
 

 
 

Synthesis of Functional Buckybowls and Related 

Nanostructures via Regioselective Cyclodehydrofluorination 

Synthese von funktionellen Buckybowls und verwandten 

Nanostrukturen über die regioselektive Zyklodehydrofluorierung 

der Naturwissenschaftlichen Fakultät 

der Friedrich-Alexander-Universität Erlangen-Nürnberg 

zur 

Erlangung des Doktorgrades Dr. rer. nat. 

vorgelegt von 

Olena Papaianina 

aus Donetsk, Ukraine 



 

 

Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der 

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). 

Tag der mündlichen Prüfung:   15.10.2019 

Vorsitzender des Promotionsorgans:   Prof. Dr. Georg Kreimer 

Gutachter:       PD Dr. habil. Konstantin Amsharov 

       Prof. Dr. Andreas Hirsch 

 



 

 
 

Mein besonderer Dank gilt meinem Doktorvater Dr. habil. Konstantin Amsharov für die 

Bereitstellung des interessanten und herausfordernden Themas, seine Förderungen, 

fachliche Unterstützung und das Interesse am Fortschritt dieser Arbeit. 

Die vorliegende Arbeit entstand in der Zeit von Januar 2015 bis März 2018 am 

Lehrstuhl für Organische Chemie II des Departments Chemie und Pharmazie der 

Friedrich Alexander-Universität Erlangen-Nürnberg (FAU). 



 

 



 

 
 

In loving memory of my grandparents 

 



 

 



 

 
 

“Even a mistake may turn out to be the one thing necessary to a worthwhile 

achievement.” 

Henry Ford 

 





Abbreviations, Acronyms and Symbols 

I 
 

List of Abbreviations, Acronyms and Symbols 

acac 

AcOH 

ACN, MeCN 

APPI  

Ar 

B3LYP  

BS 

Bu 

CDHF 

cod 

conc. 

CV 

CVD 

d 

δ 

dba 

DBATT 

DBPO 

DBU 

DCM 

DCTB 

DDQ 

DEPT 

DFT 

DHB 

DMAc 

DMF 

DMSO 

dppf 

EI 

eq. 

Et 

Et2O 

EtOAc 

EtOH 

ESI 

FLC 

acetylacetonate 

acetic acid 

acetonitrile 

atmospheric pressure photo ionization 

aryl 

Becke, three-parameter, LeeYang-Parr exchangecorrelation functional 

bowl-shaped 

butyl group 

cyclodehydrofluorination 

cyclooctadiene 

concentrated 

cyclic voltammetry 

chemical vapor deposition 

day(s) 

chemical shift 

dibenzylideneacetone 

2.3,8.9-dibenzanthanthrene 

dibenzoyl peroxide 

1,8-diazabicyclo[5.4.0]undec-7-ene 

dichloromethane 

trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile 

2,3-dichloro-5,6-dicyanoparabenzoquinone 

Distorsionless Enhancement by Polarisation Transfer 

density functional theory 

2,5-dihydroxybenzoic acid 

dimethylacetamide 

N,N-dimethylformamide 

dimethyl sulfoxide 

1,1’-bis(diphenylphosphino)ferrocene 

electron impact 

equivalent(s) 

ethyl 

diethyl ether 

ethyl acetate 

ethanol 

electrospray ionization 

flash liquid chromatography 



Abbreviations, Acronyms and Symbols 

II 
 

FL 

FT- 

FVP 

h 

HBC 

HETCOR 

HMBC 

HOMO 

HPLC 

HSQC 

HRMS 

hν 

Hz 

IN 

IPr 

i-Pr 

IR  

IUPAC 

J 

λ 

LDA 

LDI 

LUMO 

m- 

M 

MALDI 

MAO 

Me 

Mes 

MS 

MeOH 

MW 

m/z 

min 

NBS 

NMR 

NOESY 

o- 

OAc, AcO 

o-DCB 

fluorescence (spectroscopy) 

fourier transform 

flash vacuum pyrolysis 

hour(s) 

hexabenzocoronene 

HETeronuclear CORrelation 

Heteronuclear Multiple Bond Correlation 

highest occupied molecular orbital 

high-performance liquid chromatography 

Heteronuclear Single Quantum Coherence  

high-resolution mass spectrometry 

light, photonic energy 

Hertz 

intermediate 

1,3-Bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene 

2-propanol 

infrared (spectroscopy) 

International Union of Pure and Applied Chemistry 

coupling constant (NMR) 

wavelength 

lithium diisopropylamide 

Laser Desorption Ionization (Mass Spectrometry) 

lowest unoccupied molecular orbital 

meta 

molar 

matrix-assisted laser desorption/ionization 

methylaluminoxane 

methyl 

2,4,6-trimethylbenzene 

mass spectrometry 

methanol 

microwave (assisted experiments) 

mass to charge ratio 

minute(s) 

N-Bromosuccinimide 

Nuclear magnetic resonance  

Nuclear Overhauser effect spectroscopy 

ortho 

acetoxy group 

1,2-dichlorobenzene 



Abbreviations, Acronyms and Symbols 

III 
 

OTf 

on 

ORTEP 

p- 

PAH(s), PAK 

PBB 

PBr 

PCC 

P(Cy)3 

Pd(PPh3)4 

Ph 

Pin 

P(o-tol)3 

PPh3 

ppm 

PPO 

PYE 

quant. 

RBF 

ROESY 

tR 

rt 

SIPr 

STM 

t- 

t-BuOK 

TBAB 

TEM 

TfOH 

THF 

TLC 

Tol 

TS 

UV/Vis 

X-ray 

XRD 

ZPE 

triflate group 

overnight 

Oak Ridge Thermal Ellipsoids Plot 

para 

polycyclic aromatic hydrocarbon(s) 

pentabromobenzyl bonded silica 

pentabromobenzyl bonded silica 

pyridinium chlorochromate 

tricyclohexylphosphine 

tetrakis(triphenylphosphine)palladium(0) 

phenyl 

pinacol ester 

tri(o-tolyl)phosphine 

triphenylphosphine 

parts per million 

propylene oxide 

pyrenylethyl 

quantitative 

round bottom flask 

Rotating frame nuclear Overhauser effect spectroscopy 

retention time 

room temperature 

1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolium 

scanning tunneling microscopy 

tert, tertiary 

potassium tert-butoxide 

tetrabutylammonium bromide 

Transmission electron microscopy 

trifluoromethanesulfonic acid, triflic acid 

tetrahydrofuran 

thin-layer chromatography 

Toluene 

Transition state 

Ultraviolet-visible (spectroscopy) 

X-ray (crystallography), X-ray diffraction spectroscopy 

X-ray powder diffraction 

Zero-point energy 



 

IV 
 

Table of Contents 

1 Advances in PAHs Chemistry .............................................................................. 1 

1.1. Nomenclature of Polycyclic Aromatic Hydrocarbons ........................................ 3 

1.2 Synthetic Approaches towards Extended PAHs ............................................... 4 

1.2.1 Photocyclization .......................................................................................... 4 

1.2.2 Oxidative Cyclodehydrogenation – “Scholl Reaction” ................................. 6 

1.2.3 Flash Vacuum Pyrolysis.............................................................................. 8 

1.2.4 Palladium-Catalyzed Arylation .................................................................. 10 

1.2.5 Surface-Assisted Cyclodehydrogenation .................................................. 12 

1.3 C-F Bond Activation in Aromatic Compounds ................................................. 15 

1.3.1 Ni- or Pd-Catalyzed Reactions .................................................................. 15 

1.3.2 C-F Bond Activation in Difluoroalkenes .................................................... 17 

1.3.3 C-F bond Activation by Silylium Carboranes ............................................. 19 

1.3.4 Aluminium Oxide Mediated C-F Bond Activation ...................................... 20 

1.3.5 C-F Bond Activation in Trifluoromethylated Arenes .................................. 21 

1.4 Structure of γ-Aluminium Oxide ...................................................................... 23 

2 Aims ..................................................................................................................... 25 

3 Results and Discussion ...................................................................................... 26 

3.1 C-F Bond Activation in Trifluoromethylated Arenes ........................................ 26 

3.2 C-F Bond Activation of Rationally Halogenated PAHs .................................... 36 

3.3 Indacenopicene-based Buckycather ............................................................... 51 

3.4 Introduction of Indene Fragments into Chrysene and Pyrene Derivatives ...... 60 

3.5 Catalyst-Free Cyclodehydrofluorination of PAHs ............................................ 67 

3.5.1 Synthesis of Model Compounds for Cyclodehydrofluorination .................. 67 

3.5.2 Computation Study ................................................................................... 72 

3.5.3 On-surface Cyclization of PAHs ................................................................ 75 

3.5.4 Synthesis of Brominated Decacyclene and Tridecacyclene...................... 76 

3.6 Synthesis of Bowl-Shaped Acene Structures .................................................. 80 

4 Summary .............................................................................................................. 87 

5 Zusammenfassung .............................................................................................. 89 

6 Experimental Section .......................................................................................... 91 

6.1 General Information ........................................................................................ 91 

6.2 Synthesis of Trifluoromethylated Compounds and Aromatic Ketons .............. 96 



 

V 
 

6.3 Synthesis of Halogenated Buckybowls ......................................................... 103 

6.3.1 Synthesis of Brominated Benzo- and Indacenopicenes .......................... 103 

6.3.2 Synthesis of Halogenated Dibenzo- and Diindenochrysenes ................. 108 

6.4 Synthesis of Buckycatcher and Its Precursors .............................................. 111 

6.5 Synthesis of Pyrene and Chrysene Derivatives ............................................ 114 

6.6 Synthesis of Halogenated Decacyclene and Tridecacyclene ........................ 120 

6.6.1 Synthesis of Fluorinated Decacyclene 70 and Tridecacyclene 72 .......... 120 

6.6.2 Synthesis of Brominated Tridecacyclene 90 ........................................... 127 

6.7 Synthesis of Bowl-Shaped Stuctures with Zig-Zag Periphery ....................... 133 

7 Appendix A – Spectra (NMR, MS) .................................................................... 139 

8 Appendix B – HPLC Chromatograms (UV-spectra) ........................................ 193 

9 Appendix C – X-Ray Crystallographic Data .................................................... 195 

10 Appendix D – References ............................................................................... 198 

Scientific Contributions ....................................................................................... 207 

Acknowledgements .............................................................................................. 208 

 





Advances in PAHs Chemistry 

1 
 

1 Advances in PAHs Chemistry 

Buckybowls present the class of curved polycyclic aromatic compounds (PAH) that 

contain pentagons among six-membered rings responsible for their bowl shape 

geometry. These compounds can be considered as “fullerene fragments” or parts of 

the end-cap of carbon nanotubes. Other term that could be applied for buckybowls is 

geodesic polyarenes as they are units of geodesic structure of C60.[1] Corannulene 

and sumanene are smallest representative members of this family. Corannulene 

comprises central five-membered ring surrounded by five fused hexagons and 

possesses C5v symmetry[2], whereas sumanene is composed of central hexagon 

surrounded by three pentagons and three hexagons in an alternating fashion and 

possesses C3v symmetry.[3],[4]. 

The first 17-step synthesis of corranulene 1.1 was reported by Barth and Lawton in 

1966 providing target molecule 1.1 in overall 0.4% yield starting from acenaphthene 

1.2.[5],[6] In 1991 the group of Prof. L. Scott applied Flash Vacuum Pyrolysis (FVP) 

approach for the synthesis of corannulene 1.1 starting with 7,10-diethynylfluoranthene 

1.4.[7] Later they modified procedure to three steps synthesis starting from 

diketoacenaphthene allowing preparative production in multi milligram scale.[8] 

Independently, J. Siegel group presented a wet chemical approach to corannulene 1.1 

from tetramethylfluoranthrene where a low valent titanium was used for ring closure 

yielding target product after oxidation by DDQ.[9],[10] Sygula and Rabideau found that 

corannulene can be synthesized by direct hydrolysis of 1,6,7,10-

tetrakis(dibromomethyl)fluoranthene 1.6.[11],[12],[13] Remarkable, following this route, 

Siegel et al. suggested an optimized kilogram-scale synthesis of corannulene 1.1 in 

2012.[14] Apart from mentioned approaches the low valent vanadium coupling [15],[16] 

and nickel induced[12],[17] synthesis of corannulene derivatives were successfully 

conducted. All known approaches towards corannulene are summarized in Figure 1. 
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Figure 1. Synthetic routs towards corannulene 1.1.[5],[7],[8],[10],[11],[12] 

Attempts to obtain sumanene 1.13 starting from trinaphthotriphenylene[18], trindane[19] 

or trindene[20] derivatives were useless.[21] The first synthesis of sumanene was 

reported by Hirao et al. applying a four-step non-pyrolytic route, in which trimer of 

norbornadiene 1.11 underwent Ru-catalyzed tandem ring-opening/ring-closing 

metathesis reaction followed by dehydrogenation with DDQ leading to the target 

compound 1.13 in 70 % yield (Scheme 1).[3],[21] 

 

Scheme 1. Synthetic route to sumanene 1.13. Catalyst [P(C6H11)3]2RuCl2=CHPh.[3] 

A. Sygula and P.W. Rabideau explained the interest to buckybowls by following 

reasons: 

- buckybowls possess accessible convex and concave surfaces; and it is possible to 

study exo vs. endo preferences of reactivity; 

- buckybowls of different sizes and curvatures allow to investigate dependence of the 

reactivity on curvature; 
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- buckybowls are considered to be starting materials for further derivatization and 

synthesis of fullerenes, nanotubes and other carbon-based structures; 

- buckybowls could be used as molecular receptors (host/guest chemistry).[22] 

1.1. Nomenclature of Polycyclic Aromatic Hydrocarbons 

The large library of polycyclic aromatic compounds was synthesized and characterized 

in pioneering works of Erich Clar,[23],[24] - the father of PAHs chemistry. Modern 

nomenclature of PAHs was approved by IUPAC,[25] but the terminology of regions on 

the polyarenes periphery (bay, cove, and fjord) is not included in the reported 

document (Figure 2). 

 

Figure 2. Topological regions in polycyclic aromatic compounds. 

Bay regions are regions between two angularly fused aromatic rings that do not cause 

any remarkable perturbation of the pi-system whereas cove and fjord regions lead to 

the substantial molecular strain due to atom crowding. Fusion of additional benzene 

fragment close to the fjord region resulted in a molecule possesing helixe-like 

configuration.[25] Fjord-region closure leads to flat structures consisting of six-

membered rings, whereas cove-region closure leads to the five-ring formation and 

resulting in bowl-shaped geometry of the molecule.[26] The K- and L-regions (Figure 2) 

can be described as peripheral armchair and zig-zag configuration corresponding to 

the phene- and acene-like motif respectively.[25],[27] 
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1.2 Synthetic Approaches towards Extended PAHs 

1.2.1 Photocyclization 

Photo-induced cyclization of stilbenes was extensively studied by Mallory et al.[28] The 

most prominent example is the conversion of 1,2-diphenylethene (stilbene) 1.14 into 

phenathrene 1.15 under UV-irradiation (Scheme 2).[28] 

 

Scheme 2. Photochemical cyclization of a) 1,2-diphenylethene 1.15 and b) 4-(naphthalen-2-yl)phen-

anthrene 1.17.[28],[29] 

This reaction provides the facile access to large number of extended PAHs such as 

triphenylene 1.16 from o-terphenyl 1.17 (88 %)[30] or dibenzo[ij,no]tetraphene 1.18 

(Scheme 2) from 4-(naphthalen-2-yl) phenanthrene 1.19 (35 %)[29]. In 1991 Katz et al. 

presented the improved conditions for the photocyclization, which allowed to reduce 

the influence of the hydrogen iodide on reaction yiedls and thus to avoid side 

reactions.[31] Propylene oxide was used as a scavenger for hydrogen iodide.[32] For 

instance, under Katz’s conditions the respective stilbene was converted to 87 % of 9-

bromodinaphtho[2,1-c:1',2'-g]phenanthrene after 1.2 h and under Mallory’s conditions 

to 66 %[31]. 

Twieg et al. reported that fluorinated stilbenes underwent ring closure via HF-

elimination (photocyclodehydrofluorination) under Mallory conditions (Scheme 3).[33] 
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Scheme 3. Photocyclodehydrofluorination of 1-fluorotriphenylene-2,6-difluoro-1,1':2',1''-terphenyl 

1.20.[33] 

Photochemical method was also applied for the synthesis of extended PAHs , for 

instance, contorted hexabenzocoronene 1.23 was obtained by photocyclization in 

yield close to 100 % (Scheme 4)[34] and contorted octabenzocircumbiphenyl – in 83 % 

yield[35]. 

 

Scheme 4. Synthetic pathway to contorted hexabenzocoronene 1.23.[34] 

However, the photocyclization approach was found to be not applicable for pentagon 

formation and in general not effective for the synthesis of non-alternant PAHs bearing 

pentagons in the structure. 

Attempt to synthesize non-alternant PAHs by oxidative photocyclization was carried 

out in the group of Prof. Agranat. [36] After first step of photocyclization (Scheme 5a, 

Scheme 5b) products 1.25 and 1.27 were formed in 50 % yield (both reactions), 

although, the next step was unsuccessful in both cases. 
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Scheme 5. Oxidative photocyclization of ylidene derivatives 1.25 and 1.27.[36] 

1.2.2 Oxidative Cyclodehydrogenation – “Scholl Reaction” 

The Scholl reaction [37] is widely used for the synthesis of large PAHs. Typically, Scholl 

cyclodehydrogenation is carried in presence of such reagents as AlCl3, MoCl5, FeCl3 

or DDQ + Brønsted (or Lewis) acid.[38] A demonstrative example of Scholl reaction is 

the synthesis of hexabenzocoronene 1.29 (Scheme 6) and its derivatives from 

respective hexaphenyl benzene derivatives[38]. Moreover, Scholl reaction appears to 

be a powerful tool for the synthesis of very large PAHs – the so called nanographenes, 

which could be considered as a model of graphene. The approach often provides the 

desired planar nanographenes with good to excellent yield. Thus, for example a “Giant 

222 Carbon” PAHs was prepared utilizing Cu(CF3SO3)2/AlCl3 in CS2 in 62 % yield.[39] 
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Scheme 6. Cyclodehydrogenation of hexaphenylbenzene 1.28 towards hexabenzocoronene 1.29.[38] 

The formation of non-hexagonal ring under Scholl reaction is rare. However, recent 

studies demonstrated the general possibility of five-membered ring formation under 

Scholl conditions. Thus, Kawamura et al. presented the synthesis of rubicene 1.31 

with 80% yield from 9,10-diphenylanthracene 1.30 in the presence of DDQ/TfOH in 

dry DCM (Scheme 7).[40] 

 

Scheme 7. Synthesis of rubicene 1.31 under Scholl conditions.[40] 

Müllen et al. succeeded in the synthesis of an extended rubicene derivative 1.32 from 

tetraphene 1.33 under specially optimized reaction conditions, preventing side 

reactions.[41] Note that the formation of strained PAH by Scholl approach in general is 

difficult and frequently accompanied by the rearrangement of the carbon skeleton as 

a result of the cationic (cation-radical) nature of the intermediates.[38,42] 
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1.2.3 Flash Vacuum Pyrolysis 

In contrast to Scholl or Mallory cyclodehydrogenations a Flash Vacuum Pyrolysis 

approach consisting in the heating of molecule in the gas phase for a very high 

temperatures (up to 1300 ºC) for a very short time (10-3 to 10-4 s) allows to synthesize 

a wide-range of non-planar PAHs including highly strained fullerenes C60
[43], C78

[44] and 

C84
[45]. In 1991 Scott’s group presented the successful synthesis of corannulene 1.1 

from diethynylfluoranthen 1.4 by FVP (Figure 3).[7] Later the same group developed a 

facile three-step synthesis of corannulene from 7,10-bis(1-chlorovinyl)fluoranthene 1.5 

providing the desired corannulene 1.1 in gram amounts (Figure 3).[8] 

 

Figure 3. Synthetic approaches to corannulene 1.1 by FVP.[7],[8] 

Shortly after it was discovered that the introduction of the halogen atoms such as 

chlorine or bromine into the regions where the formation on new C-C bond is desired 

remarkably increases the reaction’s efficiency. This optimization allows to prepare 

wide range of various bowl-shaped PAHs by FVP.[46],[47] 

Several representative syntheses are depicted on the Figure 4. Thus, 

benzo[ghi]fluoranthene C26H12 1.32 was synthesized by two-fold cyclization of 1.33 in 

12%.[48] 

Tetrabenzopyracylene C26H12 1.34 was produced from brominated bifluorenylidenes 

1.35 with 25-35 % yield. [49], [50] Triindenotriphenylene C30H12 1.37 was obtained via 

triple ring closure of brominated tribenzo[c,i,o]triphenylene 1.36 (2-3%).[51] Later 

Sygula et al. reported the synthesis of 1.37 with 5-10% yield by the pyrolysis of 

chlorinated trisfulvene 1.38.[52] 

The Scott’s group succeeded in the synthesis of larger bowl - circumtrindene C36H12 

1.40 - by FVP route (Figure 4). Three-fold cyclodehydrochlorination of precursor 1.39 

yielded 25-27 % of product 1.40 .[53],[54] 
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Figure 4. Selected buckybowls obtained by FVP approach.[48],[49],[50], [51], [53], [54],[55], 

As a logical consequence of the success of FVP in the synthesis of bowl-shaped PAHs 

the several attempts were undertaken to synthesize buckminsterfullerene C60. The 

extended chlorinated decacyclene 1.41 [55] (Figure 4) and the hexamer of naphthalene 

1.43 [43] were suggested as possible precursors. In both cases only small amounts of 

C60 1.42 were observed. 

These results demonstrate the limitation of FVP for the synthesis of large systems, 

which is mainly connected with difficulties to bring large precursor molecules into the 

gas phase without decomposition at the typical for FVP (1-10 mbar) pressure. 
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1.2.4 Palladium-Catalyzed Arylation 

Direct intramolecular Pd-catalyzed arylation appears to be an alternative way for the 

synthesis of buckybowls. Commonly, halogenated and triflated precursors undergo 

transformations in presence of Pd(II) complexes at the mild temperatures (100-170°C) 

in DMF or DMAc medium.[56] 

Synthesis of benzo[ghi]fluoranthene from aryl triflates 1.43 or bromides 1.45 was 

reported by Wang and Shevlin (Scheme 8).[57] Pd(PPh3)2Cl2 and Pd(PCy3)2Cl2 

appeared to be excellent catalysts which afforded targeted product 1.44 in high yields 

(80-90 %). 

 

Scheme 8. Palladium-mediated intramolecular coupling of methylbenzo[c]phenanthrene 1.43 and 1.45 

derivatives.[57] 

This approach was also applied for the double palladium-mediated cove region closure 

yielding bowl-shaped indacenopicenes 1.47 with up to 90 % yield (Scheme 9).[58] 

 

Scheme 9. Palladium-mediated intramolecular coupling of dichlorobenzo[s]picene derivatives (R=CH3, 

91 %, R=OCH3, 70 %).[58] 
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Scott et al. described synthesis of di-, tri and tetraindenopyrenes from respective 

brominated pyrene derivatives. For instance, the reaction of 1,6-bis(2-bromophenyl) 

pyrene 1.48 in presence of Pd(PPh3)2Cl2-DBU system gave the desired product 1.49 

in 44 % yield (Scheme 10).[59] 

 

Scheme 10. Palladium-mediated synthesis of diindeno[1,2,3-cd:1′,2′,3′-jk]pyrene 1.49.[59] 

Attempt to extend the approach to tetraindenopyrene 1.51 by one-pot procedure 

provided dissapointed low yield (1 %), and the improvement of the reaction conditions 

did not increase the conversion (Scheme 11).[59] 

 

Scheme 11. Palladium-mediated synthesis of 2,7,11,16-tetra-tert-butyltetraindeno[1,2,3-cd:1′,2′,3′-

fg:1′′,2′′,3′′-jk:1′′′,2′′′,3′′′-mn]pyrene 1.51 in DMF (Pd2(dba)3, P(Cy)3, 2-bromo-5-tert-butylbenzeneboronic 

acid, DBU, 155 °C, 36 h, 1 %).[59] 

Nevertheless, the Scott’s group achieved significant results in the synthesis of 

extended corannulene derivatives utilizing microwave heating (Scheme 12). Thus, 

pentaindenocorannulene 1.53 (C50H20) and tetraindeno-corannulene 1.55 (C44H18) 

were obtained in 35 % and 15 % yield respectively.[60],[56] 
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Scheme 12. Synthesis of pentaindenocorannulene 1.53 and tetraindenocorannulene 1.55 by micro-

wave assisted Pd-catalyzed arylation reaction.[60] 

1.2.5 Surface-Assisted Cyclodehydrogenation 

Surface-catalyzed cyclodehydrogenation processes attracted attention of researches 

in the last years since this method allows the effective transformation of non-

functionalyzed precursors into various nanostructures including fullerenes[61], 

nanotubes[62] and nanoribbons[63]. The first example of the synthesis of bowl-shaped 

PAH by cyclodehydrogenation was reported by Flynn and Nuckolls demonstrating the 

formation of a hemispheres from hexabenzocoronene on the ruthenium surface.[64] 

The formation of hemisphere 1.57 was conducted by thermal activation of 1.23 on 

Ru(0001) surface and visualized by means of Scanning Tunneling Microscopy 

(STM).[64],[65]  Annealing of precursor 1.23 was carried out at 750 K (Scheme 13).[64] 
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Scheme 13. Proposed stages of HBC 1.57 dehydrogenation on Ru(0001) surface.[64] 

Later, syntheses of fullerenes C60 1.42 [66], C84 1.60 [66] and heterofullerene C57N3 1.62 

[61] from respectively preprogrammed precursors C60H30 1.58, C84H42 1.59 and 

C57N3H30 1.61 (Figure 5) were successfully conducted on Pt(111) surfaces. 

 

a 

  

 

b 

 3 

 

 

c 

Figure 5. Precursors 1.58 (a)[66], 1.59 (b)[66] and 1.61 (c)[61] for surface-assisted cyclodehydrogenation. 
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Annealing was carried out at the temperature in range of 477-550 K. However, this 

approach is limited for picomole amount synthesis and can not be extended to the 

preparative scale.  
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1.3 C-F Bond Activation in Aromatic Compounds 

Carbon-fluorine bond is the strongest single bond to carbon, thus its activation is in 

general a challenging task for organic chemistry.[67],[68] As a result of high stability the 

C-F bond cleavage typically requires harsh reaction conditions, which do not tolerate 

functional groups and lead to the low selectivity of the reaction.[67],[69],[70],[71],[72] 

Therefore, the improvement and exploration of mild conditions for transformation of 

aromatic C-F bond are continuously investigated by numerous scientific 

groups.[69],[72],[73] 

1.3.1 Ni- or Pd-Catalyzed Reactions 

Kumada et al. [74] published the study of cross-coupling reaction of organic halides with 

Grignard reagents in the presence of Ni catalyst and demonstrated the efficiency on 

several examples.[75],[76], 

For instance, Ni(acac)2/SIPr-HBF4 and/or Ni(cod)2/IPr systems were found to be 

effective in C-F bond activation providing the selective aryl-aryl coupling already at the 

room temperatures (Scheme 14).[75] 

 

Scheme 14. C-F bond activation and selective C-C bond formation in presence of Ni catalyst.[75] 

In 2005 Tamao et al. reported the successful C-F bond activation of mono-, di- and 

trifluoroarenes in presence of NiCl2(dppf) catalyst in THF at the room temperature 

(Scheme 15).[76] 
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Scheme 15. C-F bond activation and C-C bond formation in presence of NiCl2(dppp) catalyst.[76] 

It was also demonstrated that perfluoropyridyl and pyrimidyl Ni complexes with PEt3 

ligands selectively activated the C-F bond tolerating the C-Cl bond.[77],[78] To improve 

catalytic activity Nakamura et al. applied hydroxy phosphine ligand that promoted 

reaction and yielded 93 % of the product.[79] 

Similar transformations were also demonstrated using Pd-catalyst. For instance, 

PdCl2(dppf) provided partial coupling of di- and trifluorobenzenes with Gringnard 

reagent.[76] Thus, cross-coupling of 1,2-difluorobenzene with Gringnard reagent gave 

product 1.72 in 91 % yield (Scheme 16). The same catalytic system was applied to 

1,3- (1.73) and 1,4-difluorobenzenes (1.74), but the products of cross-coupling were 

obtained in significantly lower yields (15 and 6 % respectively). Reaction of 1,2,3-

trifluorobenzene 1.75 with aryl Grignard reagent afforded mostly mono-coupled 

product 1.76 in 69 % yield.[76] 
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Scheme 16. C-F bond activation and C-C bond formation in presence of PdCl2(dppf) catalyst.[76] 

It was found that introduction of hydroxy, hydroxymethyl and amino groups in ortho-

position to fluorine atom in aromatic compounds improves cross-coupling reactions 

(Scheme 17).[80] 

 

Scheme 17. C-F bond activation and C-C bond formation in presence of PdCl2(PCy3)2 catalyst.[80] 

Ortho-nitro and carboxyl substituents in fluoroaromatics also promote C-F bond 

activation in Suzuki-Miyaura and Stille cross-coupling (Scheme 18).[81],[82],[83],[84] 

 

Scheme 18. C-F bond activation and C-C bond formation in presence of Pd2(dba)3 catalyst.[81] 

1.3.2 C-F Bond Activation in Difluoroalkenes 

Ichikawa and co‐workers developed a new approach of C-F bond activation in 1,1-

difluoroallenes derivatives allowing synthesis of various PAHs. Previously, they 

reported that treatment of 2-benzyl-1,1-difluorohex-1-ene with Magic acid 
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(FSO3H·SbF5) or TfOH in the (CF3)2CHOH medium promoted Friedel-Crafts 

cyclization and gave 2-butyl-1-indanone with up to 72 % yield.[85] In this case the Magic 

acid was found to be selective protonating agent leading to the effective generation of 

the difluorocarbocation which attacks the neighboring aromatic system resulting in 

desired C-C bond formation. 

