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In this work, we investigate and optimize heterogeneous catalysis in porous 
metal foams. First, we consider the gas dynamics together with the reaction
and diffusion processes in individual foam pores on the mesoscale. Second, 
we condense the detailed simulation results on the mesoscale to relations 
between few dimensionless numbers. Based on these relations, we follow
a multiscale approach to derive an efficient, one-dimensional, macroscale
model for metal foam filled catalytic converters. Due to its industrial relevance,
we focus on the mass transfer limited regime. Finally, we develop a simple
recipe to determine optimum pore size configurations. For realistic heat release 
values, the heat transfer out of the catalytic converter is critical. We show that,
in order to keep temperature fluctuations small, the optimum configuration  
consists of several, stacked foam segments with decreasing pore size along the 
main flow direction. For typical parameters, we observe that, compared to foam 
with constant pore size, the trade-off between chemical conversion and flow  
resistance can be increased significantly, while the required reactive surface
area, i.e., the needed amount of catalytic material, is reduced substantially.
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Abstract

Heterogeneous catalysis is omnipresent in the chemical industry. In con-
trast to homogeneous catalysis, no expensive separation processes have to
be performed subsequently. Conversely, the challenge is to ensure fast mass
transfer between the fluid phase and the reactive surface. In this context,
porous foams are an extremely promising support structure. The scope of
this work is to investigate and optimize heterogeneous catalysis in porous
metal foam structures on two different size scales.

First, we consider the gas dynamics together with the reaction and dif-
fusion processes in individual foam pores on the mesoscale. To this end,
the unit foam cell is defined as an inverse sphere packing, and described
using Constructive Solid Geometry. In order to eliminate numerical artifacts
at the complex shaped boundary, we construct an isotropic version of the
mesoscopic simulation method, Stochastic Rotation Dynamics. Further,
we develop specialized boundary conditions to model open boundaries in
particle-based simulations of reactive flow. Within the scope of this work,
the foam structures are assumed to be coated with an even washcoat layer.
The washcoat is not simulated explicitly. Instead, the effective reaction
rate is determined based on the previously tabulated effectiveness factor
for the washcoat. On the basis of experimental results, the implemented
simulation model is validated regarding permeability and mass transport
towards the reactive surface. As prototype reaction we consider the low
temperature water-gas shift. The trade-off between chemical conversion
and flow resistance is characterized by the performance index. In search
of favorable process parameters, which lead to a high performance index,
the porosity is varied. The effective reaction rate can be varied by adjusting
the active site density in the washcoat layer. Herby, both the mass transfer
limited, and the reaction rate limited regime can be assessed. In the mass
transfer limited regime, we observe that increasing the porosity improves
the performance index. This observation coincides with findings from the
literature. Moreover, the reactive surface is utilized more efficiently at
larger porosity values. As the effective reaction rate in the washcoat is
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decreased, the system is shifted towards the reaction rate limited regime, and 
the correlations between porosity and performance index as well as surface 
exploitation are less pronounced.

Second, we condense the detailed simulation results on the mesoscale to 
relations between few dimensionless numbers. Based on these relations, 
we follow a multiscale approach to derive an efficient, one-dimensional, 
macroscale model for heterogeneous catalysis in open-cell porous metal 
foam. Due to its industrial importance, we focus on the mass transfer 
limited regime. For the fixed foam porosity 0.902, we find the most favorable 
ratio between conversion and flow resistance to be achieved at the Reynolds 
number 15.8.

Additionally, we present simple recipes to determine the optimum con-
figuration for metal foam filled catalytic converters under different circum-
stances. In case the reaction heat is negligible, the optimum performance 
is reached using one single foam segment the pore size of which is adjusted 
such that the optimum Reynolds number is obtained. However, for realistic 
heat release values, the heat transfer out of the catalytic converter is critical. 
In order to keep temperature fluctuations small, under these circumstances, 
the optimum configuration consists of several, stacked foam segments with 
decreasing pore size along the main flow direction. For this case, we provide 
an analytical procedure to determine the optimum pore size for each of the 
stacked segments. Demanding the chemical conversion to be 99.5 %, we 
compare the optimized configuration to the reference configuration with 
constant pore size for typical parameters. We observe that, compared to 
this reference, the performance index can be increased by up to 11.0 %, and 
the required reactive surface area, i.e., the amount of catalytic material, can 
be reduced by up to 18.4 %.
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Zusammenfassung

Heterogene Katalyse ist allgegenwärtig in der chemischen Industrie. Ver-
glichen mit homogener Katalyse hat dieses Verfahren den Vorteil, dass keine
aufwendigen Trennprozesse nachgeschaltet werden müssen. Im Gegenzug
liegt die Herausforderung darin einen schnellen Stofftransport zwischen der
Fluidphase und der reaktiven Oberfläche zu gewährleisten. Vor diesem Hin-
tergrund stellen poröse Schaumstrukturen eine äußerst vielversprechende
Trägerstruktur dar. Diese Arbeit befasst sich mit der Untersuchung und
Optimierung heterogener Katalyse in porösen Metallschaumstrukturen auf
zwei verschiedenen Größenskalen.

Zunächst betrachten wir die Strömungsverhältnisse sowie die Reaktions-
und Diffusionsprozesse innerhalb einer einzelnen Schaumpore auf Meso-
skala. Wir definieren dazu eine Einheitsschaumzelle als Packung inverser
Kugeln, die sich mithilfe von Constructive Solid Geometry beschreiben
lässt. Um numerische Artefakte an den komplex geformten Rändern zu
vermeiden, konstruieren wir eine isotrope Variante der mesoskopischen
Simulationsmethode Stochastic Rotation Dynamics. Darüber hinaus entwi-
ckeln wir eine spezielle Randbedingung zur Beschreibung offener Ränder
in partikelbasierten Simulationen von reaktiven Strömungen. Im Rahmen
dieser Arbeit, nehmen wir an, dass die Schaumstruktur gleichmäßig mit
Washcoat beschichtet ist. Der Washcoat wird nicht explizit simuliert. Statt-
dessen wird basierend auf dem zuvor tabellierten Katalysatorwirkungsgrad
im Washcoat eine effektive Reaktionsrate bestimmt. Anhand von experi-
mentellen Ergebnissen wird das implementierte Simulationsmodell im Hin-
blick auf die Permeabilität und den Stofftransport hin zur reaktiven Ober-
fläche validiert. Als Prototypreaktion wählen wir den Niedertemperatur-
Wasser-Gas-Shift. Das Verhältnis zwischen chemischer Umwandlung und
Strömungswiderstand wird durch den Performance Index charakterisiert.
Auf der Suche nach günstigen Prozessparametern, die zu einem hohen
Performance Index führen, variieren wir die Schaumporosität. Die effektive
Reaktionsrate innerhalb der Washcoatschicht kann durch Änderung der
Dichte der aktiven Zentren eingestellt werden. Auf diese Weise kann sowohl
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das durch den Stofftransport limitierte, als auch das durch die Reaktionsrate
limitierte Regime untersucht werden. In dem durch den Stofftransport limi-
tierten Regime ist zu beobachten, dass bei einer Erhöhung der Porosität auch
der Performance Index ansteigt. Dies steht im Einklang mit der Literatur.
Darüber hinaus wird die reaktive Oberfläche bei größeren Porositätswerten
effizienter genutzt. Bei einer Verringerung der effektiven Reaktionsrate
innerhalb der Washcoatschicht verschiebt sich das System in Richtung des
durch die Reaktionsrate limitierten Regimes und die Korrelationen zwischen
Porosität und Performance Index sowie Oberflächennutzung sind weniger
ausgeprägt.

Im Anschluss daran, kondensieren wir die detaillierten Simulationser-
gebnisse auf Mesoskala zu Zusammenhängen zwischen wenigen, dimen-
sionslosen Kennzahlen. Darauf au auend wenden wir einen Multiskalenan-
satz an, um ein effizientes, eindimensionales, makroskopisches Modell zur
Beschreibung heterogener Katalyse in offenporigen, porösen, Metallschäu-
men abzuleiten. Aufgrund dessen industrieller Bedeutung konzentrieren
wir uns in diesem Schritt auf das Regime, in dem der Stofftransport den
limitierenden Faktor darstellt. Für eine konstante Schaumporosität von
0,902 beobachten wir, dass das günstigste Verhältnis zwischen chemischer
Umwandlung und Strömungswiderstand, bei einer Reynolds-Zahl von 15,8
erreicht wird.

Darüber hinaus erstellen wir einfache Anleitungen, um die optimale Kon-
figuration für mit Metallschaum gefüllte Katalysatoren unter verschiedenen
Bedingungen zu bestimmen. Ist die Reaktionswärme vernachlässigbar, so
liefert ein einzelnes Schaumsegment die optimale Leistung, dessen Po-
rengröße so gewählt ist, dass die optimale Reynolds-Zahl erreicht wird.
Für realistische Werte der Reaktionswärme ist jedoch die Wärmeableitung
aus dem Katalysator entscheidend. Um Temperaturschwankungen gering
zu halten, besteht die optimale Konfiguration in diesem Fall aus mehre-
ren, aneinandergereihten Schaumsegmenten mit abnehmender Porengröße
entlang der Hauptströmungsrichtung. Für diesen Fall präsentieren wir ein
analytisches Verfahren, um die optimale Porengröße für jedes der anein-
andergereihten Segmente zu bestimmen. Für typische Parameter und eine
geforderte chemische Umwandlung von 99,5% stellen wir die optimierte
Konfiguration der Referenzkonfiguration mit konstanter Porengröße gegen-
über. Im Vergleich zu dieser Referenzkonfiguration kann der Performance
Index um bis zu 11,0% und die erforderliche reaktive Oberfläche, d.h. die
Menge an katalytischem Material, um bis zu 18,4% reduziert werden.
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1 Introduction

1.1 Motivation

Many industrial chemical processes require catalysts. Hence, understanding
and optimizing catalytic processes is of great economical importance [1]. In
homogeneous catalysis, the catalyst and the reactants are present in the
same fluid phase. Subsequent to the actual reaction, separation processes
are necessary to retrieve the products. Conversely, in heterogeneous cataly-
sis, the catalyst is applied to a solid support structure, and the critical step
typically is to bring the reactants to the catalyst. Heterogeneous catalysis
is particularly suitable for continuous reactors, since the catalyst remains
on the support structure, while the products can be led to the next process
step. In order to provide a large interface between the support structure and
the fluid phase, porous structures, such as washcoated monoliths or pellet
packings, are preferred [2, 3]. An important challenge in reactor design
is to find support structures which ensure an effective mass transport to
the surface, while avoiding large pressure drops. In this context, open-cell
foam structures are extremely promising [4]. Due to high porosity, specific
surface and tortuosity, these structures provide excellent mass transport
properties at moderate pressure drops [5]. Therefore, their performance in
heterogeneous catalysis has been investigated experimentally [6, 7, 8] as well
as numerically for regular [9, 10] and irregular structures [11, 5]. In these
studies, the foam structures are modeled as Kelvin cells1, and continuum
approaches – like the finite volume method – are used to solve for the
concentration and flow fields. In this framework, complex geometries can be
treated with an accordingly shaped mesh or using immersed boundaries [12].
For both cases, the accuracy of the boundary description depends on the
spacial discretization.

In this thesis, we follow a different approach. Instead of continuum
methods, we use a mesoscopic, particle-based method to simulate the

1 A sketch of this structure is provided in [11].
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1 Introduction

processes within individual foam pores. Mesoscale simulation techniques
bridge the gap between molecular scale and continuum approaches on the
macroscopic scale [13]. The unit foam cell, which is depicted in Fig. 1.1, is
modeled as an inverse sphere packing and described with Constructive Solid
Geometry (CSG) [14, 15]. This combination allows for an easy handling of the
chemical reactions at the foam surface. Moreover, for the employed meso-
scopic simulation method, a phenomenological description is sufficient,
i.e, no partial differential equations are required to describe the system.
Conversely, applied to macroscopic systems, mesoscale simulation methods
often are numerically more expensive than continuum methods.

The final aim of this work is to optimize the design of metal foam
reactors on the macroscale with the local pore size as free parameter. To
address this problem, the macroscopic catalytic converter must be assessed
for numerous different pore size configurations, which is feasible neither
in an experimental study nor by means of direct numerical simulations.
Therefore, based on the simulation results gathered on the mesoscale, we
follow a multiscale approach to develop an efficient model for the simulation
of catalytic converters on the macroscale.

1.2 Thesis outline

In this thesis, we develop a multiscale approach to predict the processes
within catalytic converters on the macroscale based on detailed simulation
results for representative foam cells on the mesoscale. The transition
between the different scales is achieved by using dimensionless numbers to
characterize the system. In the macroscale simulations, the local reactant
conversion as well as the local pressure drop are needed as input. In
order to predict the conversion on the macroscale, we establish a relation
between Sherwood number and Reynolds number in metal foam structures
on the mesoscale. Conversely, for the pressure drop, depending on foam
porosity, we determine the relation between Hagen number and Reynolds
number. Subsequently, using homogenization, we develop an efficient, one-
dimensional model for macroscale simulations of catalytic converters filled
with washcoated metal foam. Finally, this model is applied to determine
the optimum configuration for heterogeneous catalysis in porous foam
structures.

As shown in Fig. 1.1, the foam structure is modeled as an inverse sphere
packing. Strobl has developed a numerical framework for particle-based
gas dynamics simulations in complex geometries, described by Constructive

2



1.2 Thesis outline

porous foam structure
modeled as inverse
sphere packing

FIG. 1.1: The open-cell metal foam structure2 depicted on the left is modeled as an inverse
sphere packing. The representative unit foam cell employed on the mesoscale is shown on
the right.

Solid Geometry (CSG) [13, 15]. Hence, the simulation domain is defined
analytically, which has the advantage that the chemical reactions can be
performed exactly at the reactive surface independently of the spacial res-
olution of the domain. In the framework developed by Strobl, the gas
phase is modeled using Direct Simulation Monte Carlo (DSMC) [16]. Being
the direct implementation of the Boltzmann equation, this model is well
established. Before being capable of performing the numerical simulations
on the mesoscale which are required for the proposed multiscale approach,
this simulation software has to be extended by the following three essential
ingredients:
Efficient isotropic gas dynamics model. The computational cost associated

with DSMC is proportional to the particle collision rate, i.e., this method
is especially suitable for rarefied gas dynamics [17]. For denser systems,
Stochastic Rotation dynamics (SRD) [18] is better suited, since it applies an
effective multi-particle collision instead of binary collisions. In its standard
form, SRD groups the particles into Cartesian grid cells, and the particles
exchange momentum only within these cells. This may introduce artificial
anisotropy in the vicinity of complex shaped walls. In order to eliminate such
artifacts, an isotropic version of Stochastic Rotation dynamics is developed
in Chap. 2.

2 Reprinted from Acta Materialia, 59, O. Smorygo, V. Mikutski, A. Marukovich, A.
Ilyushchanka, V. Sadykov, and A. Smirnova, An inverted spherical model of an open-cell
foam structure, 2671, Copyright 2011, with permission from Elsevier.
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1 Introduction

Boundary condition for inlet and outlet. Concerning particle-based meth-
ods, Neumann boundary conditions tend to suffer from instabilities [19].
Simple periodic boundary conditions are not applicable in this case, since
the reactant concentrations at inlet and outlet differ, due to the chemical
reactions in the domain. To circumvent this problem, we connect inlet and
outlet via a modified periodic boundary condition allowing for disconti-
nuities in the concentration field, while the density, temperature and the
velocity fields are strictly periodic. In order to drive the flow, an external
acceleration is applied. Note that these specialized inlet and outlet boundary
conditions are applicable only to volume conserving reactions. A detailed
description is provided in Chap. 3.
Boundary condition for heterogeneous catalysis. We are considering the

low temperature water-gas shift as prototype reaction. Hence, we imple-
ment the catalytic boundary conditions explicitly for the low temperature
water-gas shift reaction, see Sec. 4.2. We assume the reaction to follow the
Langmuir-Hinshelwood reaction mechanism [20, 21]. The foam structure
serves as substrate and is assumed to be coated with CuO/ZnO/Al2O3

washcoat. As we do not restrict this study to the mass transfer limited
regime, but also consider the reaction rate limited regime, it is eminently
important to model the reaction mechanism in detail. The effective reaction
rate in the washcoat layer is computed using precomputed look-up tables for
the effectiveness factor [22]. Among other parameters, the effective reaction
rate depends on the partial surface pressures of the reactants, which can
be computed from the collision fluxes on the surface. Hence, the relevant
quantities are evaluated directly at the reactive boundary.

The implemented model is capable of simulating gas dynamics super-
imposed by reaction and diffusion processes in complex shaped domains.
In Sec. 4.3, the simulation model is validated for the representative unit
cell against experimental findings for both the pressure drop [23] and the
conversion [6] in metal foam structures. In Sec. 4.4.2, we apply the validated
model to representative unit foam cells and assess the trade-off between
conversion and flow resistance as a function of porosity. This porosity study
is not restricted to the mass transfer limited regime, but we consider also an
intermediate regime as well as the reaction rate limited regime.

