interest, e.g., where the basis exhibits significant
gradients. At first, all elements containing DEIM indices form the reduced integration domain.
Hereafter, the elements in the surrounding layers can be included for accuracy reasons. It is noteworthy
that Algorithm A2 or alternatives can be used to determine the initial reduced domain.

Algorithm A4: Determining Reduced Integration Domain

Input: POD basis
{

φi
}r

i=1 ⊂ RN, number of neighbouring element layers l
Output: PRID, ΩRID

get DEIM indices ρ ∈ Nr by applying Algorithm A1 to
{

φi
}r

i=1
ΩRID ← ContainingElements

(
ρ
)

// collect elements containing the DEIM indices
for i=1 to l do

ΩRID ← ΩRID ∪ NeighbouringElements (ΩRID) // add neighbouring elements
end
setup PRID based on interior DoFs (primary) in ΩRID
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