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Abstract: Colistin (polymyxin E) is a membrane-destabilizing antibiotic used against Gram-negative
bacteria. We have recently reported that the outer membrane prevents the uptake of antibacterial
chlorophyllin into Gram-negative cells. In this study, we used sub-toxic concentrations of colistin
to weaken this barrier for a combination treatment of Escherichia coli and Salmonella enterica serovar
Typhimurium with chlorophyllin. In the presence of 0.25 µg/mL colistin, chlorophyllin was able
to inactivate both bacteria strains at concentrations of 5–10 mg/L for E. coli and 0.5–1 mg/L for S.
Typhimurium, which showed a higher overall susceptibility to chlorophyllin treatment. In accordance
with a previous study, chlorophyllin has proven antibacterial activity both as a photosensitizer,
illuminated with 12 mW/cm2, and in darkness. Our data clearly confirmed the relevance of the
outer membrane in protection against xenobiotics. Combination treatment with colistin broadens
chlorophyllin’s application spectrum against Gram-negatives and gives rise to the assumption
that chlorophyllin together with cell membrane-destabilizing substances may become a promising
approach in bacteria control. Furthermore, we demonstrated that colistin acts as a door opener even
for the photodynamic inactivation of colistin-resistant (mcr-1-positive) E. coli cells by chlorophyllin,
which could help us to overcome this antimicrobial resistance.
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1. Introduction

After the discovery of the first antibiotics, penicillin in 1929 and streptomycin in 1943, scientists
prophesized the end of infectious diseases that had plagued humankind over centuries. Twenty novel
classes of antibiotics were launched during the ‘Golden Age’ of antibiotic discovery between 1940 and

Antibiotics 2019, 8, 158; doi:10.3390/antibiotics8040158 www.mdpi.com/journal/antibiotics

http://www.mdpi.com/journal/antibiotics
http://www.mdpi.com
https://orcid.org/0000-0003-1120-0246
https://orcid.org/0000-0003-1896-4521
https://orcid.org/0000-0002-0433-5874
http://dx.doi.org/10.3390/antibiotics8040158
http://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/2079-6382/8/4/158?type=check_update&version=2


Antibiotics 2019, 8, 158 2 of 23

1962, one-half of the drugs commonly used today [1,2]. Unfortunately, the widespread and improper
use of antibiotics has strongly contributed to the emergence and spread of antibiotic resistance among
bacteria that are difficult to treat or—in case of multidrug-resistant (MDR) pathogens—may even
be untreatable with conventional drugs [3,4]. MDR patterns in Gram-positives and Gram-negatives
have cast a shadow on the assumed victory over pathogenic bacteria, undermining every clinical and
public health program designed to control infectious diseases worldwide. Especially Gram-negative
bacteria including most of the ‘ESKAPE pathogens’ (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) [5] represent a
major threat (World Health Organization 2017) as they are responsible for a wide spectrum of diseases
(viz. urinary tract, bloodstream, airway, sexually transmitted, and health care-associated infections).
Recently MDR Gram-negatives have been isolated from humans with increasing frequency. In the
world’s richest countries, the massive use of antibiotics (also in hospitals) offers breeding grounds
for drug-resistant ‘superbugs’ causing deadly infections [6,7] and enables MDRs to spread easily.
However, developing countries are also burdened by antibiotic misconduct: limited access to medical
care with effective treatments, inadequate patient education leading to inappropriate self-medication,
unauthorized sale of antibiotics, the availability of counterfeit medicines as well as non-human use of
antibiotics such as in animal production exacerbated antimicrobial resistance [8–11].

Hospital- and community-acquired infections are emerging, and as traditional antibiotics are
becoming less and less effective, we are increasingly relying on our ‘last resort’ antibiotics. Recently,
the WHO Essential Medicines List was forced to classify antibiotics into three groups—AWaRe: access,
watch, and reserve—and thus specifies which antibiotics to use for infections [12]. First bacteria
strains resistant against reserve antibiotics were already discovered: In 2008, a carbapenem-resistant
(ndm-1 (New Delhi metallo-β-lactamase 1)-positive) K. pneumoniae was found in India [13], and in
2015, a colistin-resistant (mcr-1 (mobilized colistin resistance 1)-positive) Escherichia coli was isolated
in China [14]. Colistin (polymyxin E) is a cationic polypeptide (Figure 1a), produced by Paenibacillus
polymyxa [15] and considered one of the last-resort antibiotics against MDR Gram-negative bacteria
such as E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii responsible for pneumonia, bacteremia,
and urinary tract infections [16,17]. Although development of resistance to colistin is unusual, a
few studies have shown that the use of colistin to treat A. baumannii and K. pneumoniae infections
has led to the development of resistant bacterial strains [18–23]. Some of them have suggested that
heteroresistance to colistin is not as common in MDR P. aeruginosa as in MDR A. baumanii, but a
recent study [24] showed the prevalence and mechanisms of heteroresistance in clinical isolates of the
pathogens E. coli, Salmonella enterica, K. pneumoniae, and A. baumannii against 28 different antibiotics.
In addition, to date, nine homologous plasmid-borne mcr genes (mcr-1 to -9) have been described [25].
Especially these genes represent a major threat to public health as they can easily be transmitted via
horizontal gene transfer. Facilitated by international traveling and trade, resistance genes have already
started to disseminate across the world [26,27]. Within few months after the first description of the
mcr-1 gene, plasmids carrying mcr-1 were ubiquitously identified in various Enterobacteriaceae isolates
from animals, food, the environment and humans in over 40 countries worldwide [28–32]. Several
other homologous mcr genes were subsequently identified in Asia, North America, South America,
and European countries including Belgium, Italy, Spain, and Germany [33–41]. Today’s main problems
comprise a shortage of effective therapies, lack of prevention and control strategies [42], and only a
neglectable number of new antibiotics [43]. Scientists urgently need to develop novel treatment options
and alternative antimicrobial therapies since we may find ourselves back in the dark, pre-antibiotic
ages of medicine.
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Figure 1. (a) The chemical structure of colistin is composed of three parts: a hydrophobic fatty-acyl 
tail (yellow), a linear tripeptide segment (orange), and a hydrophilic, heptapeptide ring (blue); (b) 
Chemical structure of chlorophyllin. A combination of both components was used to control Gram-
negative bacteria. 