Relations between Sherwood and Reynolds number as well as Hagen and
Reynolds number are determined for the representative unit foam cell in
Sec. 4.3 and Sec. 5.3. In the macroscale simulation, described in Sec. 5.2,
we assume the mass transfer to be the limiting step. The foam structure is
modeled as homogeneous continuum with freely definable pore size profile.
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1.2 Thesis outline

For the local pore size, the local Reynolds number and, consequently, the
local Sherwood and Hagen number can be determined. Subsequently, con-
version and pressure drop along the catalytic converter can be determined
based on local Sherwood and Hagen number, respectively. In Sec. 5.3, we
use the macroscale model to examine two different scenarios: negligible and
realistic heat of reaction. For each scenario, we present a simple recipe to
find an optimum pore size profile along the catalytic converter.
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2 Isotropic Stochastic Rotation Dynamics1

“Stochastic Rotation Dynamics (SRD) is a widely used method for the meso-
scopic modeling of complex fluids, such as colloidal suspensions, or multi-
phase flows. In this method, however, the underlying Cartesian grid defining
the coarse-grained interaction volumes induces anisotropy. We propose
an isotropic, lattice-free variant of [Stochastic Rotation Dynamics], termed
iSRD. Instead of Cartesian grid cells, we employ randomly distributed
spherical interaction volumes. This eliminates the requirement of a grid-
shift, which is essential in standard SRD to maintain Galilean invariance. We
derive analytical expressions for the viscosity and the diffusion coefficient in
relation to the model parameters, which show excellent agreement with the
results obtained in iSRD simulations. The proposed algorithm is particularly
suitable to model systems bound by walls of complex shape, where the
domain cannot be meshed uniformly. The presented approach is not limited
to SRD, but is applicable to any other mesoscopic method, where particles
interact within certain coarse-grained volumes.

2.1 Introduction

During the last years particle-based fluid simulation methods have been well
established as an alternative to continuum methods. They have important
advantages, especially in situations where the continuum assumption does
not hold, but also for complex fluids, such as colloidal suspensions, or
multiphase flows [25, 26, 27, 28, 29]. With molecular dynamics, for example,
complex fluids can be simulated on the molecular level including the actual
microscopic interaction laws [30]. In contrast, the particles employed
in Direct Simulation Monte Carlo (DSMC) [16] do not represent physical
particles, but rather probability quanta, composing the velocity distribution

1 The content of this chapter has been published verbatim under [24]. Reprinted article with
permission from S. Mühlbauer, S. Strobl, and T. Pöschel, Physical Review Fluids, 2:124204,
2017. Copyright 2017 by the American Physical Society.
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2 Isotropic Stochastic Rotation Dynamics

function. In DSMC, the particle trajectories are not computed determinis-
tically, as in molecular dynamics. Instead, binary collisions are performed
to model the transport of momentum, and eventually solve the nonlinear
Boltzmann equation [31]. Thus, unlike computational fluid dynamics (CFD),
based on the numerical solution of hydrodynamic equations, DSMC does
not rely on relations between the hydrodynamic fields, and is also reliable
in cases where the hydrodynamic description of the system is problematic,
for instance in the presence of shocks [32]. Further important fields of
application are flows at moderate to high Knudsen number, such as rarefied
gases [17], flows in the vicinity of boundaries [33], or flows in microfluidic
devices [34], where the mean free path does not fulfill the condition of being
much smaller than the system dimensions. In most cases, DSMC consumes
significantly larger computational resources than field-based CFD. In return,
it has a wider range of validity than CDF, since DSMC relies exclusively on the
validity of the Boltzmann description. Still, there are also cases where this
simulation method is computationally efficient, e.g., for rarefied gas flows
with a large mean free path, and rather few particle collisions, since the
computational cost of DSMC is proportional to the particle collision rate.

For application to denser gases, however, Stochastic Rotation Dynamics
(SRD), developed by Malevanets and Kapral [18], is more efficient, com-
promising between DSMC and CFD: Instead of numerous binary collision,
one so-called multi-particle collision is performed to exchange momentum
between all particles within certain coarse-graining volumes, which usually
are the cells of a Cartesian grid spanning the simulation volume. The size as
well as the shape of the coarse-graining volumes has significant influence on
the transport coefficients. Therefore, a grid composed of cubic cells is used
for the majority of applications. In order to model complicated domains,
an additional surface grid, describing the boundaries, has to be embedded
into the regular simulation grid. It was shown that in its basic form, SRD
does not preserve Galilean invariance, which can be corrected by a random
grid-shift, that is, the simulation grid has to be shifted randomly before each
collision step [35]. The grid-shift assures Galilean invariance, however, it
does not correct the anisotropy caused by the underlying cubic grid [36]. Ihle
et al. [36] conjectured that additional random grid rotations would restore
isotropy in SRD.

For the case of DSMC, which suffers from similar problems, in order
to achieve isotropy, Donev et al. [37] suggest a grid-free version, termed
isotropic DSMC (iDSMC). While in standard DSMC only particles from
the same grid cell are allowed to collide, in iDSMC random particle pairs

8



2.2 Stochastic Rotation Dynamics

are chosen to transfer momentum, if they are not further apart than a
given distance, disregarding their cell affiliation. This procedure leads to
an isotropic interaction between the quasi-particles [37, 38].

Following a similar idea, we propose a grid-free, truly Lagrangian version
of SRD which we call isotropic Stochastic Rotation Dynamics (iSRD).

We will first provide a short review of SRD and the corresponding relations
for the transport coefficients. Subsequently, we will describe our approach
to eliminate the influence of the spatial discretization, and derive analyt-
ical expressions for the viscosity and the diffusion coefficient in this case.
Finally, we compare these expressions with measurements of the transport
coefficients obtained from simulations.

2.2 Stochastic Rotation Dynamics

SRD is a Lagrangian approach, where the fluid is represented by particles.
Each time step of the simulation, ∆t, comprises a streaming and a collision
step. The streaming step propagates the particles according to their current
velocity,

r⃗i(t+∆t) = r⃗i(t) + ∆t v⃗i(t) , (2.1)

where r⃗i and v⃗i denote the position and velocity of particle i, respectively.
The collision step randomly rotates the fluctuating contribution to the par-
ticles’ velocities, which is related to the temperature of the fluid, according
to the collision rule

v⃗i(t+∆t) = u⃗(t)|i + R̂ · [v⃗i(t)− u⃗(t)|i] , (2.2)

where u⃗(t) is the macroscopic flow velocity field and u⃗(t)|i is the value of the
field at the location of particle i. In SRD, the field u⃗ is obtained by coarse-
graining the velocities of all particles of the system, using a Cartesian grid
spanning the simulation domain. Thus, the flow velocity corresponding to
the ith particle is estimated as the mean velocity of all particles residing in
the same grid cell, C, as u⃗(t)|i ≡ ⟨v⃗ ⟩C , and the particle’s thermal velocity
is
[
v⃗i(t)− ⟨v⃗ ⟩C

]
. In three-dimensional simulations, the rotation matrix, R̂,

represents a rotation by a constant rotation angle, α, where the rotation axis
is randomly chosen in each collision step for each grid cell [18, 25].

As an example and for later reference, in Fig. 2.1 we present the flow profile
for plane Poiseuille flow with simple bounce-back boundary conditions [39]
at the walls and periodic boundaries in the other two spatial directions. The
SRD implementation used is built on the framework developed by Strobl [13].
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2 Isotropic Stochastic Rotation Dynamics

If not specified otherwise, here and in the following we use dimensionless
parameters, that is, the cell width, a = 1, time step, ∆t = 0.1, thermal
velocity,

√
k T/m = 1, and the rotation angle α = π/2. The number

of particles is chosen such that on average M = 10 particles reside in
each grid cell. The flow is driven by an external acceleration of 5 × 10−3.
Temperature is kept constant by means of the cell-level thermostat which
was developed by Hecht et al. [40, 41] based on Refs. [42, 43]. To obtain
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FIG. 2.1: The upper curves correspond to plane Poiseuille flow simulated using SRD without
grid-shift. The discretization of the channel, which is 20 cells wide, is shown by the vertical
thin lines. The particle velocities are averaged within slices oriented parallel to the channel
walls. The symbols (◦) show the average particle velocity within slices having width a. The
upper dashed line is a parabola fitted to this averaged velocity profile in the interval [−5, 5],
i.e., distant from the walls. The red solid line represents the detailed flow profile, obtained
by averaging within slices of width a/20. The two lower curves show the results for SRD with
grid-shift, using the same parameters as before. To reduce velocity slip at the walls, for the
solid blue line, ghost particles (see Sec. 2.5.5) were used in addition to the grid-shift.

the flow profile shown in Fig. 2.1, we average the particle velocities within
slices parallel to the channel walls, considering two different slice widths.
For the symbols (◦), the slice width is chosen to be equal to the cell width,
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2.3 Transport Coefficients in SRD

a. These cell averaged velocities agree very well with the fitted parabola
drawn as a dashed line. Considering, however, the solid line representing
the finer resolved flow profile, which is obtained by averaging within slices
having a width of a/20, we perceive distinct steps, connecting the plateaus
within the simulation cells. This effect reveals a violation of the molecular
chaos assumption: In case the mean free path is small compared to the
cell width, many particles remain in one grid cell for several time steps,
colliding with each other repeatedly and, thus, correlating the velocities of
the particles in the same cell. To reduce pre-collisional correlations, and to
make SRD Galilean-invariant, the so-called grid-shift [35, 25] can be applied:
Before each collision step the simulation grid is shifted by a random vector
s⃗ = [sx, sy, sz], with sx, sy, sz ∈ [−a/2, a/2]. This procedure is sensible,
only as long as the simulation domain is discretized using a regular cubic
grid. For the setup from Fig. 2.1, the grid-shift enhances the transport of
momentum across the channel, i.e., the shear viscosity [44]. Activating
the grid-shift leads to smooth velocity profiles: The solid and dashed blue
lines represent the corresponding simulation results with and without ghost
particles, as introduced in Sec. 2.5.5, respectively.

2.3 Transport Coefficients in SRD

As pointed out in Ref. [25], different approaches have been applied to
characterize the SRD fluid. While in some works [36, 45, 46, 44, 47] the
transport coefficients are investigated based on equilibrium calculations,
other authors consider the system’s response to imposed non-equilibrium
conditions [48, 49]. Both approaches lead to identical results for the trans-
port coefficients. The viscosity of a fluid simulated with SRD is known to
have two contributions, which are denoted as the kinetic and the collisional
part [50]. Under the assumption of molecular chaos, Kikuchi et al. [48]
derive analytical expressions for these two contributions. Considering
stationary Couette flow with the flow profile u⃗(y) = [γ̇ y, 0, 0], where the
shear rate, γ̇ ≡ ∂ux(y)/∂y, is constant, Kikuchi et al. find for the kinetic
contribution to the viscosity in the three-dimensional case:

νkin
SRD =

kB T

m
∆t

(
1

2
+

f

1− f

)
, (2.3)

where kB , T and m denote the Boltzmann constant, the temperature and
the particle mass, respectively. The term

f(α, n) = 1−
(
n− 1

n

)
2

5
(2− cosα− cos 2α) (2.4)
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2 Isotropic Stochastic Rotation Dynamics

describes the relative change in the correlation ⟨vx vy⟩ due to the collision
operator from Eq. (2.2) in case exactly n particles are contained in the
considered grid cell,

⟨vx(t+∆t) vy(t+∆t)⟩ = f(α, n) ⟨vx(t) vy(t)⟩ . (2.5)

However, the number of particles, n, contained in the collision cells is not
constant but Poisson distributed. Averaging over n ∈ {1, 2, ...,∞} yields

f(α,M) = 1− M − 1 + e−M

M

2

5
(2− cosα− cos 2α) (2.6)

and
⟨vx(t+∆t) vy(t+∆t)⟩ = f(α,M) ⟨vx(t) vy(t)⟩ , (2.7)

with M being the average number of particles per cell. An analogous
procedure leads to an analytical expression for the diffusion coefficient,
having no collisional contribution [25],

DSRD =
kB T

m
∆t

(
1

2
+

g

1− g

)
, (2.8)

where

g(α,M) = 1− M − 1 + e−M

M

2

3
(1− cosα) . (2.9)

In order to obtain the collisional part of the viscosity, Kikuchi et al. [48]
compute the momentum exchange along the direction of the velocity gradi-
ent due to the collision step for the considered Couette flow and obtain

νcoll
SRD =

a2

18∆t

M − 1 + e−M

M
(1− cosα) . (2.10)

For the derivation of Eq. (2.10), the flow profile is required to be smooth,
which can be accomplished by the use of a grid-shift, as shown in Fig. 2.1. The
results for the kinetic part of the viscosity, Eq. (2.3) together with Eq. (2.6), as
well as for the collisional contribution, Eq. (2.10), match the corresponding
simulation results [48].

2.4 Effect of grid orientation in SRD

As pointed out by Ihle et al. [36], the underlying cubic grid leads to
anisotropy in standard SRD. Concerning the SRD fluid in the bulk, in most
practical applications, this anisotropy has only minor influence on the result.
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

position

ve
lo
ci
ty

grid aligned with the channel walls
grid tilted by π/4 w.r.t. the walls

FIG. 2.2: Plane Poiseuille flow simulated using SRD with grid-shift and two different grid
orientations. The channel walls are modeled following the approach described in [39].

In the vicinity of walls, however, the interplay between grid orientation and
boundary condition can indeed affect the simulation result. To illustrate
this issue, plane Poiseuille flow in a comparatively narrow channel is sim-
ulated. The flow is driven by an external acceleration of 5 × 10−2. All
other simulation parameters are equal to those from Sec. 2.2. The channel
walls are modeled as bounce-back boundary conditions combined with the
commonly used ghost particles proposed in [39]. The solid line in Fig. 2.2
represents the velocity profile obtained when the grid is exactly aligned with
the channel walls. In contrast, after the grid being rotated by π/4 with
respect to the channel walls, identical simulation parameters lead to the
dashed curve. The discrepancy between the two curves demonstrates that,
depending on the implemented boundary conditions, the grid orientation
can have significant influence on the resulting flow field.

2.5 Isotropic SRD

2.5.1 Description of the method

In standard SRD, even with grid-shift, the underlying Cartesian simulation
grid induces anisotropy, as shown in the previous section. Using isotropic
coarse-graining volumes, this problem can be eliminated in a natural way,
and without the necessity of performing random grid-rotations [36] to
correct for the anisotropy introduced by the lattice. Instead of using cubic
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2 Isotropic Stochastic Rotation Dynamics

lattice cells for coarse-graining, we suggest to use spheres of constant size,
which are randomly distributed over the simulation domain. Consequently,
the local mean velocity needed for the collision step (see Eq. (2.2)) is now
evaluated by averaging the velocities of the particles residing in the same
sphere, S, that is, u⃗(t)|i ≡ ⟨v⃗ ⟩S , and the thermal velocity of the ith particle
is
[
v⃗i − ⟨v⃗ ⟩S

]
.

Note that this approach is grid-free. For computational efficiency we use
an auxiliary grid to sort the particles into the coarse-graining spheres. This
grid is not necessarily Cartesian but can be chosen irregular, such that the
union of all grid cells covers the simulation domain. Unlike for standard
SRD, this grid does, however, not affect the simulation results, as we will
demonstrate in Sec. 2.5.6. In analogy to isotropic DSMC [37, 38] we refer to
this method as isotropic SRD (iSRD).

2.5.2 Definition of the coarse-graining volumes

In standard SRD with grid-shift, the coarse-graining volumes are the cubic
cells of a Cartesian grid with a number of basic properties:

i. The coarse-graining volumes are homogeneously distributed in phys-
ical space.

ii. The total number of coarse-graining volumes is given by the ratio
between domain volume and coarse-graining volume. It is, therefore,
invariant in time.

iii. At any time, each particle resides in exactly one coarse-graining vol-
ume.

We will see that in iSRD these properties do not hold true strictly, but only
in a statistical sense. It will be shown, however, that the obtained simulation
data agree well with analytical results.

In difference to standard SRD, in iSRD the location of each (spherical)
coarse-graining volume is determined randomly. The centers of the coarse-
graining spheres shall be uniformly distributed in the simulation domain,
however, each unit of physical space contains the same number of coarse-
graining spheres only on average. Note that the randomness in the sphere
positions has a similar effect as the grid-shift in SRD. It reduces pre-
collisional correlations and ensures Galilean invariance.

Sorting the SRD particles into the coarse-graining spheres is a compu-
tationally expensive process, as it has to be repeated in each time step.
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2.5 Isotropic SRD

Therefore, we suggest to employ an auxiliary grid. In Sec. 2.5.6 we will show
that this auxiliary grid, while significantly enhancing the efficiency of the
simulation, does not affect the simulation result.

The number of coarse-graining spheres, kl, within cell l of the auxiliary
mesh is a Poisson distributed random number with probability density

PΛl
(kl) =

Λkl
l

kl!
e−Λl . (2.11)

In the simulation, we first determine the number of coarse-graining spheres
in the lth cell according to the distribution PΛl

, Eq. (2.11), and then choose
the locations of the sphere centers randomly inside the cell. Since particles
can be located in more than one coarse-graining volume, they can take part
in more than one multi-particle collision per time step. In order to avoid any
systematic effect, overlapping coarse-graining spheres should be processed
in random order.

