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Abstract: During quasi-stationary tensile deformation of ultrafine-grained Cu-0.2 mass%Zr at 673 K
and a deformation rate of about 10−4 s−1 load changes were performed. Reductions of relative load by
more than about 25% initiate anelastic back flow. Subsequently, the creep rate turns positive again and
goes through a relative maximum. This is interpreted by a strain rate component ε̇− associated with
dynamic recovery of dislocations. Back extrapolation indicates that ε̇− contributes the same fraction of
(20± 10)% to the quasi-stationary strain rate that has been reported for coarse-grained materials with
high fraction of low-angle boundaries; this suggests that dynamic recovery of dislocations is generally
mediated by boundaries. The influence of anelastic back flow on ε̇− is discussed. Comparison
of ε̇− to the quasi-stationary rate points to enhancement of dynamic recovery by internal stresses.
Subtraction of ε̇− from the total rate yields the rate component ε̇+ related with generation and storage
of dislocations; its activation volume is in the order expected from the classical theory of thermal glide.

Keywords: Cu–Zr; ECAP; ultrafine-grained material; deformation; dynamic recovery; transient;
load change tests

1. Introduction

In materials science one is used to think in terms of strain hardening and recovery: The dislocation
density increases with plastic strain so that the material hardens; recovery decreases this density with
time so that the material softens. However, this view is too simple as the recovery processes get biased
under stress so that dynamic recovery, i.e., recovery under stress, also causes strain. Recovery by
cross slip is an early and well known example. When the rate of strain due to recovery decreases,
the material may seem to harden even though it recovers. The present work deals with this surprising
effect in an ultrafine-grained material with high content of high-angle boundaries (HABs).

In a companion paper the quasi-stationary (qs) deformation strength of ultrafine-grained (ufg)
Cu–Zr has been described. In qs deformation storage and recovery of dislocations approximately
balance each other so that the dislocation density ρ remains approximately constant, i.e.,

ρ̇+ ≈ ρ̇−. (1)
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Storage occurs after expansion of dislocation loops on slip planes (Figure 1: ’dislocations in’).
Dynamic recovery is coagulation of dislocation loops after dipole capture (Figure 1: ’dislocations out’).
The recovery processes may be spatially concentrated at crystallite boundaries or may be more equally
distributed as in solid solutions of class I-type with solute drag on dislocations [1,2]. Recovery generally
requires dislocation motion outside the primary slip plane by climb or cross slip [3].

dislocations
in out

glide recovery

view 
parallel  

to slip plane

perpendicular  
to slip plane

Figure 1. Scheme of dislocation glide with generation and storage of dislocations (’dislocations in’) and
dynamic recovery of dislocations (’dislocations out’) viewed perpendicular and parallel to glide plane.

In the view in a direction parallel to the glide plane, where dislocations appear as points
(Figure 1), recovery seems to make a negligible contribution to strain during annihilation of dislocation
dipoles. Therefore, dynamic recovery is usually not considered as a process generating strain. Rather,
the models regard strain as a result of thermally activated expansion of slipped areas bounded
by dislocation lines with positive curvature that have to overcome a significant athermal stress
component (forest dislocations, long-range back stresses from boundaries). In this picture the existing
dislocations act as obstacles to dislocation glide. However, the view in a direction perpendicular to the
slip plane shows that strain may well be generated during the process of coagulation of dislocation
loops in recovery as negatively curved dislocation segments straighten [4,5]. Here, the interaction of
dislocations supports the expansion of slipped areas by glide rather than opposing it. The difference
in driving forces means that the kinetics of generation of dislocation length by glide of positively
curved dislocations moving through the existing dislocation structure differs from that of decrease
of dislocation length by motion of negatively curved dislocations. Therefore, it makes sense to treat
the rate ε̇pl of plastic deformation as sum of storage strain occurring at a rate ε̇+ and recovery–strain
occurring at a rate ρ̇− [4,5]:

ε̇pl = ε̇+ + ε̇−. (2)

In the literature, there are a couple of examples of processes of type ε̇−, where recovery is coupled
with glide or glide is associated with recovery (class I alloys with viscously moving dislocations [1,2,6],
knitting-out of dislocations from LABs [7–9], accommodation processes at HABs [10], strain coupled
with migration of LABs (e.g., [11]) and HABs (e.g., [12]). Compared to ε̇+ the recovery–strain rate ε̇−

has received little attention (see e.g., [3,13]). In monotonic qs deformation, the two terms ε̇+ and ε̇− are
coupled via condition Equation 1. To investigate recovery of dislocation lines separately from storage
of dislocations, one must decouple the two processes. This can be done by perturbing monotonic
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flow by a sudden change of the force F at which the specimen deforms. Such a perturbation abruptly
changes the forces exerted per length of dislocations and triggers reversible time-dependent dislocation
motions (e.g., bowing/unbowing). The strains caused by those motions are called anelastic. So the
total inelastic strain rate is