Antimicrobial treatment with chlorophyll or its derivatives is a very promising approach to 
control bacteria without the use of conventional antibiotics [44–49]. Chlorophyll derivatives have 
been shown to effectively destroy harmful pest organisms such as mosquito larvae [50], fish 
ectoparasites [51], Schistosoma-transmitting snails [52], human parasites or their larvae [53], as well as 
human cancer cells [54,55]. In light, they exert strong photodynamic properties (photosensitizers) 
without the formation of toxic byproducts [56]. The molecules undergo photodynamic reactions in 
which target structures are destroyed, e.g., via generation of reactive oxygen species (ROS) [57–59]. 
In a recent study, we determined the effect of water-soluble chlorophyllin (Figure 1b) on Gram-
positive and Gram-negative model strains [60]. Interestingly, we found that chlorophyllin affects the 
growth of bacteria also in the absence of light, which indicates a second, light-independent 
mechanism of action [60]. However, both effects were lower against Gram-negative (E. coli) compared 
to activity against Gram-positive bacteria (Bacillus subtilis), which is consistent with earlier 
photodynamic experiments using chlorophyllin and different bacteria [44,46,47]. The outer 
membrane of Gram-negatives is known to act as a barrier against various hydrophobic and large 
hydrophilic substances [61]. It impairs the effects of antibiotics such as novobiocin, rifamycin, 
lincomycin, clindamycin or fusidic acid which eliminate Gram-positive bacteria very effectively [62] 
but also protects cells against the uptake of chlorophyllin. This was confirmed by a membrane-
deficient strain of E. coli, which had been more sensitive against chlorophyllin treatment compared 
to the wild type [60]. 

To broaden the application spectrum of chlorophyllin against Gram-negatives, we examined the 
effects of a combination treatment of chlorophyllin and a substance destabilizing the outer 
membrane. In this study, we chose a sub-toxic concentration of colistin that penetrates and disrupts 
the outer membrane through a detergent-like mechanism [63–65]. Colistin’s stability against 
photodegradation makes it suitable for photodynamic experiments [66]. These were performed with 
E. coli DH5α and Salmonella enterica serovar Typhimurium. In addition, we tested a mcr-1-positive E. 
coli DH5α strain to investigate the possibility of a colistin/chlorophyllin combination therapy to 
overcome the spreading colistin resistance. Plasmid-borne colistin resistance mediated by mcr-1 is 
caused by modification of lipid A resulting in a reduction of polymyxin affinity [14]. 
  

Figure 1. (a) The chemical structure of colistin is composed of three parts: a hydrophobic fatty-acyl
tail (yellow), a linear tripeptide segment (orange), and a hydrophilic, heptapeptide ring (blue);
(b) Chemical structure of chlorophyllin. A combination of both components was used to control
Gram-negative bacteria.

Antimicrobial treatment with chlorophyll or its derivatives is a very promising approach to control
bacteria without the use of conventional antibiotics [44–49]. Chlorophyll derivatives have been shown
to effectively destroy harmful pest organisms such as mosquito larvae [50], fish ectoparasites [51],
Schistosoma-transmitting snails [52], human parasites or their larvae [53], as well as human cancer
cells [54,55]. In light, they exert strong photodynamic properties (photosensitizers) without the
formation of toxic byproducts [56]. The molecules undergo photodynamic reactions in which
target structures are destroyed, e.g., via generation of reactive oxygen species (ROS) [57–59]. In a
recent study, we determined the effect of water-soluble chlorophyllin (Figure 1b) on Gram-positive
and Gram-negative model strains [60]. Interestingly, we found that chlorophyllin affects the
growth of bacteria also in the absence of light, which indicates a second, light-independent
mechanism of action [60]. However, both effects were lower against Gram-negative (E. coli)
compared to activity against Gram-positive bacteria (Bacillus subtilis), which is consistent with
earlier photodynamic experiments using chlorophyllin and different bacteria [44,46,47]. The outer
membrane of Gram-negatives is known to act as a barrier against various hydrophobic and large
hydrophilic substances [61]. It impairs the effects of antibiotics such as novobiocin, rifamycin,
lincomycin, clindamycin or fusidic acid which eliminate Gram-positive bacteria very effectively [62]
but also protects cells against the uptake of chlorophyllin. This was confirmed by a membrane-deficient
strain of E. coli, which had been more sensitive against chlorophyllin treatment compared to the
wild type [60].

To broaden the application spectrum of chlorophyllin against Gram-negatives, we examined the
effects of a combination treatment of chlorophyllin and a substance destabilizing the outer membrane.
In this study, we chose a sub-toxic concentration of colistin that penetrates and disrupts the outer
membrane through a detergent-like mechanism [63–65]. Colistin’s stability against photodegradation
makes it suitable for photodynamic experiments [66]. These were performed with E. coli DH5α and
Salmonella enterica serovar Typhimurium. In addition, we tested a mcr-1-positive E. coli DH5α strain to
investigate the possibility of a colistin/chlorophyllin combination therapy to overcome the spreading
colistin resistance. Plasmid-borne colistin resistance mediated by mcr-1 is caused by modification of
lipid A resulting in a reduction of polymyxin affinity [14].
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2. Results