The distribution of coarse-graining volumes shall be homogeneous over
the domain (i.), that is, independent of the cell volume, V C

l . Therefore, for
two arbitrary cells l and l′,

Λl

Λl′
=
V C
l

V C
l′
, (2.12)

that is, the expectation values for the number of coarse-graining volumes in
a cell relate as the cell volumes. Together with the normalization condition∑

l

V C
l =

∑
l

ΛlV
S (2.13)

we obtain

Λl =
V C
l

V S
, (2.14)

where V S is the volume of a coarse-graining sphere. Summing over all cells
and denoting the volume of the entire domain by V , we obtain

Λ ≡
∑
l

Λl = V /V S (2.15)

and, thus, the expectation value for the total number of coarse-graining
spheres in a given volume, V , does not depend on the auxiliary grid, that
is, (ii.) is statistically fulfilled.

Let us finally consider property (iii.): The probability that a particle is
located in a randomly placed coarse-graining sphere of volumeV S is given by
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2 Isotropic Stochastic Rotation Dynamics

the ratio V S/V = 1/Λ, where V is the total volume of the domain. Assume,
N coarse-graining spheres are placed randomly and independently in the
domain. The probability, Aj , for a certain particle to be simultaneously
located in exactly j coarse-graining spheres then obeys a binomial distri-
bution

Aj = B (j |N, 1/Λ) ≈ B (j |Λ, 1/Λ) , (2.16)
where the expectation value for N is given in Eq. (2.15). Albeit the total
number of coarse-graining spheres is a fluctuating quantity, for the majority
of applications the domain volume is much larger than the coarse-graining
volume and, therefore, Λ ≫ 1, implying that the relative fluctuations,
∆N/N ≈ 1/

√
Λ, are small. We can further exploit the convergence of the

binomial distribution to a Poisson distribution, leading to

Aj ≈
e−1

j!
. (2.17)

Thus, the number of coarse-graining spheres, j, a given particle is contained
in, obeys a Poisson distribution with expectation value 1. Hence, while in
standard SRD in each time step each particle is located in exactly one coarse-
graining volume, in iSRD this is not the case, and (iii.) holds true only on
average.

2.5.3 iSRD for the force-free case – diffusion

For the first test of the iSRD model, we consider pure diffusion in a periodic
domain, being the most simple case. For this simulation and – if not
specified otherwise – also for the following simulations we use the diameter
of the spherical coarse-graining volume d = (6/π)1/3 ≈ 1.24, such that
V S = 1. Note that this choice is arbitrary, as d is a free parameter in
the model. For our choice, the simulation domain contains on average
one coarse-graining sphere per unit volume. Each coarse-graining sphere
contains M = 10 particles on average. Figure 2.3 shows the mean squared
[displacement] of the particles. After a short initial transient, the mean
squared displacement increases linearly with time. The dashed line shows a
linear fit to the simulation data. This indicates that diffusive mass transport
is reproduced correctly in iSRD.

2.5.4 iSRD for stationary Couette and Poiseuille flow –
momentum transport

To demonstrate the simulation of momentum transfer with iSRD, we sim-
ulate stationary Couette flow as well as plane Poiseuille flow. In both
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FIG. 2.3: Mean squared displacement measurement of a force-free system obtained by iSRD.
The dashed line shows a linear fit to the simulation data, disregarding the initial transient.
The auxiliary grid consists of 32× 32× 32 cubic cells with side length 1.

cases, the walls are modeled through bounce-back boundary conditions [39].
Temperature is kept constant by means of the cell-level thermostat described
in Refs. [40, 41]. Figures 2.4 and 2.5 show the velocity profiles obtained from
the simulation together with analytical solutions for reference. The viscosity
is not known a priori, and is, therefore, determined from the curvature of
the flow profiles in Fig. 2.5. The channel walls are modeled both with and
without ghost particles. Further details regarding this aspect are discussed
in Sec. 2.5.5.

For both cases, the analytical solution given by the Navier-Stokes equa-
tions is recovered, that is, iSRD reproduces the momentum transport cor-
rectly, except for the region close to the walls, where we obtain a finite slip,
unless ghost particles are employed. The flow profiles obtained from iSRD
simulations are smooth and – in contrast to the upper solid line shown in
Fig. 2.1 – independent [of] the underlying spatial discretization. The reason
is that the iSRD scheme inherently maintains Galilean invariance.

2.5.5 Reducing slip at the walls – ghost particles

The finite slip at the system walls modeled by bounce-back boundaries is
a well known problem of virtually all particle-based, computational fluid
dynamics methods, see, for example, Ref. [51]. This on meso- and macro-
scopic scales undesirable behavior can be corrected by introducing ghost
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FIG. 2.4: Couette flow simulated using iSRD with and without ghost particles. The dashed
line shows the analytical solution for the given boundary velocities. The size of a coarse-
graining sphere is shown at the top left.
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FIG. 2.5: Plane Poiseuille flow simulated using iSRD with and without ghost particles. The
dashed lines are parabolas fitted in the interval [−5, 5]. For the viscosity we obtain ν =
0.568 with ghost particles and ν = 0.569 without. In this example the Reynolds number is
approximately 15.5. In dimensional quantities, this would, for example, correspond to water
at room temperature (20◦C) flowing through a 2mm wide channel at velocity 7.8mm/s.
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particles [39, 52]. Here, we apply the model developed in Refs. [53, 54]
for smoothed-particle hydrodynamics (SPH) simulations: In case a coarse-
graining sphere reaches out of the domain and into the wall, we mirror the
particles from inside the domain at the intersected boundary. The velocity
of a ghost particle is computed by inverting the corresponding particle’s
velocity v⃗i with respect to the wall velocity u⃗wall, that is, v⃗ ghost

i = 2 u⃗wall − v⃗i.
In order to make the interaction between fluid and wall symmetric, addi-
tional coarse-graining spheres are generated with centers located beyond
the domain boundary. This effectively leads to an extrapolation of the flow
velocity beyond the domain boundary.

The blue lines in Figs. 2.4 and 2.5 show the flow profiles obtained by
iSRD for Couette flow and plane Poiseuille flow where ghost particles are
employed. In both cases, we obtain excellent agreement between the
simulation results and the theoretical solution.

2.5.6 Independence of iSRD [of] the auxiliary grid

The results of iSRD do not noticeably depend on the chosen auxiliary grid.
For demonstration, we compute the velocity profiles for Poiseuille flow in a
cubic domain with identical parameters, except for the spatial discretization
of the auxiliary grid, see Fig. 2.6 a. Three cases are investigated: A Cartesian
grid (see solid black lines in Fig. 2.6 b), a non-uniform regular grid (dashed
red lines), and a non-uniform tetrahedral discretization (blue dotted lines).
For both considered time step sizes, ∆t = 0.1 and ∆t = 1, and for all grids,
the velocity profiles coincide perfectly. Hence, the grid geometry does not
affect the simulation results. This is not surprising, since for the case of iSRD
the grid is only a data structure intended to accelerate the simulation. This
makes iSRD particularly suitable for flows in domains of complex geometric
shape, which cannot be meshed uniformly.

2.6 Transport Coefficients in iSRD

For standard SRD, Kikuchi et al. [48] derive an analytical expression for
the kinetic contribution to the viscosity, νkin

SRD, by considering the change
of velocity correlations ⟨vx vy⟩ in stationary Couette flow due to the action
of the streaming and the collision operators. The effect of the streaming
operator is the same for SRD and iSRD, while the collision operator acts
differently: In SRD at any time, each particle is located in exactly one coarse-
graining volume. This is not the case for iSRD. To derive an expression
equivalent to Eq. (2.7) for the case of iSRD, we consider the effect of the
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FIG. 2.6: Plane Poiseuille flow simulated using iSRD, including ghost particles, for the three
different auxiliary grids depicted in (a). The mesh on the left consists of cubic cells with
constant width, as indicated by the black scale in (b). The red scale refers to the mesh in
the center, comprising non-uniform hexahedra with square basis and varying extent in the
direction of the velocity gradient, i.e., normal to the walls. The mesh on the right is composed
of non-uniform tetrahedral cells.

collision operator on the velocity correlation ⟨vx vy⟩i, referring to particle i
under the condition that the particle is contained in j ∈ {0, 1, 2, . . . } coarse-
graining spheres. The expectation value of the kinetic contribution to the
viscosity, νkin

iSRD, is then obtained as a weighted average of these contributions
for all j.

If at a certain time step, particle i is not located in any coarse-graining
sphere, that is, j = 0, the collision step does not change its contribution to
the velocity correlation, ⟨vx vy⟩i. If the particle is contained in exactly one
coarse-graining sphere (j = 1) the velocity correlation changes according
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to Eq. (2.7). For j = 2, when the particle is located in two coarse-graining
spheres, S1 and S2, its contribution to the velocity correlation is

⟨vx(t+∆t)vy(t+∆t)⟩i=f(α, nS1)f(α, nS2)⟨vx(t)vy(t)⟩i , (2.18)

wherenS1 andnS2 are the total numbers of particles in these spheres. For the
general case, that particle i is contained in exactly j coarse-graining spheres,
we have

⟨vx(t+∆t)vy(t+∆t)⟩i = ⟨vx(t)vy(t)⟩i
j∏

k=1

f (α, nSk
)

≈ ⟨vx(t)vy(t)⟩i [f (α,M)]j , (2.19)

where we employ Eq. (2.6) with the approximation that the numbers of
particles contained in the coarse-graining volumes are independent. Using
the probability, Aj , given in Eq. (2.17), for finding particle i in j coarse-
graining spheres, and averaging over all particles, we define

f̃(α,M) ≡
∑
j

Aj f
j(α,M)

Eq. (2.17)
≈ ef(α,M)−1 , (2.20)

and find an expression for the change of the velocity correlation function
due to a collision step in iSRD,

⟨vx(t+∆t) vy(t+∆t)⟩ = f̃(α,M) ⟨vx(t) vy(t)⟩ , (2.21)

having the same functional form as Eq. (2.7). Eventually, we obtain the
kinetic contribution to the viscosity in iSRD,

νkin
iSRD =

kB T

m
∆t

(
1

2
+

f̃

1− f̃

)
, (2.22)

which has the same functional form as νkin
SRD, given in Eq. (2.3). The diffusion

coefficient can be derived analogously to the kinetic part of the viscosity. We
find

DiSRD =
kBT

m
∆t

(
1

2
+

g̃

1− g̃

)
, (2.23)

with
g̃(α,M) =

∑
j

Aj g
j(α,M)

Eq. (2.17)
≈ eg(α,M)−1 . (2.24)
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2 Isotropic Stochastic Rotation Dynamics

Note that the shape of the collision bins does not affect the kinetic part
of viscosity or the diffusion coefficient. The difference between iSRD and
standard SRD comes merely from the fact that the number of collision bins
a particle is located in per collision step is distributed differently in iSRD
compared to standard SRD. Hence, knowing the size and average number
of the coarse-graining volumes is sufficient to compute the kinetic part of
viscosity and the diffusion coefficient.

In contrast, for the collisional contribution to viscosity, also the coarse-
graining volumes’ shape is important. To show this, we follow Ref. [48], and
examine the redistribution of momentum due to the collision operator for
stationary Couette flow with u⃗(y) = [γ̇ y, 0, 0] and constant shear rate γ̇ =
∂ux(y)/∂y. We divide the coarse-graining sphere of diameter d into two

u⃗

x

y
∆ỹ

ỹ = 0

ỹ = ỹ0

ỹ = d

1

2

FIG. 2.7: Redistribution of momentum within one coarse-graining sphere in stationary
Couette flow. The coarse-graining sphere is divided into two subvolumes by a horizontal
plane at y = ỹ0.

subvolumes, 1 and 2 , separated by the plane ỹ = ỹ0 with 0 ≤ ỹ0 ≤ d, as
shown in Fig. 2.7. The two subvolumes accommodate n(1) and n(2) particles
with n(1) + n(2) = n, traveling at average velocities ⟨vx⟩(1) and ⟨vx⟩(2) in x-
direction. The average velocity in the entire coarse-graining sphere is ⟨vx⟩S .
Therefore,

∆vSx ≡ ⟨vx⟩(1) − ⟨vx⟩(2) =
n(1) + n(2)

n(2)

(
⟨vx⟩(1) − ⟨vx⟩S

)
. (2.25)

The average distance of pairs of particles picked from different subvolumes,
denoted by ∆ỹ, is the distance of the geometric centers of the two subvol-
umes,

∆ỹ =
3 d3

8
(
3
2 d− ỹ0

) (
ỹ0 − 1

2 d
) . (2.26)
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2.6 Transport Coefficients in iSRD

The collision rule, Eq. (2.2), conserves momentum. Thus, the transfer of
momentum between the subvolumes is equal to the change of momentum
in subvolume 1 due to the collision step.

The shear stress, σxy, defined as the transport of momentum per units of
time and cross sectional area, is [48]

σxy =
m

A∆t

[
2

3
n(1) (1− cosα)

(
⟨vx⟩(1) − ⟨vx⟩S

)]
, (2.27)

where m is the particle mass and A denotes the characteristic area, the
momentum transfer due to one coarse-graining sphere refers to. To obtainA

A⋆

V ⋆ = A⋆ d

d
2

d
2

x

y z

FIG. 2.8: The characteristic area, A, is the average area the momentum transport within one
single coarse-graining sphere refers to. The size of area A can be obtained considering the
average number of coarse-graining spheres, N⋆, in a reference volume V ⋆ ≡ A⋆ d, which is
continued periodically in x and z-directions.

we consider the shaded plane,A⋆, in Fig. 2.8. The average number of spheres
intersecting this plane is equal to the expectation value of the number of
spheres,N⋆, having their centers located in the rectangular cuboid of volume
V ⋆ ≡ A⋆ d,

N⋆ =
V ⋆

V S
=

6A⋆

πd2
, (2.28)

thus,

A =
A⋆

N⋆
=

π

6 d2
. (2.29)

Combining Eqs. (2.25) to (2.27) and (2.29), and the average mass density in
the coarse-graining sphere,

ρ =
nm

V S
=

(n(1) + n(2))m

V S
, (2.30)

we obtain the collisional contribution to viscosity,

νcoll
iSRD =

σxy
ρ γ̇

=
σxy ∆ỹ

ρ∆vSx
=
n(1)

(
n− n(1)

)
4n2∆t

d4 (1− cosα)(
3
2 d− ỹ0

) (
ỹ0 − 1

2 d
) . (2.31)
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2 Isotropic Stochastic Rotation Dynamics

The number of particles n(1) in subvolume 1 obeys a binomial distribution,
B
(
n(1)|n, p

)
, with probability

p =
V (1)

V S
=
ỹ20 (3d− 2ỹ0)

d3
. (2.32)

Using the property of the binomial distribution,∑
n(1)

(
n− n(1)

)
B
(
n(1)|n, p

)
= n p (n− 1) (1− p) , (2.33)

we rewrite Eq. (2.31), and obtain

νcoll
iSRD =

(n− 1) (1− cosα)
4n∆t

× 2d ỹ20
ỹ0 +

1
2d

[
1− ỹ20 (3d− 2ỹ0)

d3

]
. (2.34)

Averaging over the position of the plane with respect to the coarse-graining
sphere, ỹ0, which is uniformly distributed in [0, d], yields

νcoll
iSRD =

(n− 1) (1− cosα)
4n∆t

2 d2

15
(2.35)

and averaging over n, which is, in good approximation, Poisson distributed,
leads to the final expression for the collisional contribution to the viscosity
coefficient in iSRD,

νcoll
iSRD =

d2

30 ∆t

M − 1 + e−M

M
(1− cosα) . (2.36)

Note that Eq. (2.36) has the same functional form as the corresponding
expression for standard SRD, νcoll

SRD, given by Eq. (2.10).

2.7 Quantitative Validation of iSRD

2.7.1 Benchmarking cases

To check the validity of iSRD we compare the simulation results with
the derived theoretical expressions for the diffusion coefficient and the
kinematic viscosity given by Eqs. (2.22), (2.23) and (2.36). We consider two
physical systems, force-free fluid and plane Poiseuille flow. The parameters
we vary, are the time step, ∆t, the rotation angle, α, and the average number
of particles per coarse-graining sphere, M . The other parameters of our
simulation method, iSRD, are kept constant. We treat time and position as
dimensionless parameters. Thus, the viscosity and the diffusion coefficient
are considered in dimensionless form, as well.
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2.7 Quantitative Validation of iSRD
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FIG. 2.9: Diffusion coefficient as a function of the rotation angle, α, for two different time
steps and M = 10 particles per coarse-graining sphere on average. The left and right vertical
axes refer to the data for ∆t = 0.1 and ∆t = 1, respectively. The dashed line shows the
theoretical result, Eq. (2.23).

2.7.2 Diffusion coefficient

The diffusion coefficient is computed from the mean squared displacement
of the particles in a cubic domain with side length 16. The simulation
domain is periodically continued in all directions, and no external force acts
on the particles. The numerical result is averaged over several individual
measurements for each parameter set to reduce statistical errors. Two
different time steps, ∆t = 0.1 and ∆t = 1, are considered. Fig. 2.9 shows the
diffusion coefficient in dependence on the rotation angle, α. The theoretical
result, given by Eq. (2.23), is indicated by the dashed line. The simulation
data are in excellent agreement with the theoretical results over the full
range of the rotation angle, α.