The methodology was found to be powerful enough to prepare helicenes. Moreover, 

domino-like Friedel-Crafts‐type cyclization allows formation of fused ring systems in a 

facile way with high yields (Scheme 19).[86] 

 

Scheme 19. Domino cyclizations of difluoroalkene derivative 1.83 by Magic acid.[86] 

The similar conditions were applied for the synthesis of dibenzo[g,p]chrysenes bearing 

double helical structures. A wide range of Brønsted and Lewis acids was tested as 

promoters of Friedel-Crafts-type cyclization.[87] Reaction of 1,1-bis(biphenyl-2-yl)-2,2-

difluoroethene with TsOH, TfOH and Magic acid was carried out in (CF3)2CHOH. The 

formation of product 1.87 was not observed utilizing TsOH, while TfOH and Magic acid 

gave product 1.88 in 59 and 95 % yield respectively. Among the Lewis acids BF3·OEt2, 

Me3SiOTf, ZrF4, TiCl4 and TiF4 in (CF3)2CHOH only TiF4 promoted cyclization in 93% 

yield (Scheme 20). Remarkably, the reaction of 1,1-bis(biphenyl-2-yl)-2,2-

difluoroethene 1.86 with TiF4 in DCM gave the monocyclizated product in 85% yield.[87] 

 

Scheme 20. Synthesis of dibenzo[g,p]chrysene 1.87 in presence of TiF4.[87] 

Magic acid and TiF4 were used for synthesis of substituted dibenzo[g,p]chrysenes. 

According to obtained data, TiF4 was more effective for alkyl- and aryl-substituted 

precursors whereas magic acid for halogen-substituted substrates.[87] It should be 
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emphasized that all experiments were carried out in (CF3)2CHOH, which provides 

stabilization of CF2 cation.[86],[88],[89],[90] 

Ichikawa et al. also found that catalytic amount of indium(III) bromide promoted 

formation of allylic CF2 cations in 1,1-difluoroallenes. The subsequent Friedel-Crafts 

cyclization afforded the fluorinated PAHs in appropriate yields (for example, 90 % yield 

of 9-fluorophenanthrene).[91] 

1.3.3 C-F bond Activation by Silylium Carboranes 

Siegel and co-workers presented different approach of C-F bond activation by silyl 

cations (silylium carboranes) and subsequent intramolecular Friedel-Crafts cyclization 

in cove region.[92],[93] To optimize Friedel-Crafts reaction conditions 1-(2-

fluorophenyl)naphthalene 1.88 was chosen as model compound, which was treated 

by different silyl cations in presence of Brønsted bases (P(o-tol)3, 2,6-di-tBu-pyridine 

or Me2Si(Mes)2) in chlorobenzene medium for 8 to 17 h at 110 ºC (Scheme 21).[92] The 

best yield (93 %) was obtained in system i-Pr3Si-CB11H6Cl6/Me2SiMes2. These 

reaction conditions were employed for synthesis of PAHs containing the five- and six-

membered rings and the yields were in range 49-99 %. Small molecules, such as 2-

fluoro-o-terphenyl and its derivatives showed full conversion to products, whereas the 

transformation of large PAHs (1,2-benzofluoranthene, rubicene, indenocorannulene) 

was more difficult to perform.[92] 

 

Scheme 21. C-F bond activation by silyl cations and intramolecular Friedel-Crafts cyclization.[92] 

Siegel et al. applied silane-fueled Friedel-Crafts cyclization for synthesis of the 

buckybowls-graphene hybrid “nanobud” 1.92[94] that conjugates planar graphene 

nanosheet with curved surface of corannulene. Synthesis of target molecule started 

from diester dichlorocorannulene 1.90 and included six stages. Microwave-assisted 

C-F bond activation by silylium carborane gave a product 1.92 in 40 % yield (Scheme 

22).[95] 
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Scheme 22. Synthesis of buckybowl-graphene “nanobud” 1.92.[95] 

1.3.4 Aluminium Oxide Mediated C-F Bond Activation 

Amsharov and co-workers suggested Al2O3-mediated HF elimination, which leads to 

intramolecular aryl−aryl coupling in fjord and cove regions of PAHs in quantitative 

yields.[96],[97] Condensation of PAHs was carried out on activated γ-Al2O3; and a wide 

range of fluoroarenes underwent cyclization at 100-250 ºC. It was found that effective 

condensation depends on pretreatment activation of γ-alumina.[98] Activation promotes 

formation of highly reactive Al-O sites or “defects” on alumina[98],[99],[100] 

Activity of other oxides towards C-F bond activation was investigated on 1-

fluorobenzo[c]phenanthrene 1.93 and 1,4-bis(biphenyl-2-yl)-2,5-difluorobenzene 

1.95. 1-fluorobenzo[c]phenanthrene 1.93 which were chosen as model compounds for 

mono-fold cyclization (300°C, 10 min)[97], and 1,4-bis(biphenyl-2-yl)-2,5-

difluorobenzene 1.95 – for two-fold (400°C, 10 min)[101] cyclization (Scheme 23). In 

case of SiO2, Ga2O3, In2O3, Nb2O5, and HfO2, trace amounts of the product 1.94 were 

detected. For BeO, B2O3, MgO, Sc2O3, TiO2, ZnO, GeO2, ZrO2 and SnO no product 

formation was observed.[97] In case of double-fold cyclization oxides such as Eu2O3, 

Sc2O3, Gd2O3, Dy2O3, and V2O5 were found to be inactive, whereas low activity was 

found for MgO, HfO2, and Yb2O3. The most active oxides appeared to be TiO2, In2O3, 

and ZrO2; and a moderate degree of activation were presented by SiO2, Ga2O3, and 

Nb2O5.[101] 
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Scheme 23. Examples of mono[97] and double[101] aryl-aryl coupling via Al2O3-mediated cyclo-

dehydrofluorination. 

Aryl-aryl coupling via HF elimination on aluminium oxide was carried out for large bowl-

shaped system and even in this case yields were near to quantitative. Remarkably, no 

evidence of side reactions was observed during condensation and no further 

purification of products was required.[102] Moreover, reaction is tolerant to halogen 

functionalities, thus, chlorinated and brominated phenanthrenes (2-

chlorobenzo[c]phenanthrene and 2-bromobenzo[c]phenanthrene) remain completely 

intact during condensation.[100] 

1.3.5 C-F Bond Activation in Trifluoromethylated Arenes 

While sp2 C-F bond activation was studied broadly, in sp3 C-F bond activation was 

achieved less success. However, there are known few examples of the conversion of 

sp3 C-F bonds into C-C bond. For instance, Nbº species, which can be generated by 

reduction of NbCl5 with lithium aluminium hydride, are the convenient catalysts for 

intramolecular C-C coupling reaction of o-aryl and o-alkenyl α,α,α-trifluorotoluene 

derivatives (Figure 6).[103],[104],[105] Organoaluminium reagents, such as 

trimethylaluminium, triethylaluminium or methylaluminoxane (MeAlO)n were found to 

be efficient catalysts for the C-F bond activation (Figure 6).[106],[107] Triflic acid among 

the Brønsted acids was able to activate benzylic C-F bond, for instance, 

thrifluoromethylated arenes were converted in appropriate benzophenones (1.101) in 

range from moderate to good yields (Figure 6).[108],[109] 
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Figure 6. An overview of synthetic approaches towards C-F bond activation of the CF3 group 

.[103],[106],[107],[108],[110] 

AlCl3 mediated C-F bond activation was applied on 4-trifluoromethylbenzoyl chloride 

1.99 in halogenated benzene medium. After defluorination, diarylation and convertion 

into diarylhydroxymethyl group the product 1.100 was obtained in a good yield (Figure 

6).[110] Other methods of C-F bond activation are represented by electroreductive 

coupling (carbon dioxide, acetone, and N,N-dimethylformamide)[111], lanthanoid 

induced activation[112] and defluorinative silylation using Mg-Cu bimetal systems.[113] 
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1.4 Structure of γ-Aluminium Oxide 

Catalytical properties of aluminium oxide (γ-Al2O3) is widely used in automobile and 

petroleum industry.[114],[115],[116] Therefore, formation, structure and properties of 

aluminium oxide were investigated by a number of scientists and, however, still have 

been under consideration. It was found that formation of γ-Al2O3 occurs in range 350-

1000 °C from crystalline[117] or amorphous[118] precursors and remains stable at the 

temperatures 700-800 °C[119] and at higher than 1200 °C (in case of amorphous 

precursor). Characterization of structure was carried out by NMR[120], IR-

spectroscopy[121], XRD[122], TEM[123] etc. However, the structure and chemical stability 

of alumina are still under consideration. It is known that lattice of γ-alumina is 

dependent on starting material. For instance, cubic lattice was obtained from 

amorphous alumina[124],[125],[126],[127], both cubic[128],[129],[130] and tetragonal[131],[132] 

distortion – from boehmite [AlO(OH)]- or gibbsite [Al(OH)3] precursors, and tetragonal 

lattice – from boehmite at 450-750 °C[122]. 

Knözinger and Ratnasamy presented model of γ-Al2O3 surface, which is mostly 

accepted nowadays.[133] They suggested ideal oxide surface, which is connected with 

five types of hydroxyl groups bearing different “net electric charges”. These charges 

are dependent on number of Al neighbours and on Al coordination. Respectively, 

these OH-groups should possess different properties.[133] 

DFT calculations predicted that temperature treatment of alumina led to changes in 

the concentration of hydroxyl groups and of coordinated unsaturated aluminium sites. 

Thus, at 450 K concentration of hydroxyls was estimated at 12.0 OH nm-2,and at 880 K 

– 4.9 OH nm-2.[134] Experimentally, it was found that at the same temperature ranges 

concentration hydroxyl groups drops from 8.2 to 2.1 OH nm-2 (NMR measure-

ments).[135] 

Wischert et al. defined the density of active sites on alumina surface. For this purpose, 

they conducted the alumina-mediated C-H bond activation in methane and determined 

the amount of the formed Al-CH3 moieties. Additionally, DFT calculations were carried 

out in order to determine the nature of active sites.[136] It was found that below 400 ºC 

no active sites were generated, whereas at 700 ºC the concentration of active sites 

reached the maximum (0.03 per nm2). Surprisingly, at temperatures above 800ºC their 

density decreased. Reactive site can be described as Lewis acid-base pair (Al and O), 
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in which both oxygen basicity and Al acidity play the key role in the reactivity of 

sites.[136] 

By means of DFT calculations (at 500 ºC) it was found that the strongest Lewis acidic 

sites correspond to three- (AllII) four-coordinated (AlIV) sites. In addition, reactivity of 

the AlIII sites was investigated by C-H bond activation of methane. Two reactive pairs 

involved in activation were detected: two-fold coordinated O atoms that bonded to AlIII 

and three-fold coordinated O atoms that facing AlIII. The highly reactive pair appeared 

to be AlIII,O3 that enables low-energy pathways for activation and splitting of the C-H 

bond in methane.[136] 

It is worth to mention that the amount of hydroxyl groups on alumina surface depends 

on the activation mode. Thus, Nguefack et al. carried out thermal analysis of the 

hydrated boehmite at 723-1373 K and found out that the formation of γ-Al2O3 (1-

0.5 OH nm-2) occurred at 873 K. At higher temperatures the hydrated boehmite 

underwent transformation to δ- (at 1053 K) and θ-alumina (at 1233 K).[137] 

Recently, Amsharov and co-workers presented a DFT study of C-F bond activation in 

cove and fjord regions by γ-Al2O3. The mono-protonated adamantine-like Al4O6 cluster 

was chosen as a fragment of activated γ-Al2O3 surface .[99],[138] They conclude that the 

fjord-region undergoes synchronous Friedel-Crafts arylation reaction. It was also 

found that for cove-region closure the hydrogen-bridge effect plays a crucial role.[99] 
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2 Aims 

The C-F bond is one of the most thermally, photochemically and chemically stable 

bond, which cleavage and subsequent functionalization are of the great importance 

for the modification of organic fluorocompounds. The aim of this study was the 

development of a simple and facile approach for the activation C-F bond in aromatic 

compunds. The most attractive from a synthetic point of view appears to be the 

intermolecular aryl-aryl coupling leading to the formation of bowl-shaped polycyclic 

aromatic hydrocarbons. Thus, the study should include following steps: 

1. The synthetic pathway to aromatic ketones through the C-F bond activation in 

trifluoromethylated arenes should be presented. This reaction could be interesting due 

to functional group tolerance to many organic reactions. 

2. The conditions for the intramolecular aryl−aryl coupling via C-F bond activation in 

presence of γ-aluminium oxide should be developed. 

3. Preparation of the halogenated bowl-shaped polycyclic aromatic hydrocarbons, 

namely indacenopicenes and diindenochrysenes, which could be considered as 

precursors of fullerenes, nanotubes and other complex architectures. 

4. Synthesis of complex architectures – extended highly-curved buckybowls based on 

diindenochrysene derivatives and molecular receptors (buckycatchers) containing 

indacenopicene subunits. Study of the buckycather binding affinity towards C60 and 

C70 fullerenes. 

5. Synthesis of halogenated cyclic trimers and tetramers from the functionalized 

acenaphthenones and their subsequent cyclization by aluminium oxide mediated C-F 

bond activation or by thermal annealing on metal surfaces should be carried out. 

6. Synthesis of bowl-shaped acene-type structure by the developed protocol of acid-

promoted intramolecular reductive cyclization of arylaldehydes leading to PAHs with 

zig-zag periphery. 

The structure confirmation and photophysical properties of all novel structures will be 

carried out by NMR-, UV/Vis- and fluorescence spectroscopy, mass spectrometry and 

X-ray diffraction analysis. 

 



Results and Discussion 

26 
 

3 Results and Discussion 

3.1 C-F Bond Activation in Trifluoromethylated Arenes 

In this chapter we presented the activation of C-F bond by aluminium oxide under mild 

conditions in CAryl–CF3 group.[100] The 2-trifluoromethylbiphenyl 1 was chosen as a 

model compound (substrate) for the study of intramolecular condensation. Compound 

1 was synthesized by Suzuki cross-coupling (Scheme 24) of 2-bromobenzotrifluoride 

2 with phenyl boronic acid 3 in the presence of K2CO3 and catalytic amount of 

Pd(PPh3)4 in Tol:MeOH mixture (2:1). 

 

Scheme 24. Synthesis of 2-trifluoromethylbiphenyl 1.[100] 

In the next step, aluminium oxide was activated at the high temperatures (450-550 ºC) 

under vacuum according to [97]. It is known that the formation of reactive sites 

(frustrated Lewis acid–base pairs) takes place at these temperatures in alumina.[90] 

Then, we deposited 2-trifluoromethylbiphenyl 1 on alumina and observed the changes 

in colour from white to pink (Figure 7a, Scheme 25). Reaction proceeded 30 min at 

room temperature. The resulting 9-fluorenone 4 was extracted using MeOH, while 2-

biphenyl carboxylic acid 5 (as aluminium salt) was extracted by addition of acetic acid 

into MeOH. 

  

Figure 7. 2-trifluoromethylbiphenyl 1 deposited on activated aluminium oxide: a) at the room 

temperature; b) at 200 ºC for 10 min. Adapted with permission from O. Papaianina and K. Yu. 

Amsharov, Chem. Commun., 2016, 52, 1505. DOI: 10.1039/C5CC08747 Copyright 2016 The Royal 

Society of Chemistry. 

a b 
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Analysis of the product mixture showed that at rt only 20 % of 1 was converted to 4 

(5-7 %) and acid 5 (10-15 %). It is worth to mention that no significant improvement in 

yields was observed even after one week (9 % of 4 and 19 % of acid 5). Thus, we can 

conclude that at the room temperature only 20 % “reactive cites” in aluminium oxide 

can activate the C-F bond.[100] The molecular mobility of reagent, which adsorbed on 

less reactive sites of the alumina, was significantly reduced due to the chelate effect, 

namely, aluminium-fluorine interaction. Such interaction can be realized in the so-

called aluminium oxide “nanopore”. The presumable cationic mechanism of the C–F 

bond activation in trifluoromethylated arenes is described in [100]. 

 

Scheme 25. Condensation of 2-trifluoromethylbiphenyl 1 on alumina.[100] 

In order to confirm our assumption, we carried out the C-F bond activation on 

aluminium oxide in the presence of benzene at 50 ºC (Scheme 26). HPLC analysis 

showed that 9-phenyl-9H-fluoren-9-ol (6) and 9,9-diphenyl-9H-fluorene (7) were found 

in the reaction mixture in addition to the main product 9-fluorenone 4 (Figure 8). Also, 

we revealed that the diffusion of benzene into nanopore is very difficult and 

concentration of benzene inside pore is very low. 

 

Scheme 26. Condensation of 2-trifluoromethylbiphenyl 1 on alumina in the presence of benzene.[100] 

Moreover, no products of arylation were detected at the same reaction conditions by 

changing the solvent to mesitylene. Hence, we can consider nanopore as a 

nanoreactor, which is “loaded” with a single molecule and prevents intermolecular 

reactions. 
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Figure 8. HPLC profile of MeOH extract as obtained after condensation of 2-trifluoromethylbiphenyl 1 

in the presence of benzene on activated alumina at 50 ºC for 30 min. HPLC conditions: 5PYE column, 

MeOH:cyclohexane:80:20 as an eluent, 1 mL min-1, 30 ºC, detection 300 nm. Adapted with permission 

from O. Papaianina and K. Yu. Amsharov, Chem. Commun., 2016, 52, 1505. DOI: 10.1039/C5CC08747 

Copyright 2016 The Royal Society of Chemistry. 

At the higher temperatures the conversion level of 2-trifluoromethylbiphenyl 1 was 

increased to 38 % for 4 and 29 % for acid 5 (100 ºC, 30 min) and up to 80 % for 4 at 

150 ºC. The temperature increase to 200-250 ºC did not alter the product yield. 

According to NMR and HPLC data neither product of intermolecular condensation nor 

side products were observed during reaction. Thus, the conditions for conversion of 

2-trifluoromethylbiphenyl 1 in 9-fluorenone 4 were determined to be optimal at 150 ºC 

for 30 min.[100] 

It is important to emphasise that 9-fluorenone 4 can be obtained in pure form by MeOH 

extraction, whereas 2-biphenyl carboxylic acid 5 can be only extracted by acetic acid. 

We conducted an additional experiment and deposited acid 5 on activated aluminium 

oxide. At 150 ºC the acid 5 underwent intramolecular cyclization into 9-fluorenone 

4.[100] 

It is known that Brønsted acids (trifluoroacetic acid, p-toluenesulfonic acid and triflic 

acid) are used for the C-F bond activation. For instance, 2-(trifluoromethyl)biphenyl 

was converted into 9-fluorenone 4 in 50 % yield by triflic acid in anhydrous 

dichlormethane at the room temperature.[108] We carried out this experiment also in 

the dry benzene and dichloromethane. As can be seen from the Figure 9 the 
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fluorenone 4 was mainly generated in benzene, while the reaction in DCM led to the 

formation of many side products. 

 

Figure 9. HPLC-profile after reaction of 2-(trifluoromethyl)-1,1'-biphenyl 1 with triflic acid in dry benzene 

(a) and dichloromethane (b). HPLC conditions: 5PYE column, eluent Tol:MeOH:1:9, 30 °C, 1 mL min-1, 

detection at 300 nm. 

Similar results were achieved for methylated homologue of 2-trifluoromethylbiphenyl 

8 under above-mentioned reaction conditions. However, our approach allowed us to 

obtain 2-methyl-9H-fluoren-9-one 9 in 72 % yield. In accordance with HPLC analysis 

no side products were observed (Figure 10). The remaining 25% of 4'-methyl-2-

(trifluoromethyl)-1,1'-biphenyl was converted to the corresponding acid 10 (4-methyl-

2'-biphenylcarboxylic acid). 

 

Figure 10. HPLC profile of MeOH extract as obtained after condensation of 4'-methyl-2-

(trifluoromethyl)-1,1'-biphenyl 8 on activated alumina at 150 ºC for 30 minutes. HPLC conditions: 5PYE 

column, MeOH as eluent, 1 mL min-1, 30 ºC, detection 300 nm. (inset) UV-Vis spectrum of 2-methyl-
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9H-fluoren-9-one 9 (MeOH).[100] Adapted with permission from O. Papaianina and K. Yu. Amsharov, 

Chem. Commun., 2016, 52, 1505. DOI: 10.1039/C5CC08747 Copyright 2016 The Royal Society of 

Chemistry. 

Additionally, we treated 1 with AlCl3 in o-DCB under reflux for 4 h (Figure 11a) and in 

dichloromethane at the room temperature (Figure 11b). HPLC analysis of obtained 

reaction mixture revealed that in both cases 9-fluorenone and mixture of side products 

were formed. 

 

Figure 11. HPLC-profile after reaction of 2-(trifluoromethyl)-1,1'-biphenyl 1 with AlCl3: a) in o-DCB, 

reflux, 4 h; b) in DCM, rt, 4 h. HPLC conditions: 5PYE column, Tol:MeOH:10:90, 1 mL min-1, 30 ºC, 

detection at 300 nm. 

In the next investigations, 1-[2-(trifluoromethyl)phenyl]naphthalene 10 was used as the 

model compound. It was synthesized from 1-naphthylboronic acid 11 and 2-bromo-

benzotrifluoride 13 by Suzuki cross-coupling as white solid (92 %). We performed an 

experiment according to [108] using triflic acid. Neither 7H-benzo[c]fluoren-7-one 14 nor 

7H-benz[de]anthracen-7-one 15 was detected in the rection mixture (Figure 12). 

 

Figure 12. HPLC-profile after reaction of 1-[2-(trifluoromethyl)phenyl]naphthalene 10 with triflic acid in 

dry dichloromethane. HPLC conditions: 5PYE column, Tol:MeOH:20:80, 1 mL min-1, 30 ºC, detection 
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at 300 nm.[100] Adapted with permission from O. Papaianina and K. Yu. Amsharov, Chem. Commun., 

2016, 52, 1505. DOI: 10.1039/C5CC08747 Copyright 2016 The Royal Society of Chemistry. 

In contrast, aluminium oxide mediated C-F bond activation (Scheme 27) allowed to 

obtain 7H-benzo[c]fluoren-7-one 14 in 18 % yield, 7H-benz[de]anthracen-7-one 15 in 

40 % yield and the 2-(1-naphthalenyl)benzoic acid 16 in 40 % yield (Figure 13a). 

Influence of temperature on molar ratio 14/15 was investigated at 50, 100, 150, 200 

and 250 °C. It was found that molar ratio did not change at the different temperatures. 

This fact could be explained by low mobility of naphthalene species inside nanopore 

and the molecule cannot easily change configuration for more favourable nucleophilic 

attack.[100] 

 

Scheme 27. Condensation of 1-[2-(trifluoromethyl)phenyl]naphthalene 10 on activated alumina.[100] 

Also, we deposited 2-(1-naphthalenyl)benzoic acid  on activated aluminium oxide, and 

the HPLC analysis revealed that acid 16 underwent intramolecular cyclization at 

250 ºC to 7H-benzo[c]fluoren-7-one 14 and 7H-benz[de]anthracen-7-one 15 in 61 and 

32 % yield respectively (Figure 13b). 

 

Figure 13. HPLC profiles of MeOH extract as obtained after condensation of: a) 1-[2-(trifluoromethyl) 

phenyl]naphthalene 10 on γ-Al2O3 at 150 ºC for 30 min. HPLC conditions: BP column, Tol:MeOH:20:80 
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as eluent, 1 mL min-1, 30 ºC, detection 300 nm. Adapted with permission from O. Papaianina and K. 

Yu. Amsharov, Chem. Commun., 2016, 52, 1505. DOI: 10.1039/C5CC08747 Copyright 2016 The Royal 

Society of Chemistry; b) 2-(1-naphthalenyl)benzoic acid 16 on γ-Al2O3 at 250ºC. HPLC conditions: 

5PYE column, MeOH as eluent, 1 mL min-1, 30 ºC, detection 300 nm. 

In order to investigate the assumption that the molecular mobility is limited inside the 

pore we studied condensation of 2-(trifluoromethyl)terphenyl 17 on γ-alumina 

(Scheme 28). Friedel-Crafts acylation of 17 can lead to two ketones 4-phenyl-9H-

fluoren-9-one 18 and tribenzoheptanone 19, although formation of seven-ring ketone 

19 seems to be unlikely.[139] 

 

Scheme 28. Condensation of 2-(trifluoromethyl)terphenyl 17 on activated alumina.[100] 

To our surprise, the C-F bond activation of 17 on aluminium oxide gave tribenzo-

heptanone in 50 % yield, and 4-phenyl-9H-fluoren-9-one – only 8 % yield (Figure 14). 

These results confirmed that alumina “nanoreactor” prevents the side reactions and 

defines the regiochemistry of condensation. 

 

Figure 14. HPLC profile of the reaction mixture as obtained after condensation of 2-(trifluoromethyl)-

terphenyl 17 on activated alumina (200 °C, 30 min, MeOH extract). HPLC conditions: 5PYE column, 
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eluent MeOH, 30 °C, 1 mL min-1, detection at 300 nm. Adapted with permission from O. Papaianina 

and K. Yu. Amsharov, Chem. Commun., 2016, 52, 1505. DOI: 10.1039/C5CC08747 Copyright 2016 

The Royal Society of Chemistry. 

Our experiments revealed that “badly” activated aluminium oxide promoted the 

hydrolysis of the trifluoromethyl group (at 100ºC after 5 h 89 % of the CF3 group was 

converted into carboxyl group, after 8 h – 94 %). These findings prompted us to 

examine influence of the non-activated aluminium oxide on hydrolysis of CF3 group. 

We found that at 150°C CF3 group can be successfully converted to COOH group. In 

contrast, the investigation of Sautet et al. [136] demonstrated formation of Lewis acid-

base pairs only at temperatures higher than 400 °C. Further tests showed that at 200 °C 

CF3 groups underwent effective hydrolysis for few minutes.[100] 

These reaction conditions were employed for synthesis of 1,1'-biphenyl-2-carboxylic acid, 

4-methyl-2'-biphenylcarboxylic acid, 2-(1-naphthalenyl)benzoic acid and o-terphenyl-2-

carboxylic acid from respective biphenyls (2-trifluoromethyl-1,1'-biphenyl, 4'-methyl-2-

(trifluoromethyl)-1,1'-biphenyl, 1-[2-(trifluoromethyl) phenyl]-naphthalene and 2-(tri-

fluoromethyl)-terphenyl). All yields were in near to quantitative. Our results can be used in 

synthetical chemistry as a simple way for conversion CF3 group to carboxylic acids. 

Previous studies suggested the treatment trifluoromethylated group with concentrated 

sulfuric acid or super acids for its hydrolysis.[140] However, under these reaction conditions 

the extended PAHs, for instance, trifluoromethylated benzophenanthrene was converted 

into polymers and various side products (Figure 15). 

 

Figure 15. Hydrolysis of trifluoromethylated benzophenanthrene 21. HPLC profile of the reaction 

products after reaction of 21 with sulphuric acid. HPLC conditions: 5PYE column, eluent MeOH:Tol:4:1, 

30 °C, 1 mL min-1, detection 300 nm. Reproduced with permission from O. Papaianina and K. Yu. 

Amsharov, Chem. Commun., 2016, 52, 1505. DOI: 10.1039/C5CC08747 Copyright 2016 The Royal 

Society of Chemistry. 
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The HPLC-chromatograms after reaction at different temperatures (100, 150 and 200 °C) 

are presented in the Figure 16. The full conversion of CF3 group was observed after 1 

hour at 200 °C. The conversion of trifluoromethylated benzophenanthrene 21 yielded 92 % 

of benzo[c]-phenanthrene-2-carboxylic acid 22 at the lower temperatures (150 °C, 2 h). 