2.1. Synergistic Effects of Chlorophyllin in Combination with Colistin on the Growth of E. coli

Colistin interacts with lipopolysaccharides (LPS) via replacement of bivalent cations (Mg2+, Ca2+)
stabilizing the LPS that subsequently causes disorganization of the cell membrane. That in turn leads to
increased permeability and—in higher concentrations—to loss of cytoplasmic content and eventually
cell death which explains its bactericidal effect [63–65]. In earlier experiments the Gram-negative
model strain E. coli DH5α showed no growth inhibition in lysogeny broth (LB) medium supplemented
with ≤25 mg/L chlorophyllin both in illuminated and in dark conditions [60]. In the current study we
tested growth of E. coli DH5α in LB containing 10 mg/L chlorophyllin (a concentration which was
found to be efficient against Gram-positive bacteria and that was within a range considered harmless
to humans [60]) combined with sub-toxic concentrations of colistin. To elucidate the photodynamic
effects of chlorophyllin, the experimental samples were incubated in darkness or illuminated with
a standardized light intensity of 12 mW/cm2 at 37 ◦C. The minimal inhibitory concentration (MIC)
of colistin was previously determined to be 0.75 µg/mL for E. coli DH5α using broth microdilution
(MICRONAUT MIC-Strip colistin: 1 µg/mL). In our experimental setup, we found a concentration of
1 µg/mL was necessary to inhibit growth (Figure 2a). Colistin concentrations of ≥1.0 µg/mL inhibited
growth of E. coli within 180 min, whereas lower concentrations (≤0.5 µg/mL) had only a neglectable
effect on proliferation (Table S1). Since these concentrations appeared to be less or non-toxic to the
strain and the 1-N-phenylnaphthylamine (NPN) uptake assay confirmed an increase of the outer
membrane permeability (Figure 2b), we decided to use colistin with 0.50 µg/mL, 0.25 µg/mL, and
0.10 µg/mL in the experiments together with chlorophyllin.

While supplementation of 10 mg/L chlorophyllin alone did not show any densitometrically
detectable effect on E. coli, combinations with 0.50 µg/mL or 0.25 µg/mL of colistin completely inhibited
the growth in the first hour (Figure 2c,d). The efficacy of chlorophyllin against E. coli was confirmed
both in light and in darkness validating its photodynamic and light-independent mechanisms of action
described before [60]. In fact, at lower colistin concentrations (0.10 µg/mL), chlorophyllin delayed
cell growth without complete inhibition of the culture (Figure 2, red dotted lines). Interestingly, we
observed a possible additive effect of colistin and light: concentrations of 0.25–0.50 µg/mL colistin
impaired the growth of E. coli cells illuminated with a light intensity of 12 mW/cm2 (Figure S1). This
was also confirmed by a slight decrease of colistin’s MIC to 0.5 µg/mL in light.

Because experiments revealed a significant inhibitory effect of chlorophyllin/colistin combination
treatment on E. coli, we decided to use a lower chlorophyllin concentration of 5 mg/L for further
experiments (Figure 3). Supplemented with 0.50 µg/mL colistin, chlorophyllin completely inhibited the
growth of E. coli within three hours both in light and in darkness (Figure 3, red solid lines). In addition,
0.25 µg/mL colistin combined with 5 mg/L chlorophyllin were sufficient to impair cell growth under
illumination (Figure 3a, red dashed line). In darkness delayed growth was observed (Figure 3b, red
dashed line). Cells were affected by the chlorophyllin/colistin mixture after 90 min in light and 150 min
in dark (Figure S2). Based on Combenefit analyses, especially the combination of 5 mg/L chlorophyllin
and colistin showed high synergy against the growth of E. coli when illuminated (Figure 3c) as well as
in darkness (Figure 3d).

To investigate the long-term effect of chlorophyllin and colistin, MICs for colistin/chlorophyllin
combinations were determined using broth microdilution. Optical analysis after 24 h confirmed
effective combinations of 0.125 µg/mL colistin with 10 or 5 mg/L chlorophyllin when illuminated
with 12 mW/cm2 (Figure 3e), and effective combinations of 0.25 µg/mL colistin with 10 or 5 mg/L
chlorophyllin when incubated in darkness (Figure 3f).
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2.2. Synergistic Effects of Chlorophyllin in Combination with Colistin on the Growth of S. Typhimurium

We further tested the growth of S. Typhimurium in LB containing chlorophyllin in combination
with colistin. The MIC was determined to be 1 µg/mL colistin for S. Typhimurium (Figure 4a).
Unexpectedly, the supplementations of ≥1 mg/L chlorophyllin completely inhibited the growth of
Salmonella cells illuminated with 12 mW/cm2 but showed no effect on cells in darkness (Figure 4a).Antibiotics 2019, 8, 158 5 of 22 
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Figure 2. Influence of colistin and chlorophyllin on the growth of Escherichia coli DH5α; (a) Growth
status of E. coli cultures in lysogeny broth (LB) supplemented with different colistin concentrations
after 24 h incubation at 37 ◦C; (b) outer membrane permeability of E. coli in the presence of different
colistin concentrations determined by using the NPN uptake assay; (c,d) Growth pattern of E. coli in the
presence of 10 mg/L chlorophyllin (green line, first column), colistin (yellow lines, central column) and
of a combination of both substances (red lines, right column). The black lines describe growth in LB
without any supplementation; (c) cells were illuminated with a light intensity of 12 mW/cm2; (d) cells
were incubated in dark. In columns two and three, dotted lines describe growth pattern of cultures in
LB + 0.10 µg/mL colistin, dashed lines growth pattern of cultures in LB + 0.25 µg/mL colistin, and solid
lines growth pattern of cultures in LB + 0.5 µg/mL colistin. Depicted are measured values (circles) and
fitted curves (lines) ± standard deviations (n = 3) showing one representative of three independent
experiments. *: p < 0.05 vs. chlorophyllin-free samples.
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deviations (n = 3) showing one representative of three independent experiments. *: p < 0.05 vs. 
chlorophyllin-free samples; (c,d) Loewe synergism and antagonism for colistin/chlorophyllin 
combinations against the growth of E. coli as determined by the Combenefit software (Cancer 
Research UK, Cambridge, UK). A heat map is used to represent the level of synergy (blue color) at 
each concentration under (c) illuminated and (d) dark conditions. The area surrounded by dotted line 
includes the concentration range used for the growth curves. (e,f) Broth microdilution plates for 