ε̇inel = ε̇pl + ε̇anel. (3)

Figure 2 schematically shows the response to a change from F0 to Fr ≡ R F0 at a time t0 and
an inelastic strain εr,0. Consider relatively small changes of the relative load R (cases a and b in
Figure 2). These cause relatively small changes in inelastic deformation rates from the value ε̇r,0

before the R-change to a new value ε̇r,1. Anelastic strains are negligible. Just after the R-change, the
dislocation structure and the rest of the microstructure are virtually the same as before (’constant
structure’), but the glide velocity of dislocations has changed due to the change of the stresses acting
on the dislocations. The ratio ε̇r,1/ε̇r,0 is widely used to get a measure of the activation volume V+ of
thermally activated dislocation glide as described in more detail in Appendix B. A particularly large
body of ’constant structure’ data of ε̇r,1/ε̇r,0 has been collected for various metals and alloys by Milička
in stress change tests during creep at elevated temperatures [14–16].

Now we consider relatively large F-changes (cases c and d in Figure 2). Anelastic strains are
no longer negligible and diminish ε̇inel compared to ε̇pl (Equation (3)). At sufficiently low R, the
forces acting on the dislocations initially get negative so that ε̇inel becomes negative directly after
the R-reduction [17]. This is a consequence of internal stresses of short- and long-range nature
acting on the dislocations [17] and opposing thermally activated glide of type ε̇+. As the back
flow relaxes the internal back stresses created before the R-reduction, the absolute magnitude of the
rate ε̇anel declines, ε̇pl becomes dominant again, and forward deformation is reestablished at a rate
ε̇pl = ε̇r,2. The preceding anelastic back flow is expected to cause only subtle changes of the dislocation
arrangement and the rest of the microstructure; therefore, the rate ε̇r,2, measured short after the period
of back flow, has also been adressed as ’constant structure’ rate. However, it is clear that this is not
fully correct (see Equation (4)).

In the further course of the transient after large R-reductions, ε̇anel becomes negligible so that
ε̇inel ≈ ε̇pl. A remarkable result is that ε̇inel generally decreases for long times as schematically indicated
by the dashed curve. This behavior is not well known in the community, although it is regularly found
whenever investigated, independent of materials and pretreatment. It is distinct from the so-called
inverse transient behavior where the decrease of ε̇inel with strain after R-reduction occurs in the whole
interval 0 < R < 1, and not only at small R. One reason for the lack of knowledge about decreasing
ε̇inel after large R-reductions is, that long-term tests are required for such observations, covering test
times distinctly beyond the extended period of back flow. Such tests have been done by Blum and
coworkers on a number of materials including e.g., Al–5Mg (class I alloy) [18,19], Al–Zn (class II
alloy) [20], and pure LiF [21] and by Van Swygenhoven and coworkers on nanocrystalline Ni and
Ni-Fe [10,22,23]. In these tests direct evidence for ongoing net recovery of dislocations was obtained.
A natural explanation of the decrease of ε̇inel after perturbation of plastic flow by a large R-reduction is
that the recovery rate component ε̇− decreases, because the driving force for recovery declines during
the decrease of ρ and other crystal defects to the lower level in the new qs state at the lower stress.

The same process of net recovery must also be expected when a deformed specimen is simply
unloaded to R = 0 and subsequently annealed at elevated temperature higher than the deformation
temperature. This type of experiment has been done by Hasegawa, Yakou and Kocks on pure
Al [24,25] that was deformed at ambient temperature and then quickly heated to elevated temperature.
The result was qualitatively the same as the result of unloading at fixed temperature described before:
net back flow due to anelastic strains was followed by net forward flow at declining rate. This forward
flow at zero stress after predeformation was interpreted by the authors as consequence of recovery;
the recovery was suggested to result from reaction of neighboring polarized dislocation walls.