 

Figure 16. HPLC profile of MeOH/acetic acid extract as obtained after reaction of trifluoromethylated 

benzophenanthrene 21 with non-activated alumina during 60 min. HPLC conditions: 5PYE column, 

Tol:MeOH:2:8 (0.2% of acetic acid in MeOH) as eluent, 1 mL min-1, 30 ºC, detection 300 nm. (inset) 

UV- Vis spectra of trifluoromethylated benzophenanthrene 21 and benzo[c]-phenanthrene-2-carboxylic 

acid 22 (Tol:MeOH:2:8). Adapted with permission from O. Papaianina and K. Yu. Amsharov, Chem. 

Commun., 2016, 52, 1505. DOI: 10.1039/C5CC08747 Copyright 2016 The Royal Society of Chemistry. 

Encouraged by above-mentioned results we tested the hydrolysis ability of the non-

activated aluminium oxide towards the bistrifluoromethylated arenes. As a model 

compound was chosen 1,6-bis(2-(trifluoromethyl)phenyl)pyrene 23 (Scheme 29). It 

was synthesized by Suzuki-Miyaura cross-coupling of 1,6-dibromobenzene 24 with 

2-(trifluoromethyl)phenyl)boronic acid 25 in presence of palladium catalyst (yield: 

95.6 %). 
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Scheme 29. Synthetic route to 2,2'-(pyrene-1,6-diyl)dibenzoic acid 27: a) CF3C6H4B(OH)2 25, K2CO3, 

Pd(PPh3)4, Tol:MeOH:2:1, reflux, 15 h, N2, 95.6 %; b), c) γ-Al2O3, 150-300 ºC, 1-24 h. 

The C-F bond activation and hydrolysis of 23 on non-activated alumina was carried 

out at 150 ºC for 1 h. According to TLC (Tol:Acetone:4:1) the starting reagent 23 and 

product of monohydrolysis 26 were presented in the reaction mixture. The increase of  

 

Figure 17. HPLC profile of MeOH/AcOH extract as obtained after reaction of 1,6-bis(2-

(trifluoromethyl)phenyl)pyrene 23 with non-activated alumina during 16 h. HPLC conditions: BP column, 

MeOH:Tol:8.5:1.5 (0.1% of acetic acid in MeOH), 1 mL min-1, 30 ºC, detection 350 nm. 

both reaction time (24 h) and temperature (200-250 ºC) did not improve the conversion 

of 23 to product 27. Even at 300 ºC the trifluoromethylated groups were not hydrolised 

(Figure 17), therefore, we can conclude that their formation did not occure 

simultaneously. After the first hydrolysis of CF3 group the reaction failed to proceed 

further due to the limitations caused by the presence of carboxylic group. It was found 

previously that the heretoatoms deactivate the active sites in aluminium oxide and, 

thus inhibite the reaction.  
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3.2 C-F Bond Activation of Rationally Halogenated PAHs 

The interest to the bowl‐shaped polycyclic aromatic hydrocarbons (BS‐PAHs) or 

“fullerene fragments” increased due to their unique properties originating from the 

curved π-system.[141],[142] Harsh reaction conditions for the synthesis of buckybowls 

are determined by their strained structure which frequently do not tolerate functional 

groups. Although, functionalized buckybowls consider to be the starting materials for 

the synthesis of fullerenes, nanotubes and other carbon-based structures. 

Halogenated, namely brominated, bowls are the most appropriate derivatives for the 

further modification.[143],[144] 

Intramolecular aryl–aryl coupling is widely used for the synthesis of buckybowls, for 

instance, flash vacuum pyrolysis[47], surface‐assisted cyclodehydrogenation[64],[145] and 

palladium‐catalyzed direct arylation[56]. However, halogenated BS‐PAHs cannot be 

synthesized by these methods.[10] Post-halogenation is considered to be an alternative 

approach. It was proven in case of corannulene, while the functionalization of larger 

or non-symmetrical molecules appeared to be unsuccessful. 

Previous works of Ichikawa[87,91], Siegel[92] and Amsharov[96,97] were focused on the 

strategy of the C-F bond activation for the synthesis of PAH systems. The results of 

the Amsharov’s group revealed that aluminium oxide mediated 

cyclodehydrofluorination tolerates other halogens and could be applied for the 

synthesis of halogenated buckybowls.[102] In this study the activation of C−F bond in 

the presence of C-Br and C-Cl bonds under mild conditions was demonstrated. This 

approach allows the selective and fully controllable synthesis of halogenated BS‐

PAHs. 

The aluminium oxide mediated C-F bond activation was performed in solid-state.[97,102] 

The condensation of fluoroarenes resulted in products in pure form with near to 

quantitative yield. In our research the intramolecular aryl-aryl coupling was studied in 

liquid media. It was found that the solvent plays a significant role. On the one hand, 

the solvent helps to distribute the reagent homogeneously over aluminium oxide, on 

the other hand, it influences the efficiency of the condensation. 

In order to study the solvent’s a series of experiments were performed using different 

media (1,2-dichlorobenzene, chlorobenzene, fluorobenzene, bromobenzene, 

mesitylene, DMSO, DMF and DMAc). As a model reaction the conversion of 1‐fluoro‐

4‐bromobenzo[c]phenanthrene 28 into 3‐bromobenzo[ghi]fluoranthene 29 was 
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chosen. The cyclodehydrofluorination was carried out for 30 min at 120 °C (Scheme 

30). Under solid‐state conditions (120 ºC, 30 min) the conversion of 28 into 29 

amounted to 0.5 %.[98] 

 

Scheme 30. Model reaction of 1‐fluoro‐4‐bromobenzo[c]phenanthrene 28 into 3‐bromobenzo[ghi]-

fluoranthene 29 for optimization of cyclodehydrofluorination.[98] 

The Table 1 below illustrates the reaction yields in different media. Polar aprotic 

solvents (DMSO, DMF, DMAc) are not depicted in the table, due to deactivation of 

active centres at the alumina interface and complete inhibition of the reaction. 

Table 1. Solvent’s effect on the conversion of 1‐fluoro‐4‐bromobenzo[c]phenanthrene 28 to 3‐

bromobenzo[ghi]fluoranthene 29. All reactions were carried out at 120 °C. Yields were measured after 

10 and 30 minutes of reaction. 

Solvent Yield10min, % Yield30min, % 

Benzene 0.3 0.4 

Bromobenzene 1.1 4.9 

Chlorobenzene 3.5 13.5 

1,2-Dichlorobenzene 11.7 60.8 

Fluorobenezene 0.4 0.8 

Mesitylene 0.1 0.3 

From the data in the Table 1, we can see that such solvents as fluorobenzene (0.8 %), 

benzene (0.5 %) and mesytilene (0.3 %) practically did not affect the conversion. In 

contrast, chlorobenzene (13.5 %) and bromobenzene (4.9 %) showed an adequate 

reaction acceleration. The most remarkable effect was observed in o‐

dichlorobenzene. The reaction rate was 200 times faster compared to the solid-state 

strategy (60 % yield after 30 min). 

Raising the temperature and/or the time of reaction led to the full conversion 28 into 

29 in o‐DCB. Thus, after 30 min of reaction at 150 °C the pure product was obtained 
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in nearly quantitative yield. HPLC analysis revealed the absence of side products 

formation. The cyclodehydrofluorination in o‐DCB was conducted by microwave‐

assisted heating, although, the same efficiency of the condensation was achieved by 

conventional heating in the sealed glass ampoules.[98] 

The new approach was also examined on known precursors of extended buckybowls: 

as-indaceno[3,2,1,8,7,6-pqrstuv]picene (31) and fluoreno[2',1',9',8':5,6,7,8]acephen-

anthryleno[4,3-bc]-as-indaceno[3,2,1,8,7,6-pqrstuv]picene (33). The reaction time 

was significantly reduced in comparison with solid-state approach. It allowed to obtain 

the products in near to quantitative yields (according to HPLC measurements, Figure 

18). 

 

Figure 18. HPLC profile of product: a) 31 as obtained (240 ºC, 2 h, o-DCB) detected at 320 nm (PBr 

column, Tol:MeOH:1:1 as eluent, 1.0 mL min-1, 40 ºC); b) 33 as obtained (200-250ºC, 2 h, o-DCB) 

detected at 340 nm (5PYE column, Tol as eluent, 1.5 mL min-1, 60 ºC). 

In addition, these reaction conditions were applied to the precursors of halogenated 

bowl-shaped PAHs. For this purpose, the indacenopicene or diindenochrysene 

derivatives were chosen. The synthesis of brominated indacenopicenes starts with the 

free radical bromination of 1,4-difluoro-6-methyl-benzo[c]phenanthrene 34 (synthesis 

is described in [102]) using NBS in the presence of DBPO in CCl4 (Scheme 31). The 

solution of 1,4-difluoro-6-bromomethylbenzo[c]phenanthrene 35 and triphenyl-

phosphine in toluene was refluxed for 16 h to form the phosphonium salt 36, which 

was filtered and used for the next step. The Wittig reaction was carried out in 

anhydrous ethanol utilizing potassium tert-butoxide as base and corresponding 

aldehydes (benzaldehyde, 2-bromobenzaldehyde, 4-bromobenzaldehyde).[102] The 

obtained cis/trans isomer mixture of arylethenes 37 was used without additional 
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separation since isomers interconvert in each other under photocyclization conditions. 

The halogenated benzo[s]picenes (31, 39a and 39b) were synthesized by the modified 

Mallory photocyclization protocol in cyclohexane from corresponding arylethenes (30, 

38a and 38b).[31] 

 

Scheme 31. Synthesis of brominated indacenopicenes: a) NBS, DBPO, CCl4, reflux, 4 h, 85 %; b) PPh3, 

toluene, reflux, 16 h, 98 %; c) ArCHO (R1, R2=H: 81%; R1=Br, R2=H: 76%; R1=H, R2=Br: 79%), t-BuOK, 

EtOH, reflux, 10 h; d) hν, I2, propylene oxide, cyclohexane (30: 84 %; 38a: 50 %; 38b: 55 %); e) γ‐Al2O3, 

o‐DCB, MW (31: 150 °C, 30 min, 99 %; 39a: 150 °C, 1.5 h, 96 %; 39b: 240 °C, 1.5 h, 80 %).[98] 

We decided to synthesize the symmetrical double-brominated bowls. For this purpose, 

we defined the selectivity of halogenation by stability estimation of the 

dibenzo[s]picene’s σ-complexes. The AM1 level of theory was applied for current 

calculations. The results of the calculations are presented in Table 2. From this data, 

we can see that the most probable position for electrophilic substitution is depicted in 

Inset 5.  

Table 2. Possible transition states and activation energies brominated 13,16-difluorobenzo[s]picene 30. 

          σ-complex 
Relative energy, 

kcal mol-1 

1 

 

4.5 
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2 

 

6.2 

3 

 

4.6 

4 

 

4.4 

5 

 

0.0 

6 

 

5.7 

7 

 

8.2 

In order to reduce the number of reacton steps we chose another strategy for synthesis 

of 13,16-difluorobenzo[s]picene 30 (Scheme 32), which was performed in cooperation 

with S. Shkolnikov.[146] The synthesis of 30 started with the metalation of 2-bromo-1,4-

difluorobenzene 40 and subsequent bromination which gave 3,4-dibromo-1,4-

difluorbenzene 40 in 68 % yield. The 3,4-dibromo-1,4-difluorbenzene 40 was 

converted into the 1,1'-(3,6-difluoro-1,2-phenyl)dinaphthalene 43 by Pd-catalyzed 

Suzuki cross-coupling (42 % yield). Next, the photocyclization 43 was conducted in 

the cyclohexane/benzene mixture for 24 h. After 24 h the only traces of desired 

product 30 were detected. The reaction was repeated twice with the same result. 

According to X-ray diffraction analysis of 43 the naphthalene rings are not in-plane 
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and twisted to each other. In this case the fluorine and hydrogen repel mutually and, 

thus, the molecule probably does not adopt the optimal geometry for the 

photocyclization. Consequently, the previous approach (Scheme 31) was favoured for 

synthesis of 13,16-difluorobenzo[s]picene 30 precursor. 

 

Scheme 32. Synthesis of 13,16-difluorobenzo[s]picene 30. a) LDA, THF, -78 °C, 1h; b) Br2, THF, -78 °C 

to rt (68 %); c) 1-naphthaleneboronic acid, K2CO3, Cs2CO3, Pd(PPh3)4, Tol:MeOH:2:1, reflux, 16 h, 

42 %; d) hν, I2, propylene oxide, cyclohexane, benzene, 24 h (traces).[146] 

For synthesis of 5,8-dibromo-13,16-difluorobenzo[s]picene 30 we selected two 

standard approaches: bromination with NBS in DMF[147] and bromination with Br2 in 

chloroform[148]. The both reactions were carried out at the room temperatures for 2.5 h. 

Reaction was monitored by the thin-layer chromatography (DCM:Hexane:1:2). After 

2.5 h the formation of the products was observed only in the Br2/CHCl3 system 

(Scheme 33). 

 

Scheme 33. Synthesis of 5,8-dibromo-13,16-difluorobenzo[s]picene 44 and 5-bromo-13,16-difluoro 

benzo[s]picene 45. 

The products were analyzed and purified by semi-preparative HPLC (Tol:MeOH:3:7 

as eluent). The two major products were identified as 5-bromo-13,16-

difluorobenzo[s]picene 44 and 5,8-dibromo-13,16-difluorobenzo[s]picene 45 with 

retention times tR = 6.0 min and tR = 6.9 min correspondingly (Figure 19). 
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Figure 19. HPLC profile of reaction mixture after bromination detected at 320 nm (PBr column, 

1.0 mL min-1, Tol:MeOH:4:6, 35 °C). Inset: UV-Vis spectra of 5-bromo-13,16-difluorobenzo[s]picene 44 

and 5,8-dibromo-13,16-difluorobenzo[s]picene 45 in Tol:MeOH:4:6. 

In the next step, we applied aluminium oxide mediated C-F bond activation that 

proceeded slower in the brominated indacenopicenes than in the 1‐fluoro‐4‐

bromobenzo[c]phenanthrene. In solid state the full conversion of non-brominated 

13,16-difluorobenzo[s]picene 30 into as-indaceno[3,2,1,8,7,6-pqrstuv]picene 31 

required 60 h at 150 °C. Introduction of bromine functionality in 30 causes some 

difficulties in HF-elimination. Synthesis of 39b by solid‐state approach demonstrated 

the low conversion even after 100 h at 150 °C. The temperature increase up to 200-

250 °C did not lead to the significant improvement in the yield. According to the HPLC 

analysis, the high‐temperature reactions were accompanied by the partial 

debromination and the formation of unidentified products. In the presence of o‐DCB 

the reaction rate rose, e.g., after 1.5 h at 150 °C 4-bromo-13,16-

difluorobenzo[s]picene 38b was converted in 1-bromo-as-indaceno[3,2,1,8,7,6-

pqrstuv]picene in near quantitative yield (Figure 20a). The temperature growth to 

250 °C did not enhance the selectivity of the process. It should be mentioned that in 

the comparison with solid-state approach neither the significant debromination nor 

side products were observed. The cyclodehydrofluorination of 5-bromo-13,16-
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difluorobenzo[s]picene 45 was carried out at 230 ºC for 1.5 h; the pure product 46 was 

obtained in near-quantitative yield (Figure 20b). 

 

Figure 20. HPLC profile (5PYE column, 1.0 mL min-1, 35 ºC) of: a) 1-bromo-as-indaceno[3,2,1,8,7,6-

pqrstuv]picene 39b as obtained after reaction detected at 320 nm (Tol:MeOH:1:1); b) 9-bromo-as-

indaceno[3,2,1,8,7,6-pqrstuv]picene 46 as obtained after reaction, detected at 380 nm (Tol:MeOH:1:1); 

c) 3-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene 39a as obtained after reaction, detected at 320 nm 

(Tol:MeOH:1:4).[98] Reproduced with permission from O. Papaianina, V. A. Akhmetov, et al., Angew. 

Chem. Int. Ed. 2017, 56, 4834. Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. 
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The condensation of 2-bromo-13,16-difluorobenzo[s]picene 38a at 150 °C resulted 

mainly in the monocyclized product. It can be explained by closeness of bromine 

functionality to the cove region and steric hindrance around the C-F bond. Higher 

conversion level of 38a into 3-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene 39a was 

gained after 1.5 h at 240°C; however, the presence of the monocyclized product was 

detected by HPLC analysis (Figure 20c). 

The solution of brominated indacenopicenes after cyclodehydrofluorination was 

concentrated. After addition of MeOH the pure product precipitated, was dried under 

reduced vacuum and characterized by NMR-spectroscopy and MS-spectrometry 

(Figure 21a, b, c). 

 

Figure 21. 1H NMR spectra of: a) 9-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene 46 (400 MHz, 

CD2Cl2, 293 K); b) 1-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene 39b (400 MHz, CD2Cl2, 293 K); c) 

3-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene 39a (300 MHz, CDCl3, 293 K).[98] Adapted with 

permission from O. Papaianina, V. A. Akhmetov, et al., Angew. Chem. Int. Ed. 2017, 56, 4834. 

Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. 

Cyclization of the 5,8-dibromo-13,16-difluorobenzo[s]picene 44 was performed in o-

DCB at 220 °C for 30 min and yielded the pure dibrominated bowl. 1H NMR spectrum 
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of 9,12-dibromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene 47 (Figure 22) was measured 

in C2D2Cl4 due to low solubility in common solvents for NMR spectroscopy (CDCl3 and 

CD2Cl2). X‐ray analysis confirmed the desired positions of bromine functionalities in 

47 (Figure 22). The single crystals were obtained by slow evaporation from the toluene 

solution. 

 

Figure 22. 1H NMR (400 MHz, C2D2Cl4, 353 K) spectrum of 9,12-dibromo-as-indaceno[3,2,1,8,7,6-

pqrstuv]picene 47 and its molecular structure as determined by X-ray diffraction analysis. Thermal 

ellipsoids are set at the 50%probability level.[98] Adapted with permission from O. Papaianina, V. A. 

Akhmetov, et al., Angew. Chem. Int. Ed. 2017, 56, 4834. Copyright 2017 Wiley‐VCH Verlag GmbH & 

Co. KGaA, Weinheim. 

It must be emphasized that all halogenated buckybowls were obtained as sole product 

(except 3-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene) without purification in 95-

98 % yield by the precipitation with methanol from concentrated reaction mixture. All 

indacenopicenes are air‐stable deep‐orange crystalline solids with moderate to low 

solubility in such solvents as toluene, dichloromethane and chlorobenzene. 

Synthetic route to diindenochrysenes bearing Cl, Br, and F functionalities started with 

naphthalene-2,6-dicarbaldehyde 48 (synthesis described in [149]). Arylethenes 49a-c 

were synthesized by double Wittig cross-coupling according to general procedure 
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utilizing the naphthalene-2,6-dicarbaldehyde 48 and respective triphenylphosphonium 

bromide (2-bromo-5-fluorobenzyl, 2-chloro-5-fluorobenzyl and 2,5-difluorobenzyl). 

Dibenzo[c,l]chrysenes 50a-c were prepared by double photocyclization of the 

corresponding arylethenes in toluene in accordance with modified protocol (Scheme 

34).[102] 

 

Scheme 34. Synthetic route to the halogenated diindenochrysenes. a) ArCH2PPh3Br (R=Br: 36%, 

R=Cl: 44%, R=F: 61%), t-BuOK, EtOH, reflux, 10 h; b) hν, I2, propylene oxide, cyclohexane(50a: 50 %; 

50b: 42 %; 50c: 47 %); c) γ-Al2O3, o-DCB, MW (51a: 240 ºC, 1 h, 95 %; 51b: 220 ºC, 0.5 h, 98 %; 51c: 

230 ºC, 1 h, 63 %).[98] 

In comparison with indacenopicenes, the intramolecular aryl-aryl coupling of 

diindenochrysenes required higher temperatures due to the enhanced strain of 

structure. The high-yielding HF-elimination was achieved by heating at 200-240 °C 

after several hours. The dibrominated 51a and dichlorinated bowls 51b were obtained 

in close to quantitative yields (direct precipitation with MeOH from toluene extract) by 

cyclization in o‐DCB at 240 °C for 1 h. The HPLC chromatography confirmed the purity 

of 51a and 51b after precipitation[98], and NMR spectroscopy verified the structure of 

51a and 51b (Figure 23a, b). 
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Figure 23. 1H NMR (400 MHz) spectra of: a) 3,9-dibromodiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene 

51a (C2D2Cl4, 353 K); b) 3,9-dichlorodiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene 51b (C2D2Cl4, 

353 K); c) 3,9-difluorodiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene 51c (CDCl2, 293 K).[98] Adapted 

with permission from O. Papaianina, V. A. Akhmetov, et al., Angew. Chem. Int. Ed. 2017, 56, 4834. 

Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. 

During cyclization of fluorinated dibenzo[c,l]chrysene 50c several products were 

observed. MS analysis showed that main product corresponds to 3,9-

difluorodiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene 51c. The presence of side 

product reveals that at high temperatures (above 200 °C) the C-F bond activation 

occurs both in the cove region and on the periphery of 1,4,9,12-tetrafluoro-

dibenzo[c,l]chrysene. In other words, the activation on periphery resulted in the 

coupling products (e.g., dimers). 

The temperature descent to 180 °C allowed to avoid dimerization, meanwhile the 

condensation of 50c stopped after the first ring closure and monocyclized product was 

observed as main product after reaction. During optimization of the reaction 

conditions, we determined that the highest yield was achieved by heating at 220 °C 

for 2 h (Figure 23c, Figure 24). 
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Figure 24. HPLC profile of 3,9-difluorodiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene 51c as obtained 

after reaction (220 ºC, 2 h, o-DCB), detected at 380 nm (5PYE column, 1.0 mL min-1, Tol:MeOH:3:7 

as eluent, 40 ºC). 

The crystal growth of diindenochrisenes encountered difficulties, namely the formation 

of long and thin needles of the chlorinated and fluorinated bowls 51b and 51c, which 

was inappropriate for the X‐ray crystallographic analysis. The crystals of the 

dibrominated bowl 51a were grown as the thin needles and showed a weak diffraction. 

In order to obtain suitable crystals, the phenyl groups were incorporated into 

diindenochrysene skeletone by double Suzuki cross-coupling leading to 52 in 95 % 

yield. The product 52 was characterized by 1H NMR spectroscopy (Figure 25). The 

single-crystal structure of 52 is displayed in the Figure 25 revealing the bowl‐shaped 

character of the diindenochrysene core. 

The molecular structures and electronic properties of halogenated diindenochrysene 

and indacenopicene were calculated at the DFT level of the theory. According to the 

calculations, the halogenation does not influence the C-C bond lengths and the bond 

orders with respect to the pristine bowls. Diindenochrysene is more curved than 

indacenopicene, the bowl depths appeared to be 1.78 and 1.62 Å respectively. That 

means that the diflurodibenzochrysenes possess the larger steric strain in comparison 

with the difluorobenzopicenes. The detailed description of DFT calculation can be 

found in [98]. 
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Figure 25. 1H NMR (400 MHz, CD2Cl2, 293 K) spectrum of 3,9-diphenyldiindeno[4,3,2,1-cdef:4',3',2',1'-

lmno]chrysene 52 and its molecular structure as determined by X-ray diffraction analysis. Thermal 

ellipsoids are set at the 50% probability level.[98] Adapted with permission from O. Papaianina, V. A. 

Akhmetov, et al., Angew. Chem. Int. Ed. 2017, 56, 4834. Copyright 2017 Wiley‐VCH Verlag GmbH & 

Co. KGaA, Weinheim. 

In collaboration with group of Prof. Petrukhina the limits of reduction and coordination 

abilities of the non-brominated as-indaceno[3,2,1,8,7,6-pqrstuv]picene 30 were 

investigated. Its reduction properties were studied by CV measurements. All 

measurements were carried out in o-DCB with Bu4NBF4 as a supporting electrolyte at 

the room temperatures. A cell was fitted with a working (platinum disc), a counter 

(platinum coil) and a reference (Ag/AgNO3) electrode.[150] 

The reduction potentials of two reversible one-electron reduction processes were 

found to be −1.92 and −2.29 V vs Fc+/0;[150] the cathodic and anodic currents were 

equivalent. These results illustrate chemical and electrochemical reversibility of both 

reduction steps and the stability of the corresponding mono- and dianionic states 

during the experiment. According to the electrochemical measurements the 

HOMO−LUMO gap at 2.8 eV (HOMO and LUMO energy level estimations −5.8 and 

−3.0 eV) was estimated. The value of the optical HOMO-LUMO gap was found to be 

2.4 eV (on the basis of the absorption band onset observed for 30 at 510 nm).[150] 
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Along with the electrochemical study, the reduction of 30, leading to the formation of 

the dianion, was conducted by alkali metals. 

Excess of Li, Rb and Cs was added to as-indaceno[3,2,1,8,7,6-pqrstuv]picene in THF 

medium. The formation of C26H12
− anion was accompanied by the change of colour 

from yellow-orange to green with the following coloration to deep purple resulted in 

formation of the C26H12
2−. The lithium-excess promoted the formation of C26H12

2− 

dianion only.[150] 

The use of rubidium and caesium counter-cations enabled the isolation of the 

corresponding dianion in the solid state. The X-ray analysis of [Rb+
4(18-crown-

6)3(C26H12
2−)2] and [Cs+

2(18-crown-6)2(THF)(C26H12
2−)] crystals demonstrated that 

product 53 possesses tetrameric structure of 30 with [Rb2(18-crown-6)]2+ dication, 

which fills the cavities of two indacenopicene bowls.[150] The complexation product of 

30 with caesium has an chain-extended structure. The binding pattern of C26H12
2− with 

caesium is similar to rubidium complex. The distance between the indacenopicenes 

after replacing of Rb+ ions with Cs+ ions has been enlarged.[150] 
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3.3 Indacenopicene-based Buckycather 

The complexation ability of the molecular receptors (tweezers, sensors) via non-

covalent π–π interactions with fullerenes due to their importance in the field of 

supramolecular and material chemistry appears to be of great interest.[151],[152],[153] The 

planar (porphyrins)[154] and bowl-shaped (subphthalocyanines[155], porphyrins[156], 

corannulenes[12]) molecules have been already used as host. However, the planar 

structure of porphyrins does not allow a proper complexation with spherical fullerenes. 

The decline of binding constant values and electronic interaction in complexes are 

observed. In contrast, the binding ability of bowl-shaped structures towards fullerenes 

is significantly higher. 

Sygula et al. [151,157] studied the association of fullerene with a wide-range of 

corannulene-based “buckycatchers”.[158] Deng-Chen Yang et al. proposed the 

molecular tweezer with two corannulene subunits linked by [5]helicene derivative. 

Such tweezer showed a strong complexation ability with C70 (Ka=64200±2600 M-1) 

compared to the fullerene C60 (Ka=2790±180 M-1).[159] 

In this chapter, we developed another type of the molecular receptor using two bromo-

indacenopicene, and tolyl as a tether. The synthesis of molecular receptor is depicted 

in the Scheme 35. Starting with 4-bromo-13,16-difluorobenzo[s]picene 38b, the 

indaceno[3,2,1,8,7,6-pqrstuv]picen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 54 

was prepared by the modified Miyaura borylation in 60-70 % yield [160]. The purification 

of 54 was conducted by flash chromatography (DCM:Hexane:1:2). Apart from the main 

product 54 we isolated a bright orange precipitate corresponding to dimer form of 

indacenopicene 55 (1,1'-bias-indaceno[3,2,1,8,7,6-pqrstuv]picene). The obtained side 

product was insoluble in the standard for PAHs solvents (benzene, toluene and 

dichloromethane). Surprisingly, it was found that dimer 55 can be dissolved in 1,1,2,2-

tetrachloroethane. Hence, we were able to measure 1H NMR-spectrum and to verify 

the structure of 55 (Figure 26). 
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Figure 26. 1H NMR spectrum of 55 1,1'-bias-indaceno[3,2,1,8,7,6-pqrstuv]picene (400 MHz, C2D2Cl4, 

293 K). 

The attempt to synthesize 56 was undertaken utilizing Suzuki cross-coupling of the 

bromoindacenopicene 38b with 1,3-dibromo-5-methylbenzene 57 in the presence of 

K2CO3 and Pd(PPh3)4 in Tol:MeOH mixture (Scheme 35). The reaction, monitored by 

HPLC chromatography, failed to conduct. Hence, after 16 h no product was detected. 

The replacement of the catalyst by Pd(dppf)Cl2 did not affect the formation of 56. 