Figure 3. (a,b) Growth pattern of E. coli in the presence of 5 mg/L chlorophyllin (green line, first column),
colistin (yellow lines, central column) and of a combination of both substances (red lines, right column).
The black lines describe growth in LB without any supplementation; (a) cells were illuminated with a
light intensity of 12 mW/cm2; (b) cells were incubated in dark. In columns two and three, dashed lines
represent cultures in LB + 0.25 µg/mL colistin, while solid lines are for cultures in LB + 0.5 µg/mL colistin.
Depicted are measured values (circles) and fitted curves (lines) ± standard deviations (n = 3) showing
one representative of three independent experiments. *: p < 0.05 vs. chlorophyllin-free samples;
(c,d) Loewe synergism and antagonism for colistin/chlorophyllin combinations against the growth
of E. coli as determined by the Combenefit software (Cancer Research UK, Cambridge, UK). A heat
map is used to represent the level of synergy (blue color) at each concentration under (c) illuminated
and (d) dark conditions. The area surrounded by dotted line includes the concentration range used
for the growth curves. (e,f) Broth microdilution plates for minimal inhibitory concentration (MIC)
determination for colistin/chlorophyllin combinations under (e) illuminated and (f) dark conditions.



Antibiotics 2019, 8, 158 7 of 23

Antibiotics 2019, 8, 158 8 of 22 

 
Figure 4. Influence of colistin and chlorophyllin on the growth of Salmonella enterica serovar 
Typhimurium; (a) Growth status of S. Typhimurium cultures in LB supplemented with different 
concentrations of colistin (left) and chlorophyllin (right) after 24 h incubation. The outer membrane 
permeability in the presence of different colistin concentrations was determined by using the 1-N-
phenylnaphthylamine (NPN) uptake assay; (b,c) growth pattern of S. Typhimurium in the presence 
of 0.5 mg/L chlorophyllin (green line, first column), colistin (yellow lines, central column) and of a 
combination of both compounds (red lines, right column). The black lines describe growth in LB 
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Figure 4. Influence of colistin and chlorophyllin on the growth of Salmonella enterica serovar
Typhimurium; (a) Growth status of S. Typhimurium cultures in LB supplemented with different
concentrations of colistin (left) and chlorophyllin (right) after 24 h incubation. The outer membrane
permeability in the presence of different colistin concentrations was determined by using the
1-N-phenylnaphthylamine (NPN) uptake assay; (b,c) growth pattern of S. Typhimurium in the
presence of 0.5 mg/L chlorophyllin (green line, first column), colistin (yellow lines, central column)
and of a combination of both compounds (red lines, right column). The black lines describe growth
in LB without any supplementation; (b) cells were illuminated with a light intensity of 12 mW/cm2;
(c) cells were incubated in dark. In columns two and three, dotted lines describe the growth pattern
of cultures in LB + 0.10 µg/mL colistin, dashed lines growth pattern of cultures in LB + 0.25 µg/mL
colistin, and solid lines growth pattern of cultures in LB + 0.5 µg/mL colistin. Depicted are measured
values (circles) and fitted curves (lines) ± standard deviations (n = 3) showing one representative of
three independent experiments. *: p < 0.05 vs. chlorophyllin-free samples; (e,f) Loewe synergism
and antagonism for colistin/chlorophyllin combinations against the growth of S. Typhimurium as
determined by the Combenefit software (Cancer Research UK, Cambridge, UK). A heat map is used
to represent the level of synergy (blue color) at each concentration under (e) illuminated and (f) dark
conditions. The area surrounded by dotted line includes the concentration range used for the growth
curves. (g,h) Broth microdilution plates for MIC determination for colistin/chlorophyllin combinations
under (g) illuminated and (h) dark conditions.

Under illumination, a concentrations of 0.50 mg/L chlorophyllin (Figure 4b) delayed growth of
Salmonella in the first three hours to an extent that no synergistic effect of colistin and chlorophyllin
could be determined in light. This was further confirmed by Combenefit analyses (Figure 4e). Lower
concentration of chlorophyllin (0.25 mg/L) showed similar optical densities but no complete inhibition of
the cells were noted as observed in the colony forming unit (CFU) assay (data not shown). In darkness,
combinations of 0.25 µg/mL colistin with 0.50 mg/L chlorophyllin were able to prevent cell growth whereas
chlorophyllin together with 0.10 µg/mL colistin could only delay proliferation (Figure 4c). Combenefit
analyses revealed a high synergism between both substances at a colistin concentration of 0.25 µg/mL
(Figure 4f). The NPN uptake assay indicated an increased outer membrane permeability for colistin
supplementations of ≥0.1 µg/mL (Figure 4a, small diagram). However, colistin at a concentration of
0.10 µg/mL was insufficient to produce any chlorophyllin-based effects without illumination.

Broth microdilution MIC tests with 24 h incubation displayed effective combinations of
0.063 (0.5) µg/mL colistin with 0.25 (0.125) mg/L chlorophyllin when illuminated with 12 mW/cm2

(Figure 4g), and effective combinations of 0.25 (0.5) µg/mL colistin with 1 (0.125) mg/L chlorophyllin
when incubated in darkness (Figure 4h).

2.3. Synergistic Effects of Chlorophyllin in Combination with Colistin on mcr-1-Positive E. coli

To investigate the possibility of a colistin/chlorophyllin combination therapy to overcome the
spreading colistin resistance, we also tested the synergistic effects of colistin/chlorophyllin on a
colistin-resistant E. coli strain. In contrast to clinical isolates, the generation of a colistin-resistant mutant
allows direct comparison of mcr-1-positive and mcr-1-negative variants of the same strain. Thus, E. coli
DH5α was transformed with the plasmid pGDP2:mcr-1 carrying the mobilized colistin resistance gene
mcr-1 [14]. Broth microdilution confirmed that the mcr-1-expressing E. coli strain showed a 10-times
higher MIC (8 µg/mL) for colistin compared to the wild type strain DH5α (0.75 µg/mL).