So far, comprehensive studies of the transient response to stress reductions are missing in the case
of ECAP-processed ufg materials. Two tests performed on ufg Cu [26] showed a decrease of creep rate



Metals 2019, 9, 1150 4 of 17

after relative stress reductions to R = 0.77 and 0.70 that could be explained in terms of decreasing
recovery–strain rate. The present study of transient deformation after qs deformation of ufg Cu–Zr
has these main objectives:

• demonstrate that the transient response to load changes can be studied in standard tensile creep
machines with load control,

• advertise a new type of plot [27] (Figure 3e) displaying the full strain-time evolutions of all tests
of a series with different degrees of unloading at reasonable resolution,

• show that the transient behavior of an ufg material is qualitatively the same as that of cg materials,
including an initial period of strain mainly due to recovery,

• discuss the mechanism of dynamic recovery in qs and transient deformation with special regard
to the influence of internal stresses.

inelastic 
strain

time t

·ϵr,0 ·ϵr,1
·ϵr,2

·ϵinel

R = 1

1 > R > 0

t0

·ϵinel
R > 1
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rate at  
load !F0

time of  
load reduction

rate after  
load change  
to  Fr = R F0

rate at  
after back flow

Fr

a b c d

Figure 2. Response of inelastic strain to fast changes of creep load from F0 to Fr = R F0 during
deformation at time t0 and strain εr,0 for (a) small R-increase, (b) small R-decrease, (c) medium
R-decrease causing ε̇r,1 = 0, (d) large R-decrease causing net back flow.

2. Experimental Details

As described in more detail in the companion paper [28], our particle-stabilized material,
called pCu–Zr, was produced by severe predeformation at ambient temperature in p passes of equal
channel angular pressing (ECAP) on route BC. Its material parameters are approximated by those of
pure Cu provided in the data compilation of Frost and Ashby [29]: Burgers vector b = 2.56× 10−10 m,
elastic shear modulus G = 3.58× 104 MPa, melting point Tm = 1356 K. The test temperature was
T = 673 K = 0.5 Tm.

Deformation was started by applying tensile loads F to flat specimens with initial values of gauge
length l0 = 10 mm and cross section S0 of usually≈ 12 mm2. The standard creep machines used in this
work were designed for long-term measurements of creep strain accumulation at constant load, not for
precisely following small strain changes after load changes. The reproducibility of measurements of
back flow was worse than in Milička’s tests [14–16], but better than originally expected, although some
artifacts from unmotivated jumps in the extensometer system or errors in σeng occasionally seem to
have occurred (see e.g., the black curve in Figure 3b after unloading). In the periods of deformation
(creep) at constant load the inelastic strain rate is practically identical to the measured total strain rate
ε̇tot as the elastic strain rate ε̇el is negligible. In the periods of fast changes of load F this is no longer
so. Appendix A explains the procedure taken to get the inelastic strain εinel at acceptable accuracy.
The inelastic strain rate follows from εinel as ε̇inel = ∆εinel/∆t where ∆εinel must be chosen larger than
the experimental noise. This was achieved by data smoothing with the open software SmooMuDS [30].
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3. Results

3.1. Transients as Function of Time

A change of load from a start value F0 corresponding to an engineering stress σeng = F0/S0 to
a new value F = R F0 at time t0 and inelastic strain ε0 initiates a transient response. To display all
transients of largely different durations in the same plot, a logarithmic time scale is used in Figure 3;
the constants 10 s in the time-scale and 0.01 in the εinel-scale serve to bring the start of transient
into the field of view. Figure 3a–c shows three tests with relative load reductions to by 60% to
R = 0.4. The reductions deliberately were performed in steps to explore the behavior at intermediate
stresses (Figure 3a). The strain evolution varies with step height and step length. In some cases net
forward deformation continued during the first unloading steps (Figure 3b). However, the strains
accumulated there were small and no significant effect on the values of ε̇inel > 0 after the reductions
was observed. This is different in the periods of back flow (ε̇inel < 0). Such a difference must be
expected because back flow relaxes the internal stresses driving it. However, our work does not focus
on back the flow triggered by the perturbation by R-reductions, but on the subsequent forward flow
(see Figure 3b). Figure 3c displays the forward strain rates ε̇inel > 0 after R-reduction that reappear
after about 20 to 30 ks when back flow has faded, ε̇anel has become negligible and ε̇inel ≈ ε̇pl. In the
beginning, the uncertainty in ε̇inel is large, because relatively small strain intervals ∆εinel were used in
determination of ε̇inel (compare Equation (2)).

Two of the ε̇inel-curves in Figure 3c still appear somewhat noisy. Yet further smoothing of data
was avoided because the ε̇inel-variations seem to have a real origin in slow T-fluctuations caused by
the control system. The two gray curves for 8Cu–Zr in subfigure b show the measured ε̇inel-extremes.
They differ by a factor of 3 to 4 in ε̇inel. We ascribe that to the aforementioned inhomogeneity of
the grain structure of 8Cu–Zr. The upper gray curve for 8Cu–Zr is quite similar to the black curve
for 12Cu–Zr. We conclude from this result that, apart from the scatter of the initial microstructure
produced by the thermomechanical history, there is no significant difference between the ufg materials
8Cu–Zr and 12Cu–Zr.