 

Scheme 35. Synthetic route to indacenopicene-based “buckycatcher” 56. 
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Therefore, the buckycatcher was prepared by another synthetic approach (Scheme 

36). Miyaura borylation of 1,3-dibromo-5-methylbenzene 57 was carried out in 1,4-

dioxane in the presence of CH3COOK and Pd catalyst (yield: 48%). Following Suzuki 

cross-coupling of 1-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene with 2,2'-(5-

methyl-1,3-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) 58 yielded 53 % 

of the 4,4'-(5-methyl-1,3-phenylene)bis(benzo[s]picene) 56. 

 

Scheme 36. Synthetic route to 4,4'-(5-methyl-1,3-phenylene)bis(benzo[s]picene) 56. 

Structural elucidation of 56 was conducted by employing the NMR-spectroscopy in 

cooperation with Dr. Harald Maid. Implementing one- and two-dimensional NMR 

measurements (1H, 13C, DEPT, COSY, NOESY, ROESY, HETCOR, HMBC) the 

proton signals of buckycatcher were assigned to corresponding nuclei. The 1H NMR 

assignements are presented in the Figure 27. Additionally, new compound was 

characterized by the HRMS. 

In the previous studies, the complexation of fullerene with buckycatchers has been 

measured by NMR, UV and fluorescence spectroscopy.[159,161] Consequently, we 

investigated the photophysical properties of indacenopicene-based catcher. 

The UV-spectrum of 56 is depicted in the Figure 28 and illustrates the intence 

absorbtion in the region from 300 to 510 nm. The maximum absorption band is 

observed at 388 nm. The fluorescence emission is detected in range between 450 and 

has two maximum peaks at 526 and 557 nm. 
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Figure 27. 1H NMR (600 MHz, C2D2Cl4, 293 K) spectrum of 4,4'-(5-methyl-1,3-phenylene)bis(benzo[s] 

picene) 56. 

To analyze the interaction between buckycatcher 56 and C60 and C70 we carried out 

the titration experiments in toluene monitored by fluorescence spectroscopy. For this 

 

Figure 28. Absorption (UV) and fluorescence (FL) spectra of 4,4'-(5-methyl-1,3-phenylene)bis 

(benzo[s]picene) (0.32x10-4M) with 1:1 eq. of C60 and 1:1 eq. of C70. Insets: Photographs of 56 after 

addition of 1.0 eq. of C60 and C70 under day light and under irradiation by UV lamp at 365 nm. 
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purpose, three solutions were prepared: 

a) stock solution A of the host molecule 56 (buckycatcher), 0.32×10-4 M in toluene; 

b) solution B of the guest C60 in the solution A, 0.332×10-3 M; 

c) solution C of the guest C70 in the solution A, 0.266×10-3 M. 

The concentration of the host 56 was kept constant during the titration with the solution 

B or C (solution B or C was added into 1.0 mL of the solution A). The experimental 

details are summarized in the Table 3. For each guest solution (B and C) were 

collected 3 titrations with 19 data points. 

From the spectroscopic data the quenching of fluorescence while adding of the guest 

solution to the solution of buckycatcher can be observed (Figure 29 a,b). Such 

quenching behaviour, namely reduction of intensity, can be explained by decrease of 

free host’s concentration (fluorochrome) owing to the interaction between fullerene 

and catcher 56. Although, the degree of fluorescence quenching by C70 is larger than 

by C60 at the equal concentrations. 

Table 3. Summarized data of 4,4'-(5-methyl-1,3-phenylene)bis(benzo[s]picene) titration by C60 and C70 

solution in toluene. VA – volume of the stock solution (buckycatcher), μL; VB – volume of the C60 solution, 

μL; VC- volume of the C70 solution, μL; CA – concentration of the stock solution 0.32×10-4 M; C60 – 

concentration of the fullerene C60, M×10-4; C70 – concentration of the fullerene C70, M×10-4. 

VB, 

μL 

VA+B, 

μL 

C60, 

M×10-4 

C60/CA VC, 

μL 

VA+C, 

μL 

C70, 

M×10-4 

C70/CA 

0 1000 0.000 0.00 0 1000 0.000 0.00 

10 1010 0.033 0.10 10 1010 0.026 0.08 

20 1020 0.065 0.20 20 1020 0.052 0.16 

40 1040 0.013 0.40 30 1030 0.077 0.24 

50 1050 0.016 0.49 40 1040 0.010 0.32 

60 1060 0.188 0.59 50 1050 0.127 0.40 

80 1080 0.246 0.77 60 1060 0.151 0.47 

100 1100 0.302 0.94 70 1070 0.174 0.54 

110 1110 0.329 1.03 80 1080 0.197 0.62 

120 1120 0.356 1.11 90 1090 0.220 0.69 

140 1140 0.408 1.27 100 1100 0.242 0.76 

160 1160 0.458 1.43 120 1120 0.285 0.89 

180 1180 0.506 1.58 130 1130 0.306 0.96 
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240 1240 0.643 2.01 160 1160 0.367 1.15 

280 1280 0.726 2.27 190 1190 0.425 1.33 

320 1320 0.805 2.52 220 1220 0.480 1.50 

360 1360 0.879 2.75 250 1250 0.532 1.66 

400 1400 0.949 2.96 310 1310 0.629 1.97 

410 1410 0.965 3.02 380 1380 0.732 2.29 

For instance, in case of the fluorescence quenching for 1:1 host-to-guest equilibria by 

C60 led to 21 % decrease of intensity, while by C70 – to 81 % (Figure 29). This fact 

indirectly can be proved by naked-eye colour change (Figure 28) from light-yellow to 

bright-yellow (C60) and brown (C70). The most significant drop in fluorescence intensity 

was observed for 1:2 host-to-guest equilibria:90 % for C70 and 40 % for C60. This fact 

indicates a stronger π–π interactions between buckycatcher 56 and C70. 

 

Figure 29. Emission spectra (λex = 388 nm) of 4,4'-(5-methyl-1,3-phenylene)bis(benzo[s]picene) 56 

(0.32×10-4M) upon the addition of solution B (0.332×10-3M, a) and solution C in toluene (0.266×10-3M, 

b). Curves a’-s’: 0-3.0 eq., curves a’’-s’’: 0-2.3 eq. 

Figure 30 presents the Stern-Volmer plots at concentrations in range from 0 to 0.096 

and 0.097 mM L-1 for C60 and C70 respectively. Dependence of parameter F0/F from 

concentration of guest molecule C60 is resulted in linear plot which fitted to the linear 

Stern-Volmer equation, whereas dependence F0/F from C70 is nonlinear and appears 

to be the upward-sloping curve. It is known that quenching appears to be by static and 

dynamic mechanism. Thus, static quenching resulted in formation of fluorophore-

fluorescence quencher complex, while dynamic or collision quenching leads to reduce 

of fluorescence emission without complex formation. Commonly, both static and 

dynamic interaction mechanism of quenching are included. From the data in the Figure 
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30a it can be seen that by applying C60 as fluorescence quencher mostly static 

mechanism occurs. 

 

Figure 30. Plot of relative fluorescence intensity change of receptor 4,4'-(5-methyl-1,3-phenylene) 

bis(benzo[s]picene) 56 (0.32x10-4M) against: a) varied concentrations of C60 from 0.0 to 0.096 mM, 

λex=388 nm; b) varied concentrations of C70 from 0.0 to 0.097 mM, λex=388 nm. 

It is apparent from the nonlinear graph (Figure 30b) that another interaction 

mechanism is also presented, however, the static mechanism is dominant. The 

preliminary values of the binding constant can be estimated using Stern-Volmer 

equation. We determined the KSV constant for 1:1 host-to-guest equilibria of 56 with 

C60 and C70 in toluene. As depicted in the Figure 31a in the 1:1 complex (catcher:C60) 

binding constant corresponds to 8.65×103 M-1. In case of fullerene C70 the affinity 

towards fullerene is higher and was calculated to be 6.04×104 M-1. Hence, the the 

KC70/KC60 value was found to be 7/1. 

 

Figure 31. Plot of relative fluorescence intensity change of receptor 4,4'-(5-methyl-1,3-phenylene)bis 

(benzo[s]picene) 56 (0.32x10-4M) with increasing of a) C60 concentration R = 0.999, 3σ = 1.49×103M-1, 

K60 = 8.65×103M-1; b) C70 concentration R = 0.974, 3σ = 6.51×103 M-1, K70 = 6.04×104 M-1. 
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Comparison of the two results with published on other buckycatchers reveals the 

stronger binding affinity of fullerene C70.[151] 

Additionally, we employed the 1H NMR measurements for the complexation study. 

Preliminary investigations were carried out by adding to the solution of buckycatcher 

56 were added solution of C60 or C70. All experiments were done in C2D2Cl4. 

The NMR data indicated that the complex formation took place (Figure 32). Following 

the addition of fullerene C60 to the buckycatcher solution, the shielding of protons was 

observed. The majority of proton signals are shielded upfield, for instance, protons 

H21/H32 (δ = 0.15 ppm), H17/H36 (δ = 0.08 ppm) and H25/H28 (δ = 0.12 ppm), whereas 

only protons corresponding to methyl group and H53/H57 are shifted downfield by 

0.05 ppm (Figure 32). 

 

Figure 32. Partial 1H NMR spectra (400 MHz, C2D2Cl4, 298 K) of (a) free receptor 4,4'-(5-methyl-1,3-

phenylene)bis(benzo[s]picene) 56; (b-f) receptor 56 after addition of C60. 

At the same conditions, addition of C70 to the solution of buckycatcher also lead to 

changes in NMR spectra (Figure 33). Most of the proton peaks were shifted in upfield. 

Larger shifts were observed for protons H21/H32 (0.22 ppm after addition of 300 μL 

solution) and H25/H28 (0.20 ppm after addition of 300 μL solution). Protons of methyl 

group and H53/H57 were shifted downfield by 0.05 ppm and 0.04 ppm respectively. 
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Thus, preliminary NMR measurements also confirmed complexation of C60 and C70 

with buckycatcher 56. 

 

Figure 33. Partial 1H NMR spectra (400 MHz, C2D2Cl4, 298 K) of (a) free receptor 4,4'-(5-methyl-1,3-

phenylene)bis(benzo[s]picene) 56; (b-f) receptor 56 after addition of C70. 

In conclusion, we found that indacenopicene catcher 56 forms in toluene 1:1 

complexes with C60 and C70 with association constants of 8.65×10-3 and 6.04×104M-1 

respectively. 
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3.4 Introduction of Indene Fragments into Chrysene and 

Pyrene Derivatives 

The several reports about the class of indenopyrenes have been presented in 

literature by now. Scott and co-workers [59] presented a synthetical way including 

Suzuki cross-coupling and intramolecular Pd-catalyzed C-H arylation from 

dibromopyrenes with yields up to 50%, however for tri- and tetrabromopyrenes 

reaction yields were very low (less than 5%). F. Eisenhut et al. reported synthesis of 

diindenopyrene on surface of Au(111) [162] that allows to obtain the “preprogrammed” 

nonalternant polyaromatic hydrocarbons. 

In this research we presented the aluminium oxide mediated synthesis of di- and 

tetraindenopyrenes. Similar approach wa applied for introduction additional indene 

fragments in diindenochrysenes. 

The strategy for synthesis of diindeno[1,2,3-cd:1′,2′,3′-jk]pyrene 60 is shown on the 

Scheme 37. Firstly, the bromination of pyrene was carried out in CHCl3 with 

subsequent recrystallisation from xylene (11.8 g, 33 %).[148] Suzuki coupling cross-

coupling of 1,6-dibromopyrene 24 with 2-fluorophenylboronic acid 58 gave the 1,6-bis-

(2-fluorophenyl)pyrene 59 in 63 % yield (Scheme 37). 

 

Scheme 37. Synthetic route to diindeno[1,2,3-cd:1′,2′,3′-jk]pyrene 60: a) Br2, CHCl3, rt, 36 %; b) F-

PhB(OH)2 58, K2CO3, Pd(PPh3)4, Tol:MeOH:2:1, reflux, N2, 16 h, 63 %; c) γ-Al2O3, o-DCB, MW, 240 ºC, 

1.5 h. 

Cyclodehydrofluorination of 1,6-bis(2-fluorophenyl)pyrene 59 was conducted at 240ºC 

for 1.5 hour in o-DCB medium. After the reaction the yellow crystals of diindeno[1,2,3-

cd:1′,2′,3′-jk]pyrene 60 precipitated in o-DCB. The obtained crystals of 60 were 

suitable for X‐ray crystallographic analysis, which confirmed structure of product 

(Figure 34). 
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Figure 34. HPLC profile of reaction mixture as obtained (240 ºC, 1.5 h, o-DCB) detected at 300 nm (5 

PYE column, Tol:MeOH:2:8, 1.0 mL min-1, 40º C). Inset: The molecular structure of the diindeno[1,2,3-

cd:1′,2′,3′-jk]pyrene 60 as determined by X‐ray diffraction analysis. Thermal ellipsoids are set at the 

50 % probability level. 

Additionally, o-DCB solution was analyzed by HPLC chromatography and it was found 

that main peak (tR = 14.5 min) corresponds to the 60 (Figure 34). 

Tetraindeno[1,2,3-cd:1',2',3'-fg:1'',2'',3''-jk:1''',2''',3'''-mn]pyrene 63 was prepared 

according to the same procedure. (Scheme 38). The Suzuki cross-coupling between 

1,3,6,8‐tetrabromopyrene 61 and 2-fluorophenylboronic acid 58 in presence of Pd 

catalyst afforded the 1,3,6,8-tetrakis(2-fluorophenyl)pyrene 62 in 75 % yield. 

 

Scheme 38. Synthetic route to tetraindeno[1,2,3-cd:1',2',3'-fg:1'',2'',3''-jk:1''',2''',3'''-mn]pyrene 63: a) F-

PhB(OH)2 58, K2CO3, Pd(PPh3)4, Tol:MeOH:2:1, reflux, N2, 16h, 75%; b) γ-Al2O3, o-DCB, MW, 240 ºC, 

1.5 h. 
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In the next step, the cyclodehydrofluorination of 1,3,6,8-tetrakis(2-fluorophenyl)pyrene 

58 was carried out at 240 ºC for 1.5 h in o-DCB medium. In this case, we observed a 

mixture of products on HPLC chromatogram that can be assigned to different stages 

of multi-fold cyclization (Figure 35). The peak at tR = 4.5 min was identified as a product 

of three-fold cyclization (based on comparison of the obtained UV-spectrum with the 

data presented in [59]). In all subsequent experiments we did not succeed in 

synthesizing of pure product 63. Indeed, we assume that substantial part of 

synthesized product 63 was adsorbed on the alumina surface (red-coloured). Soxhlet 

extraction of product 63 with toluene/o-DCB mixture from aluminium oxide did not 

allowed to extract the product. This result can be explained by the extremely low 

solubility of tetraindenopyrene. Later it was found that the product can be partially 

extracted by the long-time extraction with o-DCB. 

 

Figure 35. HPLC profile of reaction mixture as obtained (250 ºC, 1.5 h, o-DCB) detected at 360 nm (5 

PYE column, toluene as eluent, 1.0 mL min-1, 60 ºC). 

Introduction of additional indene fragments in diindenochrysene molecule appears to 

be difficult due to an enhanced strain in comparison with indenopyrenes. In order to 

investigate this process, the synthetic route presented in Scheme 39 was chosen. As 

starting material, the 3,9-dibromodiindenochrysene 51a was selected. Suzuki cross-

coupling of 51a with 2-fluorophenylboronic 58 or 2-fluoro-5-methylphenylboronic acid 

64 was carried out in Tol:MeOH mixture in the presence of Pd catalyst. The 3,9-bis(2-

fluorophenyl)diindenochrysene 65a and the 3,9-bis(2-fluoro-5-methylphenyl)diindeno-

chrysene 65b were obtained in 95 and 92 % yield correspondingly. 
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Scheme 39. Synthetic route to 66a and 66b: a) R-PhFB(OH)2 58 or 64, K2CO3, Pd(PPh3)4, 

Tol:MeOH:2:1, reflux, N2, 16 h (65a: 95 %; 65b: 92 %); b) γ-Al2O3, o-DCB, MW, 240 ºC, 16 h (66a: 

35 %). 

Initially, we used 66a for alumina‐promoted HF elimination. The reaction proceeded 

after 3 h (o-DCB, 240 ºC). Figure 36 illustrates the HPLC chromatogram, which 

contains three major peaks corresponding to the starting material 65a (tR = 6.75 min), 

the product of one-fold CDHF 67a (tR = 9.92 min) and the product of two-fold CDHF 

66a (tR = 14.51 min). 

 

Figure 36. HPLC profile as obtained after reaction (240ºC, 3 h, o-DCB), detected at 360 nm (PBr 

column, Tol:MeOH:1:1 as eluent, 1.0 mL min-1, 35ºC). Inset: the reaction mixture as obtained in the 

microvawe vial. 
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The increase of the reaction time to 16 h remarkably improved the yield of product 

(Figure 37). The semi-preparative chromatography was employed for the separation 

of reaction products (HPLC: PBB column, Tol:MeOH:7:3 as eluent, 5.0 mL min-1, 

35 ºC). Both products 66a and 67a were identified and characterized by NMR-

spectroscopy (Figure 38) and mass spectrometry. 

 

Figure 37. HPLC profiles as obtained after reaction at 230 ºC for 16 h in o-DCB detected at 360 nm 

(PBr column, Tol:MeOH:7:3 as eluent, 1.0 mL min-1, 35ºC). UV-Vis spectra: product of two-fold CDHF 

66a (Inset a) and product of one-fold CDHF 67a (Inset b) in Tol:MeOH:7:3. 

Previously, we have observed that introduction of methyl group in para-position to 

fluorine (in 1-(2-fluorophenyl)-naphthalene) can influence the C-F bond activation and  

 

Figure 38. 1H NMR spectra (400 MHz, 298 K, CD2Cl2) of 66a. 
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increase the yield of CDHF. For this purpose, we used methylated homologue of 

diindenochrysene derivative. However, considerable improvements in product yield 

was not achieved. The product of two-fold CDHF 66b was purified by semi-preparative 

chromatography and characterized by means of NMR and MS. 

The photophysical properties of bowls benzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo 

[6,7]-as-indaceno[8,1,2,3-klmno]chrysene 66a and 3,11-dimethylbenzo[6,7]-as-inda-

ceno[8,1,2,3-bcdef]benzo[6,7]-as-indaceno[8,1,2,3-klmno]chrysene 66b in DCM at 

room temperature were investigated and elucidated by UV/Vis and fluorescence 

spectroscopy (Figure 39). Both compounds demonstrate almost identical absorption 

and emission profiles with the significant absorption maximum at 341 and 475 nm, 

emission peaks at 575 and 603 nm and a shoulder starting at approximately 630 nm. 

Additionally, we conducted the preliminary experiments to investigate the 

complexation between benzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-as-indaceno 

[8,1,2,3-klmno]chrysene 66a and fullerene C60. However, no evidence of complexation 

was found. 

 

Figure 39. a) UV spectra of benzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-as-indaceno[8,1,2,3-klm 

no]chrysene 66a and 3,11-dimethylbenzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-as-indaceno 

[8,1,2,3-klmno]chrysene 66b in DCM; b) UV (solid) and fluorescence (dot) spectra of 66a and 66b in 

DCM. 

Molecular structure of the 66a was determined by X-ray diffraction analysis of a single 

crystal (Figure 40). In the crystal the bowl-shaped form with the maximum bowl depth 

of 5.2 Å remained, which is significantly higher than that of the 3,9-diphenyldiindeno 

[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene 52 (1.78 Å). 
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Figure 40. The molecular structure of the benzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-as-

indaceno[8,1,2,3-klmno]chrysene 66a as determined by X‐ray diffraction analysis. Thermal ellipsoids 

are set at the 50 % probability level. 

We proposed a two-step method for synthes of the highly curved buckybowls 

introducing the indene fragments by the selective C-F bond activation. Such structures 

can be formed by easily obtained 3,9-dibromodiindenochrysene under mild conditions. 

This simple approach allows to synthesize molecules with extremely large bowl depth. 
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3.5 Catalyst-Free Cyclodehydrofluorination of PAHs 

3.5.1 Synthesis of Model Compounds for Cyclodehydrofluorination 

For analysis of cyclodehydrofluorination process four different model compounds were 

chosen, which were synthesized for investigation of multi-fold HF-elimination (from 

single till quadruple) and depicted in the Figure 41. 

 

Figure 41. Model reactions for HF elimination study: a) 1-fluorobenzo[c]phenanthrene 68 to benzo[ghi] 

fluoranthene 69; b) 13,16-difluorobenzo[s]picene 30 to as-indaceno[3,2,1,8,7,6-pqrstuv]picene 31; c) 

1,7,13-trifluorodecacyclene 70 to circumtrindene 71; d) 1,7,13,19-tetrafluorotridecacyclene 72 to bowl 

C48H16 73. 

The precursors 1-fluorobenzo[c]phenanthrene[163] 68 and 13,16-difluorobenzo[s]-

picene[102] 30 were synthesized according to the known procedures. Precursors 
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1,7,13-trifluorodecacyclene 70 and 1,7,13,19-tetrafluorotridecacyclene 72 were 

synthesized in eight steps (Scheme 40). As starting material for both molecules, the 

commercially available 7-fluoro-1-tetralone 74 was used. It was converted to the 

corresponding tetrahydronaphthalene 75 by Wittig reaction. The isomerisation of 7-

fluoro-1-methylene-1,2,3,4-tetrahydronaphthalene in presence of TsOH into 6-fluoro-

4-methyl-1,2-dihydronaphthalene 76 and further dehydrogenation by DDQ gave 91 % 

of the 7-fluoro-1-methylnaphthalene 77. After benzylic bromination of 77 into 1-

(bromomethyl)-7-fluoronaphthalene 78 the bromine functionality was substituted by 

the cyanide ion in presence of TBAB to produce nitrile 79 in 96 % yield. Hydrolysis of 

2-(7-fluoronaphthalen-1-yl)acetonitrile 79 in presence of the acetic and sulfuric acids 

to the carboxylic acid 80 (2-(7-fluoronaphthalen-1-yl)acetic acid), followed by 

transformation in acid chloride with thionyl chloride and further Friedel-Crafts 

cyclization yielded 87% of 8-fluoroacenaphthylen-1(2H)-one 81. 

 

Scheme 40. Reaction pathway to fluorinated decacyclene 70 and tridecacyclene 72: a) CH3PPh3Br, 

Et2O, rt, 15 h, 97 %; b) TsOH, DCM, rt, 15 h, 99 %; c) DDQ, DCM, rt, 2 h, 91 %; d) NBS, DBPO, CCl4, 

1 h reflux, 88 % e) KCN, TBAB, DCM, H2O, rt, 15 h, 96 %; f) H2SO4, AcOH, reflux, 3 h, 55 %; h), j) 

SOCl2, 1 h, reflux, then AlCl3, DCM, rt, 3 h, 87 %. 

Synthesis of the fluorinated decacyclene 70 and tridecacyclene 72 obtained according 

to [164] is depicted in the Scheme 41. The aldol polymerization of 8-

fluoroacenaphthylen-1(2H)-one 81 was carried out using titanium tetrachloride in hot 

o-DCB. After the work-up two fractions were obtained: one fraction mainly consisted 

of 1,7,13-trifluorodecacyclene 70 and the other – of 1,7,13,19-tetrafluorotrideca-

cyclene 72. For the work-up of the first fraction we applied the extraction technique 

reported by Scott et al. [165] 
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Scheme 41. Reaction pathway to fluorinated decacyclene 70 and tridecacyclene 72. 

The first fraction was dissolved in 3 mL of toluene and adsorbed onto alumina; further 

it was placed into a Soxhlet extractor. At the beginning the dark coloured impurities 

were extracted with dichloromethane and removed. The full extraction of trimer 70 

occurred after 16 hours, and the yellow crystals were observed in the solution of 

dichloromethane. In the Figure 42 the HPLC chromatogram of obtained product after 

extraction is displayed; peak at tR = 7.9 min corresponds to the desired 1,7,13-trifluoro-

decacyclene. In spite of the low solubility of fluorinated decacyclene we succeeded in 

measurement of the 1H NMR spectrum (Figure 43). 

 

Figure 42. HPLC profile of fluorinated decacyclene 70 after extraction with dichloromethane, detected 

at 350 nm (PBr column, Tol:MeOH:1:1 as eluent, 1.0 mL min-1, 40 ºC). UV-Vis spectrum of 1,7,13-

trifluorodecacyclene 70 in Tol:MeOH 1:1. 
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The second fraction was dissolved in a small amount of acetone, and then MeOH was 

added. The formed precipitate was centrifuged, decanted and the solid product was 

dried in vacuo. The HPLC chromatogram of 1,7,13,19-tetrafluorotridecacyclene 72 

after purification is depicted in the Figure 44 (tR = 4.7 min). The obtained product was 

characterized by NMR spectroscopy and mass spectrometry. In the Figure 45 is 

presented 1H NMR spectrum of 1,7,13,19-tetrafluorotridecacyclene. 

 

Figure 43. 1H NMR spectrum (400 MHz, C2D2Cl4, 298 K) of 1,7,13-trifluorodecacyclene 70. 

All model molecules possess either a cove or fjord region where a selective ring 

closure via HF elimination could occur. In case of a cove region closure a new 

pentagonal ring is formed, while in case of a fjord region – a hexagonal one. 

The 1-fluorobenzo[c]phenanthrene 68 was used as a reference compound for 

synthesis of the smallest PAHs possessing a cove region. Previously, it was shown 

that precursor undergoes intramolecular condensation via HF-elimination under FVP 

conditions.[163] Although, benzo[ghi]fluoranthene 69 has a planar geometry, 

introduction of pentagon in its structure leads to strain in molecular geometry. 
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Figure 44. HPLC profile of fluorinated tridecacyclene 72 after purification, detected at 350 nm (PBr 

column, Tol:MeOH:1:1 as eluent, 1.0 mL min-1, 40 ºC). UV-Vis spectrum of 1,7,13,19-tetrafluorotrideca-

cyclene 72 in Tol:MeOH 1:1. 

The 13,16-difluorobenzo[s]picene 30 was chosen for double-CHDF via cove region 

closure resulting in formation of the known bowl-shaped as-indaceno[3,2,1,8,7,6-

pqrstuv]picene 32.[102] The fluorinated decacyclene 70 and tridecacyclene 72 were 

applied for the triple- and quadruple- fjord region closure. It is worth to mention that 

the triple CDHF in 1,7,13-trifluorodecacyclene 70 should lead to the formation of 

fullerene’s fragment synthesized by FVP approach from chlorinated analogue of 

1,7,13-trifluorodecacyclene 70.[54,166] The 1,7,13,19-tetrafluorotridecacyclene 72 is a 

precursor for non-classical bowl C48H16 72 containing an eight-membered ring in the 

structure. According to our literature search the buckybowls, possessing formally 

antiaromatic eight-membered ring in their structure were not described. 
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Figure 45. 1H NMR spectrum (400 MHz, CDCl3, 298 K) of 1,7,13,19-tetrafluorotridecacyclene 72. 

The study of CDHF process was carried out theoretically (computation of transition 

states for each CHDF step at PBE0/cc-pVDZ level of theory) and experimentally (on-

surface cyclization). 

3.5.2 Computation Study 

In collaboration with Dr. A.Yu. Rogachev the computational study was carried out. The 

activation barrier of the CDHF reaction of the 1-fluorobenzo[c]phenanthrene 68 is 

79.0 kcal mol-1, whereas the activation barrier of H2
 elimination in the non-fluorinated 

analogue of the 68 was found to be significantly higher (110.6 kcal mol-1).[163] 

Additionally, the influence of substituents and their position on the CDHF efficiency as 

well as on 1,2-elimination was studied (Scheme 42). 
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Scheme 42. Cyclodehydrofluorination of fluorinated 1-benzo[c]phenanthrene’s analogues (pathway A 

– condensation; pathway B – 1,2-elimination reaction). 

According to the obtained data (Table 4), the introduction of F and Cl functionalities in 

ortho-position to the fluorinated carbon in a cove region reduces the activation barrier 

from 82.7 kcal mol-1 to 77.8 kcal mol-1 (chlorine substituent) and to 77.5 kcal mol-1 

(fluorine substituent). Substituents in meta- and para-position do not have significant 

influence on reaction barrier as well as the methyl groups in same position. In the 

tetrafluorinated analogue of 68 the CDHF barrier was smaller (73.7 kcal mol-1) in 

comparison with the compound 68. In the 1,2-elimination the halogen functionality in 

para-position to the fluorinated carbon in a cove region has the greatest impact on a 

reaction barrier. 

Table 4. The effect of the substituents on the cyclodehydrofluorination and 1,2-elimination in fluorinated 

benzo[c]phenanthrene. (All energies are in kcal mol-1). 