We noted that the colistin-resistant cells grew profoundly in the presence of all tested colistin concentrations
(1.0, 2.0, 2.5, 5.0 µg/mL), while no growth of wild type cells was noted after colistin supplementation
(Figure 5a,c). These colistin concentrations further were able to increase the outer membrane permeability of
the mcr-1-expressing E. coli strain (Figure 5a, small diagram). Under illumination, chlorophyllin was able to
inhibit the growth of the colistin-resistant E. coli in the presence of ≥1.0 µg/mL colistin (Figure 5b). A slightly
higher efficiency of chlorophyllin on the mcr1-positive strain might be due to membrane effects caused by the
kanamycin resistance expressed from the plasmid pGDP2:mcr-1. Long-term incubation confirmed effective
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combinations of 2 (4) µg/mL colistin with 10 (5) mg/L chlorophyllin when illuminated with 12 mW/cm2

(Figure 6a), and a possibly effective combination of 4 µg/mL colistin with 20 mg/L chlorophyllin when
incubated in darkness (Figure 6b). The results indicate that colistin-resistant cells can be inactivated by the
photosensitizer activity of chlorophyllin. This was further affirmed by CFU assays. Viability of E. coli cells
was determined via colony formation on LB agar plates (Figure 6c). In cultures kept in dark, chlorophyllin
supplementation had no effect on the growth of the mcr-1-positive E. coli strain (Figure 5d).
Antibiotics 2019, 8, 158 10 of 22 

 
Figure 5. Growth of E. coli DH5α (left column) and mcr-1-positive E. coli DH5α pGDP2:mcr-1 (right 
column) supplemented with different colistin concentrations; (a,b) cells were illuminated with a light 
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Figure 5. Growth of E. coli DH5α (left column) and mcr-1-positive E. coli DH5α pGDP2:mcr-1 (right
column) supplemented with different colistin concentrations; (a,b) cells were illuminated with a
light intensity of 12 mW/cm2 in absence (a) and presence (b) of 10 mg/L chlorophyllin. The outer
membrane permeability was determined by using the NPN uptake assay; (c,d) cells were incubated
protected from light in absence (c) and presence (d) of 10 mg/L chlorophyllin. Depicted are measured
values ± standard deviations (n = 3) showing one representative of three independent experiments.
*: p < 0.05 vs. chlorophyllin-free samples.Antibiotics 2019, 8, 158 11 of 22 
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Figure 6. (a,b) Broth microdilution plates for MIC determination for colistin/chlorophyllin combinations
under (a) illuminated and (b) dark conditions; (c) LB agar plates (n = 3) for the evaluation of CFU
ability of wild type and mcr-1-positive (red arrows) E. coli after incubation to chlorophyllin-colistin
combinations. Liquid cultures of E. coli DH5α were supplemented with 10 mg/L chlorophyllin (Chl,
samples with green bars) and different colistin concentrations. Cells grew either illuminated with
12 mW/cm2 or protected from light. Samples (2.5 µL) were drawn at different time points (1 h, 2 h,
3 h, 4 h) and transferred onto LB agar plates. After overnight incubation at 37 ◦C in the dark, colony
growth was analyzed.
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2.4. Confirmation of Chlorophyllin Uptake

To prove that chlorophyllin entrance into E. coli and S. Typhimurium is facilitated by colistin, we
performed fluorescence microscopy with blue light excitation. Figure S3 shows that chlorophyllin (red
fluorescence) was clearly accumulated in the cells when E. coli DH5α, mcr-1-positive E. coli DH5α and S.
Typhimurium were cultured in presence of colistin. This finding confirmed the postulated door-opener
ability of colistin for chlorophyllin treatment via membrane destabilization. A weak chlorophyllin
fluorescence inside S. Typhimurium in absence of colistin could explain the higher susceptibility of
Salmonella to chlorophyllin treatment.

3. Discussion

3.1. Strategies to Inactivate Gram-Negative Bacteria with Chlorophyllin

Gram-negative bacteria are not very susceptible to chlorophyllin [26,28,29,42]. In this study, we
found that S. Typhimurium, against all suspicions, was very sensitive to photodynamic chlorophyllin
treatment and could be inactivated by a chlorophyllin concentration of 1 mg/L. So far, we have no
explanation for this increased susceptibility that differs from other Gram-negatives such as E. coli.
In contrast to E. coli, S. Typhimurium lacks a capsule [67]. For other species, like K. pneumoniae, it was
shown that the capsule polysaccharide can mediate resistance to antimicrobial substances by limiting
their interaction with membrane targets [68]. When Pereira et al. [69] investigated the photodynamic
efficacy of cationic porphyrins they found that the chemical composition of external structures seems
to have strong impact on the light-dependent inactivation of bacteria by photosensitizers. Hence, it
may be that the envelope of Salmonella allows improved action of photosensitizing chlorophyllin but
not necessarily an increased uptake as we could not detect any activity in darkness.

Gram-negative bacteria have an additional membrane layer (outer membrane) comprising
glycolipid lipopolysaccharides (LPS) and phosphoglycerides as major components (Figure 7a).
The outer membrane serves as a barrier to protect against toxic compounds, including antibiotics having
targets other than this surface layer, and host innate immune molecules (e.g., cationic antimicrobial
peptides) [70]. Indeed, some bacteria acquire antibiotic resistance by modifying the permeability of the
outer membrane [71]. It is very likely that affecting the outer membrane of Gram-negatives makes
them much more sensitive against bactericides, which otherwise are blocked. A recent study [72]
described that the human complement system perforates this barrier through pore-formation by
membrane attack complexes leading to treatability of infections caused by Gram-negatives with
antibiotics that are considered ineffective. Other studies have shown the outer membrane as a target
for destabilizing molecules [73]. Chemical destabilization can be achieved with various classes of
substances, such as cationic detergents, chelators like ethylene-diamine-tetraacetic acid (EDTA), large
cationic peptides, compound 48/80 (a polycationic polymer of p-methoxyphenethylmethylamine
monomers) and others [62,74]. In this study, we used colistin to disturb the outer membrane
permeability (Figure 7b) [75]. The possible observed additive effect of colistin and illumination on the
proliferation of E. coli (and to a lower extent on S. Typhimurium) could not only be explained by delayed
cell growth due to illumination as reported before [60]. To date, light-activation was only reported for
tetracyclines [76] and the antitumor antibiotics ravidomycin and desacetylravidomycin [77], but this
finding deserves further investigation of polymyxins.