Figure 3d-f gives the overview of all R-reduction tests performed in this work. Again, we focus
on the forward flow observed after the anelastic back flow. The curves in Figure 3f derived from
Figure 3e are arranged in a fairly consistent sequence corresponding to the loads shown in Figure 3d.
This underscores the quality of the length measurements in our creep machines although these were
not built for load change tests. For R ≤ 0.3 a transient decrease of the (forward) strain rate ε̇inel > 0
is evident.

Figure 4 shows the times tback (circles) for anelastic back flow taken from the length-time
recordings. Due to differences in unloading histories and uncertainties in length measurement the
scatter is large. The dashed line corresponds to the dashed curve from Figure 3f approximating the
boundary of back flow. For R > 0.75 the time interval of back flow is immeasurably small. So back
flow becomes negligible here and deformation goes on at positive rate directly after the load reduction.
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Figure 3. (a) Stress σ, (b) strain εinel, and (c) strain rate ε̇inel as function of time t in tests for 8Cu–Zr and
12Cu–Zr with stepwise load reduction to (a–c) R = 0.4 and (d–f) all R; dashed line in (f) approximates
boundary of back flow.
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Figure 4. Times tback for anelastic back flow (circles, from Figure 3e) compared to lower bound t′rec of
times trec for dynamic recovery toward the new qs state as function of R for σr,0 = 275 MPa; dashed line
corresponds to dashed line in Figure 3f.

3.2. Transients as Function of Strain

Dislocation generation needs strain. Therefore, the strain εinel is much more closely related to the
microstructural evolution than the testing time t. So the evolution of deformation strength (σ, ε̇inel) is
commonly displayed on a strain scale. Figure 5 exhibits the transients of Figure 3f as function of εinel.
As σ increases at constant load F, ε̇inel increases even if the microstructure is constant. This effect was
eliminated by correcting ε̇inel (see caption). The corrected curves in Figure 5 should be horizontal in
the qs state if the grain and phase structure remains constant. This is indeed found for large R near 1.
For smaller R the curves exhibit a positive slope in the whole strain interval. This means that slow
microstructural changes are going on throughout the test. Comparison of the dotted and the solid
curves at R = 0.4 and 0.3 shows that these changes are the same in tests with and without R-reduction.
At the lowest R of 0.2 (80% unloading) deformation is slowest and the structural changes including
dislocations are largest. Consequently, softening is most pronounced here. The curve for R = 0.2 was
followed for 42 days before it was interrupted without any indications of fracture; note that the ε̇(ε)
curve is concave, not convex as in fracture. In [28] the softening has been shown to be a consequence
of microstructural coarsening, in particular grain coarsening. This means that only the short-term
portions of the curves after R-reduction show the transient response to perturbance of the dynamic
equilibrium of storage and recovery of dislocations in the qs state at t0.

Note that the character of this short-term portion of the transients changes significantly with R.
For small R-reductions to R ≥ 0.5 there is a relative increase of ε̇inel compared to the qs curve at reduced
R. This is known as normal transient behavior: the material softens due to coarsening of the cellular
dislocation structure towards the new dynamic equilibrium state. However, for large R-reductions to
R < 0.5 and ε̇inel ≤ 10−7 s−1 there is an initial decrease of ε̇inel.

Figure 6 displays the constant structure rates ε̇r,1 and ε̇r,2 that were measured at the beginning of
the transients and after anelastic back flow, respectively (see Figure 2). Figure 6a shows that ε̇r,1 falls to
zero near R = 0.76 and becomes negative (back flow) for lower R. Following Milicka [14], the data
were approximated by a sinh-expression

ε̇r,1 = k1 sinh(V (σ− σi)/(M kB T) k1 = 0.0885, σi = 0.76 σr,0, (4)

giving the solid grey line with change from positive to negative (back flow) rates ε̇r,1. Figure 6b shows
the positive rates ε̇r,2 after back flow.
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σr,0 ≈ 275 MPa as function of relative creep load R: (a) ε̇r,1, grey dotted lines connect data from
same test with stepwise load reduction, (b) ε̇r,2 (symbols connected by solid grey line); on log scale
with estimates of ε̇−cs (dotted black) and ε̇+cs (dash-dotted black); see text.