The numerical simulation results for the diffusion coefficient as a function
of the average number of particles per coarse-graining sphere are shown in
Fig. 2.10. For large number of particles, M , the theoretical result, Eq. (2.23),
is well reproduced for both considered time steps, ∆t = 0.1 and ∆t = 1,
indicated by the good agreement of the numerical data (symbols in Fig. 2.10)
with the dashed line showing the diffusion coefficient, as given by Eq. (2.23).
For smaller M , however, the simulation data deviate from the analytical
results. One source for this deviation is the assumption that the number of
particles within overlapping coarse-graining spheres is independent, which
was exploited in the derivation of the transport coefficients. For large M ,
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FIG. 2.10: Diffusion coefficient as a function of the average number of particles per coarse-
graining sphere, M , for two different time steps and α = π/2. The left and right vertical axes
refer to the data for∆t = 0.1 and ∆t = 1, respectively. The dashed line shows the theoretical
result, Eq. (2.23).

the relative fluctuations in particle number are small, rendering this effect
negligible. At least for the smaller time step, ∆t = 0.1, another influence
is relevant. It is known for standard SRD, that at low particle density and
small mean free path there are significant correlation contributions to the
kinetic part of viscosity and diffusion coefficient. For the viscosity, this
effect is masked by the collisional contribution, which is dominant in this
regime. For the diffusion coefficient, which has no collisional contribution,
the impact is significant [55, 44], which agrees with the results shown in
Fig. 2.10.

For comparison with [55], the relative deviation between measured and
predicted diffusion coefficient, εD, is depicted in Fig. 2.11 depending on the
mean free path for M = 5 and α = 130◦. As the mean free path, λ, is
increased, for the considered parameters, εD does not approach zero, but
approximately 5.4%, indicated by the dashed horizontal line. One may,
therefore, divide εD into two parts. The first one vanishes with increasing
λ, and is attributed to correlations similar to what is discussed in previous
works [55, 44]. In contrast, the second part does not depend on the mean free
path. The source for the second part is that particle numbers in overlapping
spheres are correlated, and that in the iSRD scheme a given particle may
interact with other particles more than once per collision step. As Fig. 2.10
indicates, both the first and the second part of εD approach zero as M is
increased. Moreover, comparing the results depicted in Fig. 2.11 to those
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FIG. 2.11: Relative deviation between the diffusion coefficient measured in simulations, Dsim,
and the analytical result from Eq. (2.23), denoted as Dtheo, over the mean free path, λ, which
is equal to the time step for the chosen parameters. To yield a pronounced correlation
contribution, α and M are chosen as 130◦ and 5, respectively [55].

of Ref. [55] shows that for small λ, randomly distributed spheres reduce
correlations more effectively than the grid-shift. In Ref. [55], the exponential
term from Eq. (2.9) is neglected when computing the theoretical prediction
for the diffusion coefficient, while in this study it is considered. Neglecting
this term here does not change Fig. 2.11 noticeably.

2.7.3 Kinematic viscosity

We determine the kinematic viscosity from the velocity profile’s curvature
for plane Poiseuille flow in the steady state. The simulation domain is
cubic with side length 20. The number of simulated time steps, Nt, is
chosen such that NtM = 16 × 106, resulting in smooth profiles and small
fluctuations of the viscosity. The mean free path and, thus, the transport
coefficients depend sensitively on temperature. Therefore, we maintain a
constant temperature by means of the cell-level thermostat described in
Refs. [40, 41]. Figure 2.12 shows the simulation results for both ∆t = 0.1,
where the collisional contribution to viscosity dominates, and∆t = 1, where
the kinetic contribution dominates. The simulation data for the viscosity as
a function of the rotation angle show excellent agreement with the analytical
results, Eqs. (2.22) and (2.36). For the small time step, ∆t = 0.1, we obtain
minor deviations, which are even less distinct for ∆t = 1. Figure 2.13 shows
the simulation data for the viscosity as a function of the average number
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FIG. 2.12: Kinematic viscosity as a function of the rotation angle, α, for two different time
steps and M = 10 particles per coarse-graining sphere on average. The left and right vertical
axes refer to the data for ∆t = 0.1 and ∆t = 1, respectively. The dashed line shows the
theoretical result, Eqs. (2.22) and (2.36).
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FIG. 2.13: Kinematic viscosity as a function of the average number of particles per coarse-
graining sphere, M , for two different time steps and α = π/2. The left and right vertical axes
refer to the data for ∆t = 0.1 and ∆t = 1, respectively. The line shows the theoretical result,
Eqs. (2.22) and (2.36).

of particles per coarse-graining volume, M . We obtain minor, systematic
deviations for both values of ∆t, which we attribute to the thermostat,
since such deviations are not apparent in the diffusion coefficient, where no
thermostat is used. For the considered time steps, ∆t = 0.1 and ∆t = 1, the
simulation results for largeM deviate from the theoretical results (Eqs. (2.22)
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2.8 Performance study

and (2.36)) by approximately 0.3% and 0.5%, respectively. Similar to the
diffusion coefficient discussed above, we also perceive systematic deviations
between the simulation data and the theoretical results at small particle
number. For the viscosity, this error is less pronounced than in case of the
diffusion coefficient, which again matches previous findings [55, 44].

2.8 Performance study

To give an idea about the computational performance of iSRD, we compare
it to traditional SRD, simulating fluid at rest within a cubic domain with side
length 20 and periodic boundaries in all directions. Both implementations
are based on an existing simulation framework [13].

In our SRD implementation each time step comprises the following sub
steps: First, the particles are propagated according to their current velocity
(streaming step). In this step also the periodic boundary is imposed. Second,
the particles are sorted into the shifted grid in order to compute the cell-
averaged velocities, which are needed to perform the multi-particle collision.
Third, the relative particle velocities are rotated (collision step). Finally, a
cell-level thermostat [40, 41] is applied to the non-shifted grid keeping the
average temperature constant. The cell width is a = 1, and the simulation
grid is aligned with the cubic domain.

The procedure for the iSRD simulations is very similar. However, the
second and third step are replaced by the algorithm described in Secs. 2.5.1
and 2.5.2. As auxiliary grid and also for the thermostat, the non-shifted
grid from the SRD simulations is used. For a fair comparison, the volume
and number of collision bins should be equal. The coarse-graining sphere
diameter is, therefore, chosen as d = (6/π)1/3 ≈ 1.24, resulting in V S = 1.

On average M = 10 particles are in each collision volume. We choose the
time step and the rotation angle as ∆t = 0.1 and α = π/2, respectively. Each
simulation runs for 104 time steps on an Intel® Core™ i7-4790K processor.
Restricting to one single thread, we find iSRD to be approximately twice as
time consuming as standard SRD. Increasing the number of threads, SRD
and iSRD scale similarly.

2.9 Conclusion

We have introduced isotropic SRD, which is a modification of standard
SRD. Instead of using Cartesian grid cells as coarse-graining volumes, we
generate coarse-graining spheres randomly within the simulation domain.
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2 Isotropic Stochastic Rotation Dynamics

This allows to maintain Galilean invariance without the need for a grid-
shift. The proposed particle-based fluid simulation method is isotropic by
construction and truly grid-free. Merely an auxiliary grid is needed in order
to efficiently sort the particles into the coarse-graining spheres. While the
structure of the auxiliary grid can affect the computational cost, we demon-
strate that it does not affect the simulation results. The proposed algorithm
is, therefore, particularly suitable to simulate the fluid flow through domains
of complicated shape.

Moreover, we show that iSRD reproduces both mass and momentum
transport correctly. We also provide analytical expressions for the transport
coefficients depending on the simulation parameters. The measured values
for the transport coefficients accurately follow these expressions, especially
for higher particle numbers per coarse-graining volume. Further, the use
of spheres as coarse-graining volumes prevents the existence of preferred
directions for momentum transport, yielding a fully isotropic simulation
method, even for situations with large gradients.

For both iSRD and SRD, the mean free path does not depend on the
density, and therefore, the known dependence of the transport coefficients
in gases on density and temperature is not recovered. Introducing an addi-
tional temperature-dependent collision probability, as proposed by Gomp-
per et al. [25], allows to control the time step ∆t locally. Since the diffusion
coefficient is proportional to ∆t, this idea renders the diffusion coefficient
freely adjustable. Viscosity, however, cannot be adjusted similarly, because
it has one component proportional to ∆t and another one proportional to
1/∆t. In iSRD the diameter of the coarse-graining spheres is, in principle,
locally adjustable, as well. Exploiting this should allow to recover the right
dependence for the viscosity. The concrete implementation is, however,
not straight forward, since changing the diameter also changes the average
particle number per coarse-graining volume. For the relations introduced
in Sec. 2.6 to hold, the number density of coarse-graining spheres has to
be adjusted accordingly, so that each particle is on average contained in
one coarse-graining volume per collision step. In addition to time step
and diameter, one can also adjust the rotation angle locally, yielding three
control parameters in total. Following this approach, iSRD is expected
to be able to simultaneously reproduce not only the correct density and
temperature dependence for the diffusion coefficient and the viscosity, but
also for the heat conductivity.” [24]
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3 Inlet and outlet boundary condition

In this chapter, we introduce a novel method for the numerically stable
modeling of open boundaries for mesoscopic particle-based flow simula-
tions, including volume conserving chemical reactions. To this end, we con-
nect inlet and outlet via a modified periodic boundary condition allowing
for discontinuities in the concentration field, while density, velocity, and
temperature are strictly periodic. This novel type of boundary condition
generates a concentration field corresponding to the situation that the
domain is continued periodically in the main flow direction.

3.1 Introduction

In particle-based fluid simulation methods, open boundaries can be chal-
lenging, since – unless considering the outflow into vacuum – particles are
not only leaving, but also entering the domain. Ignoring this effect leads to
serious errors especially at flow velocities below the speed of sound. The
most basic case are Dirichlet boundary conditions, i.e., density, velocity,
and temperature at the boundary are given. In this case, the particles
which are injected into the domain can be drawn from a biased probability
distribution function [56]. For many engineering applications, however, not
all macroscopic fields at the boundary are known a priori, and Dirichlet
boundary conditions are not applicable. In this case, it is no longer trivial
to model numerically stable, open boundaries [57]. For example, pressure
boundary conditions, for which the velocity field is not prescribed, tend to
induce instabilities, especially for small Mach numbers [58, 19].

If the considered domain is periodic in flow direction, and the Mach
number is small, i.e., the fluid is incompressible, one can apply periodic
instead of open boundaries, and an acceleration instead of an actual pressure
gradient. This procedure, however, enforces the periodicity on all fields.
While this typically is acceptable for density, velocity, and temperature, it is
highly undesirable for the concentration field in reactive flow, for example,
through a catalytic converter with globally periodic structure.
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3 Inlet and outlet boundary condition

Therefore, we develop a boundary condition, which is periodic regarding
density, velocity, temperature, and pressure, while allowing the concentra-
tion field to have a discontinuity at the interface connecting inlet and outlet
of the periodic simulation domain.

We will, first, discuss the algorithm underlying this novel boundary con-
dition. Consequently, the developed boundary condition will be validated
for gas flow including chemical surface reactions.

3.2 Algorithm

We develop a boundary condition which allows for discontinuities regarding
the concentration field, while acting as a periodic boundary on the remain-
ing quantities, namely: velocity, temperature, density and pressure. The

inlet outlet

domain

acceleration

reaction

reset

re-reset

A B

A B

A B

A B

A B

FIG. 3.1: Modus operandi of the boundary condition with species reset for the chemical
reaction A → B. An acceleration can be used to simulate a pressure gradient driving the flow.
In this sketch the reactions happen at a surface, as in heterogeneous catalysis. However, the
boundary condition works equally for reactions in the bulk.

modus operandi of this partially periodic boundary does not depend on
the particular simulation method used. It works equally for all mesoscopic,
particle-based simulation methods. The proposed boundary condition acts
on pairs of the form reactant species/product species. For this concept to
work, the chemical reaction has to be volume preserving, i.e., the number of
product particles must equal the number of reactant particles. Consider, for
example, the chemical reaction: A1+A2+ ...+An → B1+B2+ ...+Bn. The
periodic boundary condition with species reset would in this case act on the
pairs A1/B1, ..., An/Bn, separately.
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3.2 Algorithm

For illustration, we consider the most simple volume preserving chemical
reaction: A → B. In case a particle of type A undergoes a chemical reaction,
it changes its species to B. Fig. 3.1 illustrates the modus operandi, assuming
that the reactions take place at the top and bottom boundary. However,
the boundary condition is also applicable for reactions taking place in the
bulk. For the following description of the algorithm, species is the current
particle species, that is,A or B. The product_species is the species assigned
after reaction. Thus, the product_species is always B, in this example.
The target_species is the species that has to be assigned to the particle
after reset, following on a reaction, or after re-reset, in turn following on a
reset. These two conversions, reset and re-reset, are described in more detail
below. The variable passes counts how often a particle has passed through
the simulation domain since the last reaction. Passes in main flow direction
count positively, while passes against flow direction count negatively.

The following three events have to be conducted:

i. particle undergoing a reaction
if (passes ̸= 0) then

target_species := species;
end
species := product_species;
passes := 0;

In case a particle undergoes a chemical reaction, the target_species
is set equal to species, only if this is the first reaction since the last
reset (passes ̸= 0). This ensures that for serial reactions A → B
and B → C the target_species is not changed to B, but remains A,
even after the second reaction, B → C, has taken place. During the
reaction, the species of the particle is set to product_species, and,
consequently, passes is set to zero.

ii. particle hitting the outlet ⇒ reset
if (passes = 0) then

swap (target_species, species);
end
++passes;

In case a particle impinges on the outlet, directly after undergoing
a chemical reaction (passes = 0), target_species and species are
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3 Inlet and outlet boundary condition

exchanged. For every particle hitting the outlet, passes is uncondi-
tionally incremented.

iii. particle hitting the inlet ⇒ re-reset
if (passes = 1) then

swap (target_species, species);
end
if (passes > 0) then

−−passes;
end

In case a particle impinges on the inlet, directly after undergoing a
reset (passes = 1), target_species and species are exchanged. For
every particle hitting the outlet, passes is decremented, as long as it
is not falling below zero.

Decrementing and incrementing the variable passes at inlet and outlet is
not performed symmetrically. In case passes is less or equal to zero, is
not be decremented, yielding that passes is non-negative for all times. The
consequence of this strategy is that:

▷ A particle, having passedN times through the domain along the main
flow direction, has to go in the other direction N − 1 times before it
gets a re-reset.

▷ A particle, having passed N times through the domain against the
main flow direction, has to go in the other direction only once to get a
reset.

To understand the reasoning behind this discrimination, we follow the
events occurring along the trajectory of an individual particle of species A.
After some time, the particle reacts, changes its type to B, and passes is
set to zero. Note that the considered mesoscopic particle-based simulation
methods explicitly model the diffusive particle transport. Thus, if inlet and
outlet were connected by a normal periodic boundary condition without
reset mechanism, passes would follow a one-dimensional random walk
without any barrier from above or below1. Eventually, passes would diverge
either in positive or negative direction. Keeping this in mind, consider the

1 Note that in case an external acceleration is applied, the random walk is biased by the flow
field.
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3.3 Validation

proposed boundary condition for inlet and outlet. As defined above, reset
and re-reset are conducted at passes = 0 and passes = 1, respectively.
Hence, to make sure the particles keep interacting with the presented
boundary condition, an upper and lower barrier are required to prevent
passes from diverging. An upper barrier for passes is already contained
in the reset mechanism. Each particle moving in positive direction after
reaction experiences a reset as soon as it hits the outlet. In this case, the
particle species is set to A, and eventually another reactions occurs setting
passes to zero. An analogous mechanism is missing for particles moving
in negative direction. In this case, the particle species would remain B, and
passes would be able approach negative infinity. To avoid this, we introduce
an explicit lower bound for passes. Without this explicit lower bound,
passes has been observed to approach negative infinity for all reacting
particles in the domain. This observation has been made both with and
without using an external acceleration to drive the flow.

In real chemical reactions, A1 + A2 + ... + An → B1 + B2 + ... + Bn, the
particle properties change typically. In principle, the proposed model allows
for the particle mass to change during the reaction, that is, mAi ̸= mBi . In
this case, to keep the temperature continuous, the thermal velocity of the
particles has to be adjusted not only after the reaction but also after reset
and re-reset. This requires an extra thermostat at the inlet and outlet.

3.3 Validation

3.3.1 First order reaction

In the following test scenario, we simulate heterogeneous catalysis, and the
reactions are bound to the reactive walls shown in Fig. 3.2. In the mass
transfer limited regime, this allows us to observe distinct concentration
profiles, which we will use to validate the algorithm. We will compare the
mole fraction profiles in two different channels which are identical, except
for their length. The mole fraction corresponding to the ith species is defined
as

xi =
ni∑
j nj

, (3.1)

where ni is the number density of the ith species and
∑

j nj is the total
number density.