Previous approaches on the combination treatment of destabilizing and antibacterial molecules to
inactivate Gram-negatives were reported for chitosan, lactic acid, polyethyleneimine and polymyxin
B nonapeptide. Chitosan, a product from deacetylated chitin of shrimps, was found to increase the
permeability of the outer membrane significantly in acidic environment as shown using the fluorescent
probe NPN [78]. The combination of chitosan with chlorophyllin-based photosensitization was able
to reduce viable Salmonella effectively in the presence of light [79,80]. Lactic acid was also found
to disrupt the outer membrane of E. coli, P. aeruginosa, and S. Typhimurium, but, same as chitosan,
only at low pH [81,82]. Alakomi et al. [81] used lactic acid to sensitize Gram-negative bacteria for
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detergents. They proposed that exclusively the non-dissociated form has permeabilizing properties.
In a further approach recombinant Lactococcus lactis was used to produce and secrete not only lactic
acid but also heterologous antimicrobial peptides with activity against E. coli and Salmonella [83].
That the antibacterial efficacy of colistin is improved at low pH could also be demonstrated when
a photoacid was combined with colistin treatment. In this approach the MIC of colistin decreased
~32 times for P. aeruginosa [84]. Nitzan et al. [85] investigated the effect of polymyxin nonapeptide
(polymyxin B, similar to colistin) as a membrane-destabilizing agent with deuteroporphyrin and
demonstrated effective photodynamic activity of the porphyrin in E. coli and P. aeruginosa in the
presence of polymyxin B. Similar observations were noted in our study as well. Le Guern et al. [86]
synthesized a peptide-coupled photosensitizer built of a cationic porphyrin and polymyxin B. They
found an improved photodynamic efficiency against P. aeruginosa and E. coli. Confocal microscopy
showed that the porphyrin-peptide selectively sticks to the cell walls.Antibiotics 2019, 8, 158 13 of 22 
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Figure 7. (a) Schematic illustration of the Gram-negative envelope. Chlorophyllin (green squares) is
not able to pass the outer membrane; (b) In the presence of colistin (red circles) the outer membrane is
disorganized, mainly by colistin’s effect to interact with lipopolysaccharides (LPS). Chlorophyllin can
enter the bacterial cell through the disorganized membranes, realizing its antibacterial effect. Parts of
the figure were drawn by using pictures from Servier Medical Art, licensed under a Creative Commons
Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).

Not all Gram-negative bacteria show the same sensitivity against substances weakening the
outer membrane. Alakomi et al. [87] tested a combination of membrane-destabilizing agents
(polyethyleneimine, EDTA and meso-2,3-dimercaptosuccinic acid) in combination with the biocide
benzalkonium chloride. While strains of Pseudomonas and Stenotrophomonas became permeabilized in
the presence of the agents (determined with NPN accumulation), strains of Sinorhizobium were found
not to be affected. This indicates that the biochemistry of the LPS of the outer membrane seems to be
very important for interaction with permeabilizers. We believe that further investigation of synergistic
effects of chlorophyllin with different permeabilizers and in different strains is very promising to
elucidate effective methods for inactivation of pathogenic bacteria.

Due to the light-dependency of photodynamic reactions, technical or medical applications of
photosensitizers are restricted to exposed areas of action (e.g., wounds or surfaces), which can be
illuminated. Chlorophyllin, in contrast, is not restricted to illumination to exert antibacterial properties
but also shows activity in the darkness. For instance, according to our data, 0.25 µg/mL of colistin
in combination with 10 mg/L chlorophyllin are sufficient to prevent the growth of E. coli in vitro.
In addition, 0.25 µg/mL colistin in presence of 1 mg/L chlorophyllin inhibited the growth of S.
Typhimurium. The underlying light-independent mechanisms are not yet understood. For possible
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medical applications, it is crucial to know the maximal concentration tolerated by the human body.
Successful in vivo treatment of Streptococcus septicemia infections with chlorophyllin was firstly reported
by Gruskin in 1940 [88]. However, the interest in chlorophyll as an antibiotic and as a therapeutic
agent in general appears to have dwindled as conventional antibiotics arose; there is only sporadic
reporting of studies in this field for almost five decades. Only since the year 2000 has chlorophyll
and its derivatives caught attention again as is reflected in a higher number of publications. The few
and vague information available [88,89] on intravenously use of chlorophyll derivatives indicates that
it is—at least theoretically—possible to achieve the mandatory concentrations in a patient without
significant side effects.

3.2. Overcoming Colistin Resistance of E. coli Using Colistin in Combination with Chlorophyllin

Synergistic effects of colistin in combination with other antibiotics, such as rifampicin,
tigecycline, eravacycline, clarithromycin, minocycline, novobiocin, or fusidic acid against colistin- or
carbapenem-resistant Gram-negative pathogens have been reported before [90–95]. In addition, other
combinations, for example, of colistin with the membrane-perturbing phytoalexin resveratrol showed
promising results [96,97]. It is indicated that colistin has properties to increase antibiotic activity
in mcr-1-positive bacteria, but this ability is not well understood so far [95,98]. MacNair et al. [95]
suggested that the fatty-acyl tail of colistin (Figure 1a, yellow), an important factor for polymyxin
toxicity [99], plays a two-edged role in this mechanism: on the one hand cell lysis and self-promoted
uptake of colistin seems to be impaired by the protein MCR-1, on the other hand the fatty-acyl tail is still
able to disorganize the outer membrane (Figure 8b) [95,100,101]. Thus, colistin can act as a door opener
for other antimicrobial substances such as chlorophyllin, even for the inactivation of mcr-1-positive
E. coli cells. In this study, we could demonstrate that chlorophyllin in combination with therapeutic
colistin is effective to kill mcr-1-positive E. coli cells, but the effect was limited to the photodynamic
activity of chlorophyllin [60]. Chlorophyllin was not able to inhibit bacterial growth in the absence of
light. To what extent the presence of MCR-1 protein can affect chlorophyllin’s dark-active mechanism
of action has to be explored in future studies. There are some hints that only the photodegradation
products of chlorophyllin such as ROS, but not chlorophyllin itself, can pass the inner membrane in
presence of MCR-1 (Figure 8b). In accordance with our results, Pourhajibagher et al. [102] found a
reinforcing effect of photodynamic treatment with toluidine blue O in combination with colistin against
pandrug-resistant A. baumannii.