4. Discussion

Our results for ufg Cu–Zr are qualitatively quite similar to the general behavior observed for
crystalline materials after a perturbation of monotonic plastic flow by load changes. For small
R-reductions deformation goes on at reduced rate in forward direction according to the applied
stress and the material softens with strain in parallel to the recovery of the dislocation structure.
For large R-reductions deformation first goes backward before it returns to positive direction again
and then continues at decreasing rate. As mentioned in Equation (1), this rate decrease parallels that of
recovery and therefore may be directly linked to dynamic recovery. This can be understood from the
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view that the strain rate term ε̇+ leading to storage of dislocations disappears for small R so that the
strain rate term ε̇− related with dynamic recovery dominates. These transient phenomena disappear
while the new qs state corresponding to R is approached.

The two terms ε̇+ and ε̇−, corresponding to the cases ’dislocations in’ and ’dislocations out’ of
Figure 1, have different kinetics. This difference should become apparent in those ranges of R where
either ε̇+ or ε̇−dominate. This is in line with the different R-dependences of the lines for ε̇+ and ε̇− in
Figure 6b. Milička [14–16] restricted his measurements to the R-range with ε̇r,1 ≥ 0. In spite of this
restriction, he discovered that a single mechanism of deformation obeying Equation (4) is not sufficient
to describe the variation of ε̇r,1 with R. So he proposed to express ε̇r,1 as a sum of two terms [15,16].
This parallels the separation of ε̇pl into ε̇+ and ε̇− in Equation (2).

4.1. Strain Related with Storage of Defects

From the preceding discussion we surmise that for R ≤ 0.7 the rate ε̇r,2 approximately equals ε̇−.
Extrapolating the ε̇r,2-curve for R < 0.7 in Figure 6 yields ε̇−qs-values at R = 1 in the range of 10% and
30% of ε̇r,0. In other words: the recovery–strain rate ε̇−qs contributes about (20± 10)% to the qs strain
rate. ε̇+cs follows as the difference of ε̇r and ε̇−cs (Equation (2)). The stress exponent of this curve at R = 1
is n+

cs = 17 at R = 1. This is close to the estimate 21 derived from the theory of thermally activated
glide (Equation A15). In view of the simplifications and assumptions involved, we conclude from this
result that an interpretation of ε̇+cs in terms of the classical theory of thermally activated glide over
fixed repulsive obstacles in pure materials (e.g., forest dislocations) may be possible.

4.2. Strain Related with Recovery of Defects

We now turn attention to the recovery–strain rate ε̇−. Figure 7a compares the recovery–strain
rates ε̇−cs at (approximately) constant structure from Figure 6b (dotted line) to the recovery–strain
rate ε̇−qs at qs structure (solid line) as function of stress σ. The latter is obtained from the qs strain
rates ε̇qs ∝ σ6 reported in the companion paper [28] under the assumption that the fraction ε̇−qs/ε̇qs

in qs deformation equals ≈ 0.2 independent of stress. ε̇−cs is larger than ε̇−qs. This can be qualitatively
explained by the higher defect density and higher local stresses in the cs states inherited from the
preceding deformation at the high stress σr,0 ≈ 275 MPa compared to the qs states established at lower
stresses σ < σr,0. So far there is no accepted detailed model of dynamic recovery and its strain rate
contribution ε̇−. Strain contributions from recovery of individual dislocations stored at recovery sites,
probably internal crystal boundaries (LABs, HABs), and from recovery of boundaries by migration
need to be considered.

One may ask to which extent the recovery–strain rate gets reduced in the period of back flow
before ε̇r,2 is measured. It is clear that anelastic back flow relaxes internal stresses. Also, some fast
recovery processes of the kind shown in Figure 1 will happen already during the period of net back flow
and thereby reduce the density of recovery sites. This indicates that use of the term ’constant structure’
for ε̇−cs becomes increasingly problematic with declining R with regard to the dislocation structure and
raises the question whether the constant structure assumption is wrong and anelastic back flow may
even be lasting long enough to modify not only the internal stresses, but also allow the dislocation
structure to evolve close to the new qs state at reduced stress. In this case ε̇r,2 should become equal
to the qs rate ε̇qs for low R and correspondingly low stresses. And this is in fact observed around
100 MPa, as Figure 7a shows. To answer the question we estimate a lower limit t′rec of the time trec for
full recovery into the new qs state. The estimate is based on the assumptions that (i) no dislocation
generation takes place during the anelastic back flow even though the new qs state is based on dynamic
equilibrium of generation and recovery and (ii) the maximal rate of dislocation recovery pertains
throughout the back flow period even though the driving force for recovery must decrease. In the
literature there is very little direct information on the evolution of the density ρ of dislocations during
dynamic recovery. The reasons are that dynamic recovery is generally accompanied by dislocation
glide of type ε̇+ and that reliable observations can only be made if the dislocations can safely be
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pinned up to microscopic observation. A set of data was measured in [20] for the alloy Al–Zn where
pinning is possible by precipitation of particles. The data were obtained in the qs state characterized
by Equation (1). It was found that the measured dislocations recovery rates ≈ ρ̇− were in accord with
Equation (1) when the dislocation generation rate is expressed as