The two channels, together with the applied boundary conditions, are
depicted in Fig. 3.2. The longer channel, denoted as reference, consists of
40×4×320 cubic cells, while the shorter one, denoted as segment, comprises
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FIG. 3.2: The length of the reference channel equals sixteen times the length of the segment.
Inlet and outlet are connected via the proposed periodic boundary condition with species
reset.

only 40 × 4 × 20 cubic cells. The cell width, a = 1, is equal for both
channels. The gas dynamics is simulated using Direct Simulation Monte
Carlo (DSMC) [16] with mean free path, λ = 1, equal to the cell width.

The surface reaction, we consider, is A → B, as shown in Fig. 3.1. In case a
particle of typeA impinges on the reactive surface, it changes its type toB and
immediately leaves the surface again. We initialize both domains with 10
particles of type A and 10 particles of type B per simulation cell. This choice
adjusts the reactant mole fraction, xA, at the inlet homogeneously to 50%.
For both cases, inlet and outlet are connected via the periodic boundary
condition with species reset, described above.

To evaluate the influence of flow velocity, we consider two different cases:
First, we set the external force to zero, i.e., we consider pure diffusion.
Second, the flow is driven by an external acceleration, substituting a pressure
gradient. Denoting the speed of sound as cs, superficial and maximum
velocity in the channel are 0.14 cs and 0.19 cs, respectively. The resulting
mole fraction fields are shown in Fig. 3.3 (a) and (b).

In both cases – with and without external forcing – the reactant mole
fraction in the segment reveals no visible difference compared to the cor-
responding reference channel in Fig. 3.3. Moreover, Fig. 3.4 shows that
even right at the segment’s outlet, coordinate ẑ, the observed mole fraction
profiles coincide exactly with the curves extracted for the reference channel.
Therefore, we conclude that the periodic boundary with species reset gives
the correct mole fraction profile at the outlet, assuming a periodic continu-
ation of the domain.
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FIG. 3.3: Comparison between the reactant mole fraction, xA, in the segment (small domain)
and that in the corresponding reference channel (large domain). In (a) we have pure
diffusion, while in (b) the flow is driven by an external acceleration.
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FIG. 3.4: Comparing the reactant mole fraction profiles at the coordinate ẑ, which corre-
sponds to the segment’s outlet. The labels, (a) and (b), refer to the two setups from Fig. 3.3.

3.3.2 Second order reaction

To indicate the potential of our approach, we also provide a more challenging
example, namely the low-temperature water-gas shift, as characterized
in [21], in an open-cell porous foam structure, modeled as regular inverse
sphere packing [14]. As before, we compare two different system sizes:
one unit foam cell versus two unit foam cells in a row. The gas dynamics
is simulated with isotropic stochastic rotation dynamics (iSRD) [24]. The
gas flow, which is visualized in Fig. 3.5, is again driven by an external
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FIG. 3.5: Streamlines for gas flow in an open-cell porous foam structure modeled as inverse
sphere packing using constructive solid geometry (CSG). The considered structure is de-
scribed in more detail in Sec. 4.2.1.

acceleration, resulting in the superficial and maximum velocity being 0.10 cs
and 0.30 cs, respectively. The pore size Reynolds number is defined as

Re =
dpU

ν
, (3.2)

where the pore size, dp, is defined as the distance between the sphere centers,
U is the superficial velocity, and ν denotes the kinematic viscosity. For the
regarded setup, Re = 26, while the Schmidt number is 0.77. The considered
reaction is CO + H2O → CO2 + H2. The local reaction rate is high enough
to push the system into the mass transfer limited regime, i.e., practically all
encounters of CO andH2O at the surface lead to a reaction. The inflow mole
fractions of the reactants are xCO = 3% and xH2O = 26%.

In this case, where the reactants’ inlet concentrations differ, re-reseting
must be synchronized, such that the average number of re-resets is equal
for all reactants. For second order reactions with differing reactant con-
centrations at the inlet, this can be achieved by the following procedure.
In each boundary cell we count the number of re-resets per species, and
we allow a re-reset for the abundant species, H2O, only if the rarer species,
CO, has had a greater or equal number of re-resets already. Following this
rule, we will allow re-resets for the rarer species in advance due to thermal
fluctuations. However, this does not corrupt the synchronization, since the
abundant species will always catch up subsequently.
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FIG. 3.6: Particle flow rate attributed toCO over total particle flow rate in an open-cell porous
foam structure. The inset shows the mole fraction of CO in the two considered systems.
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FIG. 3.7: This figure refers to the cross section at coordinate ẑ. Due to symmetry, it is not
necessary to consider the unit cell’s complete cross section. For the two different setups, the
two upper segments show the mole fraction profiles at the coordinate ẑ, which corresponds
to the outlet in case of simulating one unit cell. The lower segment shows the deviation
between both profiles.

To assess this approach, in Fig. 3.6, we examine the consumption ofCO along
the main flow direction. Instead of the mole fractions, we consider the ratio
between the particle flow rates,

Ci(z) =

∫
S(z) ni u ds∫

S(z)
∑

j nj u ds
, (3.3)
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depending on the position along the main flow direction, z. The integral
runs over slices, S(z), which are perpendicular to the main flow direction.
The velocity component in main flow direction is denoted as u, while ds
is the surface element normal to the main flow direction. Again the two
compared simulation setups only differ in domain length. Any artifacts due
to the presented boundary condition should be visible at the outlet of the
shorter domain, position I . Additionally, in Fig. 3.7 we regard xCO directly
at the coordinate ẑ marked in Fig. 3.6. The deviations, ∆xCO = xone cell

CO −
xtwo cells
CO , show random fluctuations around zero mean.

3.4 Conclusion

In this chapter, we have introduced a numerical method to simulate open
boundaries in reactive flow through geometrically periodic domains. To this
end, we connect inlet and outlet via a partially periodic boundary, allowing
for discontinuities in the concentration fields. The concentration field
emerging due to the proposed boundary condition corresponds to a channel,
which is periodically continued at the outlet, and has a homogeneously
mixed inflow. Our boundary condition is not as general as the characteristic
boundary condition suggested in [57]. However, it is unconditionally,
numerically stable, and, as opposed to the approach in [57], no partial
differential equations have to be solved for inlet and outlet. For some
applications, homogeneous velocity and concentration fields may be desired
not only at the inlet but also at the outlet, mimicking a reservoir with an
unknown, spatially constant concentration value at the outlet. This can be
achieved by inserting each particle at a random position, after transition
through the modified periodic boundary condition.

This boundary condition will serve as inlet and outlet for the unit foam
cell simulations performed in the next two chapters.
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4 Low temperature water-gas shift reaction

In this chapter, we investigate heterogeneous catalysis in open-cell foam
structures, modeled as inverse sphere packings. The foam geometry is
described analytically using Constructive Solid Geometry (CSG). The gas
dynamics is simulated with isotropic Stochastic Rotation Dynamics (iSRD)
presented in Chap. 2. Inlet and outlet are connected via the modified
periodic boundary condition from Chap. 3 allowing for discontinuities in the
concentration field, while the density, temperature and the velocity fields are
strictly periodic. After validating our simulation model based on experimen-
tal results from the literature, we investigate the low temperature water-gas
shift reaction following the Langmuir-Hinshelwood reaction mechanism.
Considering typical reaction parameters from literature, we find for the
considered Reynolds number that the catalyst density in the washcoat may
be reduced by the factor 100 without notable loss of conversion efficiency.
Further reduction, however, pushes our prototype setup towards the reac-
tion rate limited regime leading to a significantly declined conversion rate.
For a certain pore size Reynolds number, the foam porosity is varied to
determine optimum open-cell foam structures, which combine low flow
resistance and high conversion efficiency. Large porosity values are found
favorable in both the mass transfer limited regime and in an intermediate
regime. Moreover, as the porosity is increased, the ratio between conversion
and required reactive surface area increases as well. Compared to the mass
transfer limited regime, in the intermediate regime, the dependence of the
surface utilization on the porosity is less pronounced.

4.1 Introduction

In heterogeneous catalysis, the catalyst is applied to solid support structures.
In this context, open-cell metal foams are extremely promising. As a result
of their high tortuosity and specific surface, such foam structures provide
excellent mass transfer properties [5]. Moreover, the high porosity keeps
the associated flow resistance comparatively small [6]. The performance of
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4 Low temperature water-gas shift reaction

open-cell foams for heterogeneous catalysis has been investigated in various
experimental studies [6, 7, 8]. Furthermore, several numerical studies have
been performed with continuum simulation methods modeling the foam
structure as Kelvin cells1 [11, 5, 9, 10].

As opposed to this, we employ isotropic Stochastic Rotation Dynamics,
a particle-based simulation technique, to simulate the reactive gas flow in
unit foam cells [24]. The unit foam cell is modeled as an inverse sphere
packing. Smorygo et al. [14] show that this approach yields good predictions
for the specific surface and the hydraulic permeability of open-cell foam
structures. Constructive Solid Geometry (CSG) is used to describe the
complex shaped boundary independently of the spacial resolution of the
simulation domain [15]. This allows us to evaluate the chemical reactions
exactly at the analytically defined reactive surface. The surface described
with CSG is assumed to correspond to the exterior surface of an even
CuO/ZnO/Al2O3 washcoat layer applied to an underlying foam structure.
As prototype reaction, we consider the low temperature water-gas shift.
We implement an effective reaction model assuming the reactions to take
place within the porous washcoat, which is not simulated explicitly. The
reactions are assumed to follow the Langmuir-Hinshelwood reaction mech-
anism [20, 21]. This study is not restricted to the mass transfer limited
regime, but also considers the reaction rate limited regime. Therefore, the
reaction mechanism has to be modeled in detail. We compute the effective
reaction rate in the washcoat layer based on precomputed look-up tables for
the effectiveness factor [22]. Apart from the effectiveness factor, the effective
reaction rate depends on several model parameters, on the temperature, and
on the reactants’ partial pressures at the exterior washcoat surface. While
the model parameters and the temperature in the washcoat are prescribed
explicitly, the partial pressures are computed from the collision fluxes on the
surface. Hence, all relevant quantities are evaluated directly at the reactive
boundary.

Note that, unless the fields on the boundary are known explicitly, it is
not trivial to model open boundaries in particle-based methods [57]. This
problem can be circumvented by using periodic instead of open boundaries
and an acceleration instead of an actual pressure difference. However, peri-
odic boundaries naturally imply that the concentration field is equal at inlet
and outlet, which is not applicable for reactive flow simulations. Therefore,
we use the novel boundary conditions from Chap. 3, which are periodic
regarding velocity, temperature, density and pressure while allowing the

1 A sketch of this structure is provided in [11].

42



4.2 Methods

concentration field to have a discontinuity at the surface connecting inlet
and outlet.

In this chapter, we first concisely describe the main components of
our simulation model. Second, we validate the individual parts of our
model using data from the literature. Subsequently, we consider the low
temperature water-gas shift reaction in porous foam for typical parame-
ters. We vary both the active site density within the washcoat and the
porosity of the considered unit foam cell. In [11] Lucci et al. find that in
the mass transfer controlled regime the dimensionless performance index
monotonously increases with porosity. We will assess this statement for
low temperature water-gas shift, and see how far we can extend its validity
towards the reaction rate limited regime.

4.2 Methods

In order to validate the simulation results in Sec. 4.3 and to evaluate the
gathered results in Sec. 4.4, several dimensionless numbers have to be
introduced. An overview over the dimensionless numbers used in this

Table 4.1:Overview over the dimensionless numbers used throughout this thesis.

name symbol definition

Reynolds number Re
convective transport rate

diffusive momentum transport rate

=
inertial forces
viscous forces

Péclet number Pe
convective transport rate

diffusive mass transport rate

Schmidt number Sc
diffusive momentum transport rate

diffusive mass transport rate

Hagen number Hg dimensionless pressure gradient
in forced flow

Euler number Eu
pressure forces
inertial forces

Sherwood number Sh
mass transfer rate to the reactive surface

diffusive mass transport rate

Thiele modulus Φ

(
reaction rate

diffusive mass transport rate

)1/2
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4 Low temperature water-gas shift reaction

thesis is provided in table 4.1. Before the obtained results are discussed,
the simulation model has to be considered first. The employed model is
implemented based on the framework developed in [13], which is capable
of robust event-driven particle tracking in complex geometries. In order to
numerically investigate heterogeneous catalysis in foam structures we need
to couple gas dynamics within complex geometries and reaction kinetics
at the catalytic surface. Smorygo et al. show that inverse sphere packings
are an excellent model for open-cell porous foam structures [14]. Hence,
the reactive boundary can be described using constructive solid geometry.
In the following subsections we give a short overview over the individual
ingredients of our simulation model.

4.2.1 Geometry model

As suggested by Smorygo et al. [14] we model the open-cell foam structure as
an inverse sphere packing, shown in Fig. 4.1. This approach allows us to fully
parametrize the geometry by the prism width dp and the sphere diameter
d. The porosity of the foam, ε, can be adjusted by changing the ratio k =
dp/d, while the underlying auxiliary grid remains unchanged. The prism
width, dp, plays the role of the pore size in a real foam sample. Hence, the

FIG. 4.1: The open-cell foam structure is modeled as an inverse sphere packing. The foam
porosity depends only on the ratio between the sphere diameter and the width of the prism.

geometry is easily adjustable and decoupled from the simulation grid. This
concept works especially well for particle-based simulation methods, where
the boundary conditions can be enforced directly on every particle hitting
the wall. Moreover, this approach allows us to evaluate the partial pressure
corresponding to each individual particle species exactly at the surface via
the collision fluxes, i.e., simply by bookkeeping over the particles having hit
the wall.
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4.2.2 Gas dynamics

Fluid model. The gas dynamics is simulated with isotropic Stochastic Rota-
tion Dynamics (iSRD) [24], a modification of standard Stochastic Rotation
Dynamics (SRD) [18, 25]. SRD has been shown to be suitable to model fluid
flow through complex geometries [39, 59] . In both methods the fluid is
modeled using point-like quasi-particles which do not directly correspond
to actual particles, but represent a discretization of the phase space. Each
time step comprises one streaming step, propagating the particles according
to their current velocity, and one collision step, allowing the particles to
exchange momentum. The streaming step is identical both in SRD and
iSRD. However, for the collision step, in iSRD the particles are grouped into
randomly distributed spheres, and not into the cubic cells of a Cartesian
simulation grid as in SRD. The process of sorting the particles into the colli-
sion spheres can be enhanced significantly by an auxiliary mesh. Employing
an auxiliary mesh is not compulsory, however, and it does not affect the
simulation result, i.e., iSRD is grid free. More importantly, iSRD does not
suffer from anisotropy at complex shaped domain boundaries [24].
Inlet and outlet. The outlet of the simulation domain is connected to the

inlet via a specialized semi-periodic boundary condition, which has been
designed particularly for reactive gas flow. While enforcing periodicity on
density, velocity, temperature and pressure, it allows for a discontinuity in
the composition of the simulated gas mixture. This boundary condition
ensures temporally constant reactant and product concentrations at the
inlet. Conversely, the concentration profiles at the outlet automatically
resemble a periodical continuation of the domain in flow direction Chap. 3.
Solid wall. In order to avoid slip at the solid wall, whenever a particle

hits the wall, its velocity is inverted before the particle is released again.
However, in case the collision bins – in our case collision spheres – overlap
with the domain boundary, this procedure is not sufficient to ensure no slip
at the wall [39]. Therefore, we randomly generate ghost particles within
the solid walls. The ghost particle velocities are chosen from a Maxwellian
distribution with zero average velocity. The ghost particle density is equal
to the bulk density [52]. In Fig. 4.2, we show the simulated flow profile for
plane Poiseuille flow. The shaded area indicates the region in which ghost
particles have been distributed. The simulation data shows no significant
deviations from the analytical solution.
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FIG. 4.2: We simulate plane Poiseuille flow, in order to validate our implementation of the
no-slip boundary condition at the solid wall.

4.2.3 Reaction Model

Due to its industrial relevance we investigate the low temperature water-
gas shift reaction, i.e., the formation of carbon dioxide and hydrogen from
carbon monoxide and steam,

CO+H2O → CO2 +H2 . (4.1)

The back reaction is not taken into account. According to Ayastuy et al.,
this reaction follows the Langmuir-Hinshelwood reaction path [21]. This
is one of the most important prototype reaction path for heterogeneous
catalysis. Hence, the results and conclusions attained here are applicable
to other catalytic reactions as well. In industrial applications the carrier
structure is typically coated with a porous washcoat layer. This washcoat
provides a large internal surface containing the catalytic sites necessary for
the water-gas shift reaction to take place. We assume the foam structure
to be coated evenly denoting the washcoat layer thickness by L. Since the
reactant concentrations decrease with increasing depth in the washcoat, the
local reaction rate, ṅr, in the washcoat, which is defined as the number
of reactions per time and washcoat volume, varies as well. Note that,
considering the Langmuir-Hinshelwood mechanism, the reaction rate is not
necessarily a monotonous function of the reactant concentrations [22].