Altogether, the door opener ability of colistin opens up new possibilities to control mcr-1-expressing
pathogens with colistin combination therapies. Ironically, the susceptibility of colistin-‘resistant’ bacteria
to colistin—albeit not lethal—may be an Achilles heel for a problematic resistance mechanism in
Gram-negative bacteria (Table 1) [103]. Most recently, the ninth mcr homologue mcr-9 has been
identified in Salmonella [25]. It remains to be investigated whether all mcr variants are susceptible to
colistin combination therapy.
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Figure 8. (a) Postulated effects of colistin (red circles) on Gram-negative bacteria. Colistin molecules
disorganize the outer membrane and may somehow disrupt the physical integrity of the inner membrane
(flash symbols) finally leading to cell death [75]; (b) Hypothesized ‘door opener’ effect of colistin for
photodynamic treatment with chlorophyllin (green squares). The fatty-acyl tail is still able to perturb
the outer membrane but effects on the inner membrane seems to be impaired by the protein MCR-1. Our
data suggests that MCR-1 inhibits the uptake of chlorophyllin over the inner membrane (no inactivation
of bacteria in the dark) but might allow the passing of chlorophyllin’s photodegradation products such as
ROS (inactivation in light). LPS: lipopolysaccharides, PEA: phosphoethanolamine, ROS: reactive oxygen
species. Parts of the figure were drawn by using pictures from Servier Medical Art, licensed under a
Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).

Table 1. Chlorophyllin-based inactivation of Gram-negative model strains. Strategies to inhibit cell
growth in light (bright column) or darkness (grey column).

Strain Illuminated with 12 mW/cm2 Dark-Incubated

E. coli DH5α

5 mg/L chlorophyllin + 0.125 µg/mL colistin
or
2.5 mg/L chlorophyllin + 0.25 µg/mL colistin
or
1.25 mg/L chlorophyllin + 0.5 µg/mL colistin

10 mg/L chlorophyllin + 0.25 µg/mL colistin
or
2.5 mg/L chlorophyllin + 0.5 µg/mL colistin

E. coli DH5α
pGDP2:mcr-1

10 mg/L chlorophyllin + 2 mg/L colistin
or
5 mg/L chlorophyllin + 4 µg/mL colistin

no inactivation at low chlorophyllin
concentrations; observed inactivation with
20 mg/L chlorophyllin + 4 µg/mL colistin

S. Typhimurium Ames9274

1 mg/L chlorophyllin 1

or
0.063 chlorophyllin + 0.25 µg/mL colistin
or
0.125 chlorophyllin + 0.5 µg/mL colistin

1 mg/L chlorophyllin + 0.25 µg/mL colistin
or
0.125 mg/L chlorophyllin + 0.5 µg/mL
colistin

1 Salmonella showed increased susceptibility to photodynamic chlorophyllin treatment.

https://creativecommons.org/licenses/by/3.0/
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4. Materials and Methods

4.1. Bacteria Strains and Growth

Experiments were performed with E. coli DH5α (Invitrogen, Carlsbad, CA, USA) and S. enterica
subsp. enterica, serovar Typhimurium Ames9274 (laboratory stock). The bacteria were grown in LB
medium overnight in an incubator at 37 ◦C and 150 rpm. Prior to the experiments, cell concentration
was determined by multiple measurements of absorbance at 590 nm and set to OD590 = 0.1 before cells
were diluted in LB medium as required. During the experiments, cells were grown on/in LB at 37 ◦C.

For the generation of a colistin-resistant mutant, E. coli DH5α was transformed with the
pGDP2:mcr-1 plasmid (kindly provided by Eric D. Brown, McMaster University, Hamilton, ON, Canada).
Antimicrobial susceptibility of the strains against colistin was tested by using the MICRONAUT
MIC-Strip colistin (Merlin Diagnostika, Bornheim, Germany) and broth microdilution, as recommended
by the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) [104,105].

4.2. Preparation of Chlorophyllin

Chlorophyllin preparation from frozen spinach was performed as described before [60].
The concentration of chlorophyllin was determined spectrophotometrically using the formula of
Ziegler and Egle [106]. Aliquots were stored in darkness at −20 ◦C prior to use. The collected extract
was dried and the chlorophyllin powder was dissolved in LB medium to a working solution of 50 mg/L.

4.3. Growth Experiments

Colistin sulfate salt was purchased from Sigma-Aldrich (Steinheim, Germany) and dissolved in
LB to a working solution of 50 mg/mL.

For suspension cultures, cells were directly incubated in 1 mL acrylic photometer cuvettes (Sarstedt,
Nümbrecht, Germany) after adjusting different chlorophyllin (0.0, 0.25, 0.50, 1.0, 2.5, 5.0, 10.0, 15.0,
20.0, and 25.0 mg/L) and colistin concentrations (0.0, 0.005, 0.010, 0.025, 0.050, 0.100, 0.250, 0.500, 1.000,
and 2.500 µg/mL) from stock solutions. The initial cell density was set to OD590 = 0.1 (corresponding
to 0.8 × 108 cfu/mL). Cell-free medium with corresponding chlorophyllin and colistin concentrations
served as blanks. Cuvettes were kept in their original styrofoam boxes, which were placed into sterile
plastic bags to avoid contamination during light exposure. Two identical boxes were prepared for
illumination and for dark control (wrapped in aluminum foil). Both boxes were incubated on a shaker
at 37 ◦C inside an incubator equipped with a LED grow light PRAKASA 300 W (Green Tech Direct Ltd.,
Harrow, Middlesex, UK). Distance to samples was adjusted to achieve a photon flux of 560 µE/(s ×m2)
which corresponds to a light intensity of 12 mW/cm2. Cell growth was determined photometrically at
590 nm (OD590) prior to exposure (0 min), and subsequently after defined time intervals. During the
measurements, exposure to light was interrupted until all samples were measured.