Com-

pound 

Erel 

(TS1) 

Erel + 

ZPE 

(TS1) 

Erel 

(P1) 

Erel + 

ZPE 

(P1) 

Erel 

(TS2) 

Erel + 

ZPE 

(TS2) 

Erel 

(P2) 

Erel + 

ZPE 

(P2) 

A1 82.7 79.0 4.8 2.3 93.2 88.1 81.0 76.2 

A2 77.5 74.0 -0.7 -3.1 - - - - 

A3 77.1 73.7 -2.0 -4.5 - - - - 

A4 81.4 77.9 4.6 2.0 - - - - 
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A5 77.8 74.2 1.1 -1.4 - - - - 

A6 83.3 79.7 3.8 1.3 92.9 88.0 81.4 76.6 

A7 82.3 78.5 3.3 0.7 93.2 88.1 80.9 76.1 

A8 80.9 77.3 2.8 0.3 93.3 88.4 81.3 76.5 

A9 81.5 77.9 4.6 2.1 90.6 85.9 79.4 74.8 

A10 83.6 79.9 5.8 3.2 92.2 87.1 79.8 75.1 

A11 81.7 78.1 4.8 2.3 91.7 86.9 80.5 75.8 

In the larger systems (13,16-difluorobenzo[s]picene 30, 1,7,13-trifluorodecacyclene 70 

and 1,7,13,19-tetrafluorotridecacyclene 72) the significant differences in the values of 

activation barriers of the CDHF were detected. In the 13,16-difluorobenzo[s]picene 

(Scheme 43) the first HF elimination barrier was found to be 4.7 kcal mol-1 smaller 

(74.7 kcal mol-1) in comparison to the 1-fluorobenzo[c]phenanthrene 68, while the 

second HF elimination is less favourable (87.5 kcal mol-1). 

 

Scheme 43. Pathway for cyclodehydrofluorination of 13,16-difluorobenzo[s]picene 30. 

In the CDHF of the 1,7,13-trifluorodecacyclene 71 (Scheme 44) the reaction barrier 

for the first cyclization reduced to 68.4 kcal mol-1 and the increase in energy for the 

second step (72.5 kcal mol-1) was observed. The activation barrier of 61.7 kcal mol-1 

was found for the last step of CDHF. It is worth to mention that pathway to the most 

strained system (71) does not include high energy barriers. 

 

Scheme 44. Pathway for cyclodehydrofluorination of 1,7,13-trifluorodecacyclene 70. 
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The CDHF of 1,7,13,19-tetrafluorotridecacyclene 72 is more complicated and can 

include different alternative pathways (Scheme 45). In contrast to the described 

systems 30, 68 and 70 the first cyclization in 1,7,13,19-tetrafluorotridecacyclene 72 is 

highly unfavourable (88.0 kcal mol-1), while the next three cyclization steps presume 

lower activation barriers (45-55 kcal mol-1). 

 

Scheme 45. Possible pathways for cyclodehydrofluorination of 1,7,13,19-tetrafluorotridecacyclene 72. 

Although the 1,7,13-trifluorodecacyclene 70 and 1,7,13,19-tetrafluorotridecacyclene 

72 undergo similar fjord region closure, the reaction pathways reveal different 

behaviours. 

3.5.3 On-surface Cyclization of PAHs 

The efficient on-surface cyclodehydrogenation of PAHs in fjord region was carried out 

on Cu(111)[167] and Au(111)[145] surfaces. At the beginning, the cyclodehydrogenation 

in cove region on Au(111) or Cu(111) appeared to be unsuccessful, hence the Pt(111) 

surface was used as a stronger catalyst[65]. For instance, the cyclodehydrogenation of 

fullerene precursor C84H42 on Pt(111) resulted in isomer-pure fullerene C84.[168] 

In collaboration with Prof. Dr. R. Fasel the cyclodehydrofluorination experiments on 

atomically clean Au (111) were performed. The Au (111) surface was chosen in order 

to minimize its catalytic effect on reaction. Here are presented the preliminary results 

of the conducted investigations. 

The deposition of 13,16-difluorobenzo[s]picene 30 at the room temperature led to 

polymers, which were stabilized by weak van der Waals interactions. By annealing at 
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250 °C a small amount of product 31 was observed. The temperature increase to 

280 °C resulted in complete desorption of reagent 30. Due to a small size of molecules 

and their easy desorption from the surface, the high conversion to as-

indaceno[3,2,1,8,7,6-pqrstuv]picene 31 failed to complete. We can conclude that the 

STM experiments on the gold surface at relatively low temperatures allow to provide 

selective HF-elimination. Similar results were obtained for the cyclodehydrogenation 

on Cu(111) surface. 

The 1,7,13-trifluorotridecacyclene 70, deposited on the gold surface, showed the 

complex supramolecular assembling due to its non-planar geometry. The 1,7,13,19-

tetrafluorotridecacyclene 72 underwent cyclization via HF elimination already at 

280°C. The products of the single-, double- and triple- HF elimination (Scheme 46) 

were observed by STM, and no direct evidences of the quadruple HF elimination not 

found. This fact could be explained by non-planar structure of precursor leading to 

aggregation or desorption from the surface. 

 

Scheme 46. CDHF of 1,7,13,19-tetrafluorotridecacyclene 72 under STM conditions. 

The findings of STM experiments indicate that aromatic C-F bond in cove or fjord 

regions is active and can undergo the HF elimination at relatively low temperatures. 

Apart from the STM experiments we carried out the CDHF of 1,7,13,19-

tetrafluorotridecacyclene in presence of aluminium oxide. The mass measurements 

confirmed the formation of C48H16 bowl 73, although no product peak was detected in 

the HPLC chromatograms. We can assume that the obtained bowl 73 is instable and 

undergoes decomposition. 

3.5.4 Synthesis of Brominated Decacyclene and Tridecacyclene 

The palladium-catalyzed arylation is known as a powerful method for the synthesis of 

polyarenes, particularly, of geodesic PAHS. Scott et al. developed the reaction 

conditions for the annulation of PAHs employing the Pd(0) complex (in situ formation 
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using Pd2(dba)3 and PCy3).[141],[47],[169] Taking this into account, we the prepared 

precursors for such cyclization and applied the same approach as for synthesis of the 

1,7,13-trifluorodecacyclene 70 and 1,7,13,19-tetrafluorotridecacyclene 72. 

The synthesis of the precursors 90 and 91 started with the bromination of the 

commercially available 3,4-dihydro-1(2H)-naphthalenone. The obtained 7-bromo-1-

tetralone 82 underwent the same transformations as 7-fluoro-1-tetralone 74 (Scheme 

47). 

 

Scheme 47. Reaction pathway to brominated decacyclene 90 and tridecacyclene 91. a) CH3PPh3Br, 

Et2O, rt, 15 h, 86 %; b) TsOH, DCM, rt, 15 h, 94 %; c) DDQ, benzene, reflux, 3 h, 27 %; d) NBS, DBPO, 

CCl4, 1 h, reflux, 88 % e) KCN, TBAB, DCM, H2O, rt, 15 h, 98 %; f) H2SO4, AcOH, reflux, 3 h, 66 %; h), 

j) SOCl2, 1 h, reflux, then AlCl3, DCM, rt, 3 h, 43 %. 

Brominated tridecacyclene was synthesized according to [170]. Titanium chloride in hot 

o-DCB was used for the aldol polymerisation of 8-bromoacenaphthylen-1(2H)-one 89 

(Scheme 48). 

 

Scheme 48. Reaction pathway to brominated tridecacyclene 90. 
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After work-up the product 90 was analyzed by HPLC and NMR-spectroscopy. In the 

HPLC-chromatograms (Figure 46) the three peaks with different retention times (24.4, 

25.9 and 27.3 min) were found that corresponded to the conformational isomers of 90. 

 

Figure 46. a) HPLC profile of brominated tridecacyclene 90 after purification (detected at 350 nm, PBr 

column, 1.0 mL min-1). Green: Tol:MeOH:3:1, 40 ºC; blue: Tol:DCM:MeOH:30:20:50, 30 ºC; red: 

Tol:MeOH:1:1, 40 ºC; b) UV-Vis spectra of 90 isomers in Tol:DCM:MeOH:30:20:50, 35ºC. 

1H and 13C NMR spectra were measured at room temperature in 1,1,2,2-

tetrachloroethane-d2 exibit wide range of peaks, corresponding to different 

conformational isomers. 

 

Figure 47. Partial 1H NMR spectra (500 MHz, C2D2Cl4) of tridecacyclene 90 at different temperatures. 
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Compound 90 was investigated by variable-temperature experiments (Figure 47). The 

temperature growth from 298 to 373 K induced the broadening, shifting towards each 

other and sharpening of the major peaks. However, even at 373 K an interconversion 

of isomers was not observed.  
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3.6 Synthesis of Bowl-Shaped Acene Structures 

In recent years there has been an increasing amount of interest in the field of 

nanographenes and PAHs bearing the zig-zag periphery. The interest to zig-zag PAHs 

arises from their unique electronic properties, reactivity and stability, which can be 

applied in the field-effect transistors and spintronic devices. 

The aim of this research is to develop a new approach for the synthesis of extended 

acene-type structures. As an object of the study was selected 2.3,8.9-

dibenzathanthene 94 (DBATT). 

Our first attempts to synthesize 94 are demonstrated in the Scheme 49. Pd-catalyzed 

two-fold Suzuki-Miyaura cross-coupling of 1,6-dibromopyrene 24 with 2-

formylphenylboronic 92 gave 1,6-bis(2-formylphenyl)pyrene 93 in 60 % yield. To 

conduct the intramolecular cyclization, we employed the pure sulfuric acid treatment 

at the different temperatures (from room temperature to 80 ºC). According to the HPLC 

measurements, the product 94 was obtained in near to 50 % yield. Therefore, this 

approach can be considered as an appropriate pathway of synthesis. 

 

Scheme 49. First attempts to synthesise DBATT 94 by acid-promoted intramolecular cyclization. 

Furthermore, the reaction was repeated and scaled up to 55 mg. The product was 

isolated by HPLC (Figure 48) and characterized by mass spectrometry. However, this 

approach did not allow to synthesize target product 94 in the yield higher than 50 %. 

In cooperation with Dr. D. Lungerich the reaction conditions for acid-promoted 

reductive intramolecular cyclization of aldehydes were optimized.[171] As a reducing 

agent for reaction the SnCl2*2H2O was chosen. Dichloromethane, which provides 

the best level of the conversion was used as solvent. 
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Figure 48. HPLC profile of DBATT 94 after purification detected at 580 nm (5-PBB-R column, Tol as 

eluent, 5.0 mL min-1, 40 ºC). Inset: UV-Vis spectrum of 94 in toluene solution. 

Moreover, the addition of 2 vol% of a saturated SnCl2*2H2O solution in i-PrOH 

significantly improved the reaction yields. Thus, presence of i-PrOH slows down the 

conversion and increases the selectivity of reaction. 

It was also found out that the 2:1 ratio of the SnCl2/i-PrOH to H2SO4 is issential for 

the intramolecular cyclization. The work-up includes the following steps: treatment 

with a 1 M hydrochloric acid, extraction with DCM and precipitation in MeOH. Pure 

product was obtained in near-quantitative yields, as determined by the HPLC 

analysis. It is worth to mention that all reactions were carried out under ambient 

atmosphere at the room temperature. All solvents do not need any purification or 

degassing and can be used as obtained. Additionally, the reaction can be scaled-up 

(0.44 g of DBATT from the 0.50 g of 93). The only condition, which must be kept, is 

avoiding of the direct light irradiation due to the decomposition of DBATT under the 

light.[172] 

The optimized conditions of acid-promoted intramolecular cyclization were applied 

not only for synthesis of 94, but also for more extended acenes (Figure 49). Bis-

pentacene 95 was synthesized from 1,6-bis(3-formylnaphthyl)pyrene 96 precursor 

in 97 % yield. The functionalization of 1,6-bis(2-formylphenyl)pyrene 93 by 

introduction of bromine in 3rd and 8th positions allows to synthesize the DBATT’s 
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derivatives. Thus, bis-phenyl- and bis-pyridinyl DBATTs were obtained from 1,6-bis- 

(2-formylphenyl)-3,8-diphenylpyrene 97 and 1,6-bis(2-formylphenyl)-3,8-bis(4-pyridyl) 

pyrene 98 in 97 and 95 %yield respectively.[171] 

 

Figure 49. An overview of zig-zag nanographenes formed by acid-promoted reductive intramolecular 

cyclization. 

The intramolecular cyclization of the tetrakis-acene precursors, which were 

synthesized by four-fold Suzuki cross-coupling of 1,3,6,8-tetrabromopyrene 61 with 

the corresponding aromatic aldehydes, gave tetrakis-tetracene 99 and tetrakis-

pentacene 100 in 96 % yield. 

We were facing the difficulties in the structure confirmation since the obtained 

molecules were highly insoluble, and hence the standard methods of characterization 

could not be applied. Consequently, the scanning tunneling microscopy (STM) was 

chosen as an instrument for structure elucidation of products. For this purpose, the 

samples of polyacenes were were sublimed in ultra-high vacuum at the temperature 

range 300-395 °C onto metal surface (Au(111) or Ag(111). The STM measurements 
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confirmed structure of tetrakis-tetracene 99, tetrakis-pentacene 100 and bis-

pentacene 96. Notably, tetrakis-pentacene and bis-pentacene adsorbed as single 

molecules on Au(111) and Ag(111), whereas the tetrakis-tetracene formed the self-

assembly on Au(111).[171] 

The optimized reaction protocol of acid-promoted reductive intramolecular cyclization 

was applied for the introduction of acene species in the bowl-shaped structures. The 

1,6-bis(2-fluorophenyl)pyrene 59 and 3,9-dibromodiindenochrysene 51a were 

selected as the building blocks. 

1,6-bis(2-fluorophenyl)pyrene 59 was brominated with bromine in chloroform yielding 

a mixture of mono- and dibrominated products. The recrystallisation of products 

from xylenes did not lead to the pure dibrominated 101 (Scheme 50). 

 

Scheme 50. Synthetic way to indeno[1,2,3-de]indeno[1',2',3':4,5]tetraceno[2,1,12,11-opqra]tetracene 

106. a) Br2, CHCl3; b) PhCHO, 5 % Pd(PPh3)4, K2CO3, Tol:MeOH:2:1, reflux, N2, 16 h; c) 2 vol% sat. 

SnCl2*2H2O/i-PrOH, 1 vol% conc. H2SO4, DCM, rt, quant.; d) γ-Al2O3, o-DCB, MW, 180ºC. 

Nevertheless, both products were converted into 2,2'-(3,8-bis(2-fluorophenyl)pyrene-

1,6-diyl)dibenzaldehyde 102 and 2-(3,8-bis(2-fluorophenyl)pyren-1-yl)benzaldehyde 

103 by Suzuki cross-coupling with 2-formylphenylboronic acid 92. The both products 

– 2,2'-(3,8-bis(2-fluorophenyl)pyrene-1,6-diyl)dibenzaldehyde 104 and 2-(3,8-bis(2-
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fluorophenyl)pyren-1-yl)-benzaldehyde 105 – were isolated by HPLC chromato-

graphy (Scheme 50). 

The intramolecular cyclization of 102 was conducted according to standard protocol 

giving the product 6,14-bis(2-fluorophenyl)tetraceno[2,1,12,11-opqra]tetracene 104 

in a near-quantitative yield. The bis-fluorophenyl DBATT was characterized by 1H 

NMR spectroscopy and mass spectrometry. Aluminium oxide mediated 

cyclodehydrofluorination of bis-fluorophenyl DBATT into indeno[1,2,3-de]-

indeno[1',2',3':4,5]tetraceno[2,1,12,11-opqra]tetracene 106 failed to proceed. The 

product mixture analysis revealed that neither product nor starting material were 

detected. The reaction was repeated at the lower temperature (180 ºC), but no 

improvement was observed. We can conclude that the high reaction temperatures led 

to the decomposition of the material. 

However, the other strategy for synthesis of indeno[1,2,3-de]indeno[1',2',3':4,5] 

tetraceno[2,1,12,11-opqra]tetracene 106 can be recommended (Scheme 51). 

 

Scheme 51. Alternative synthetic route to indeno[1,2,3-de]indeno[1',2',3':4,5]tetraceno[2,1,12,11-

opqra]tetracene 106. 

After the bromination of 1,6-bis(2-fluorophenyl)pyrene 59, the product 101 can be 

converted into 1,6-bis(2-fluorophenyl)-3,8-di-o-tolylpyrene 107 by Suzuki cross-

coupling with 2-methyl-1-phenylboronic acid. The further two-fold HF-elimination of 
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107 can give 6,13-di-o-tolyldiindeno[1,2,3-cd:1',2',3'-jk]pyrene 108. The methyl 

groups in 108 can be transformed into formyl groups 109, which undergo the acid-

promoted intramolecular further into 106. Due to time limitations the only Suyuki 

cross-coupling was carried out. Alternatively, the HF-elimination of brominated 1,6-

bis(2-fluorophenyl)pyrene 101 can be conducted. Although, according to our 

previous investigations the conversion of 1,6-dibromo-3,8-bis(2-

fluorophenyl)pyrene into 6,13-dibromodiindeno[1,2,3-cd:1',2',3'-jk]pyrene did not 

succeed. 

The synthesis of extended bowl-shaped acene systems based is presented in the 

Scheme 52. The 2,2'-(4,10-dihydrodiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene-

3,9-diyl)dibenzaldehyde 110 was prepared in a yield of 94 % starting from the 3,9-

dibromodiindenochrysene 51a via Suzuki cross-copling. The intramolecular 

cyclization of 110 by the developed protocol gave the product 111. 

 

Scheme 52. Two-step synthesis of benzo[l]indeno[5,4,3,2,1-nopqr]naphtho[3',2',1':5,6]acenaphtho 

[3,2,1-cde]tetraphene 111. a) PhCHO, 5 % Pd(PPh3)4, K2CO3, Tol:MeOH:2:1, reflux, N2, 16 h, 86 %; b) 

2 vol% sat. SnCl2*2H2O/i-PrOH, 1 vol% conc. H2SO4, DCM, rt. 

The mass spectrum of 111 was measured directly after work-up. In the Figure 50 can 

be seen that there are two major peaks at m/z 499.38 and 516.40. This data confirmed 

the formation of product (m/z 499.38) and also its oxidized form (m/z 516.40). The MS 

measurement was repeated after one month resulting in the remarkable changes: the 

new peak at m/z 529.50 appeared. It can be assumed that the product is unstable and 

undergoes oxidation under ambient conditions. 
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Figure 50. LDI-MS spectra of benzo[l]indeno[5,4,3,2,1-nopqr]naphtho[3',2',1':5,6]acenaphtho[3,2,1-

cde]tetraphene 111 after synthesis (a) and after one month (b). 

We can conclude that acid-promoted intramolecular cyclization is applicable for 

synthesis of large acenes in near-quantitative yields. This method appears to be 

tolerant to halogens and heterocycles (e.g. pyridine). Moreover, it is can be scaled up 

to gram amount and not affected by moistures and air. Worth mentioning that 

developed approach allows to synthesize highly insoluble acenes and structures 

combining acene-type inclusions in bowl-shape structures. 
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4 Summary 

The main goal of this thesis was the synthesis of the extended PAHs via selective C-

F bond activation. 

The first part of the thesis is concentrated on the activation of C-F bond in the 

trifluoromethyl group in the aromatic arenes under mild conditions. We found out that 

the direct intramolecular cyclization of the CF3 group on activated alumina allows us 

to synthesize a range of the cyclic aromatic ketones in appropriate yields. The main 

advantages of this approach are the scalability, the inexpensive starting materials, the 

high tolerance of the CF3 group and the high selectivity of reaction. In addition, the 

hydrolysis of the CF3 group was found to be a simple way for the synthesis of 

carboxylated PAHs. 

Furthemore, we demonstrate a facile pathway for synthesis have presented an 

approach for the synthesis of rationally halogenated bowl-shaped PAHs. We 

succeeded in the transformation of precursors into the halogenated buckybowls by 

aryl-aryl coupling in near-quantitative yields. The presented method allowed us to 

introduce the halogen functionalities at virtually any position and, thus, the obtained 

halogenated diindenochrysenes and indacenopicenes can be used as building blocks 

for structures with the complex architecture. The alumina promoted aryl-aryl coupling 

appeared to be tolerant towards aromatic C-Br and C-Cl bonds. For the first time, the 

X-ray crystallographic analysis of diindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene 

structure was conducted and the bowl-shaped character of the molecule was 

confirmed (bowl depth at 1.78 Å). 

It is worth to mention that in the alumina-promoted aromatic C-F bond activation a 

solvent plays a crucial role providing the homogenious distribution of the precursor 

and influencing the efficiency of HF-elimination. Our finding revealed the ability of o-

dichlorobenzene to accelerate the reaction up to 200 times yielding a pure target 

compound. 

In the second part of the thesis we present a novel type of molecular receptor based 

on two indacenopicene units and tolyl as a tether. The binding behaviour of the 9,9'-

(5-methyl-1,3-phenylene)di-as-indaceno[3,2,1,8,7,6-pqrstuv]picene towards C60 or 

C70 in toluene was investigated by fluorescence spectroscopy. The formation of 1:1 

complexe in the presence of C60 or C70 was herewith confirmed. Titration experiments 
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gave crude estimation of the association constants. The preliminary association 

constants were found to be 8.65×103 M-1 for C60 and 6.04×104 M-1 for C70 complexes. 

Thus, the binding affinity to C70 is significantly higher than to C60. 

The third part of the thesis describes the synthetic approach for the preparation of the 

highly curved buckybowls from the diindenochrysene precursor. The product obtained 

by the double-fold Suzuki cross-coupling and subsequent aryl-aryl coupling on the 

activated alumina exhibits the large bowl depth (5.2 Å). Moreover, in this chapter we 

illustrated a pyrene-based method for the synthesis of oligoindenopyrenes including 

the intramolecular cyclization via C-F bond activation. 

The last part of the thesis highlights the introduction of peripheral zig-zag units into 

nanographene molecules by acid-promoted intramolecular reductive cyclization. As 

precursor for acene-type nanographenes were employed aromatic aldehydes. The 

advantages of such cycloaromatization are effectiveness, availiability of chemicals, 

scalability and near-quantitative yields. The developed reaction protocol allowed us to 

synthesize a series of nanographenes and the bowl-shaped acene-type molecule 

based on diindenochrysene core. 

Taken together, these findings suggested the simple and facile ways towards 

extended bowl-shaped and planar structures, which can be utilized in the synthesis of 

fullerenes, nanotubes and nanographenes.
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5 Zusammenfassung 

Das Hauptziel der Dissertation war die Synthese von erweiterten polyzyklischen 

aromatischen Kohlenwasserstoffen durch die selektive C-F-Bindungsaktivierung. 

Der erste Teil der Arbeit konzentriert sich auf die Aktivierung der C-F-Bindung in der 

Trifluormethylgruppe in den aromatischen Arenen unter milden Bedingungen. Wir 

fanden heraus, dass die direkte intramolekulare Zyklisierung der CF3-Gruppe auf 

aktiviertem Aluminiumoxid es uns ermöglicht, eine Reihe der zyklischen aromatischen 

Ketone in geeigneten Ausbeuten zu synthetisieren. Die Hauptvorteile dieses Ansatzes 

sind die Skalierbarkeit, die kostengünstigen Ausgangsstoffe, die hohe Toleranz der 

CF3-Gruppe und die hohe Selektivität der Reaktion. Darüber hinaus wurde festgestellt, 

dass die Hydrolyse der CF3-Gruppe ein einfacher Weg für die Synthese von 

carboxylierten PAK ist. 

Des Weiteren erarbeiteten wir eine einfache Methode zur Synthese und haben einen 

Ansatz für die Synthese von rational halogenierten schalenförmigen PAKs vorgestellt. 

Es ist uns in nahezu quantitativen Ausbeuten gelungen, die Präkursore in halogenierte 

Buckybowls durch Aryl-Aryl-Kupplung zu transformieren. Die vorgestellte Methode 

erlaubt es uns, die Halogenfunktionalitäten an beliebiger Stelle einzuführen. Somit 

können die syntetisierten halogenierten Diindenochrysene und Indacenopene als 

Bausteine für Strukturen mit einer komplexen Architektur verwendet werden. Die mit 

Aluminiumoxid geförderte Aryl-Aryl-Kupplung schien tolerant gegenüber 

aromatischen C-Br- und C-Cl-Bindungen zu sein. Erstmals wurde die 

röntgenkristallographische Analyse der Diindenochrysenstruktur durchgeführt und der 

schalenförmige Charakter des Moleküls bestätigt (Schalentiefe von 1.78 Å). 

Es gilt zu erwähnen, dass bei der durch Aluminiumoxid produzierten aromatischen C-

F-Bindungsaktivierung das Lösungsmittel eine entscheidende Rolle spielt. Es sorgt für 

eine homogene Verteilung des Präkursors und beeinflusst die Effizienz der HF-

Eliminierung. Unser Ergebnis zeigte die Fähigkeit von o-Dichlorbenzol, die Reaktion 

bis zu 200-mal zu beschleunigen, was zu einer reinen Zielverbindung führt. 

Im zweiten Teil der Arbeit präsentieren wir einen neuartigen Typ eines molekularen 

Rezeptors, der auf zwei Indacenopicen-Einheiten und Phenyl als Halteverbindung 

basiert. Das Bindungsverhalten des 9,9'-(5-Methyl-1,3-phenylen)di-as-indace-

no[3,2,1,8,7,6-pqrstuv]picens gegenüber C60 oder C70 in Toluol wurde mithilfe von 
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Fluoreszenzspektroskopie untersucht. Die Bildung eines 1:1-Komplexes in 

Anwesenheit von C60 oder C70 wurde hiermit bestätigt. Die Titrationsexperimente 

gaben eine grobe Einschätzung der Assoziationskonstanten. Die vorläufige 

Assoziationskonstanten wurden als 8,65×103 M-1 für C60 und 6,04×104 M-1 für C70-

Komplexe definiert. Somit ist die Bindungsaffinität zu C70 deutlich höher als zu C60. 

Das dritte Kapitel beschreibt einen synthetischen Ansatz für die Herstellung der stark 

gewölbten Buckybowls aus Diindenochrysen-Präkursoren. Das durch die doppelte 

Suzuki-Kreuzkupplung und die anschließende Aryl-Aryl-Kupplung auf aktiviertem 

Aluminiumoxid erhaltene Produkt weist eine sehr große Schalentiefe (5.2 Å) auf. 

Darüber hinaus veranschaulichen wir in diesem Teil ein pyrenbasiertes Verfahren zur 

Synthese von Oligoindenopyrenen einschließlich der intramolekularen Zyklisierung 

über die C-F-Bindungsaktivierung. 

Das letzte Kapitel dieser Dissertation widmet sich der Einführung von dezentralen 

Zickzack-Einheiten in Nanographene-Moleküle mittels säurefördernder 

intramolekularer reduktiver Zyklisierung. Als Präkursor für die acenartigen 

Nanographene wurden aromatische Aldehyde eingesetzt. Die Vorteile einer solchen 

Zykloaromatisierung sind die Effektivität, die gute Verfügbarkeit der Chemikalien, die 

gute Skalierbarkeit, sowie nahezu quantitative Ausbeuten. Die von uns entwickelte 

Synthesestrategie erlaubte es, eine Reihe von Nanographenen und das 

schalenförmige acenartige diindenochrysenbasierte Molekül herzustellen. 

Zusammengefasst, zeigen diese Ergebnisse einen einfachen und leichten Wege zu 

erweiterten schalenförmigen und planaren Strukturen auf, die zur Synthese von 

Fullerenen, Nanoröhren und Nanographenen genutzt werden können. 

 

 

 

 



Experimental Section 

91 
 

6 Experimental Section 

6.1 General Information 

Solvents and chemicals 

All chemicals were purchased from chemPUR, Fluorochem, Sigma-Aldrich®, Acros, 

Organics®, Fluka®, Fisher Scientific®, Alfa Aesar® and used without any further 

purification. HPLC grade solvents were purchased from VWR®. Solvents for flash 

chromatography (hexane) and photocyclization were distilled prior to usage. 

Aluminium oxide (neutral, 50-200 micron) for C-F bond activation was purchased from 

(neutral, 50-200 micron), Acros. 