The gas flow through the mesoporous foam structure is simulated as
described in Sec. 4.2.2. It is not feasible to model the open-cell foam and the
washcoat simultaneously, since the associated processes occur on different

46



4.2 Methods

scales. Hence, the reaction diffusion process within the washcoat is not
modeled live during the simulation, but we decouple it from the actual
simulation by introducing an effective model for the reactions. Ignoring the
back reaction, the average reaction rate in the washcoat layer is given by

⟨ṅr⟩ = ζ
k PCO PH2O

(1 +KCO PCO +KH2O PH2O +KCO2 PCO2 +KH2 PH2)
2
, (4.2)

where P with subscript refers to the corresponding species’ partial pressures
at the outer surface of the washcoat. The average reaction rate has units
of mol/(m3 s). The reaction rate constant and the adsorption constants are
denoted as k andK with corresponding subscript, respectively. The fraction
in Eq. (4.2) corresponds to the local reaction rate at the outer surface of
the washcoat. The effectiveness factor, ζ, is the ratio between the average
reaction rate within the washcoat layer, ⟨ṅr⟩, and the local reaction rate at
its outer surface [60].

We follow the procedure described in [22] to precompute the effective-
ness factor in the relevant parameter range of the partial reactant pres-
sures and the model parameters, which vary with temperature. Note that
to compute the effectiveness factor for a given parameter set, the one-
dimensional reaction-diffusion equation for Langmuir-Hinshelwood kinet-
ics in the washcoat has to be solved, while the reaction rate directly at the
surface can be evaluated very easily.

The domain boundary described by the inverse sphere packing is assumed
to correspond to the outer surface of the washcoat. The reactive boundary
is discretized into individual boundary cells. To eliminate fluctuations, the
partial surface pressures are computed from the given wall temperature and
the temporally averaged collision fluxes, Zi, where i represents either CO,
H2O, CO2, or H2. Subsequently, the effectiveness factor is read from the
precomputed table, and the average reaction rate is computed according
to Eq. (4.2). To enforce the reactions on the simulated quasi-particles, the
reaction probability is computed for each reactant species,

pi = ⟨ṅr⟩LA
νi
Zi
, for i ∈ {CO, H2O} , (4.3)

where L and A denote the washcoat thickness and the surface area in the
boundary cell, respectively. Thus, whenever a particle of type i hits the
reactive boundary, this particles undergoes a reaction with probability pi,
which has to be computed beforehand in the corresponding boundary cell.
For the reaction considered here, the stoichiometric coefficient, νi, is equal
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4 Low temperature water-gas shift reaction

to 1 for both reactants. This approach, on average, recovers the expected
number of conversions for each reactant species. The reaction parameters
are summarized in Sec. 4.2.4.

4.2.4 Washcoat parameters

Ayastuy et al. assess various different approaches to model the low tem-
perature water-gas shift reaction [21]. In their experiments the catalyst
is composed of 24.9% CuO, 43.7% ZnO and 31.4% Al2O3. The pore
volume of 0.29 cm3 per gram catalyst implies an effective catalyst density
of 2.06 g/cm3 considering also the pores. The predominant pore diameter
in the catalyst lies between 10 and 20nm. The most accurate model in
their study is based on the Langmuir-Hinshelwood reaction mechanism.
At the temperature, T = 453K, the kinetic constant for this model is
k = 1.217× 104 mol/(m3 s Pa2), where the volume refers to catalyst volume.
The kinetic constant is assumed to be directly proportional to the active site
density. Hence lower active site densities can be mimicked by reducing k.
The adsorption constants referring to the different species are:

▷ KCO = 8.562× 10−3 1/Pa,

▷ KH2O = 8.898× 10−4 1/Pa,

▷ KCO2 = 4.581× 10−4 1/Pa,

▷ KH2 = 9.594× 10−4 1/Pa.

The geometric washcoat properties are taken from sample A15 examined by
Novak et al. in [61]. Hence, the washcoat thickness is L = 15µm. Macro-
and mesoporosity if the washcoat layer are given as εmacro = 0.26 and εmeso =
0.43, respectively2. The pore diameter, required to compute the Knudsen
diffusion coefficients in the mesopores, is assumed to be 13nm. The effective
diffusion coefficients in the washcoat are estimated based on what Novak et
al. call the “standard model” in [61]:

▷ Dwc
CO = 5.068× 10−6 m2/s,

▷ Dwc
H2O = 7.342× 10−6 m2/s,

▷ Dwc
CO2

= 4.425× 10−6 m2/s,

▷ Dwc
H2

= 1.553× 10−5 m2/s.

2 The subscripts “macro” and “meso” used in this subsection correspond to the internal
structure within the washcoat layer [61]. These subscripts are not related to the macroscopic
or mesoscopic scale of the multiscale study conducted in Chap. 5.
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4.2.5 Bulk transport coefficients

According to [62], for the low temperature water-gas shift reaction, represen-
tative mole fractions of CO, CO2, H2, N2 and H2O at the inlet are 3%, 13%,
30%, 28% and 26%, respectively. The temperature and pressure considered
are T = 453K and P = 1 atm, respectively. The binary diffusion coefficient
for each species pair can be estimated following the procedure suggested
by Hirschfelder et al. in [63]. From the binary diffusion coefficients, the
resulting bulk diffusion coefficients for each species in the mixture are
computed as described in [64]. For the given inlet mole fractions, this
approach yields:

▷ DCO = 5.842× 10−5 m2/s,

▷ DH2O = 8.795× 10−5 m2/s,

▷ DCO2 = 5.225× 10−5 m2/s,

▷ DH2 = 1.682× 10−4 m2/s.

Note that these diffusion coefficients change with the composition of the
gas mixture. Assuming that CO is completely consumed due to the reaction,
the diffusion coefficient for CO, H2O, CO2 and H2 would change by −0.9%,
+1.2%, −4.2% and 1.9%, respectively. This effect is ignored here.

The viscosity of the gas mixture is computed according to [65]. This model
requires the mass density and the viscosity of each involved component
as input. The mass densities are computed from the ideal gas law. The
viscosity of overheated steam is computed according to IAPWS-IF97 [66],
while the dynamic viscosities of the remaining components are computed
based on [67].

▷ ρCO = 0.7535 kg/m3, µCO = 2.412× 10−5 Pa s,

▷ ρH2O = 0.4846 kg/m3, µH2O = 1.537× 10−5 Pa s,

▷ ρCO2 = 1.184 kg/m3, µCO2 = 2.188× 10−5 Pa s,

▷ ρH2 = 0.05423 kg/m3, µH2 = 1.169× 10−5 Pa s,

▷ ρN2 = 0.7536 kg/m3, µN2 = 2.406× 10−5 Pa s.

For the given mole fractions, this procedure yields an average density of ρ =
0.5298 kg/m3 and an average dynamic viscosity of µ = 2.368×10−5 Pa s. The
kinematic viscosity is defined as ratio between dynamic viscosity and mass
density, ν = µ/ρ.
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4.2.6 Thiele modulus computation

An important dimensionless quantity for heterogeneous catalysis is the
Thiele modulus, which provides information about the ratio between the
time scale of diffusion and that of reaction,

Φ =

√
τd

τr
. (4.4)

The diffusion and reaction time scale are τd and τr, respectively [60]. For
large values of Φ, the mass transfer to the reactive surface is the limiting
subprocess, while for small Thiele moduli the reaction rate limits the con-
version [1].

Due to the abundance ofH2O in the considered system, theCO concentra-
tion is the bottleneck regarding the diffusion process. Therefore, we define
the diffusion time scale τd as the inverse of the diffusion rate per volume at
which CO is transported to the reactive surface. Assuming the reaction to
be infinitely fast, i.e., zero CO at the surface, the diffusion rate per volume is
given as

1

τd
= DCO nCO,in

dp
2

4
, (4.5)

where nCO,in is the number density of CO at the inlet, and dp/2 denotes
the pore radius of the foam structure. Analogously, τr is the inverse of the
reaction rate per volume. Assuming instantaneous diffusion, the reaction
rate per volume is given by

1

τr
= ṅr,inAs L , (4.6)

where ṅr,in is the average reaction rate in the washcoat, as given in Eq. (4.2),
for inlet conditions. As is the specific surface within the foam structure [14].

4.2.7 Simulation parameters

As in all mesoscopic simulation methods, the transport coefficients in iSRD
depend on the spacial and temporal discretization. Moreover, in iSRD, the
diffusion coefficient of a particle is directly connected to its mass: For fixed
density and rotation angle, D ∝ ∆t kBT/m [24]. In order to avoid an
additional thermostat to be necessary for the inlet-outlet boundary condi-
tion developed in Chap. 3, we choose mCO,sim = mCO2,sim and mH2O,sim =
mH2,sim, which implies DCO,sim = DCO2,sim and DH2O,sim = DH2,sim. This
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is expected to have minor influence on the simulation result, since the the
transport away from the reactive surface is secondary.

The ratio between diffusion coefficient and viscosity can be adjusted via
the rotation angle and the ratio between time step and collision diame-
ter [24]. This allows us to ensure a constant Schmidt number, Sc = ν/DCO =
0.77. However, for the chosen discretization, DCO,sim and νsim are σ = 27.0
times larger than the realistic values given in table 4.2. To compensate for
that, the time scale of convective transport as well as the reaction time
scale in the unit cell have to be adjusted accordingly. To this end, both
the superficial velocity, U , and the effective reaction rate, ⟨ṅr⟩, must be
increased by the same constant factor, σ. This approach ensures that,
while the dimensional parameters chosen in the simulations may deviate
from what is shown in table 4.2, all relevant dimensionless parameters –
Reynolds number, Schmidt number and Thiele modulus – match the actual
application. Note that given Reynolds and Schmidt number also the Péclet
number is known. The temperature is assumed to be constant within the
simulation domain. Therefore, all dimensionless numbers concerned with
heat transfer play no role for the mesoscale simulations performed in this
chapter.

4.3 Validation

Typical simulation results are shown in Fig. 4.8. From these results we
extract the superficial velocity, U , and compute the pore size Reynolds
number defined in Eq. (3.2). Further we compute the dimensionless pressure
drop in form of the Hagen number,

Hg = −
dp

3

⟨ρ⟩ ν2
dP

dz
, (4.7)

where P denotes the pressure and z is the the coordinate along the flow
direction. The average mass density in the system is denoted by ⟨ρ⟩. In
mesoscopic simulation methods [48, 25, 24], the Reynolds number can be
increased either by increasing the spatial and temporal resolution or by
increasing the velocity. In this study, we vary the superficial velocity, while
we keep the pore size and the resolution fixed, which also fixes the kinematic
viscosity. For Reynolds numbers above 30, this approach leads to density
variations of more than 10%, as shown in Fig. 4.3. Since iSRD naturally
includes fluctuations in density and velocity, ρmax/⟨ρ⟩ does not reach 1.0
as Re → 0. Thus, part of the density variation depicted in Fig. 4.3 can be
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FIG. 4.3: Maximum compression within the simulation domain as a function of Reynolds
number.

attributed to statistical fluctuations. To obtain the results discussed in this
chapter, we average for 2 × 104 time steps, after the steady state has been
reached.

In Fig. 4.4 we examine Hg as a function of Re. As shown in Fig. 4.5,
below Re = 30, the deviations between simulation data and experimental
data, taken from [23], remain below 6%. These deviations originate from
the fact that the inverse sphere model cannot capture the actual foam
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FIG. 4.4: We compare the relation between dimensionless pressure drop and Reynolds
number in the simulations to experimental data. The experimental data used for validation
refers to sample 2 in the work done by Dukhan [23].
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FIG. 4.5: Relative deviation between the dimensionless pressure drop in the simulations and
that in experiments.

geometry exactly. Above this point, the deviations are growing considerably
with increasing Reynolds number. This growth is associated with the
compressibility effects, depicted in Fig. 4.3. Hence, our model seems to
give a reliable pressure drop prediction for metal foam structures in the low
Reynolds number regime.

Further, we assess the mass transport to the reactive surface. In accor-
dance to Giani et al. [6] we consider the Sherwood number over the Reynolds
number in the mass transfer limited regime. Numerically, this is achieved
by setting ⟨ṅr⟩ = min(ZCO, ZH2O) in Eq. (4.3). To compare our results to the
findings from [6], we need to define the effective strut size [6],

ds = dp

√
4

3π
(1− ε) , (4.8)

as well as the strut size Reynolds number,

Res =
ds U

ν
, (4.9)

and the strut size Sherwood number,

Sh =
ds

DCO

− ln(1− η)

As h/U
. (4.10)

In Eq. (4.10), the conversion, defined as

η = 1−
ṅCO,out

ṅCO,in
, (4.11)
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4 Low temperature water-gas shift reaction

is used. Further, h and As denote the unit foam cell length and the specific
surface, respectively. For the two foam porosity values considered in Fig. 4.6,
Res ≈ 0.2×Re. For details, see [6, 14]. The Schmidt number, Sc = ν/DCO =
0.77 is kept constant in this study.
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FIG. 4.6: We examine the relation between Sherwood number and Reynolds number in the
simulations for two different porosity values.

Examining the relation between Sherwood and Reynolds number in Fig. 4.6,
we observe two different regimes. For small Reynolds numbers, the data
seems to follow a rational function, that is, the ratio between two polynomial
functions. Its behavior can be explained as follows. As defined in Eq. (4.10),
Sh is directly proportional to the superficial velocity, and monotonously
increasing with conversion rate. Moreover, in addition to the convective
transport, there is another process providing an influx of reactants, namely
the diffusive transport along the main flow direction. For small superficial
velocities, the conversion is mainly fed by diffusion, and the conversion
hardly depends on the velocity. Therefore, increasing Res, which is pro-
portional to superficial velocity, at first causes a pronounced increase in
Sh. As Res is increased further, however, the convective transport becomes
dominant, and Sh approaches a plateau. To explain this plateau, we assume
that the probability for a particle to reach the reactive surface is proportional
to its residence time, and therefore inversely proportional to U . Conversely,
ignoring diffusion along the main flow direction, the influx of reactants is
directly proportional to U . Thus, the mass transfer to the reactive surface,
and with it the Sherwood number, is constant with respect to superficial
velocity. This observation implies that the principal appearance of the flow

54



4.3 Validation

does not change significantly, but rather that the magnitude of local flow
velocity simply scales with the superficial velocity.

This explanation does not hold above Res ≈ 10, and before the plateau
mentioned above is reached, we find a power law with the exponent reported
in [6]. However, we underestimate the prefactor from Giani et al. [6] by 40%.
A possible explanation for this divergence is that the considered inverse
sphere packing is more regular and less tortuous compared to real foam
structures.

To assess the implemented, effective reaction model, in Fig. 4.7, we
investigate how the Thiele modulus, discussed in Sec. 4.2.6, changes, while
increasing the active site density over the reference site density, ρs/ρs,ref.
For the reference site density, the reaction parameters can be found in
Sec. 4.2.4. Up to a relative site density of ρs/ρs,ref ≈ 3 × 10−4, the Thiele
modulus grows with an exponent of 0.5. Thus, the average reaction rate
in the washcoat increases linearly with relative active site density, indicating
that the reactions take place homogeneously within the washcoat, i.e., ζ ≈ 1.
For higher active site densities the exponent for the increase of Φ changes to
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FIG. 4.7:To assess the implemented reaction model, we are interested in the change in Thiele
modulus, as the relative active site density is varied.

0.25, indicating that the effectiveness factor decreases with an exponent of
0.5, which coincides with the results shown by Roberts and Satterfield [22].
These findings indicate that our reaction model behaves correctly.
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4 Low temperature water-gas shift reaction

4.4 Results and Discussion

In the subsequent studies we are interested in the low Reynolds number
regime. An application for this are microfluidics, where due to small
system sizes, also small Thiele moduli can be observed. Therefore, we are
not exclusively considering the mass transfer limited regime, but also an
intermediate regime close to the reaction rate limited regime. The fluid
properties of interest are summarized in Sec. 4.2.5. Details on the applied
simulation setup can be found in Sec. 4.2.7.

Table 4.2: Summary of the dimensional and dimensionless parameters which are kept
constant within this chapter.

dimensional value

kinematic viscosity ν 4.469× 10−5 m2/s
diffusion coefficient DCO 5.842× 10−5 m2/s
prism width dp 0.635× 10−3 m
prism height h =

√
8/3 dp 1.037× 10−3 m

superficial velocity U 1.0 m/s

dimensionless value

Reynolds number Re = dp U/ν 14.2

Schmidt number Sc = ν/DCO 0.77

Péclet number Pe = Re × Sc 10.9

To assess the influence of porosity, we consider representative foam cells.
In Fig. 4.8 the flow profile and the mole fraction, xCO, computed accord-
ing to Eq. (3.1), are visualized for a typical simulation setup. The inlet
concentration is assumed to be homogeneous over the inlet surface. The
porosity will be varied by adjusting the void sphere diameter while keeping
the width of the foam cell constant. Moreover, to ensure comparability, the
superficial velocity is kept constant. A structure is understood to be suitable
as substrate for heterogeneous catalysis, if it yields a large conversion rate,
η, combined with a small pressure drop, ∆P . While η depends on the
considered channel length, one can also compute an effective conversion
rate, assuming an exponential profile connecting the two points (0, ṅCO,in)
and (h, ṅCO,out). Defining an effective conversion,

⟨η⟩ = − ln(1− η) , (4.12)
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FIG. 4.8: We investigate the flow and concentration profile in representative unit foam cells.
In this example the porosity is ε = 0.902. The remaining parameters are chosen according
to table 4.2.

the effective exponential concentration profile along the axial coordinate, z,
is given by ṅCO(z) = ṅCO,in exp(−⟨η⟩ z/h).