ρ̇− ≈ ρ̇+ =
M fΛ

b
ε̇+

Λ
. (5)

where Λ is proportional to the mean free path of dislocations and fΛ is a numerical factor near 1. For a
rough estimate we set Λ = d0, ε̇r,0 = 10−4 s−1, fΛ = 1. This yields the rate ρ̇−0 of dynamic dislocation
recovery just before the R-reduction as 2× 10−12 m2 s−1. The initial qs dislocation spacing is estimated
as ρqs = (b G/σr,0)

2 at σr,0 = 275 MPa. The solid line in Figure 4 shows the result for t′rec. The data
symbols represent the experimental data for the time period tback where anelastic back flow occurs or
cannot be excluded due to experimental inaccuracy. The result of this estimate is that in a large R-range
the time period tback available for recovery during back flow is smaller than the lower bound t′rec of the
time period trec of recovery needed to reach the new qs state of dislocation density. This corresponds
to the observation made in situ on nanocrystalline Ni that recovery of X-line widths continues after the
period of back flow [22]. So we conclude that ε̇−cs in Figure 6b mainly represents the recovery–strain
rate due to ρ̇−, and not the qs strain rate resulting from ρ̇+-ρ̇−-balance (Equation (1)).

The results of the present work do not allow us to deduce details about the mechanism of
recovery–strain. Cross slip [31] and climb [32] are generally being considered as rate-controlling
mechanisms (compare [3]). Stress concentrations at boundaries by long-range internal stresses
have been used in descriptions of kinetics with the composite model [33]. LABs in coarse-grained
materials [11,21] and of HABs in nanocrystalline materials [34] are being discussed as sinks of
dislocations as well as of boundaries themselves (via recombination during migration). Measurements
on single-crystalline LiF have led to the conclusion that migration of LABs is responsible for most or
even all of the observed recovery strain [21]. (A different situation is encountered in class II alloys
like Al–Mg with viscous dislocation glide due to strong solute drag and spatially homogeneous
distribution of recovery events [2,18,19,35]; here long-range stresses seem to play only little role.)
The insensitivity of the relative recovery–strain contribution of recovery in the qs state to the boundary
misorientation is intriguing. The observation that LABs are the major carriers of recovery strain
in coarse-grained (cg) materials means that generation of recovery–strain by annihilation of single
dislocations (Figure 1) cannot be used to explain the recovery strain in both LAB- and HAB-dominated
structures. A boundary-mediated recovery mechanism, however, may be valid in both cases. It could
mean that the rates of dynamic recovery vary with the HAB-content, but the basic mechanism involving
free dislocations and boundaries is the same.

Better understanding of recovery–strain may be of profound value in technical application of
strong materials under conditions of varying stress σ, e.g., in stress relaxation and cyclic deformation.
The period of dominant recovery–strain rate ε̇− after load reductions gives the unique chance to
investigate the kinetics of dynamic recovery alone without influence of the storage strain rate ε̇+.
One option is to perform secondary load change tests in this period after a primary large load reduction.
Such secondary load changes have been started on Al [36] and recently continued on nc Ni [22,23].
The stress sensitivity in the period of ε̇−qs-dominance was found to be much smaller than the qs stress
sensitivity nqs. Another option is to develop a model of dynamic recovery describing both the stress
dependences of ε̇−cs(R) at constant structure and of ε̇−qs in the qs state.

An obvious question to be answered by a model is why the recovery–strain rate ε̇−cs at constant
structure is so similar to the qs strain rate ε̇qs (Figure 7a). At least part of the answer seems to lie in
internal stresses [37]. It is probable that recovery processes are concentrated at relatively hard regions,
in particular crystallite boundaries, where the local stress σh is enhanced relative to the applied stress
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by a local forward stress σf. In the following we apply the phenomenological approach used in [37] to
the present case. Assume that ε̇− varies with a power q of σh:

ε̇−cs = f−0 ε̇r,0

(
σh

σh,0

)q
; (6)

f−0 connects ε̇−cs to the strain rate ε̇r,0 before the stress reduction; σh is the sum of applied stress R σr,0

after R-reduction and local internal forward stress σf = frel σf,0, i.e., σh = R σr,0 + frel σf,0; here σf,0 is
the forward stress at R = 1 before the load reduction and frel describes the relaxation of the internal
forward stress during anelastic back flow before ε̇−cs is measured; σh,0 is the starting value of σh at R = 1
and frel = 1 before the R-change. To give an example, f−0 is set to 0.22, the exponent in Equation (6) is
chosen as q = 7, and σf,0 is assumed to be 1.5 σr,0. With these choices Figure 7a shows ε̇−cs as function
of R for two cases. The first case frel = 1, i.e. no relaxation of internal forward stress during anelastic
back flow, yields ε̇−cs-values lying distinctly higher than the measured ones, but is unrealistic. In the
second case frel is assumed to decreases with decreasing R as shown in Figure 7b. The thick dotted
curve in Figure 7a represents the result for ε̇−cs. It was made to perfectly match the measured ε̇−cs-curve
from Figure 6b. For comparison, the line for ε̇−qs shows the recovery–strain rate expected in the qs state,
if the ratio f−0 is independent of stress as suggested by numerous results obtained for cg materials. It is
seen that although the relaxation of the internal stresses during back flow may be significant, it always
keeps the recovery–strain rate generated from the dense defect structure at high stress σr,0 above the qs
strain rate expected at the lower stresses acting at R < 1 where the qs defect density is much lower.
That makes sense. The preceding exercise shows that the measured constant structure recovery–strain
rates can be understood on the basis of internal forward stresses of some kind acting at the recovery
sites. It must, however, naturally be expected that the decrease of the volume density of recovery sites
during back flow also contributes to the decline of ε̇−cs, qualitatively marked by the downward pointing
arrows in Figure 7.
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Figure 7. (a) Recovery–strain rate ε̇−cs at constant structure after R-change from Figure 6b (black
dotted) compared to qs strain rate ε̇qs (grey solid) and recovery–strain rate ε̇−qs in the qs state (grey
dashed), (b) anelastic relaxation factor frel as function of σ ≈ R σr,0 required to model ε̇−cs from (a) with
Equation (6).

4.3. Comparison of Stress Dependences of ε̇+ and ε̇− at Constant Structure

One problem with measuring the recovery–strain rate ε̇− is that its separation from ε̇+ in
load/stress change tests is not trivial and sometimes impossible. The separation is easy and accurate if
the inflection point in the semilogarithmic ε̇r,2-curve (Figure 6b) is well pronounced. This depends
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strongly on the slope of this curve at R = 1. This slope is mostly given by the stress exponent n+
cs of

ε̇+ (see Equation A15), i.e., the rate associated with generation of defects leading to work hardening.
According to the estimate of Equation A14 n+

cs decreases inversely proportional to the temperature T.
On the other hand, the slope of the ε̇−-curve due to recovery is rather insensitive to T. Therefore,

the separation of ε̇− becomes increasingly problematic when T increases. Solid solution strengthening
leads to further reduction of n+

cs and the inflection point in the semilogarithmic ε̇r,2-curve (Figure 6b)
may disappear completely (e.g., in Al–5Mg [14,19] and Fe–Si [15]. Then the separation of ε̇+ and ε̇−

may be based on the fact that ε̇+ is driven by a thermal stress component lower than the applied stress,
whereas ε̇− is driven by a local stress that is enhanced by the interaction of the recovering defects; this
is an open task.

5. Summary

• In ufg Cu–Zr at 0.5 Tm recovery–strain ε− connected with dynamic recovery of strain-induced
crystal defects was found in tests with perturbation of the quasi-stationary (qs) state by load
reductions. ε− adds to the strain ε+ connected with dislocation generation and storage.

• The stress dependence of ε̇+ yields an activation volume consistent with the classical theory of
thermally activated glide.

• The recovery–strain rate ε̇− contributes 10% to 30% to the quasi-stationary strain rate ε̇qs.
This fraction for ufg Cu–Zr with high volume fraction of HABs is similar to the one commonly
reported for cg materials with high volume fraction of LABs. That could mean that boundaries play
qualitatively similar roles in mediating dynamic recovery independent of their misorientation.

• The values of ε̇−cs (at constant structure) and ε̇qs (at quasi-stationary structure) are relatively similar
for large load reductions, even though the microstructures, in particular the dislocation structures,
should differ significantly. This becomes understandable, if promotion of recovery by internal
forward stresses is taken into account.