Nuclear magnetic resonance spectroscopy 

NMR spectra were recorded on Bruker® Avance 300 operating at 300 MHz (1H NMR), 

75 MHz (13C NMR) and 282 MHz (19F NMR), Bruker® Avance 400 or Jeol ® EX400, 

operating at 400 MHz (1H NMR) and 100 MHz (13C NMR), JEOL® Alpha 500 operating 

at 500 MHz (1H NMR) and 125 MHz (13C NMR) or Bruker® Avance Neo 500 operating 

at 500 MHz (1H NMR) and 125 MHz (13C NMR), Bruker® Avance Neo 600 operating 

at 600 MHz (1H NMR) and 151 MHz (13C NMR). Deuterated solvents were purchased 

from Sigma Aldrich ® and used as received. Signals were referenced to solvent peaks 

(δ in ppm) CD2Cl2: 1H 5.32 ppm, 13C 53.5 ppm; CDCl3: 1H 7.24 ppm, 13C 77.0 ppm; 

C2D2Cl4: 1H 5.92 ppm, 13C 73.7 ppm; C6D6: 1H 7.15 ppm, 13C 128.0 ppm; o-DCB: 1H 

ppm, 13C ppm. Resonance peaks were indicated as “s” (singlet), “d” (doublet), “t” 

(triplet), “q” (quartet) and “m” (multiplet). 

Absorption spectroscopy 

UV/Vis spectra were recorded on a Varian® Cary 5000 UVvis spectrophotometer at 

room temperature. 

Emission spectroscopy 

Fluorescence spectra were recorded on a Shimadzu® RF-5301PC 

spectrofluorophotometer. 
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X-ray crystallography 

X-ray structure analysis was carried out on Bruker® Smart APEX II CCD area detector 

diffractometer and Agilent Technologies® SuperNova Dual Wavelength Platform with 

Atlas detector and Xcalibur E System diffractometer. 

High-performance liquid chromatography 

HPLC analyses were carried out using analytical Cosmosil 5-PYE (4.6 x 250 mm) 

column and Cosmosil PBr (4.6 x 250 mm) and purification using semi-preparative 

PBB-R (10 x 250 mm) column (UV-Vis detection). 

Flash liquid chromatography 

Automated flash-column chromatography (aFLC) was performed on Intershim® 

puriflash 430 with flash grade silica gel Kiesegel 60 (0.06-0.2 mm). 

Thin layer chromatography 

TLC was performed on silica-backed silica plates and visualized by UV-light (254 nm, 

366 nm), layer thickness 0.25 mm, medium pore diameter 60 Å, Fluka. 

Photocyclization 

Photocyclization was carried out in the 500 W water-cooled quartz photochemical 

reactor. 

Mass spectrometry 

ESI and APPI mass spectra were recorded on maXis 4G, Bruker® Daltonic GmbH. 

LDI-TOF mass spectra were recorded on the Axima Confidence, Shimadzu Biotech® 

Spectrometer, Shimadzu Deutschland GmbH. All spectra are reported as m/z. 

Microwave assisted experiments 

Microwave assisted experiments were carried out using Discover® SP Microwave 

Synthesizer, CEM and Biotage® initiator+ monomode microwave reactor, Biotage in 

the respective vials. 

Computational methods for the catalyst-free cyclodehydrofluorination 

Geometry optimizations were performed at rhe PBE0/cc-pVDZ level of theory. In all 

cases, no symmetry restrictions were applied. All calculated structures of reactive 

complexes, intermediates and products correspond to local minima (no imaginary 
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frequencies) and transition states were located at saddle point with unique imaginary 

frequencies on the corresponding potential energy surfaces, as determined by 

calculation of the full Hessian matrix, followed by estimation of frequencies in the 

harmonic approximation. The nature of transition states was probed through IRC 

(intrinsic reaction coordinates) technique that showed a directly connection to the 

target products and reactants. All these calculations were performed using the Firefly 

program (version 8.1.0). 

General procedure for synthesis of ortho-substituted trifluoromethylarenes[100] 

1 eq. of respective aryl bromide, 1.2 eq. of respective boronic acid, 1.2 eq. of K2CO3 

and 5 % of Pd(PPh3)4 were added to the mixture of Tol:MeOH:2:1 (60 mL). The 

reaction mixture was degassed and refluxed for 12 h under argon atmosphere. After 

cooling to the room temperature mixture was washed with water (3x100 mL). The 

organic layer was dried over Na2SO4 and filtered through a silica plug. Resulting 

mixture and the solvent was removed under reduced pressure. Purification of product 

was made by column chromatography on silica using hexane.[100] 

General procedure for bromination reaction[102] 

1 eq. of respective methylarene was dissolved in fluorobenzene or chloroform, then 

1.1 eq. of NBS and a catalytic amount of DBPO were added. Reaction was carried out 

under reflux and monitored by TLC. After cooling to the room temperature reaction 

mixture was diluted with appropriate solvent (toluene or DCM), filtrated through silica 

plug and concentrated under reduced pressure. Further, product was purified by 

column chromatography or aFLC.[102] 

General procedure for Wittig reaction[102] 

All arylethenes were obtained by Wittig reaction as described in [102]. Prior to carry out 

Wittig reaction was synthesised phosphonium salt from alkyl bromide (1 eq.) and PPh3 

(1.1 eq) in refluxed toluene during 20 h. After cooling to the room temperature, the 

precipitate was filtered, washed with toluene and hexane and dried in vacuo. Further, 

1 eq. of respective aldehyde 1.1 eq. of respective phosphonium salt and 1.1 eq. t-

BuOK were added in absolute EtOH. The reaction mixture was degassed under 

dynamic vacuum and refluxed for 12 h under argon atmosphere. After cooling to the 

room temperature, the reaction mixture was neutralized, and DCM and H2O were 

added. The layers were separated, and the aqueous phase was extracted with DCM 
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(3 times). Combined organic layers were dried over anhydrous Na2SO4 and 

concentrated under reduced pressure. Product was purified by column 

chromatography or aFLC.[102] 

General procedure for photocylization reaction[31,102] 

All arylethenes were used in the form of a cis/trans isomer mixture since the isomers 

interconvert under photocyclization conditions. 1 eq. arylethene, 1 eq. I2 and 5 eq. 

propylene oxide were dissolved in distilled cyclohexane or toluene. Reaction was 

monitored by TLC. Since the reaction was finished, the mixture was washed with 

sodium thiosulfate solution in water. Organic layer was dried over anhydrous Na2SO4 

and concentrated under reduced pressure. Product was purified by column 

chromatography or aFLC.[31,102] 

General procedure for Al2O3 mediated C-F bond activation for aryl-aryl 

coupling[98] 

γ-Al2O3 was preactivated (1 g) in glass ampule at 250 °C under air conditions for 

10 min and then activated at 550°C for 15 min in vacuum (10-3 mbar). Activated γ-

Al2O3 was added to the microwave glass vial containing 20 mg of fluoroarene 

dissolved in 3 mL of anhydrous o-DCB. 3-5 g of alumina and 10-15 mL of o-DCB were 

used for 100 mg fluoroarene. The glass vial was closed with the cap and placed into 

microwave oven. The reaction was conducted at 150-240 °C for 0.5-3 h. All steps were 

carried out under argon atmosphere. After cooling to rt the products were extracted 

with toluene. Pure products (95-98 % yield) were obtained by direct precipitation with 

MeOH from the respective concentrated toluene extract.[98] 

General procedure for Al2O3 mediated condensation of trifluoromethylated 

arenes[100] 

2-3 g of γ-Al2O3 were placed in a glass ampoule and activated by annealing in vacuum 

(10-2 mbar). The temperature was increased gradually, and kept for 30 min at 600°C. 

After cooling (rt) the ampoule was filled with argon, and 20-30 mg of the respective 

trifluoromethyl arene were mixed with activated aluminium oxide. The ampoule was 

evacuated again and sealed. Condensation was conducted without stirring at 30-

250°C. The condensation products were extracted with MeOH (or MeOH/AcOH 

mixture) and analysed after evaporation.[100] 
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General procedure for Al2O3 mediated hydrolysis of trifluoromethylated 

arenes[100] 

2-3 g of γ-Al2O3 were mixed with 20-30 mg of the respective trifluoromethyl arene in 

glass ampoule under ambient atmosphere. The ampoule was heated to 100-250°C. 

The hydrolysis products were extractied with MeOH/AcOH mixture and analysed after 

evaporation.[100] 

General procedure for synthesis of nanographenes[171] 

20 mg of nanographene precursor was dissolved in 100 mL of DCM. Solution of 

SnCl2*2H2O (500 mg, 2.22 mmol) in i-PrOH (2.0 mL) was added at rt while stirring. 

The colour of the solution changed to yellowish. Then, 1.0 mL of conc. H2SO4 was 

added and the mixture was stirred at rt for 18 h (the reaction mixture should be 

protected from the daylight). The reaction mixture was quenched with 2.0 mL of 1 M 

HCl by vigorous mixing, diluted with DCM (20 mL) and washed with water (50 mL). 

The aqueous layer was extracted with DCM (3x20 mL). Organic layers were combined 

and diluted with MeOH (100 mL). DCM was removed at atmospheric pressure at 

50 °C. Obtained precipitate in the MeOH layer was centrifuged, the MeOH layer was 

decanted and the solid was washed again with MeOH. Following that, the product was 

dried in vacuo.[171] 
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6.2 Synthesis of Trifluoromethylated Compounds and Aromatic 

Ketons 

2-Trifluoromethyl-1,1'-biphenyl (1) 

 

1 was obtained according to general procedure from 2-bromobenzotrifluoride 2 (20.0 

mmol) and phenylboronic acid 3 (22.0 mmol).[100] 

Colourless liquid, 92 % yield. 

1H NMR spectrum is in accordance with [103]. 

9H-Fluoren-9-one (4) 

 

4 was obtained from 1 according to general procedure for Al2O3 mediated 

condensation.[100] 

Yellow solid, 80 % yield. 

1H NMR spectrum is in accordance with [173]. 

1,1'-Biphenyl-2-carboxylic acid (5) 

 

5 was obtained from 1 according to general procedure for Al2O3 mediated 

hydrolysis.[100] 
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White solid, quantitative yield (determined by NMR). 

1H NMR spectrum is in agreement with [174]. 

4'-Methyl-2-(trifluoromethyl)-1,1'-biphenyl (8) 

 

8 was obtained according to general procedure from 2-trifluoromethyl phenylboronic 

acid (16.0 mmol) and arylbromide (14.0 mmol).[100] 

Colorless liquid, 94 % yield. 

1H NMR spectrum is in agreement with [175]. 

2-Methyl-9H-fluoren-9-one (9) 

 

9 was obtained from 8 according to general procedure for Al2O3 mediated 

condensation.[100] 

Yellow liquid, 72 %yield. 

1H NMR spectrum is in accordance with [173]. 

4-Methyl-2'-biphenylcarboxylic acid (10) 

 

10 acid was obtained following to general procedure for Al2O3 mediated hydrolysis 

from 8.[100] 

White solid, quantitative yield (determined by NMR). 

1H NMR spectrum is in agreement with [176]. 
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1-[2-(Trifluoromethyl) phenyl]-naphthalene (10) 

 

10 was obtained according to general procedure from 1-naphthylboronic acid 11 (16.0 

mmol) and 2-bromobenzotrifluoride 13 (14.0 mmol).[100] 

White solid, 92 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 7.91 (s, 1H), 7,89 (s, 1H), 7.4 (d, J=7.81 

Hz, 1H), 7.63-7.44 (m, 4H), 7.41-7.31 (m, 4H).  

13C NMR [100 MHz, CD2Cl2, 293 K]: δ (ppm) 139.32, 136.74, 133.25, 132.67, 132.41, 

131.103, 129.6 (q), 128.18, 128.05, 127.88, 127.68, 127.02, 126.18, 126.10, 126.08, 

126.02, 125.97, 124.68, 124.00 (q). 

7H-Benz[de]anthracen-7-one (14) 

 

14 was obtained from 10 according to general procedure for Al2O3 mediated 

condensation.[100] 

Red solid, 40 % yield. 

1H and 13C NMR spectra are in accordance with [177]. 
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7H-Benzo[c]fluoren-7-one (15) 

 

15 was obtained according to general procedure for Al2O3 mediated condensation 

from 10. Small amounts of 7H-benzo[c]fluoren-7-one and 7H-benz[de]anthracen-7-

one were separated by column chromatography for analysis.[100] 

Orange solid, 18 % yield. 

1H and 13C NMR spectra is in accordance with [178]. 

2-(1-Naphthalenyl)-benzoic acid (16) 

 

16 was obtained from 10 according to general procedure for Al2O3 mediated 

hydrolysis.[100] 

White solid, quantitative yield (determined by NMR). 

1H and 13C NMR spectra are in agreement with [179]. 

2-(Trifluoromethyl)-terphenyl (17) 

 



Experimental Section 

100 
 

17 was obtained according to general procedure from 2-biphenylboronic acid (16.0 

mmol) and 2-bromobenzotrifluoride 13 (14.0 mmol).[100] 

Colourless oil, 80 % yield. 

1H and 13C NMR spectra are in accordance with [180]. 

4-Phenyl-9H-fluoren-9-one (18) 

 

18 was obtained from 17 according to general procedure for Al2O3 mediated 

condensation. Small amounts of 4-phenyl-9H-fluoren-9-one and 9H-tribenzo[ace] 

cyclohepten-9-one for NMR analysis were separated by HPLC (5PYE column, MeOH 

as eluent).[100] 

Orange solid, 8 % yield. 

1H NMR [300 MHz, CDCl3, 293 K]: δ (ppm) 7.69-7.59 (m, 2H), 7.53-7.44 (m, 5H), 

7.38-7.33 (m, 2H), 7.25-7.15 (m, 2H), 6.77 (m, 1H). 

13C NMR [75 MHz, CD2Cl2, 293 K]: δ (ppm) 193.84 (CO), 144.86, 143.36, 139.85, 

137.06, 135.05, 134.80, 134.70, 129.15 (2C), 129.07 (2C), 128.49, 124.21, 123.51, 

123.31. One carbon signal is not observed due to overlapping. 

9H-Tribenzo[ace]cyclohepten-9-one (19) 
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19 was obtained from 17 according to general procedure for Al2O3 mediated 

condensation.[100] 

Yellow solid, 52 % yield. 

1H and 13C NMR spectra are in accordance with [181]. 

o-Terphenyl-2-carboxylic acid (20) 

 

20 acid was obtained from 17 according to general procedure for Al2O3 mediated 

hydrolysis.[100] 

White solid, quantitative yield (determined by NMR). 

1H NMR [300 MHz, CDCl3, 293 K]: δ (ppm) 7.8 (d, J=7.46 Hz, 1H), 7.47-7.34 (m, 4H), 

7.33-7.28 (m, 2H), 7.19-7.02 (m, 6H). 

13C NMR [100 MHz, CDCl3, 293 K]: δ (ppm) 172.05 (CO), 143.14, 141.00, 140.57, 

139.93, 132.19, 131.73, 130.31, 129.80, 129.78, 129.69, 128.53, 127.72, 127.63, 

126.99, 126.98, 126.81, 126.44. One carbon signal is not observed due to overlapping 

of signals. 

Benzo[c]-phenanthrene-2-carboxylic acid (22) 

 

22 was obtained from 19 according to general procedure for Al2O3 mediated 

hydrolysis.[100] 

White solid, 96 % yield. 

1H and 13C NMR spectra are in accordance with [182]. 
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1,6-dibromopyrene (24) 

 

1,6-dibromopyrene was synthesized according to modified procedure [148]. In two-neck 

RBF pyrene 57 (30.0 g, 1.48 mol) was dissolved in 1.5 L of chloroform. The solution 

of Br2 (15.3 mL, 2.97 mol) in CHCl3 (500 mL) was added dropwise (from dropping 

funnel) while stirring at rt for 8 h. Precipitated product was collected after 16 h and 

washed with MeOH. Then, the precipitate was recrystallized from hot xylene (mixture 

of isomers), yielding the product in 19.0 g (52.8 mmol).[171] 

Beige solid, 36 % yield. 

1H NMR is in agreement with [183]. 

1,6-Bis(2-(trifluoromethyl)phenyl)pyrene (23) 

 

0.1 g (0.28 mmol) 1,6-dibromopyrene 24 and 2-(trifluoromethyl)phenylboronic acid 25 

0.14 g (0.73 mmol) were dissolved in Tol:MeOH (2:1) mixture, then potassium 

carbonate (0.73 mmol) and 5 % mol of Pd(PPh3)4 as catalyst were added. Reaction 

mixture was stirred under reflux in nitrogen atmosphere for 15 h. Mixture was washed 

with water; organic layer was dried over Na2SO4 and filtrated through silica plug. 
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Solvent was removed under reduced pressure. After addition of hexane white 

precipitate was collected on filter (0.13 g, 0.264 mmol). 

White solid, 95.6 % yield. 

1H NMR [300 MHz, CD2Cl2, 293 K]: δ (ppm) 8.22 (2H, d, J=7.86 Hz), 8.04 (2H, d, 

J=9.27 Hz), 7.93 (4H, d, J=7.86 Hz), 7.77- 7.65 (m, 4H), 7.63 (2H, d, J=9.18 Hz), 7.49 

(2H, d, J=7.23 Hz). 

13C NMR [75 MHz, CD2Cl2, 293 K]: δ (ppm) 139.84-139.72 (m), 134.86, 133.14, 

131.56-131.46 (m), 130.73, 129.82-129.68 (m), 129.39, 128.07, 127.80-127.66 (m), 

127.48, 126.30-126.07 (m), 125.59, 124.36, 124.06, 122.49, 118.86. 

6.3 Synthesis of Halogenated Buckybowls 

6.3.1 Synthesis of Brominated Benzo- and Indacenopicenes 

2-Bromo-13,16-difluorobenzo[s]picene (38a) 

 

38a was synthesized according to general procedures (bromination, Wittig reaction, 

photocylization).[98] 

Light-yellow solid, 55 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 8.53 (1H, d, J=8.80 Hz), 8.50 (1H, d, 

J=8.84 Hz), 8.34 (1H, dd, J=1.94, 13.62 Hz), 8,23-8,14 (1H, m), 8.11 (1H, d, J=8.80 

Hz), 8.05 (1H, d, J=8.76 Hz), 7.98-7.93 (1H, m), 7.81 (1H, d, J=8.72 Hz), 7.64 (1H, dd, 

J=1.84, 8.60 Hz), 7.62-7.55 (2H, m), 7.45-7.33 (2H, m). 

13C NMR [100MHz, CDCl3, 293 K]: δ (ppm) 153.90, 153.73, 132.44, 131.97, 131.81, 

131.38, 130.68, 130.08, 129.75, 129.71, 129.60, 129.48, 129.30, 128.92, 128.63, 

127.13, 126.34, 125.36, 120.23, 119.66, 119.59, 114.72, 114.89-114.40. 

19F NMR [282 MHz, CDCl3, 293 K]: δ (ppm) -103.55- -103.76 (m), -104.23 - -104.47 

(m). 

HRMS [APPI]: Chemical Formula: C26H13BrF2 calc. 442.0163, found 442.0166. 
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4-Bromo-13,16-difluorobenzo[s]picene (38b) 

 

38b was synthesized according to general procedures (bromination, Wittig reaction, 

photocylization).[98] 

Light-yellow solid, 50 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 8.59 (1H, d, J=9.28 Hz), 8.51 (1H, d, 

J=8.80 Hz), 8.50 (1H, d, J=8.88 Hz), 8.24-8.12 (2H, m), 8.10 (1H, d, J=8.64 Hz), 7.98-

7.93 (1H, m), 7.84 (1H, dd, J=0.64, J=7.40 Hz), 7.62-7.55 (2H, m), 7.43-7.31 (2H, m). 

13C NMR [100 MHz, CDCl3, 293 K]: δ (ppm) 156.36, 156.21, 153.90, 153.84, 153.74, 

132.49, 131.68, 131.63, 130.74, 130.41, 130.13, 130.08, 129.73, 129.66, 129.58, 

129.45, 128.11, 127.19, 126.36, 125.45, 125.43, 125.37 125.35, 123.77, 123.75, 

123.73, 123.36, 123.34, 123.31, 122.04, 122.02, 121.21, 120.33, 120.30, 120.19, 

120.16, 119.99, 119.96, 119.86, 119.82, 119.62, 114.87, 114.77, 114.64, 114.59, 

114.54, 114.49, 114.36, 114.26. 

19F NMR [282 MHz, CDCl3, 293 K]: δ (ppm) -103.50- -103.75 (m), -103.89 - -104.10 

(m). 

HRMS [APPI]: Chemical Formula: C26H13BrF2 calc. 442.0163, found 442.0163. 

5-Bromo-13,16-difluorobenzo[s]picene (45) 

 

45 was isolated after bromination of 13,16-difluorobenzo[s]picene 30 (side product). 

Light-yellow solid, 20 % yield. 
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1H NMR [400 MHz, CD2Cl2, 293 K]: δ (ppm) 8.88 (s,1H), 8.48 (d, J=8.96 Hz, 1H), 

8.42-8.37 (m, 1H), 8.25-8.17 (m, 2H), 8.15 (d, J=8.92 Hz, 1H), 8.03-7.98 (m, 1H), 7.73-

7.64 (m, 2H), 7.64-7.59 (m, 2H), 7.48-7.38 (m, 2H). 

13C NMR [101 MHz, CDCl3, 293 K]: δ (ppm) 154.01, 153.98, 153.79, 153.75, 132.56, 

130.60, 130.43, 130.08, 130.04, 129.94, 129.69, 129.66, 129.54, 128.92, 127.41, 

127.24, 127.23, 126.51, 126.36, 126.35, 126.10, 126.08, 125.50, 125.48, 124.24, 

124.01, 119.52, 115.10-114.50 (m). 

HRMS [APPI, Toluene]: Chemical Formula: C26H13BrF2 calc. 442.0163, found 

442.0170. 

MS [MALDI-TOF, without matrix]: m/z (rel. int.) = 442.0058 [M]+ (100) 

MS [MALDI-TOF, DHB]: m/z (rel. int.) = 442.0235 [M]+ (100) 

MS [MALDI-TOF, DCTB]: m/z (rel. int.) = 442.0131 [M]+ (100). 

1-Bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene (39b) 

 

39b was obtained from 4-bromo-13,16-difluorobenzo[s]picene 38b according to 

general procedure for Aryl-Aryl coupling via C-F bond activation.[98] 

Orange solid, 96 % yield (determined by HPLC). 

1H NMR [400 MHz, CD2Cl2, 293 K]: δ (ppm) 8.13 (1H, d, J=8.85 Hz), 8.09 (1H, d, 

J=8.76 Hz), 7.86 (1H, d, J=8.85 Hz), 7.79 (1H, d, J=8.76 Hz), 7.70 (1H, d, J=6.96 Hz), 

7.64 (1H, d, J=8.13 Hz), 7.59 (2H, ABq, J=7.32 Hz), 7.55 (1H, d, J=7.38 Hz), 7.48 (1H, 

d, J=7.38 Hz), 7.40 (1H, dd, J=8.18, 6.98 Hz). 

13C NMR [100 MHz, CD2Cl2, 293 K]: δ (ppm) 139.44, 139.25, 138.96, 138.76, 138.37, 

138.33, 138.29, 138.05, 138.03, 136.94, 131.90, 130.67, 129.87, 129.65, 129.44, 

129.15, 127.44, 127.23, 126.25, 126.22, 126.10, 125.55, 124.75, 124.31, 124.08, 

122.16. 

HRMS [APPI]: Chemical Formula: C26H11Br calc. 402.0039, found 402.0040. 
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3-Bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene (39a) 

 

39a was obtained from 2-bromo-13,16-difluorobenzo[s]picene 38a according to 

general procedure for Aryl-Aryl coupling via C-F bond activation (small amount was 

collected by analytical HPLC for NMR measurement).[98] 

Orange solid, 80 % yield (determined by HPLC). 

1H NMR [300 MHz, CDCl3, 293 K]: δ (ppm) 8.10 (1H, dd, J=0.78, 8.76 Hz), 7.98 (1H, 

d, J=7.38 Hz), 7.80 (1H, d, J=8.79 Hz), 7.77-7,69 (3H, m), 7.65 (1H, d, J=8.16 Hz), 

7.51-7.37 (3H, m). 

HRMS [APPI]: Chemical Formula: C26H11Br calc. 402.0039, found 402.0039. 

9-Bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene (46) 

 

46 was as obtained according to general procedure for Aryl-Aryl coupling via C-F bond 

activation. 

Orange solid, 97 % yield (determined by HPLC). 

1H NMR [400 MHz, CD2Cl2, 293 K]: δ (ppm) 8.33 (1H, s), 8.02 (1H, d, J=8.76 Hz), 

7.79 (1H, d, J=8.76 Hz), 7.75 (1H, d,  J=8.32 Hz), 7.72 (2H, dd, J=5.22, 6.94 Hz), 7.67 

(1H, d, J=8.12 Hz), 7.64 (2H, dd, J=7.42, 12.34 Hz), 7.46 (1H, dd, J=7.00, 8.32 Hz), 

7.43 (1H, dd, J=6.96, 8.16 Hz). 

13C NMR [101 MHz, CD2Cl2, 293 K]: δ (ppm) 139.16, 138.98, 138.86, 138.37, 138.33, 

137.85, 137.62, 137.35, 136.87, 136.60, 130.37, 129.82 (CH), 129.33, 129.15 (CH), 

129.09, 128.92, 127.30 (CH), 127.16 (CH), 126.93 (CH), 126.10 (CH), 125.94 (CH), 

125.93 (CH), 124.25 (CH), 123.78 (CH). 
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HRMS [APPI, Toluene]: Chemical Formula: C26H11Br calc. 402.0039, found 

402.0041. 

5,8-Dibromo-13,16-difluorobenzo[s]picene (44) 

 

30 (1.0 mmol) was dissolved in 50 mL of chloroform. Bromine (2.2 mmol) in 20 mL of 

chloroform was added dropwise to the mixture under stirring at room temperature. The 

reaction was monitored by TLC. After 2 hours the reaction was stopped, and organic 

phase was washed with aq. NaHSO3 solution, then was dried over Na2SO4 and filtrated 

through silica plug. Solvent was removed under reduced pressure. Purification of 

product was carried out by HPLC chromatography (5PYE column, Tol:MeOH mixture 

as eluent).[98] 

Light-yellow solid, 60 % yield  

1H NMR [400MHz, CDCl3, 293K]: δ (ppm) 8.73 (2H, s), 8.38 (2H, d, J=7.93Hz), 8.22-

8.12 (2H, m), 7.72-7.61 (4H, m), 7.41-7.36 (2H, m). 

19F NMR [282 MHz, CDCl3, 293 K]: δ (ppm) -99.75 - -99.93 (m), -11.80 - - 112.96 (m). 

HRMS [APPI]: Chemical Formula: C26H12Br2F2 calc. 519.9268, found 519.9273. 

9,12-Dibromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene (47) 

 

47 was obtained from 5,8-dibromo-13,16-difluorobenzo[s]picene 44 according to 

general procedure for Aryl-Aryl coupling via C-F bond activation.[98] 
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Orange solid, 92 % yield (defined by HPLC). 

1H NMR [400 MHz, C2D2Cl4, 353 K]: δ (ppm) 8.29 (2H, s), 7.78 (2H, d, J=8.32 Hz), 

7.72 (2H, d, 6.96 Hz), 7.83 (2H, dd, J=0.96, 8.80 Hz), 7.65 (2H, s), 7.46 (2H, dd, 

J=7.04, 8.32 Hz). 

HRMS [APPI]: Chemical Formula: C26H10Br2 calc. 479.9144, found 479.9149. 

6.3.2 Synthesis of Halogenated Dibenzo- and Diindenochrysenes 

1,9-Dibromo-4,12-difluorodibenzo[c,l]chrysene (50a) 

 

50a was obtained according to general procedures: Wittig reaction, photocylization.[98] 

Light-yellow solid, 50 % yield. 

1H NMR [400 MHz, C2D2Cl4, 353 K]: δ (ppm) 8.40-8.31 (4H, m), 7.96-7.89 (4H, m), 

7.83 (2H, d, J=9.47 Hz), 7.27 (2H, dd, J=11.96, 8.36 Hz). 

HRMS [APPI]: Chemical Formula: C26H12Br2F2 calc. 519.9277, found 519.9268. 

1,9-Dichloro-4,12-difluorodibenzo[c,l]chrysene (50b) 
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50b was obtained according to general procedures: Wittig reaction, photocylization.[98] 

Light-yellow solid, 42 % yield. 

1H NMR [400 MHz, C2D2Cl4, 353 K]: δ (ppm) 8.41-8.33 (4H, m), 7.96 (2H, d, J=8.92 

Hz), 7.83 (2H, d, J=9.20 Hz), 7.72 (1H, d, J=8.36 Hz), 7.71 (1H, d, J=8.36 Hz), 6.77 

(2H, dd, J=11.87, 8.34). 

HRMS [APPI]: Chemical Formula: C26H12Cl2F2 calc. 436.0592, found 436.0599. 

1,4,9,12-Tetrafluorodibenzo[c,l]chrysene (50c) 

 

50c was obtained according to general procedures: Wittig reaction, photocylization.[98] 

Light-yellow solid, 47 % yield. 