4.4.1 Active site density

Before we perform the proposed porosity study, we first characterize the
regime – reaction rate limited versus mass transfer limited – which is present.
To this end, we evaluate η as well as ⟨η⟩ for different active site densities.

Table 4.3: Tabulation of the Thiele modulus, Φ, for the simulated values of the relative active
site density, ρs/ρs,ref.

ρs/ρs,ref 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

Φ 0.0145 0.0458 0.143 0.443 1.34 2.98 5.31 9.44 16.8

As depicted in Figs. 4.9 and 4.10, the reference configuration, which is based
on table 4.2, the reaction parameters found by Ayastuy et al. [21], and the
washcoat properties described by Novak et al. [61], lies in the mass transfer
limited regime. Starting from this reference configuration, we gradually
reduce the site density to push the system towards the reaction rate limited
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FIG. 4.9: For the fixed porosity value ε = 0.902, we vary the relative active site density in the
washcoat. The dashed line is based on the fit from Fig. 4.10.
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FIG. 4.10: For the fixed porosity value ε = 0.902, we vary the relative active site density in
the washcoat. The dashed line has been fitted to the data.

regime. Table 4.3 and Fig. 4.7 show the Thiele modulus as a function of the
relative site density.

Even for the rather small Reynolds and Péclet number assumed in this
study, the active site density, i.e., the amount of catalyst, may be reduced
by a factor of 100 compared to the reference configuration without notably
reducing the conversion rate. Further, half of the maximum effective con-
version is reached at a relative site density of 3.07× 10−4. This corresponds
to Φ ≈ 2, which is also where the two regimes meet in Fig. 4.7. Further, note
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that in the semilogarithmic axis system in Fig. 4.10, the conversion behaves
similar to the sigmoid function, as the active site density is varied.

4.4.2 Porosity study

In this section we perform the aforementioned porosity study for two
different active site densities:

▷ reference configuration → Φ = 16.8,

▷ active sites reduced to 0.01% → Φ = 1.34.

The reference configuration lies in the mass transfer limited regime, while for
the other case we observe an intermediate regime, as can be seen in Figs. 4.9
and 4.10. Fig. 4.11 shows the Euler number,

Eu =
∆P

⟨ρ⟩U2
, (4.13)

as a function of foam porosity for the fixed pore size Reynolds number from
table 4.2. The pressure drop along the unit foam cell is denoted as ∆P , and
⟨ρ⟩ is the average mass density in the system.
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FIG. 4.11: For fixed mass flow rate, we plot the Euler number, i.e., the dimensionless pressure
drop as a function of porosity. The flow resistance decreases with increasing porosity.

As Figs. 4.11 and 4.12 show, both dimensionless pressure drop and con-
version rate decline, as the porosity is increased. This is expected, since
with increasing porosity, the strut size as well as the reactive surface area
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FIG. 4.12: For fixed mass flow rate, we plot the effective conversion rate as a function of
porosity. The conversion decreases with increasing porosity.

decreases. For the investigated porosity range, in the mass transfer limited
regime, the effective conversion rate varies within the interval [−8% ,+5%],
compared to the median, ε = 0.902. In the intermediate regime, the
effective conversion rate varies within [−15% ,+14%]. The variation is more
distinctive in the intermediate regime, since there the reactants need more
wall encounters on average, before the reaction finally happens.

An optimum substrate for heterogeneous catalysis should provide maxi-
mum conversion rate, while causing minimum pressure drop, ∆P . However,
these two requirements cannot be fulfilled at the same time. To find a
compromise, the performance index,

PI =
− ln(1− η)

∆P/(⟨ρ⟩U2)
=

⟨η⟩
Eu

, (4.14)

from [6] is evaluated in Fig. 4.13 as porosity is varied. In both considered
cases, the performance index monotonously increases with porosity. Note
that – due to the stronger decline in ⟨η⟩ depicted in Fig. 4.10 – this increase
is less distinct in the intermediate regime.

Further, the surface utilization rises with porosity, as shown in Fig. 4.14.
For the specific surface, As, the analytical expression derived by Smorygo et
al. [14] is used. For the same reason as above, the rise in surface utilization
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FIG. 4.13: To evaluate the suitability for the use as substrate in heterogeneous catalysis, we
consider the performance index suggested by Giani et al. in [6].
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FIG. 4.14: To evaluate the surface utilization, we consider the effective conversion rate over
the specific surface. In this study, the unit cell size is fixed, i.e., the actual surface area is
directly proportional to the specific surface.
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FIG. 4.15: To estimate the suitability for the use as substrate in heterogeneous catalysis
in the reaction rate limited regime, we consider the ratio between specific surface and
dimensionless pressure drop.

is less pronounced in the intermediate regime. Note that in the reaction rate
limited regime, the reactants’ concentration, and also ⟨ṅr⟩, is approximately
constant throughout the system. Thus, the total reaction rate,

L

∫
Ar

⟨ṅr⟩ da = L ⟨ṅr⟩
∫
Ar

da , (4.15)

whereL is the washcoat layer thickness, and da denotes the surface element,
is directly proportional to the available surface area, Ar =

∫
Ar
da. For given

inlet concentrations, from the particle balance one sees that also η must be
proportional to the surface area. Since η is typically small in this regime,
⟨η⟩ = − ln(1−η) ≈ η. Hence, to assess the performance in the mass transfer
limited regime, it is reasonable to regard the ratio between surface area and
pressure drop. Following this idea, Fig. 4.15 indicates that in the reaction
rate limited regime, lower porosity values are beneficial, while according to
Fig. 4.13 the opposite is true in the intermediate and mass transfer limited
regime.

4.5 Conclusion

In this chapter, we have combined isotropic Stochastic Rotation Dynamics
with a specialized boundary condition for the inlet and outlet. Further, we
have implemented and validated an effective boundary condition to model
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heterogeneous catalysis at the solid walls. For small Reynolds numbers,
Re ≲ 30, the applied simulation approach correctly reproduces the relation
between Reynolds and Hagen number from experiments [23]. Moreover,
the Sherwood number obtained in the simulations behaves similar to ex-
perimental results [6]. Outside the Reynolds number range covered in the
experiments, however, we have found a qualitatively different behavior. This
observation indicates the transition between two different flow regimes at
Res ≈ 10.

Moreover, compared to the reference configuration based on [21, 61], the
number of active sites may be reduced to 1% without a significant change in
conversion rate, even for the comparatively small Reynolds and Péclet num-
ber which we have considered. Beyond, we have varied the porosity keeping
the pore size Reynolds number constant. In the mass transfer limited as well
as intermediate regime, the surface utilization rises with increasing porosity.
In agreement with the results obtained by Lucci et al. [11], we have found the
performance index to rise as the porosity is increased in the mass transfer
limited regime. The same trend is visible in the intermediate regime. Note
that the correlation is less pronounced in the intermediate regime both
with respect to surface utilization and performance index. In contrast, in
the reaction rate limited regime, the obtained results indicate the surface
utilization to be independent of porosity, while the performance index is
expected to decrease as porosity is increased.
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5 Optimum catalytic converter configuration

In this chapter, we derive a multiscale approach and derive an efficient, one-
dimensional model to simulate catalytic converters filled with porous metal
foam. To this end, we connect mesoscale simulations of representative unit
foam cells to macroscale simulations of complete catalytic converters. The
proposed approach is valid within the mass transfer limited regime. From
the porosity study in Sec. 4.4.2, we pick an intermediate foam porosity,
ε = 0.902. For the investigated foam structures, we find the performance
index, defined by Giani et al. [6], to reach its maximum value, PIopt = 0.227,
at the Reynolds number, Reopt = 15.8. The developed model is used to
find optimum catalytic converter configurations for two different situations.
In the first case, the heat of reaction is ignored, and one single foam
segment with pore size chosen such that the Reynolds number equals Reopt
is optimum. In the second case, realistic heat release values are considered
leading to temperature variations along the catalytic converter. In this case,
the optimum configuration consists of several, stacked foam segments with
decreasing pore size along the main flow direction such that temperature
fluctuations are kept small. An analytical procedure is provided to determine
the optimum pore size for each segment in the stacked foam structure.
Following the proposed optimisation approach, temperature variations can
be eliminated, and the performance index can be increased by up to 11.0%.
Moreover, the required reactive surface area, i.e., the amount of catalytic
material, can be reduced by up to 18.4%.

5.1 Introduction

Catalysts are required in numerous industrial chemical processes. There-
fore, to understand and optimize catalytic processes is eminently important
from an economical point of view [1]. Among other geometries, open-cell
metal foams are use as support structures in heterogeneous catalysis. Porous
metal foam structures combine high tortuosity with large specific surface.
Hence, such foam structures provide excellent mass transfer properties [5].
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Conversely, the associated flow resistance is kept comparatively small due to
the high porosity [6]. Various experimental and numerical studies have been
performed to assess the performance of open-cell foams for heterogeneous
catalysis [6, 7, 8, 11, 5, 9, 10].

However, to our knowledge, no attempt has been made to find optimum
metal foam reactor designs by varying the local pore size along the main
flow direction. Such an approach requires to assess catalytic converters on
macroscale for numerous different pore size profiles. This is not possible in
an experimental study nor is it feasible with direct numerical simulations. To
address this task, we therefore conduct a multiscale approach and relate the
performance of catalytic converters on macroscale to the processes within
representative foam cells on mesoscale. Employing homogenization, we will
develop an efficient, one-dimensional catalytic converter model. Two quan-
tities are needed as input for the macroscale simulations: carbon monoxide
conversion and pressure drop. Knowing the local pore size and temperature,
the local Reynolds number can be determined. The conversion can be
predicted based on the Sherwood number, which can be computed from
the Reynolds number using the previously established relation depicted in
Fig. 4.6. Conversely, the pressure drop can be computed from the Hagen
number, which does not only depend on Reynolds number, but also on foam
porosity [14]. In this chapter, the required relation between Hg and Re is
established on mesoscale for the chosen porosity value. Subsequently, the
developed model is applied to determine the optimum configuration for two
different situations: (a) neglecting reaction heat; (b) realistic reaction heat.
In the latter case, an even heat production is set as optimization goal.

5.2 Methods

5.2.1 Model description

In this chapter, we develop a multiscale ansatz to simulate heterogeneous
catalysis in foam structures. The mass transfer towards the washcoat layer
is assumed to be the limiting process. As prototype reaction, we consider
the low temperature water-gas shift reaction. For further details on the
prototype reaction, see Chap. 4 and Sec. 5.2.2, as well as literature [21, 20, 62].

In the macroscale simulation, the foam structure within the catalytic
converter is assumed to be homogeneous. For each simulation cell, we
compute the local Reynolds number based on local pore size, flow velocity
and temperature. Subsequently, depending on the local Reynolds number,
we compute Sherwood and Hagen number from priorly established rela-
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tions. Finally, we compute conversion and pressure drop in each considered
simulation cell from the local Sherwood and Hagen number, respectively.

The aforementioned relations between Sh, Hg and Re have to be deter-
mined, beforehand. To this end, a representative volume element (RVE)
is considered on the mesoscale. The Sherwood number depends on the
Reynolds number, but not on porosity [6]. Conversely, the Hagen number
is related to both the Reynolds number and the foam structure’s porosity.
Hence, for Sh we can use the general relation depicted in Fig. 4.6, while the
relation between Hg and Re has to be determined specifically for the chosen
porosity value. To this end, we employ the simulation setup introduced in
Sec. 4.2.

on microscale:
unit foam cell

. . .

z

inlet:
Tin
ṅCO,in

outlet:
Pout

on macroscale:
N foam segments

dp1 dp2 dp3 dpN

FIG. 5.1: In the one-dimensional simulation setup for the catalytic converter, we stack foam
segments with varying pore size. The temperature and CO influx are fixed at the inlet, while
the pressure is fixed at the outlet.

In the macroscale simulation, the catalytic converter is discretized into slices
along the flow direction, i.e., temperature, pore size, and consequently
superficial velocity, pressure as well as CO content are assumed to be
constant in the lateral direction. This assumption is justified as long as the
heat conduction within the reactor is much faster than the heat transfer at
the lateral wall.

In the simulation, for the given pore size, dp(z), we start with an initial
temperature and pressure profile as well as a constant mass flow rate,
and compute mass density, superficial velocity, viscosity and CO diffusion
coefficient. Depending on superficial velocity, U , and kinematic viscosity, ν,
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from Eq. (3.2), the pore size Reynolds number is computed in each slice. For
the local Reynolds number, the local Hagen number, defined in Eq. (4.7), as
well as the local Sherwood number,

Sh =
ds

DCO

− ln(1− η)

As dz/U
=

ds

DCO

⟨η⟩U
As dz

, (5.1)

are computed using the previously established relations. In the definition
of Sh, the effective strut diameter, ds, defined in Eq. (4.8), and the carbon
monoxide conversion, η, from Eq. (4.11) are used. DCO is the diffusion
coefficient associated with carbon monoxide. As is the specific surface, while
dz denotes the spatial resolution, i.e., the width of the considered slice. From
Eqs. (4.7) and (5.1), the pressure drop and the CO conversion in each slice
along the catalytic converter are computed as

dP =
ρ ν2

dp
3 Hg dz , (5.2)

and
η = 1− exp

(
As

DCO

ds

dz

U
Sh
)
, (5.3)

respectively. Since Eq. (5.2) is formulated on macroscale, the macroscopic
mass density, ρ, is used1.

The CO conversion is related to the decline in the ratio between CO and
total particle flux, CCO, along the catalytic converter. The formal definition
of CCO is provided in Eq. (3.3). Throughout this chapter, we will use the
abbreviation C := CCO. For brevity, this quantity will be referred to as CO
fraction. For a given conversion, the relative decline of the CO fraction is
δC = 1− η. Knowing the pressure drop values, for the assumed pressure at
the outlet, the pressure profile in the reactor is computed. Knowing the CO
consumption, the reaction rate and the heat release in each volume element
can be calculated. The reaction rate is computed by balancing the convective
and diffusive particle transport into and out of each simulated slice. The heat
release from the reaction as well as the convective heat transport is used as
input, in order to update the temperature profile performing one time step

1 Note that in contrast to the macroscopic mass density, the mesoscopic mass density is
superimposed by fluctuations. Hence, in Eq. (4.7), which is formulated on mesoscale, the
average value of the fluctuating, mesoscopic density, ⟨ρ⟩, is used. The symbols ⟨ρ⟩ and ρmax

denote the average and maximum density on mesoscale, respectively. Conversely, whenever
we use the greek letter ρ without brackets or subscript, the macroscopic density field is
addressed.
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with the finite volume method. The time step is given by dt = 0.5 dz/U0,
where U0 is the superficial at 1 atm and 453K. This cycle is repeated until
the temporal variations in all quantities vanish.

As shown in Fig. 5.1, the macroscale simulation model allows for stacking
numerous foam segments2, j ∈ {1, .., N}, with varying pore size, dpj .
Throughout this chapter, the outlet pressure is fixed to 1 atm. For inlet tem-
perature and CO fraction, the values 453K and 3.0% are used, respectively.
Moreover, the mass flow rate, ṁ, as well as the heat transfer coefficient at
the lateral wall, α, have to be prescribed. Using dpj as design variables, we
can determine optimum configurations with respect to different objectives.

5.2.2 Gas and foam properties

As in Chap. 4, we consider the low temperature water-gas shift reaction as
prototype reaction. The mole fractions of CO, CO2, H2, N2 and H2O at
the inlet are chosen as 3%, 13%, 30%, 28% and 26%, respectively [62].
We assume the mass transfer towards the washcoat to be the rate limiting
process. Moreover, due to the abundance of H2O, the model is valid for
(quasi-) first order reactions. Following the procedure from Sec. 4.2.5,
The viscosity and the diffusion coefficients are computed depending on
temperature [65, 66, 63, 64]. In Fig. 5.2 we show the actual viscosity
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FIG. 5.2: Kinematic viscosity, ν, of the gas mixture as a function of temperature.

2 Throughout this chapter, the term “segment” denotes cylindrical foam pieces. Conversely,
the term “slice” addresses the numerical discretization of the macroscopic simulation do-
main. Note that each segment must comprise at least one slice.
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FIG. 5.3: Schmidt number, Sc = ν/DCO, as a function of temperature.

depending on the gas composition compared to the employed Sutherland
model,

ν =
1

ρ

CS

√
T

1 + TS/T
, (5.4)

where CS = 1.497 × 10−6 kg/(m s
√

K) and TS = 157K. The mass density,
ρ, is computed from the ideal gas law. For the inlet gas composition, the
Sutherland model underestimates the viscosity by roughly 0.1%, while for
vanishing CO fraction, the viscosity is overestimated by approximately 0.1%.
Moreover, Fig. 5.3 shows the Schmidt number as a function of temperature.
In the simulations, we fix the Schmidt number to Sc = 0.77. The maximum
deviations in the considered temperature range are below 0.8%. The specific
heat is assumed to be independent of temperature. The values used in the
simulation correspond to T = 450K:

▷ cp,CO = 1.054× 103 J/(kg K),

▷ cp,H2O = 1.926× 103 J/(kg K),

▷ cp,CO2 = 0.978× 103 J/(kg K),

▷ cp,H2 = 14.50× 103 J/(kg K),

▷ cp,N2 = 1.049× 103 J/(kg K).