For the CFU assay, samples were prepared as described before [60]. Before incubation as well as
in subsequent defined time-intervals each 5 µL of each cell sample were transferred on agar plates.
After overnight incubation at 37 ◦C, plates were inspected for colony-formation. Untreated cell
samples served as controls. Corresponding spots where cell solution was added were classified as
follows: colony formation same as in controls: no effect; colonies obviously smaller compared to
controls: inhibition; only max. two single small spots visible: strong inhibition; no colony formation:
complete inhibition.

All experiments were prepared in triplicates (n = 3) and repeated at least thrice.
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4.4. Determination of Minimal Inhibitory Concentrations (MICs)

MICs of chlorophyllin and colistin, and of their combinations were determined as described
elsewhere [107]. Sterile 48-well flat bottom microtiter plates (Thermo Fisher Scientific, Waltham, MA,
USA) were filled with 500 µL of LB medium and different concentrations of chlorophyllin (for E. coli:
0.31–20 mg/L, for Salmonella: 0.03–2 mg/L) and colistin (0.06–1 µg/mL, for E. coli DH5α pGDP2:mcr-1:
0.5–8 µg/mL). Bacteria (E. coli DH5α, E. coli DH5α pGDP2:mcr-1 or S. Typhimurium Ames9274) were
inoculated at a titer of 5 × 106 cfu/mL. Two sets of microtiter plates were prepared. One set was
incubated under illumination (12 mW/cm2) and other set was wrapped with aluminum foil for dark
incubation. After incubation at 37 ◦C for 24 h, the MIC was determined as the last dilution at which no
turbidity was observed. The MIC tests were repeated thrice.

For the additional determination of growth kinetics, 5 µL samples from each well were transferred
into a new 96-well microtiter plate (Thermo Fisher Scientific, Waltham, MA, USA) containing 200 µL of
sterile LB medium in each well. The plates were optically analyzed after further incubation at 37 ◦C
for 24 h.

4.5. NPN Uptake Assay

Outer membrane permeability was determined using the fluorescent probe
1-N-phenylnaphthylamine (NPN) as described [108]. In contrast to the published protocol,
bacteria were resuspended in phosphate-buffered saline and OD600 values between 0.005 and 0.3
were applied. All experiments were carried out at least in triplicates (biological replicates) with
two technical replicates (duplicates). NPN was purchased from Sigma-Aldrich and used in final
concentrations between 0.5 µM and 10 µM. Measurement were carried out using a Tecan Infinite M
Nano+ plate reader (Tecan Group, Männedorf, Switzerland) with Nunc MicroWell 96-well flat bottom
microtiter plates (Thermo Fisher Scientific, Waltham, MA, USA).

4.6. Fluorescence Microscopy

Visualization of chlorophyllin uptake in E. coli was performed using the Biozero BZ-8000 digital
fluorescence microscope (Keyence, Osaka, Japan). Fluorescence images were taken from liquid cultures
with a 100× oil immersion objective, an excitation wavelength of 450–490 nm and an emission cut-off

at 510 nm.

4.7. Data Evaluation and Statistics

After subtraction of the optical densities of corresponding cell-free blanks from those of the
samples, mean values as well as standard deviation of triplicates were calculated and are shown
as graphs.

Differences between samples and corresponding controls were analyzed with an
independent-samples t-test using the IBM SPSS Statistics 23.0 software (IBM Deutschland GmbH,
Ehningen, Germany). p < 0.05 was considered as statistically significant.

Synergistic effects of colistin/chlorophyllin combinations were assessed using the Combenefit
software (Cancer Research UK, Cambridge, UK) [109]. Available concentrations of both substances
and dose response information (normalized to control conditions) were entered into the program.
The software automatically analyzed the numeric data employing the Loewe additivity model to
identify synergism, antagonism or additive in drug combinations.
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5. Conclusions

In this study, we demonstrated that chlorophyllin successfully inhibited the growth of
Gram-negative bacteria (E. coli and S. Typhimurium) in the presence of colistin (Table 1). For the proof of
concept, we used sub-toxic colistin concentrations. In clinical context, higher colistin concentrations are
recommended to prevent spreading of resistance. Chlorophyllin’s effect on cells was more pronounced
under illumination, confirming the photosensitizing activity of chlorophyllin. Salmonella was more
susceptible to chlorophyllin than E. coli. This suggests that the chemical composition of the outer
membrane can have a strong impact on photosensitization efficacy. Furthermore, a combined effect
of colistin and chlorophyllin was observed against mcr-1-positive E. coli cells indicating a potential
application of chlorophyllin combination therapy to treat drug-resistant pathogens. However, even
if more pathogenic strains and drug combinations have to be tested in future, we speculate that, if
applied together with substances weakening the outer membrane, chlorophyllin may become an
effective antimicrobial substance also for the control of Gram-negative bacteria.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/8/4/158/s1,
Figure S1: Possible additive effect of colistin and light on the proliferation rate of E. coli DH5α and S. Typhimurium;
Figure S2: Growth kinetic of E. coli DH5α in the presence of chlorophyllin/colistin concentrations; Figure S3:
Chlorophyllin uptake into E. coli, S. Typhimurium and E. coli pGDP2:mcr-1 in the presence of colistin; Table S1:
Effects of different colistin concentrations on the growth of E. coli DH5α.
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