1H NMR [400 MHz, C2D2Cl4, 353 K]: δ (ppm) 8.35 (2H, dd, J=8.72, 14.05 Hz), 8.14 

(2H, dd, J=1.64, 8.68 Hz), 7.90 (2H, d, J=8.84 Hz), 7.82 (2H, d, J=8.88 Hz), 7.31 (4H, 

m). 

19F NMR [282 MHz, CDCl3, 293 K]: δ (ppm) -105.41 - -105.70 (m), -125.76 - -125.97 

(m). 

MS [LDI]: Chemical Formula: C26H12F4 calc. 400.09, found 399.99. 

3,9-Dibromodiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene (51a) 
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51a was obtained from 1,9-dibromo-4,12-difluorodibenzo[c,l]chrysene 50a according 

to general procedure for Aryl-Aryl coupling via C-F bond activation.[98] 

Yellow solid, 95 % yield.  

1H NMR [400 MHz, C2D2Cl4, 353 K]: δ (ppm) 7.85 (2H, s), 7.53 (2H, d, J=7.44 Hz), 

7.57 (2H, d, J=7.44 Hz), 7.72 (2H, d, J=8.88 Hz), 7.79 (2H, d, J=8.92 Hz). 

HRMS [APPI]: Chemical Formula: C26H10Br2 calc. 479.9144, found 479.9146. 

3,9-Dichlorodiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene (51b) 

 

51b was obtained from 1,9-dichloro-4,12-difluorodibenzo[c,l]chrysene 50b according 

to general procedure for Aryl-Aryl coupling via C-F bond activation.[98] 

Yellow solid, 98 % yield (defined by HPLC). 

1H NMR [400 MHz, C2D2Cl4, 353 K]: δ (ppm) 7.86(2H, s), 7.81 (4H, s), 7.61 (2H, d, 

J=7.52 Hz), 7.37 (2H, d, J=7.52 Hz). 

HRMS [APPI]: Chemical Formula: C26H10Cl2 calc. 392.0154, found 392.0155. 

3,9-Difluorodiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene (51c) 

 

51c was obtained from 1,4,9,12-tetrafluorodibenzo[c,l]chrysene 50c according to 

general procedure for Aryl-Aryl coupling via C-F bond activation.[98] 

Yellow solid, 63 % yield (defined by HPLC). 

1H NMR [400 MHz, CD2Cl2, 293 K]: δ (ppm) 7.90 (2H, s), 7.83 (2H, d, J=8.91Hz), 7.76 

(2H, d, J=8.91 Hz), 7.71 (2H, dd, J=3.44, 7.68 Hz), 7.01 (2H, dd, J=11.33, 7.69 Hz). 
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19F NMR [282 MHz, CD2Cl2, 293 K]: δ (ppm) -121.05 - -121.09 (d, J=3.41 Hz), -121.10 

- -121.15 (d, J=3.41 Hz). 

MS [LDI]: Chemical Formula: C26H10F2 calc. 360.07, found 359.97. 

3,9-Diphenyldiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene (52) 

 

51a (1.0 mmol) and phenylboronic acid (2.4 mmol) were dissolved in Tol:MeOH (2:1) 

mixture, then potassium carbonate (2.4 mmol) and 5 % mol of Pd(PPh3)4 were added. 

Reaction mixture was stirred under reflux in nitrogen atmosphere for 15 h. Mixture was 

washed with water; organic layer was dried over Na2SO4 and filtrated through silica 

plug. Solvent was removed under reduced pressure. Flash chromatography 

purification of product was made with Hexane:DCM:2.5:1 as eluent.[98] 

Yellow solid, 95 % yield. 

1H NMR [400 MHz, CD2Cl2, 293 K]: δ (ppm) 7.98 (2H, s), 7.85 (2H, d, J=7.20 Hz), 

7.81 (2H, d, J=9.00 Hz), 7.78 (2H, d, J=9.00 Hz), 7.69-7.65 (4H, m), 7.56-7.50 (4H, 

m), 7.49-7.43 (4H, m, J=7.20 Hz). 

6.4 Synthesis of Buckycatcher and Its Precursors 

2-(as-Indaceno[3,2,1,8,7,6-pqrstuv]picen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxa-

borolane (54) 
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Synthesis of 54 was carried out according to modified procedure [160]. A 5 mL glass 

vial equipped with a magnetic stir bar was charged with 1-bromo-as-

indaceno[3,2,1,8,7,6-pqrstuv]picene 39b (90.0 mg, 0.223 mmol, 1.0 eq.), bis(pinaco-

lato)diboron (85.0 mg, 0.335 mmol, 1.5 eq.), CH3COOK (65.7 mg, 0.669 mmol, 

3.0 eq.) and 4 % mol Pd(dppf)Cl2. After addition of 1,4-dioxane:toluene mixture (anh., 

1:6, 7 mL), the reaction mixture was degassed by bubbling nitrogen gas. The glass 

vial was closed with the cap and placed into microwave oven for 3 h (115 °C). After 

reaction the mixture was quenched with ethyl acetate, then the solvents were removed 

under reduced pressure. Obtained product was purified by aFLC (Hexane:DCM:2:1 

as eluent). Solvents were removed under reduced pressure. Yellow solid was dried in 

vacuo (75.6 mg, 0.168 mmol). 

Yellow solid, 75.3 % yield. 

1H NMR [300 MHz, CD2Cl2, 293 K]: δ (ppm) 8.50 (d, J=8.85 Hz, 1H), 8.18 (dd, J=2.61, 

8.82 Hz, 2H), 7.97 (d, J=6.93 Hz, 1H), 7.85 (d, J=8.79 Hz, 1H), 7.80-7.68 (m, 5H), 7.44 

(dd, J=6.99, 8.19 Hz, 1H), 1.43 (s,12H). 

2,2'-(5-Methyl-1,3-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (58) 

 

A 50 mL two-necked RBF equipped with a magnetic stir bar was charged with 1,3-

dibromo-5-methylbenzene (0.3 g, 1.20 mmol), bis(pinacolato)diboron (1.83 mg, 

7.2 mmol), potassium acetate (0.71 mg, 7.2 mmol) and 5 % mol of Pd(dppf)Cl2 and 

dissolved in 1.4-dioxane (anh., 20 mL). The mixture was degassed, and the 

atmosphere was exchanged by argon. The reaction was brought to reflux for 72 h. The 

reaction mixture was quenched with water, the aqueous layer was extracted with 

dichloromethane. Organic layer was dried over Na2SO4. Dichloromethane was 

removed under reduced pressure. Obtained product was purified by aFLC 

(Hexane:DCM:2:1 as eluent). The solvents were removed under reduced pressure 

and the product was dried in vacuo (200 mg, 0.58 mmol). 

White solid, 48.4 % yield. 
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1H NMR [300 MHz, CD2Cl2, 293 K]: δ (ppm) 7.98-7.90 (m, 1H), 7.71-7.63 (m, 2H), 

2.35 (q, J=1.31 Hz, 3H), 1.33 (s, 24H). 

13C NMR [75 MHz, CD2Cl2, 293 K]: δ (ppm) 138.97 (C), 138.63 (CH, 2C), 137.05 

(CH), 84.34 (O-C-), 25.31 (C-CH3), 21.49 (Ar-CH3). 

1,1'-Bias-indaceno[3,2,1,8,7,6-pqrstuv]picene (55) 

 

55 was obtained as a side product of Miyaura borylation (of 39b). 

1H NMR [400 MHz, C2D2Cl4, 293 K]: δ (ppm) 8.07 (d, J=8.77 Hz, 2H), 8.01 (d, J=8.89 

Hz, 2H), 7.84 (d, J=7.21 Hz, 2H), 7.77 (d, J=8.77 Hz, 2H), 7.75-7.68 (m, 8H), 7.63 (d, 

J=8.17 Hz, 2H), 7.53 (d, J=7.13 Hz, 2H), 7.39 (t, J=7.61 Hz, 2H). 

13C NMR [151 MHz, C2D2Cl4, 293 K]: δ (ppm) 138.99, 138.87, 138.73, 138.49, 138.45, 

138.33, 138.27, 138.14, 137.65, 137.13, 136.68, 130.87, 130.15, 129.96, 129.18, 

129.15, 128.48, 127.22, 127.02, 126.69, 125.98, 125.88, 124.40, 124.17, 123.87, 

123.85, 123.59, 120.36. 

MS [LDI]: m/z (rel. int.) = 646.35 [M]+ (100). 

HRMS [APPI, Toluene, DCM]: Chemical Formula: C52H22 calc. 646.1716, found 

646.1709. 

9,9'-(5-Methyl-1,3-phenylene)di-as-indaceno[3,2,1,8,7,6-pqrstuv]picene 
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A 50 mL RBF equipped with a magnetic stirring bar and a condenser was charged 

with 39b (13.5 mg, 0.033 mmol, 2.2 eq.), 2,2'-(5-methyl-1,3-phenylene)bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolane) (5.24 mg, 0.015 mmol, 1.0 eq.), K2CO3 (4.21 mg, 

0.030 mmol, 2.0 eq) and 5 % mol Pd(PPh3)4. The solids were suspended in 

Tol:MeOH:2:1 (30 mL), the reaction mixture was degassed, and the atmosphere was 

exchanged by N2. The mixture was brought to reflux for 16 h. The mixture was diluted 

with toluene (10 mL) and washed with water (2x10 mL). The aqueous layer was 

extracted with toluene (2x10 mL) and the combined organic layers were dried over 

MgSO4. The solvent was removed under reduced pressure. Yellow solid was washed 

with toluene and then product was dried in vacuo (6.0 mg, 8.1 μmol). 

Yellow solid, 53 % yield. 

1H NMR [400 MHz, C2D2Cl4, 293 K]: δ (ppm) 8.09 (dd, J=5.81, 8.85 Hz, 4H), 8.00 (d, 

J=8.93 Hz, 2H), 7.80-7.75 (m, 4H), 7.72-7.67 (m, 7H), 7.62 (d, J=8.13 Hz, 2H), 7.54-

7.51 (m, 2H), 7.49 (d, J=7.25 Hz, 2H), 7.37 (dd, J=7.11, 8.07 Hz, 2H), 2.54 (s,3H). 

13C NMR [151 MHz, C2D2Cl4, 293 K]: δ (ppm) 140.65, 139.35, 138.89, 138.79, 138.76, 

138.41, 138.38, 138.29, 138.28, 138.26, 138.03, 137.30, 136.63, 130.01, 129.92, 

129.34, 129.15, 129.11, 128.36, 127.39, 127.17 (CH), 126.96 (CH), 126.44 (CH), 

125.92 (CH), 125.70 (CH), 124.49, 124.16, 124.07, 123.81 (CH), 120.36, 21.86 (CH3). 

MS [LDI] m/z (rel. int.) = 736.65 [M]+ (100). 

HRMS [APPI, Toluene, DCM] Chemical Formula: C59H28 calc. 736.2186, found 

736.2195. 

6.5 Synthesis of Pyrene and Chrysene Derivatives 

1,6-Bis(2-fluorophenyl)pyrene 59 
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A 500 mL RBF equipped with a magnetic stir bar and a condenser was charged with 

1.6-dibromopyrene 24 (1.0 g, 2.78 mmol, 1 eq), 2-fluorophenylboronic acid 58 (0.89 g, 

6.39 mmol, 2.3 eq), K2CO3 (0.88 g, 6.39 mmol, 2.3 eq) and 5% mol Pd(PPh3)4. The 

solids were suspended in 2:1 toluene:MeOH (225 mL), the reaction mixture was 

degassed and the atmosphere was exchanged by nitrogen. The mixture was brought 

to reflux for 16 h. The mixture was diluted with toluene (30 mL) and washed with water 

(2x50 mL). The aqueous layer was extracted with toluene (2x50 mL) and the 

combined organic layers were dried over MgSO4. The solvent was evaporated, and 

product was dried in vacuo (0.68 g, 1.74 mmol). 

White solid, 63 % yield. 

1H NMR [300 MHz, CD2Cl2, 293 K]: δ (ppm) 8.27 (d, J=7.83 Hz, 2H), 8.11 (d, J=9.27 

Hz, 2H), 8.01 (dd, J=0.65, 7.85 Hz, 2H), 7.97 (dd, J=2.46, 9.21 Hz, 2H), 7.61-7.49 (m, 

4H), 7.42-7.28 (m, 4H). 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 8.22 (d, J=7.80 Hz, 2H), 8.06 (d, J=9.20 

Hz, 2H), 8.00-7.93 (m, 4H), 7.57-7.45 (m, 4H), 7.34 (dt, J=1.20, 7.48 Hz, 2H), 7.25-

7.31 (m, 2H). 

1H NMR [400 MHz, DMSO, 293 K]: δ (ppm) 8.40 (d, J=7.89 Hz, 2H), 8.25 (d, J=9.29 

Hz, 2H), 8.06 (d, J=7.81 Hz, 2H), 7.87 (dd, J=2.42, 9.19 Hz, 2H), 7.66-7.58 (m, 4H), 

7.52-7.43 (m, 4H). 

13C NMR [101 MHz, DMSO, 293 K]: δ (ppm) 159.47 (d, J=244.56 Hz, C-F), 132.72 

(CH), 131.06 (C), 130.34 (C), 130.31 (d, J=6.57 Hz, CH), 128.59 (C), 128.41 (CH), 

127.96 (CH), 127.50 (d, J=16.05 Hz, C), 125.08 (CH), 124.92 (CH), 124.88 (d, J=3.48 

Hz, CH), 123.88 (C), 115.86 (d, J=22.12 Hz, CH). 

19F NMR [377 MHz, DMSO, 293 K]: δ (ppm) -114.4-(-114.6). 

HRMS [APPI, toluene]: Chemical Formula: C28H16F2 calc. 390.1215, found 390.1220. 

MS [MALDI-TOF, without matrix]: m/z (rel. int.) = 390.2013 [M]+ (100) 

MS [MALDI-TOF, DHB]: m/z (rel. int.) = 390.1717 [M]+ (100) 

MS [MALDI-TOF, DCTB]: m/z (rel. int.) = 390.2115 [M]+ (100). 

 

 

 



Experimental Section 

116 
 

Diindeno[1,2,3-cd:1',2',3'-jk]pyrene (60) 

 

1 g of activated aluminium oxide was added to the microwave glass vial containing 

100 mg of 1,6-bis(2-fluorophenyl)pyrene 59 dissolved in 3 mL of anhydrous o-DCB. 

The condensation was carried at 240 °C for 1.5 h. After cooling to the room 

temperature, product precipitated from o-dichlorobenzene solution. Collected crystals 

were analyzed by X‐ray crystallography. 

1H and 13C NMR spectra are in accordance with [59]. 

1,3,6,8-Tetrakis(2-fluorophenyl)pyrene (62) 

 

A 250 mL RBF equipped with a magnetic stir bar and a condenser was charged with 

1,3,6,8‐tetrabromopyrene 61 (1.5 g, 2.9 mmol, 1 eq.), 2-fluorophenylboronic acid 58 

(2.23 g, 15.93 mmol, 5.5 eq.), K2CO3 (1.0 g, 7.24 mmol, 2.5 eq.) and 5% mol 

Pd(PPh3)4. The solids were suspended in 2:1:Tol:MeOH (105 mL), the reaction 

mixture was degassed and the atmosphere was exchanged by nitrogen. The mixture 

was brought to reflux for 16 h. The mixture was diluted with toluene (30 mL) and 
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washed with H2O (2x50 mL). The aqueous layer was extracted with toluene (2x50 mL) 

and the combined organic layers were dried over MgSO4. The solvent was 

evaporated, and the product was purified by flash column chromatography in 

DCM:Hexane:1:1. Solvents were removed under reduced vacuum, and the product 

was dried in vacuo (1.3 g, 2.25 mmol). 

White solid, 75 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 8.01-7.96 (m, 6H), 7.62-7.51 (m, 4H), 

7.48-7.41 (m, 4H), 7.33-7.21 (m, 8H). 

13C NMR [100 MHz, CDCl3, 293 K]: δ (ppm) 161.50-161.25 (m),159.06-158.81 (m), 

133.14-132.65, 131.11, 131.07, 130.26, 129.68, 129.60, 129.10, 128.16, 128.00, 

125.65, 125.17, 124.34-123.98 (m), 116.14-115.49 (m). 

19F NMR [282 MHz, CDCl3, 293 K]: δ (ppm) -112.7 - (-113.86). 

3,9-Bis(2-fluorophenyl)diindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene (65a) 

 

A 100 mL RBF equipped with a magnetic stir bar and a condenser was charged with 

3,9-dibromodiindenochrysene 51a (106 mg, 0.220 mmol), 2-fluorophenylboronic acid 

58 (74 mg, 0.528 mmol), K2CO3 (73 mg, 0.528 mmol) and 5 % mol Pd(PPh3)4. The 

solids were suspended in 2:1:toluene:MeOH (45 mL), the reaction mixture was 

degassed and the atmosphere was exchanged by nitrogen. The mixture was brought 

to reflux for 16 h. The mixture was diluted with toluene (30 mL) and washed with H2O 

(2x30 mL). The aqueous layer was extracted with toluene (2x30 mL) and the 

combined organic layers were dried over MgSO4. The solvent was removed under 

reduced pressure and the product was purified by aFLC in hexane:DCM (1:1). 

Solvents were removed, and product was dried in vacuo (107 mg, 0.209 mmol). 

Orange solid, 95 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 7.84 (2H, s); 7.75 (2H, d, J=7.20 Hz); 7.69 

(2H, d, J=8.96 Hz); 7.52-7.45 (4H, m); 7.44-7.37 (4H, m); 7.29-7.19 (4H, m). 
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13C NMR [101 MHz, CDCl3, 293 K]: δ (ppm) 161.10; 158.64; 142.35; 139.09; 138.73; 

132.22 (d, J=3.38 Hz); 130.15 (d, J=1.45 Hz); 129.62 (d, J=8.04 Hz); 126.66 (d, 

J=15.38 Hz); 125.25 (d, J=2.51 Hz); 124.20 (d, J=3.67 Hz); 115.99 (d, J=22.41 Hz). 

MS [LDI]: m/z (rel. int.) = 512.14 [M]+ (100). 

HRMS [APPI, toluene]: Chemical Formula: C38H18F2 calc. 512.1371, found 512.1373. 

3,9-Bis(2-fluoro-5-methylphenyl)diindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene 

(65b) 

 

A 100 mL round bottom flask equipped with a magnetic stir bar and a condenser was 

charged with 3,9-dibromodiindenochrysene 51a (106 mg, 0.220 mmol, 1 eq), 2-fluoro-

5-methylphenylboronic acid 64 (81 mg, 0.528 mmol, 2.4 eq), K2CO3 (81 mg, 

0.528 mmol, 2.4 eq) and 5% mol Pd(PPh3)4. The solids were suspended in 

2:1:toluene:MeOH (45 mL), the reaction mixture was degassed and the atmosphere 

was exchanged by nitrogen. The mixture was brought to reflux for 16 h. The mixture 

was diluted with toluene (30 mL) and washed with H2O (2x 30 mL). The aqueous layer 

was extracted with toluene (2x 30 mL) and the combined organic layers were dried 

over MgSO4. The solvent was removed under reduced pressure and the product was 

purified by aFLC in hexane:DCM (1:1). Solvents were removed, and product was dried 

in vacuo, yielding the product in 109.3 mg (0.202 mmol). 

Orange solid, 92 % yield. 

1H NMR [400 MHz, CD2Cl2, 293 K]: δ (ppm) 7.87 (2H, s); 7.78 (2H, d, J=7.20 Hz); 

7.71 (2H, d, J=8.96 Hz); 7.51 (2H, dd, J=2.46, 8.94 Hz); 7.41 (2H, dd, J=0.92, 7.24 

Hz); 7.32-7.27 (2H, m); 7.27-7.22 (2H, m); 7.14 (2H, dd, J=8.38, 9.90 Hz); 2.41-2.39 

(6H, m). 

13C NMR [101 MHz, CD2Cl2, 293 K]: δ (ppm) 159.66; 157.72; 142.86; 139.37 (d, 

J=31.49 Hz); 137.38 (d, J=65.27 Hz); 134.70-134.45 (m); 133.27-133.04 (m); 130.79 

(d, J=9.56 Hz); 128.46 (d, J=9.16 Hz); 126.67 (d, J=15.49 Hz); 125.89; 125.12; 122.79; 

116.11 (d, J=22.61 Hz); 20.94. 



Experimental Section 

119 
 

MS [LDI] m/z (rel. int.) = 540.17 [M]+ (100). 

HRMS [APPI, toluene, ACN]: Chemical Formula: C40H22F2 calc. 540.1684, found 

540.1691. 

Benzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-as-indaceno[8,1,2,3-klmno]-

chrysene (66a) 

 

6 g of γ-Al2O3 were preactivated in glass ampule at 250 °C under air conditions for 

30 minutes and then activated at 550 °C for 2 hours in vacuum (10-3 mbar). Activated 

aluminium oxide was added to the microwave glass vial containing 100 mg of 65a 

dissolved in 12 mL of anhydrous o-DCB. The glass vial was closed with the cap and 

placed into microwave oven. All preparation steps were performed under argon 

atmosphere. The condensation was carried out 230 °C for 16 h. After cooling to the 

room temperature, products were extracted with toluene and separated on semi-

preparative HPLC (PBB column, Tol:MeOH:7:3 as eluent, 5.0 ml min-1) 

1H NMR [300 MHz, CD2Cl2, 293 K] : δ (ppm) 7.68-7.63 (2H, m); 7.61-7.57 (2H, m); 

7.56 (2H, s); 7.41 (2H, s); 7.39 (4H, s); 7.24-7.18 (4H, m). 

MS [LDI]: m/z (rel. int.) = 472.12 [M]+ (100). 

HRMS [APPI, toluene, DCM]: Chemical Formula: C38H16 calc. 472.1247, found 

472.1240. 

3,11-Dimethylbenzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-as-indaceno 

[8,1,2,3-klmno]chrysene (66b) 

 

6 g of γ-Al2O3 were preactivated in glass ampule at 250 °C under air conditions for 

30 minutes and then activated at 550 °C for 2 hours in vacuum (10-3 mbar). Activated 
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aluminium oxide was added to the microwave glass vial containing 100 mg of 65b 

dissolved in 12 mL of anhydrous o-DCB. The glass vial was closed with the cap and 

placed into microwave oven. All preparation steps were performed under argon 

atmosphere. The condensation was carried out 230 °C for 16 h. After cooling to the 

room temperature, products were extracted with toluene and separated on semi-

preparative HPLC (PBB column, Tol:MeOH:6:4 as eluent, 5.0 ml min-1). 

Red solid, 35 % yield. 

1H NMR [400 MHz, CD2Cl2, 293 K]: δ (ppm) 7.52 (2H, d, J=7.72 Hz); 7.47 (2H, s); 

7.42-7.39 (2H, m); 7.38-7.32 (6H, m); 7.04-7.00 (2H, m); 2.36 (6H, s). 

13C NMR [101 MHz, CD2Cl2, 293 K]: δ (ppm) 142.96; 141.92;140.27;139.59;139.24; 

138.45; 138.00; 137.53; 137.49; 137.41; 136.88; 136.06; 128.15; 126.29; 123.52; 

122.83; 121.96; 121.75; 121.43; 29.25. 

MS [LDI]: m/z (rel. int.) = 500.16 [M]+ (100). 

HRMS [APPI, toluene]: Chemical Formula: C40H20 calc. 500.1560, found 500.1561. 

6.6 Synthesis of Halogenated Decacyclene and Tridecacyclene 

6.6.1 Synthesis of Fluorinated Decacyclene 70 and Tridecacyclene 72 

7-Fluoro-1-methylene-1,2,3,4-tetrahydronaphthalene (75) 

 

RBF was charged with 0.8 g (4.87 mmol) of 7-fluoro-1-tetralone 74, 1.9 g (5.4 mmol) 

of methyltriphenylphosphonium bromide, 0.6 g (5.4 mmol) of t-BuOK and 100 mL of 

distilled Et2O and was stirred for 48h at rt under nitrogen atmosphere. The reaction 

mixture was neutralized with HCl, then DCM and H2O were added, and after extraction 

the layers were separated. The aqueous phase was extracted with DCM (3x50 mL) 

and was combined with organic layer, then combined layers were dried over 

anhydrous Na2SO4. DCM was removed under reduced pressure and residue was 
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purified by column chromatography (SiO2, hexane) yielding to 0.77 g (4.7 mmol) of 

product. 

Colourless liquid, 97 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 7.30 (dd, J=2.68, 10.68 Hz, 1H), 7.07-

7.00 (m, 1H), 6.86 (td, J=2.68, 8.34, 8.34 Hz, 1H), 5.45-5.42 (m, 1H), 5.00-4.98 (m, 

1H), 2.78 (t, J=6.26 Hz, 2H), 2.55-2.48 (m, 2H), 1.89-1.81 (m, 2H). 

13C NMR [101 MHz, CDCl3, 293 K]: δ (ppm) 161.26 (d, J=242.30 Hz, C-F), 142.64 (d, 

J=2.30 Hz), 136.36 (d, J=7.17 Hz), 132.88 (d, J=2.89 Hz), 130.52 (d, J=7.86 Hz, CH), 

114.63 (d, J=21.72 Hz, CH), 110.24 (d, J=21.50 Hz, CH), 108.98 (d, J=0.84 Hz, CH2), 

32.72 (CH2), 29.73 (CH2), 23.67 (CH2). 

6-Fluoro-4-methyl-1,2-dihydronaphthalene (76) 

 

0.57 g (3.5 mmol) of 7-fluoro-1-methylene-1,2,3,4-tetra-hydronaphthalene 75 and 

catalytic amount of TsOH were dissolved in DCM and stirred for 16 h at rt. The reaction 

mixture was washed with solution of NaHCO3 in water. Aqueous phase was extracted 

with DCM. The organic phase was dried over anhydrous Na2SO4. After filtration the 

product was concentrated under reduced pressure (0.56 g, 3.45 mmol). TLC: hexane. 

Colourless liquid, 99 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 7.08-7.02 (m, 1H), 6.92 (dd, J=2.62, 10.34 

Hz, 1H), 6.81 (td, J=2.66, 8.42, 8.42 Hz, 1H), 5.93-5.87 (m, 1H), 2.70 (t, J=8.08 Hz, 

2H), 2.28-2.19 (m, 2H), 2.03-2.00 (m, 3H). 

13C NMR [101 MHz, CDCl3, 293 K]: δ (ppm) 161.84 (d, J=241.83 Hz, C-F), 137.63 (d, 

J=7.41 Hz), 131.57 (d, J=2.80 Hz), 128.17 (d, J=7.87 Hz, CH), 126,62 (CH and C), 

112.62 (d, J=20.80 Hz, CH), 109.87 (d, J=22.19 Hz, CH), 27.42 (CH2), 23.26 (CH2), 

19.15 (CH3). 
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7-Fluoro-1-methylnaphthalene (77) 

 

0.5 g (3.1 mmol) of 6-fluoro-4-methyl-1,2-dihydro-naphthalene 76 and 0.77 g 

(3.4 mmol) of DDQ were dissolved in DCM. Reaction was carried out at rt and was 

monitored by HPLC. DCM was removed under reduced pressure and the product was 

purified by column chromatography (SiO2, hexane) yielding 0.45 g (2.8 mmol). TLC: 

hexane (Al2O3). 

Colourless liquid, 91 % yield. 

1H NMR [400 MHz, CD2Cl2, 293 K]: δ (ppm) 7.86 (dd, J=5.94, 8.98 Hz, 1H), 7.73-7.69 

(m, 1H), 7.61 (dd, J=2.44, 11.32 Hz, 1H), 7.38-7.32 (m, 2H), 7.27 (td, J=2.55, 8.67, 

8.67 Hz, 1H), 2.64 (s, 3H). 

13C NMR [101 MHz, CD2Cl2, 293 K]: δ (ppm) 161.03 (d, J=244.03 Hz, C-F), 134.25 

(d, J=6.14 Hz), 133.91 (d, J=8.21 Hz), 133.91 (d, J=8.21 Hz), 131.27 (d, J=9.16 Hz, 

CH), 130.97 (d, J=1.15 Hz), 127.80 (CH), 126.51 (d, J=1.22 Hz, CH), 125.23 (d, J=2.54 

Hz, CH), 115.98 (d, J=25.24 Hz, CH), 108.02 (d, J=20.98 Hz, CH), 19.46 (CH3). 

1-(Bromomethyl)-7-fluoronaphthalene (78) 

 

0.45 g (2.8 mmol) of 7-fluoro-1-methylnaphthalene 77 was dissolved in CCl4, then 

3.1 g (0.55 mmol) NBS and catalytic amount of DBPO were added. Reaction was 

carried out under reflux and monitored by TLC (eluent: hexane). CCl4 was removed 
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under reduced pressure, the product mixture contained mono- and dibrominated 

product was used for the next step without further purification. 