The foam structure is assumed to consist of aluminum with density, ρAl =
2.70 × 103 kg/m3, and specific heat capacity, cp,Al = 0.897 × 103 J/(kg K).
The geometric foam properties are computed for an inverse sphere packing
with constant porosity, ε = 0.902 [14]. Further, the heat conduction in
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the gas phase is ignored, i.e., the effective thermal conductivity is given
by (1− ε) kAl. The thermal conductivity of aluminum is assumed to be
constant, kAl = 235W/(m K). The effective diffusion coefficient of CO
is computed as Deff,CO = εDCO, where DCO denotes the bulk diffusion
coefficient of carbon monoxide. The remaining simulation parameters are
chosen as in Sec. 4.2.

5.3 Results and Discussion

5.3.1 Pressure drop prediction

To examine the pressure drop in a representative volume element, we employ
the simulation software developed and validated in [13, 24] and Chaps. 3
and 4. The foam structure is modeled as an inverse sphere packing, which
can be fully described by two parameters: the distance between the sphere
centers, which is the same as the pore size, dp, and the sphere diameter, d.
The ratio between sphere diameter and distance is denoted as k = d/dp. In
the relevant parameter range there is a one-to-one correspondence between
k and porosity, ε. For inverse sphere packings, Smorygo et al. derive a
specified version of the Forchheimer equation [14],

1

ρ

dP

dz
= A

A2
s
ε3

ν U +B
As

ε3
U2 , (5.5)

where A and B are fit parameters. Specific surface and porosity are defined
as As = f(k)/dp and ε = g(k), respectively, where f(k) and g(k) are known
functions [14]. Exploiting Eqs. (3.2) and (4.7), Eq. (5.5) can be written as

Hg = aRe + bRe2 , (5.6)

where a = Af(k)2/g(k)3 and b = B f(k)/g(k)3 depend only on k. Through-
out this chapter, we use k = 1.090, fixing the porosity to ε = 0.902 [14].

From simulations for the representative unit foam cell on mesoscale as
described in Sec. 4.2, we can determine the relation between Hg and Re for
the given porosity value. The results are depicted in Fig. 5.4. Given the pore
size, viscosity and mass density, knowing the Hagen number is sufficient to
predict the pressure gradient in the macroscale simulation. Similarly, the
CO consumption can be extracted from the Sherwood number.
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FIG. 5.4: For the chosen porosity value, we determine the Hagen number as a function of pore
size Reynolds number. Density variations due to compressibility are overestimated in the
simulations. To keep errors small, the fit is computed for Re ∈ [0, 30], where the maximum
compression in the simulation, ρmax/⟨ρ⟩ − 1, is below 10%, see Sec. 4.3.

5.3.2 Optimum – negligible heat release

In this section we determine the optimum configuration in case heat pro-
duction is negligible, and the temperature can be assumed to be constant
along the catalytic converter.

An important quantity to characterize the performance of support struc-
tures used for heterogeneous catalysis is the performance index [6]. Insert-
ing Eqs. (3.2), (4.7) and (5.1) into Eq. (4.14) yields the relation,

PI = h(k)
Sh
Hg

Re
Sc

, (5.7)

where h(k) is a known function. As mentioned above, the Schmidt number,
Sc = 0.77, is kept constant throughout this study. Further details on the
simulation parameters are provided in Sec. 5.2.2. Since local Sherwood
and Hagen number are fully determined by local Reynolds number and
porosity, the same is true for the local performance index. In Fig. 5.5, we
plot the relation between performance index and Reynolds number for the
considered porosity value. The maximum performance index, PIopt = 0.227,
is reached at Reopt = 15.8. The two regimes visible in Fig. 5.5 correspond to
the two regimes found for the relation between Sh and Re plotted in Fig. 4.6.
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FIG. 5.5: Performance index as a function of pore size Reynolds number for the foam porosity
value ε = 0.902.

Further, using the definition from Eq. (4.12), the effective conversion per
reactor length, Z, and specific surface area, As, is given as

− ln(1− η)

Z As
=

⟨η⟩
Z As

=
1

l(k)

Sh
Re Sc

, (5.8)

where l(k) is again some known function. As shown in Fig. 5.6, the surface
exploitation in the unit foam cell reaches its maximum at vanishing Reynolds
number.
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FIG. 5.6: Surface exploitation as a function of pore size Reynolds number for the foam
porosity value ε = 0.902.
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The presented multiscale model allows for assembling a catalytic converter
on macroscale consisting of segments with possibly different pore sizes. In
each slice, i, of the macroscale simulation domain, the pressure drop, dPi,
and the relative change in theCO fraction, δCi, are computed. Consequently,
inlet pressure and outlet CO fraction are given by

Pin = Pout +
∑

i∈ slices

dPi = Pout + ∆P (5.9)

and
Cout = Cin ×

∏
i∈ slices

δCi = Cin × (1− ηtot) , (5.10)

respectively. As long as temperature variations are small, dPi and δCi do not
depend on the position of the slice, i. Since both addition and multiplication
are commutative, Pin,Cout, and, consequently, the performance index do not
depend on the segment arrangement. Hence, there is no reason for stacking

inlet outlet

FIG. 5.7: This setup is suggested as optimum in case the heat of reaction is ignored. The
reactions occur in the thin slice on the right, filled with fine-pored foam. The coarse-pored
foam element on the left does not need any washcoat, since its primary purpose is to ensure
homogeneous flow conditions at the contact area between the two foam segments.

segments of different pore size. Conversely, tho optimum configuration
consists of just one single segment. The pore size in this segment is adjusted
so that the optimum Reynolds number is obtained. As shown in Fig. 5.7,
another segment with rather coarse-pored foam, which is not necessarily
washtcoated, might be slotted in ahead, in order to generate homogeneous
flow conditions. Note that at Reopt, not only the performance index is
maximum, but also the surface exploitation is high.

5.3.3 Optimum – realistic heat release

Even weakly exothermic reactions, such as the low temperature water-gas
shift reaction, are able to cause significant temperature variations within a

74



5.3 Results and Discussion

catalytic converter. However, the pore size can be adjusted such that an even
reaction rate, and therefore even heat release, is obtained along the reactor.
In this section, we present a simple recipe to determine the pore size, dp(z),
such that temperature fluctuations in the reactor are minimum. To this end,
we assume the relation Sh = ψ Re0.43s Sc1/3 to be valid, i.e.,

Res =
ds U

ν
≳ 10 ⇔ Re =

dp U

ν
≳ 50 . (5.11)

In numerical simulations of inverse sphere packings, ψ = 0.64 has been
found in Sec. 4.3, while in experimental studies of real metal foam, which is
more irregular, ψ = 1.1 has been observed [6].

Inserting Eq. (5.1) and the definition of the Schmidt number yields a
relation for the required strut size Reynolds number in each segment, j,

[Res ]j =

(
ψ

Sc2/3

[
As ∆z

− ln(1− η)

]
j

)1.75

, (5.12)

depending on the width, ∆z, of the segment and the conversion, η, along
the segment. Note that the right hand side depends on the pore size via As.
Exploiting that

(As × dp) =
√
2πk(6− 5k) (5.13)

is independent of dp [14], we find an explicit relation for the pore size in each
segment,

dpj =

[
νj
Uj

√
3π

4(1− ε)

(
ψ

Sc2/3
(As × dp)∆zj
− ln(1− ηj)

)1.75
]1/2.75

, (5.14)

which achieves a requested carbon monoxide conversion, ηj . Through Uj

and νj , dpj depends on the temperature in the segment. To obtain an even
reaction rate, the conversion, ηj , is chosen such that the absolute change in
CO fraction is equal in each segment.

We apply this concept to a cylindrical catalytic converter with length and
radius of 0.24m and 4.49 × 10−2 m, respectively. The converter is filled
with metal foam modeled as an inverse sphere packing, i.e., ψ = 0.64.
The superficial velocity is U = 2m/s and the requested total conversion is
ηtot = 99.5%. The heat transfer coefficient at the lateral wall is assumed as
α = 120W/K m2. The inlet temperature is 453K, while the temperature at
the wall is chosen as 403K. Note that the simulation parameters have been
adjusted such that for the 50K temperature difference, the heat removed
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FIG. 5.8: For three different segment numbers, we plot the pore size, dpj , computed according
to Eq. (5.14), aiming for an even reaction rate along the catalytic converter.

at the lateral wall is equal to the heat released in the reaction. Fig. 5.8
shows the pore size determined according to Eq. (5.14) as function of z for
different segment numbers. As depicted in Fig. 5.9, the carbon monoxide
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FIG. 5.9: For three different segment numbers, we plot the carbon monoxide fraction as a
function of position within the catalytic converter.

content drops exponentially in each segment. The more segments we use,
i.e., the smaller the segment length, the closer the CO fraction profile to
a linear decrease. Accordingly, the reaction rate shown in Fig. 5.10, which
is computed from the CO fraction profile, converges to a constant value
when increasing the number of segments. The temperature variations in
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FIG. 5.10: For three different segment numbers, we plot the reaction rate, which governs the
heat release, as a function of position within the catalytic converter.
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FIG. 5.11: For three different segment numbers, we plot the temperature as a function of
position within the catalytic converter.

Fig. 5.11 are caused by the deviations from the horizontal line of constant
reaction rate in Fig. 5.10, and consequently by the deviation from the linear
CO fraction profile in Fig. 5.9. The total temperature difference within the
catalytic converter decreases as the number of segments is increased.

In Figs. 5.12 to 5.14, we plot the total temperature variation within the
reactor, the total performance index and the required active surface, respec-
tively. For the examined system, using four segments instead of one reduces
the temperature range within the converter from 18.6K to 3.3K. Moreover,
using four segments reduces the necessary reactive area by 12.4%, while
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FIG. 5.12: Temperature fluctuations as a function of the number of segments.

increasing the total performance index by 8.7%. Increasing the number
of segments further leads to a vanishing temperature range. Compared to
the single segment setup, 18.4% of the required reactive area can be saved,
and the performance index can be increased by up to 11.0%. Note that
in the considered situation, the conversion is fixed, i.e., an increase in the
performance index is equivalent to a decrease in the pressure drop along the
converter.

5.4 Conclusion

In this chapter, we have developed a simulation tool for heterogeneous
catalysis in open-cell metal foam. To this end, we have conducted a multi-
scale approach connecting the detailed representation of foam structures on
mesoscale to an effective model for catalytic converters on macroscale. In
the macroscale simulations, the foam structure has been taken into account
based on relations between pore size Reynolds number and Hagen as well as
Sherwood number, which have been established on mesoscale beforehand.

Moreover, we have developed simple recipes to determine the optimum
pore size profile within a catalytic converter for two different cases. In the
first case, the heat of reaction is ignored, while in the second case, the heat
release due to reactions within the catalytic converter is considered. In the
latter, more realistic case, adjusting the pore size along the main flow direc-
tion has been found to significantly improve the converter’s performance. To
demonstrate this, we have compared different catalytic converters consisting
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FIG. 5.13: Performance index as a function of the number of segments.

0 1 2 3 4 5 6 7 8 9 10
0.42

0.44

0.46

0.48

0.50

0.52

0.54

1024 segments

number of segments [-]

ac
tiv

e
su

rf
ac
e
[m

2
]

FIG. 5.14: Total active surface required as a function of the number of segments.

of one or more foam segments. The constant pore size within each segment
is computed following the developed optimization recipe. The configuration
which comprises one single foam segment serves as reference. For fixed
conversion and converter size, we have found that stacking just four seg-
ments with different pore sizes, already reduces temperature fluctuations
and pressure losses along the converter substantially. Additionally, the
active surface area required in the converter, which is proportional to the
required amount of catalytic substances, is decreased considerably. Thus,
applied in chemical industry, the proposed optimization procedure has the
potential to reduce the costs associated with maintaining pressure drops as
well as providing catalytic materials.
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6.1 Conclusion

In this work, we have modified Stochastic Rotation Dynamics to obtain a
mesoscopic simulation method which is isotropic by construction. This
method, Isotropic Stochastic Rotation Dynamics, allows us to model gas
dynamics in porous foam structures without introducing anisotropies at
the complex shaped boundaries. We have, further, developed specialized
open boundaries for particle-based simulations of reactive flows, to treat
the inlet and outlet boundary conditions in unit foam cell simulations,
correctly. The chemical reactions have been assumed to take place within
a porous washcoat layer, which has not been simulated explicitly. Instead,
an effective reaction model has been applied bases on precomputed values
for the effectiveness factor associated to the washcoat layer. This reaction
model has been adapted to the low temperature water-gas shift reaction,
which has been assumed to follow the Langmuir-Hinshelwood reaction
mechanism [21].

To validate the implemented simulation, we have assessed the relation
between Hagen and Reynolds number as well as the relation between
Sherwood and Reynolds number, within the representative unit foam cell.
The obtained simulation results for the Hagen number agree with experi-
mental findings, especially at low Reynolds numbers [23]. Moreover, within
the parameter range covered in the experiments, the Sherwood number
observed in the simulations behaves similar to the experimental data [6].
For smaller Reynolds numbers, however, we find a qualitatively different
behavior, indicating the transition between two different flow regimes at
the strut size Reynolds number, Res ≈ 10.

Further, we have assessed the unit foam cell’s performance as support
structure for heterogeneous catalysis at different porosity values. For the
considered pore size Reynolds number, Re = 14.2, the surface utilization
improves as the porosity is increased, both in the mass transfer limited and in
the intermediate regime. In accordance to [11], we find that the performance
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index rises with increasing porosity in the mass transfer limited regime.
The same is true in the intermediate regime, however, as for the surface
utilization, the effect is less pronounced. Conversely, in the reaction rate
limited regime, the surface utilization is expected to stay constant, while
the performance index should even decline as the porosity is increased.

In addition, we have conducted a multiscale approach to develop a
simulation tool for macroscopic catalytic converters filled with metal foam.
On the macroscale, the foam structure has not been simulated explicitly, but
it has been modeled effectively through relations between pore size Reynolds
number and Hagen as well as Sherwood number. These relations have been
established on the mesoscale, beforehand. Using the developed macroscale
model for the fixed foam porosity value, ε = 0.902, the trade-off between
conversion and pressure drop has been found to be optimum at pore size
Reynolds number, Re = 15.8.

Furthermore, we have used the developed macroscale model to find opti-
mum catalytic converter configurations. To this end, we have distinguished
between two different situations. The first one addresses the idealized
case in which the heat of reaction is ignored. Conversely, the second one
covers the realistic case in which the reaction heat has significant effect
on the processes within the catalytic converter. For both cases, we have
presented a simple recipe to determine the optimum pore size configuration
within the catalytic converter. In the latter, more interesting case, we have
shown that adjusting the pore size within the converter can substantially
improve the performance. Compared to the configuration with constant
pore size along the complete catalytic converter, stacking four segments with
each having constant pore size, already results in a significant reduction of
temperature fluctuations and pressure losses along the converter. Moreover,
associated with the active surface area, the amount of catalytic substances
required in the converter can be decreased substantially. This result has
high economical relevance, since it enables the chemical industry to perform
catalytic processes at controlled temperatures and at lower costs, which
typically originate from maintaining necessary pressure drops and from
providing expensive catalytic materials.

6.2 Outlook

Based on the achievements presented in this thesis, the next step could be
to build real catalytic converters according to the developed recipes, and to
investigate their behavior in experiment. This would allow us to assess the
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validity of the implemented model. If necessary, it could serve as the basis
for possible improvements in the model. If experiments can substantiate the
findings presented here, the way will be paved for an industrial application
of the suggested optimization approach.

Note that the developed simulation tool is not restricted to foam struc-
tures. The presented multiscale approach is applicable to heterogeneous
catalysis in any geometric structure which can be described by one or
more representative volume elements on the mesoscale. Together with
the complex shapes which can be produced by 3D printing, for example,
the presented model enables us to further develop and optimize innovative
support structures for heterogeneous catalysis.

Beyond, the mesoscale simulation software described in Chap. 4 has
numerous further applications. For example, additional reaction mech-
anisms can be easily added to the model, allowing for the investigation
of further processes, such as chromatography in porous media. Another
interesting project feasible with the developed software concerns the char-
acterization of the dispersion coefficient, which plays an important role in
reactor design, for foam structures and porous media in general.
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In this work, we investigate and optimize heterogeneous catalysis in porous 
metal foams. First, we consider the gas dynamics together with the reaction 
and diffusion processes in individual foam pores on the mesoscale. Second, 
we condense the detailed simulation results on the mesoscale to relations 
between few dimensionless numbers. Based on these relations, we follow  
a multiscale approach to derive an efficient, one-dimensional, macroscale  
model for metal foam filled catalytic converters. Due to its industrial relevance, 
we focus on the mass transfer limited regime. Finally, we develop a simple  
recipe to determine optimum pore size configurations. For realistic heat release 
values, the heat transfer out of the catalytic converter is critical. We show that, 
in order to keep temperature fluctuations small, the optimum configuration  
consists of several, stacked foam segments with decreasing pore size along the 
main flow direction. For typical parameters, we observe that, compared to foam 
with constant pore size, the trade-off between chemical conversion and flow  
resistance can be increased significantly, while the required reactive surface 
area, i.e., the needed amount of catalytic material, is reduced substantially.
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