• Combining the rates of recovery–strain in the qs state and after perturbation of monotonic flow
seems promising to better understand the mechanism of dynamic recovery of crystal defects,
limiting the deformation strength under monotonic as well as cyclic loading conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

qs quasi-stationary
ECAP equal channel angular pressing
cg coarse-grained
ufg ultrafine-grained
LAB low-angle boundary
HAB high-angle boundary

Appendix A. Determination of Inelastic Strain

The load F corresponding to an engineering stress

σeng = F/S0 (A1)
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was varied in steps. Figure A1a shows an example. Assuming volume constancy, the cross section
varies with the gauge length

l = l0 + ∆l, (A2)

where ∆l is the measured length change, as

S = S0 l0/l = S0 exp(−εtot), εtot = ln(l/l0) (A3)

where εtot is the total “true” strain. Figure A1b shows the variation of εtot with time t corresponding
to Figure A1a. The εtot-steps in Figure A1b result from the changes of the elastic strain related with
the changes of F. To eliminate these steps the elastic strain must be estimated. This was done in the
following straightforward manner. The elastic strain is composed from two components:

εel = εel,Cu + εmach. (A4)

εel,Cu is the elastic strain of the gauge length l of the specimen described by:

εel,Cu = σ/E (A5)

with
σ = Fc/S ≈ σeng exp(εtot) (A6)

as “true” stress acting in the gauge length and E ≈ 9× 104 MPa as elastic tensile modulus (Young’s
modulus) of Cu. εmach is the elastic strain

εmach = ∆lmach/l (A7)

resulting from all parts of specimen and machine entering the measured length change outside the
gauge length l. The unknown elastic machine length change was determined in an iterative manner so
that the elastic steps in the εtot–t plots like Figure A1b were optimally suppressed.

An analytical formulation with a power law:

∆lmach/mm ≈ c1 (Fc/N)c2 − c3. 0.001 < c3 < 0.006 (A8)

with c1 = 2.23× 10−4, c2 = 0.74 and a constant c3 turned out to be comfortable and sufficiently exact.
The approximate inelastic strain then follows as:

εinel = εtot − εel. (A9)

Individual choice of c3 for each test proved reasonable to compensate systematic errors of the
∆l-signal near F = 0 before the motions of specimen and strain gages become uniaxial. In a final step
the stress was corrected by changing Equation (A6) to

σ ≈ Fc/S = σeng exp(εinel). (A10)

This has only marginal influence on the results. Figure A1c shows that the elastic steps from
Figure A1b have virtually disappeared. Some gaps in the curves are caused by data acquisition
problems. The test includes a small stress increase at t ≈ 300 s followed by stepwise unloading
within less than 30 s. It is seen how the (inelastic) strain εinel continues to increase till 307 s and then
starts to decrease. This decrease is called anelastic, because it is reversible on a macroscopic level.
The elimination of the elastic strain helps to visualize the anelastic response that is less pronounced
than the elastic one (also in comparison to the elastic response of the specimen). Equation (A7) may
cause an elastic overcorrection at stresses below 100 MPa. However, this is irrelevant for the inelastic
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strain rates in the periods of relatively constant load, where the major elastic strain component resulting
from ∆lmach remains constant.
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Figure A1. (a) Stress σ, (b) total strain εtot with elastic strains from machine and specimen, (c) inelastic
strain εinel versus time t in load change test on 8Cu–Zr at 673 K.

Appendix B. Activation Volume of Dislocation Glide

Glide in the course of expansion of dislocation loops bounding the slipped areas causes an inelastic
strain rate ε̇+. It is driven by the resolved shear stress σ/M, where M is the geometrical factor of
conversion from normal to shear stress and strain (for untextured face-centered polycrystals: Taylor
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factor = 3.06), kB is the Boltzmann constant, and is supported by thermally activated overcoming of
thermal obstacles. The operational activation volume is defined by

V+
op = kB T

d ln ε̇+

dσ/M
(A11)

To get a rough estimate of Vop
gl we tentatively use the classical model of thermally activated glide

through a field of point-like repulsive obstacles. According to this model the activation volume is

V+ = b λgl∆xgl. (A12)

where λgl and ∆xgl are obstacle spacing and width, respectively. Equation (A12) holds under the
condition that the microstructure including the internal stresses remains constant in the change test. If

• λgl is set equal to the expected spacing of free dislocations, bG/σ, and
• ∆xgl is approximated by b,

V+ becomes a simple function of stress:

V+ ≈ b3 G/σ. (A13)

By approximating V+
op in Equation (A11) by V+ from Equation (A13) and using the mathematical

identity dσ = σ d ln σ one arrives at a simple estimate

n+
cs,est ≡

b3 G
M kB T

. (A14)

of the stress exponent of ε̇+ at constant structure:

n+
cs =

∂ ln ε̇+

∂ ln σ
. (A15)

(Meanwhile it has become customary to neglect the condition of constant structure; this leads to
a mix-up with the qs rate sensitivity [16,38].) The estimate n+

cs,est is independent of σ and inversely
proportional to temperature T for a given material.

citeyearref-journal-3b, p.475). This produces: Wong (1999, p. 328; 2000, p. 475)
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