2-(7-Fluoronaphthalen-1-yl)acetonitrile (79) 

 

2.46 g (10.29 mmol) of 1-(bromomethyl)-7-fluoronaphthalene 78, 0.55 g (11.2 mmol) 

of NaCN (dissolved in water) and catalytic amount of TBAB were dissolved in 50 mL 

DCM. Reaction was carried out at rt for 16 h. Reaction mixture was washed with water 

(2x30 mL). Organic layer was dried over anhydrous Na2SO4, product was 

concentrated under reduced pressure and purified on aFLC (Hexane:DCM:1:1). 

(0.56 g, 3.02 mmol). 

Light-yellow solid, 29 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 7.89 (dd, J=5.82, 9.02 Hz, 1H), 7.84 (d, 

J=8.28 Hz, 1H), 7.64-7.60 (m, 1H), 7.48-7.40 (m, 2H), 4.05 (s,1 H), 7.30 (d, J=2.44 

Hz, 1 H), 7.32 (dd, J=0.72, 2.44 Hz, 1H) 

13C NMR [101 MHz, CD2Cl2, 293 K]: δ (ppm) 161.79 (d, J=247.06 Hz, C-F), 132.32 

(d, J=8.74 Hz), 132.19 (d, J=9.30 Hz, CH), 131.34 (d, J=1.04 Hz), 129.44 (d, J=1.28 

Hz, CH), 128.06 (CH), 126.36 (d, J=5.70 Hz), 125.40 (d, J=2.58 Hz, CH), 117.98 (CN), 

117.11 (d, J=25.17 Hz, CH), 107.05 (d, J=21.90 Hz, CH), 22.29 (CH2). 

2-(7-Fluoronaphthalen-1-yl)acetic acid (80) 
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1.77 g (9.56 mmol) of 2-(7-fluoronaphthalen-1-yl)aceto-nitrile 79 was dissolved in 

72 mL AcOH, 48 mL H2SO4 and 48 mL H2O was added. Reaction was carried out 16 h 

under reflux. After cooling to rt, 400 mL H2O was added, and the mixture was kept 2-

3 hours at the room temperature. The precipitate was filtrated and washed with water 

(3x50 mL). Product was dried under vacuum for 24 h (1.07 g, 5.24 mmol). 

White solid, 55 % yield. 

1H NMR [400 MHz, DMSO, 293 K]: δ (ppm) 8.04 (dd, J=6.10, 9.02 Hz, 1H), 7.89 (d, 

J=7.80 Hz, 1H), 7.69 (dd, J=2.52, 11.53 Hz, 1H), 7.50-7.41 (m, 3H), 4.02 (s,2H). 

13C NMR [101 MHz, DMSO, 293 K]: δ (ppm) 172.67 (s, COOH), 160.21 (d, J=243.33 

Hz, C-F), 160.21 (d, J=243.33 Hz), 132.86 (d, J=8.90 Hz), 131.50 (CH), 131.43 (d, 

J=3.16 Hz, 1 C), 130.57 (d, J=0.93 Hz), 129.02 (CH), 127.44 (d, J=1.15 Hz, CH), 

125.02 (d, J=2.43 Hz, CH), 115.87 (d, J=25.19 Hz, CH), 107.84 (d, J=21.31 Hz, CH), 

38.46 (CH2). 

8-Fluoroacenaphthylen-1(2H)-one (81) 

 

0.3 g (1.47 mmol) of 2-(7-fluoronaphthalen-1-yl)acetic acid 80 was dissolved in 1.75 g 

(14.7 mmol) SOCl2 and was kept while stirring for 1 h at 65ºC. SOCl2 was removed 

under reduced pressure and the product was diluted with DCM. Then 0.29 g (2.2 

mmol) of AlCl3 was added while stirring and the mixture was kept at rt for 3 hours. 

After reaction the mixture was poured out on ice and 10 % HCl. Product was extracted 

with DCM, dried over anhydrous Na2SO4, concentrated and filtrated. Product was 

purified on aFLC (DCM:Hexane:2:1) and concentrated under reduced pressure 

(0.24 g, 1.29 mmol). 

Beige solid, 87.8 % yield. 

1H NMR [400 MHz, DMSO, 293 K]: δ (ppm) 8.33 (dd, J=4.40, 8.80 Hz, 1H), 7.97-7.92 

(m, 1H), 7.67-7.54 (m, 4H), 3.88 (s,2H). 
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13C NMR [101 MHz, DMSO, 293 K]: δ (ppm) 198.18 (d, J=1.65 Hz, C=O), 154.43 (d, 

J=263.57 Hz, 1 C-F), 142.05 (d, J=4.87 Hz), 135.16 (d, J=8.81 Hz, CH), 134.66 (d, 

J=6.03 Hz), 127.47 (d, J=2.82 Hz, CH), 127.32 (d, J=2.23 Hz), 123.61 (d, J=1.40 Hz, 

CH), 121.84 (CH), 117.98 (d, J=1.15 Hz, CH), 117.75 (CH), 41.85 (CH2). 

Synthesis of the fluorinated decacyclene (70) and tridecacyclene (72) was 

conducted according to modified procedure [164]. Two-necked RBF was equipped with 

a stirring bar and condenser. 0.35 ml (3.2 mmol) of TiCl4 and 3.9 mL of o-DCB ware 

added to the flask and brought to reflux under N2 atmosphere. Then 0.1 g of 8-

fluoroacenaphthylen-1(2H)-one 81 (0.53 mmol) was dissolved in 3.9 mL of o-DCB and 

was added dropwise into refluxing reaction mixture. Reaction was monitored by TLC 

(DCM:Hexane:1:1). After cooling down the mixture was dissolved in acetone; part of 

product precipitated. The formed precipitate was collected from filter. Dissolved 

product was concentrated, dissolved in hexane and filtrated on silica plug. After the 

concentration product was dissolved in Tol:MeOH mixture and purified on semi-

preparative HFLC (Tol:MeOH:1:1 as eluent). 

Further work-up of precipitate was carried out according to modified procedure [165]. 

Precipitate was dissolved in small amount of toluene, adsorbed onto aluminium oxide 

and placed in the thimble of a Soxhlet extractor. Extraction was carried out in hot 

dichloromethane. The dark-coloured soluble impurities were collected in the first 

fraction, whereas the second fraction (18 h of extraction) contained pure product 70. 

Both products were analysed by NMR-spectroscopy, HPLC chromatography and 

mass spectrometry. 

1,7,13-Trifluorodecacyclene (70) 
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Product 6 mg, 0.012 mmol. 

Brown-yellow solid, 6.6 % yield. 

1H NMR [400 MHz, C2D2Cl4, 293 K]: δ (ppm) 8.38 (t, J=6.15 Hz, 3H), 7.97 (dd, J=3.64, 

8.73 Hz, 3H), 7.92 (d, J=8.21 Hz, 3H), 7.74 (t, J=7.69 Hz, 3H), 7.48 (dd, J=8.79, 10.83 

Hz, 3H). 

MS [LDI]: m/z (rel. int.) = 504.35 [M]+ (100). 

HRMS [APPI, Toluene, DCM]: Chemical Formula: C36H15F3 calc. 504.1120, found 

504.1128. 

1,7,13,19-tetrafluorotridecacyclene (72) 

 

Product 12 mg, 0.018 mmol. 

Brown solid, 13.5 % yield. 

1H NMR [400 MHz, CD2Cl2, 293 K]: δ (ppm) 8.58-8.44 (m, 8H), 8.39-8.26 (4H), 8.21-

8.11 (4H), 7.92-7.80 (m, 4H). 

13C NMR [101 MHz, CDCl3, 293 K]: δ (ppm) 154.95, 139.53, 131.31, 131.22, 127.16, 

127.10, 125.64, 118.90, 118.64. 

MS [LDI]: m/z (rel. int.) = 672.51 [M]+ (100). 

HRMS [APPI, Toluene, DCM]: Chemical Formula: C48H20F4 calc. 672.1496, found 

672.1502. 
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6.6.2 Synthesis of Brominated Tridecacyclene 90 

7-Bromo-1-methylene-1,2,3,4-tetrahydro-naphthalene (83) 

 

RBF was charged with 11.2 g (49.7 mmol) of 7-bromotetralone 82, 19.5 g (54.6 mmol) 

of methyltriphenylphosphonium bromide, 6.1 g (54.6 mmol) of t-BuOK and 300 mL of 

distilled Et2O and was stirred for 48 h at rt under nitrogen atmosphere. Reaction 

mixture was neutralized with HCl, then DCM and H2O were added. The aqueous 

phase was extracted with DCM (3x50 mL). The organic layer was dried over 

anhydrous Na2SO4. DCM was removed under reduced pressure and the residue was 

purified by column chromatography (SiO2, hexane) yielding to 9.6 g (42.9 mmol) of 

product. TLC: hexane. 

Light-brown liquid, 86 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 7.74 (d, J=2.04 Hz, 1H), 7.25 (dd, J=2.04, 

8.17 Hz, 1H), 6.95 (dt, J=0.96, 8.17 Hz, 1H), 5.45-4.45 (m, 1H), 5.00-4.96 (m, 1H), 

2.76 (t, J=6.31 Hz, 2H), 2.53-2.47 (m, 2H), 1.89-1.80 (m, 2H). 

13C NMR [101 MHz, CDCl3, 293 K]: δ (ppm) 142.22, 136.77, 136.09, 130.81 (CH), 

130.31 (CH), 127.06 (CH), 119.63 (C-Br), 109.16 (CH2), 32.73 (CH2), 29.92 (CH2), 

23.42 (CH2). 

6-Bromo-4-methyl-1,2-dihydronaphthalene (84) 
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9.6 g (42.9 mmol) of 7-bromo-1-methylene-1,2,3,4-tetrahydronaphthalene 83 and 

catalytic amount of TsOH were dissolved in DCM and were stirred for 16 h at rt. 

Reaction mixture was washed with solution of NaHCO3 in water. Aqueous phase was 

extracted with DCM. Organic phase was dried over anhydrous Na2SO4. After filtration 

the product was concentrated under reduced pressure (9.0 g, 40.34 mmol). TLC: 

hexane. 

Light-brown liquid, 94 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 7.32 (d, J=2.08 Hz, 1H), 7.24 (dd, J=2.04, 

7.93 Hz, 1H), 6.98 (dt, J=0.84, 7.93 Hz, 1 H), 5.91-5.85 (m, 1H), 2.68 (t, J=8.07 Hz, 

2H), 2.27-2.19 (m, 2H), 2.01 (q, J=1.71 Hz, 3H). 

13C NMR [101 MHz, CDCl3, 293 K]: δ (ppm) 137.85, 135.00, 131.30, 129.23 (CH), 

128.79 (CH), 126.73 (CH), 125.77 (CH), 120.02 (C-Br), 27.68 (CH2), 22.99 (CH2), 

19.15 (CH3). 

7-Bromo-1-methylnaphthalene (85) 

 

9.0 g (40.3 mmol) of 6-bromo-4-methyl-1,2-dihydro-naphthalene 84 and 18.3 g 

(80.7 mmol) of DDQ were dissolved in benzene. Reaction was carried out under reflux 

for 3 h. Benzene was removed under reduced pressure, and the product was purified 

by column chromatography (SiO2, hexane) yielding 2.4 g (10.9 mmol). TLC hexane 

(Al2O3). 

Light-brown liquid, 27 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 8.16-8.14 (m, 1H), 7.70 (d, J=8.69 Hz, 

1H), 7.68-7.64 (m, 1H), 7.55 (dd, J=1.94, 8.71 Hz, 1H), 7.38 (dd, J=7.05, 8.01 Hz, 1 

H), 7.35-7.31 (m, 1H), 2.64 (s, 3H). 

13C NMR [101 MHz, CDCl3,293 K]: δ (ppm) 133.76, 133.47, 131.89, 130.13 (CH), 

128.83 (CH), 127.48 (CH), 126.54 (CH), 126.19 (CH), 125.96 (CH), 119.91 (C-Br), 

19.24 (CH3). 
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7-Bromo-1-(bromomethyl)naphthalene (86) 

 

2.4 g (10.7 mmol) of 7-bromo-1-methylnaphthalene 85 was dissolved in CCl4, then 

2.1 g (11.7 mmol) NBS and catalytic amount of DBPO were added. Reaction was 

carried out under reflux and monitored by TLC. CCl4 was removed under reduced 

pressure, and product was purified by column chromatography (SiO2, hexane) yielding 

2.8 g (9.4 mmol). TLC hexane. 

White-yellow crystals, 88 % yield. 

1H NMR [300 MHz, CDCl3, 293 K]: δ (ppm) 8.29-8.27 (m, 1H), 7.79 (dt, J=1.10, 8.24 

Hz, 1H), 7.74 (d, J=8.67 Hz, 1H), 7.59 (dd, J=1.91, 8.72 Hz, 1H), 7.55 (dd, J=1.22, 

7.07 Hz, 1H), 7.41 (dd, J=7.08, 8.22 Hz, 1H), 4.88 (s, 2H). 

13C NMR [75 MHz, CDCl3, 293 K]: δ (ppm) 132.58, 132.42, 132.18, 130.43 (CH), 

129.70 (CH), 129.58 (CH), 128.64 (CH), 126.22 (CH), 125.83 (CH), 120.99 (C-Br), 

31.03 (CH2) 

2-(7-Bromonaphthalen-1-yl)acetonitrile (87) 

 

2.4 g (7.8 mmol) of 7-bromo-1-(bromomethyl)naphthalene 86, 1.0 g (15.7 mmol) of 

KCN (dissolved in water) and catalytic amount of TBAB were dissolved in 50 mL DCM. 

Reaction was carried out at rt for 16 h. Reaction mixture was washed with water 

(2x30 mL). Organic layer was dried over anhydrous Na2SO4, obtained product was 

concentrated under reduced pressure and purified on aFLC (Hexane: DCM:1:1) (1.9 g, 

7.7 mmol). 
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Light-yellow solid, 98 % yield. 

1H NMR [300 MHz, CDCl3, 293 K]: δ (ppm) 8.00-7.98 (m, 1H), 7.81 (d, J=8.28 Hz, 

1H), 7.76 (d, J=8.73 Hz, 1H), 7.65-7.59 (m, 2H), 7.48 (dd, J=7.20, 8.19 Hz, 1H), 4.08 

(s, 2H). 

13C NMR [75 MHz, CDCl3, 293 K]: δ (ppm) 132.10, 131.89, 130.64 (CH), 129.85 (CH), 

129.00 (CH), 127.37 (CH), 125.94 (CH), 124.98, 124.87 (CH), 121.44 (C-Br), 117.23 

(CN), 21.62 (CH2). 

2-(7-Bromonaphthalen-1-yl)acetic acid (88) 

 

1.9 g (7.7 mmol) of 2-(7-bromonaphthalen-1-yl)acetonitrile 87 was dissolved in 60 mL 

AcOH, 10 mL H2SO4 and 10 mL H2O was added. Reaction was carried out 16 h under 

reflux. After cooling to rt, 400 mL H2O was added, and the mixture was kept 2-3 hours 

at the room temperature. The precipitate was filtrated and washed with water 

(3x50 mL). Then the product was dried under vacuo for 24 h (1.34 g, 5.05 mmol). 

White solid, 66 % yield. 

1H NMR [400 MHz, DMSO, 293 K]: δ (ppm) 12.49 (s, 1H), 8.19-8.16 (m, 1H), 7.92 (d, 

J=8.77 Hz, 1H), 7.87 (dd, J=2.48, 6.85 Hz, 1H), 7.65 (dd, J=1.96, 8.73 Hz, 1H), 7.53-

7.42 (m, 2H), 4.06 (s, 2H). 

13C NMR [101 MHz, DMSO, 293 K]: δ (ppm) 172.57 (C=O), 133.12, 131.88, 131.18, 

130.74 (CH), 129.15 (CH), 128.73 (CH), 127.43 (CH), 126.37 (CH), 126.21 (CH), 

119.67 (C-Br), 38.30 (CH2). 
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8-Bromoacenaphthylen-1(2H)-one (89) 

 

0.7 g (2.83 mmol) of 2-(7-bromonaphthalen-1-yl)acetic acid 88 was dissolved in 2.02 g 

(17 mmol) SOCl2 and was kept while stirring for 1 h at 65ºC. SOCl2 was removed 

under reduced pressure and product was diluted with DCM. Then was 0.4 g of 

(3.2 mmol) AlCl3 was added and the reaction mixture was kept at rt for 3 hours. After 

reaction the mixture was poured out on ice and 10 % HCl. Product was extracted with 

DCM and dried over anhydrous Na2SO4, then concentrated and filtrated. The obtained 

product was purified on aFLC (DCM:Hexane:2:1) and concentrated under reduced 

pressure (0.3 g, 1.21 mmol). 

Beige solid, 43 % yield. 

1H NMR [300 MHz, CDCl3, 293 K]: δ (ppm) 7.84 (d, J=8.55 Hz, 1H), 7.77-7.71 (m, 

1H), 7.69 (d, J=8.52 Hz, 1H), 7.57 (dd, J=6.90, 8.34 Hz, 1H), 7.46-7.42 (m, 1H), 3.80-

3.77 (m, 2H). 

13C NMR [75 MHz, CDCl3, 293 K]: δ (ppm) 200.06 (C=O), 144.06, 133.40, 132.91 

(CH), 132.33 (CH), 131.94, 129.65, 128.59 (CH), 124.03 (CH), 121.65 (CH), 116.80 

(C-Br), 42.28 (CH2). 

1,7,13,19-Tetrabromotridecacyclene (90) 
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Brominated tridecacyclene 90 was synthesized according to modified procedure [170]. 

Two-necked RBF was equipped with a stirring bar and condenser. 0.113 ml 

(1.03 mmol) of TiCl4 and 10 mL of o-DCB were added to the flask and brought to reflux 

under N2 atmosphere. Then 0.042 g of 8-bromoacenaphthylen-1(2H)-one 89 

(0.17 mmol) was dissolved in 10 mL of o-DCB and was added dropwise into refluxing 

reaction mixture. After 45 min the reaction mixture was poured into a flask containing 

crushed ice (100 g) and concentrated HCl(aq) (10 mL). The product was extracted with 

dichloromethane (3x25 mL) and dried over Na2SO4. Dichloromethane was removed 

under reduced pressure. Product was dissolved in 2 mL of toluene and placed in the 

thimble of a Soxhlet extractor after adsorption onto aluminium oxide. Extraction was 

carried out in hot dichloromethane. In first ( after 30 min) and second fraction ( after 

2 h) was collected dark-coloured product, which was analysed by HPLC 

chromatography. In both fractions the brominated tridecacyclene was detected. Both 

fractions were combined and concentrated under reduced pressure. Then, 0.2 mL of 

acetone and MeOH were added. The pure product precipitated in MeOH/Acetone 

mixture after centrifugation and then was dried in vacuo (5 mg, 0.00546 mmol). 

Brown solid, 13 % yield. 

1H NMR [400 MHz, C2D2Cl4, 293 K]: δ (ppm) 7.82-7.36 (m, 20H). 

13C NMR [101 MHz, CDCl3, 293 K]: δ (ppm) 142.12, 139.88, 139.69, 139.65, 139.60, 

139.50, 139.34, 139.11, 138.88, 138.71, 138.45, 137.30, 137.27, 136.50, 133.54, 

133.41, 133.07, 132.94, 132.63, 132.47, 131.19, 131.12, 131.03, 129.28, 129.11, 

129.02, 128.92, 128.75, 128.47, 128.39, 127.92, 127.84, 127.77, 127.67, 127.58, 

127.51, 127.43, 127.37, 127.31, 127.26, 127.24, 127.08, 125.63, 125.51, 125.23, 

125.06, 124.77, 124.53, 124.39, 120.10, 120.02, 119.43, 119.19, 119.09. 

MS [LDI]: m/z (rel. int.) = 915.90 [M]+ (100). 

HRMS [APPI, Toluene, DCM]: Chemical Formula: C48H20Br4 calc. 911.8293, found 

911.8298.  
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6.7 Synthesis of Bowl-Shaped Stuctures with Zig-Zag Periphery 

1,6-Bis(2-formylphenyl)pyrene (93) 

 

In 100 mL round bottom flask 1,6-dibromopyrene (1.00 g, 2.78 mmol), 2-

formylphenylboronic acid (1.00 g, 6.67 mmol), K2CO3 (2.00 g, 14.5 mmol) and 

Pd(PPh3)4 (80.0 mg, 69.0 µmol) were suspended in 2:1:Tol:MeOH mixture (30 mL). 

Flask was equipped with magnetic stir bar and condenser. Further, flask was 

degassed, and the atmosphere was exchanged by nitrogen. After 16 h under reflux, 

reaction mixture was diluted with toluene (100 mL) and washed with water (2x50 mL). 

Aqueous layer was extracted with toluene (1x50 mL); both organic layers were 

combined and dried over MgSO4. Solvent was evaporated under reduced vacuum and 

the product was precipitated from DCM:hexane mixture. Product was filtered, washed 

with hexane and dried in vacuo (0.7 g, 1.71 mmol).[171] 

Pale yellow solid, 61 % yield. 

1H NMR [400 MHz, CDCl3, 293 K]: δ (ppm) 9.66 (1H, s); 9.65 (1H, s), 8.24 (2H, d, 

J=7.80 Hz); 8.18 (2H, d, J=7.84 Hz), 8.07 (2H, d, J=9.24 Hz), 7.97 (2H, d, J=7.76 Hz), 

7.82 (2H, dd, J=2.04, 9.20 Hz), 7.77 (2H, m), 7.65 (2H, dd, J=7.56, 7.56 Hz), 7.57 (2H, 

d, J=7.52 Hz). 

13C NMR [75 MHz, CDCl3, 293 K]: δ (ppm) 191.83; 191.79; 144.52; 144.48; 135.10; 

135.06; 133.7; 133.6; 133.5; 132.20; 132.16; 131.0; 130.3; 128.7; 128.4; 128.3; 127.5; 

127.4; 125.3; 124.7; 124.60; 124.58. 

HRMS [APPI; toluene]: Chemical Formula: C30H18O2 calc. 410.1301, found 

410.1308. 
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1,6-dibromo-3,8-bis(2-fluorophenyl)pyrene) (101) 

 

0.5 g of 1,6-bis(2-fluorophenyl)pyrene 59 was dissolved in 100 mL of DMF in 250 mL 

two-neck RBF. Bromine (0.47 g, 2.95 mmol) was dissolved in 25 mL of DMF and 

added dropwise at rt (from dropping funnel). Then the mixture was stirred at rt for 16 h. 

Precipitated product was collected and washed with MeOH and hexane. Then, the 

precipitate was recrystallized from hot xylene (mixture of isomers), yielding the mixture 

of mono- and dibrominated products in 0.65 g, which was used without further 

characterization and purification. 

Beige solid. 

2,2'-(3,8-bis(2-fluorophenyl)-pyrene-1,6-diyl)dibenzaldehyde (102) 

 

A 100 mL RBF equipped with a magnetic stir bar and a condenser and was charged 

with 1,6-dibromo-3,8-bis(2-fluorophenyl)pyrene 101 (100 mg), 2-formylphenylboronic 

acid 92 (65 mg, 0.44 mmol), K2CO3 (61 mg, 0.44 mmol) and 5% mol Pd(PPh3)4. The 
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solids were suspended in Tol:MeOH:2:1 (45 mL), the reaction mixture was degassed 

and the atmosphere was exchanged by nitrogen. The mixture was brought to reflux 

for 16 h. After reaction the mixture was diluted with toluene (30 mL) and washed with 

H2O (2x30 mL). The aqueous layer was extracted with toluene (2x30 mL), the organic 

layers were combined and dried over MgSO4. The solvent was removed under 

reduced pressure. The product 102 was purified by HPLC chromatography 

(Tol:MeOH:2:8 as eluent). After purification the solvents were removed under reduced 

pressure, and the products were dried in vacuo. 

Yield 55 mg (0.092 mmol). 

1H NMR [400 MHz, DMSO, 293 K]: δ (ppm) 9.75-9.65 (2H, m); 8.14-8.08 (2H, m); 

8.07-8.03 (2H, m); 7.97-7.86 (4H, m); 7.85-7.74 (4H, m); 7.74- 7.64 (4H, m); 7.63-7.56 

(2H, m); 7.50-7.38 (4H, m). 

13C NMR [101 MHz, DMSO, 293 K]: δ (ppm) 191.61; 191.41; 160.67; 155.03; 142.57; 

134.51; 134.14; 133.55; 132.94; 132.79; 132.46; 130.74; 130.61; 130.53; 129.12; 

128.89; 128.34; 128.21; 128.04; 126.89; 126.73; 125.96; 125.37; 124.91; 124.15. 

19F NMR [282 MHz, DMSO, 293 K]: δ (ppm) -113÷-113.5 (m). 

MS [MALDI-TOF, without matrix]: m/z (rel. int.) = 598.3122 [M]+ (100). 

MS [MALDI-TOF, DHB]: m/z (rel. int.) = 598.3011 [M]+ (100). 

MS [MALDI-TOF, DCTB]: m/z (rel. int.) = 598.3352 [M]+ (100). 

HRMS [APPI, toluene]: Chemical Formula: C42H24F2O2 calc. 598.1739, found 

598.1744. 

2-(3,8-bis(2-fluorophenyl)pyren-1-yl)benzaldehyde (103) 

 

Yield 44 mg (0.089 mmol). 
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1H NMR [400 MHz, DMSO, 293 K]: δ (ppm) 9.71-9.64 (1H, m); 8.34 (1H, d, J=9.28 

Hz), 8.48 (1H, d, J=7.92 Hz); 8.13-8.05 (2H, m); 8.03-7.99 (1H, m), 7.98-7.93 (1H, m); 

7.91-7.82 (2H, m); 7.79-7.65 (4H, m), 7.65-7.55 (3H, m). 

13C NMR [101 MHz, DMSO, 293 K]: δ (ppm) 154.37; 134.48; 134.09; 132.86; 132.46; 

130.65; 130.52; 130.40; 128.82; 128.68; 128.45; 125.79; 124.98; 124.85; 115.98; 

115.77. 

19F NMR [282 MHz, DMSO, 293 K]: δ (ppm) -113.80÷-113.45 (m); -113.5÷-113.80 

(m). 

MS [MALDI-TOF, without matrix]: m/z (rel. int.) = 494.2225 [M]+ (100) 

MS [MALDI-TOF, DHB]: m/z (rel. int.) = 494.2752 [M]+ (100) 

MS [MALDI-TOF, DCTB]: m/z (rel. int.) = 494.2304 [M]+ (100). 

HRMS [APPI, toluene]: Chemical Formula: C35H20F2O calc. 494.1477, found 

494.1475. 

6,14-bis(2-fluorophenyl)tetraceno[2,1,12,11-opqra]tetracene (104) 

 

The reaction was conducted according to procedure for synthesis of nanographenes. 

As a precursor was used 2,2'-(3,8-bis(2-fluorophenyl)-pyrene-1,6-diyl)dibenzaldehy-

de 102 (12 mg; 0.02 mmol). 

HRMS [APPI; toluene, DCM]: Chemical Formula: C44H22F2 calc. 564.1684, found 

564.1677. 
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2,2'-(diindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene-3,9-diyl)dibenzaldehyde 

(110) 

 

A 100 mL RBF equipped with a magnetic stir bar and a condenser was charged with 

mixture of 80 mg 3,9-dibromodiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene 51a 

(0.17 mmol), 2-formylphenyl-boronic acid (65 mg, 0.43 mmol), K2CO3 (60 mg, 

0.43 mmol) and 5% mol Pd(PPh3)4. The solids were suspended in Tol:MeOH:2:1 (45 

mL), the reaction mixture was degassed and the atmosphere was exchanged by 

nitrogen. The mixture was brought to reflux for 16 h. The mixture was diluted with 

toluene (30 mL) and washed with H2O (2x30 mL). The aqueous layer was extracted 

with toluene (2x30 mL); organic layers were combined and dried over Na2SO4. The 

solvent was removed under reduced pressure. The product 110 was purified by aFLC 

(DCM as eluent) and dried in vacuo (76 mg, 0.14 mmol). 

86 % yield. 

1H NMR [400 MHz, CD2Cl2, 293 K]: δ (ppm) 9.83 (2H, d, J=3.40 Hz); 8.09 (2H, ddd, 

J=0.51, 1.45, 7.81 Hz); 8.00 (2H, s); 7.87 (2H, d, J=7.12 Hz); 7.79 (2H, d, J=8.96 Hz); 

7.74 (2H, ddd, J=1.47, 7.51, 7.51 Hz); 7.62 (2H, dddd, J=0.86, 1.27, 7.42, 7.80 Hz); 

7.57 (2H, d, J=7.88 Hz); 7.38 (2H, d, J=7.24 Hz); 7.38 (2H, d, J=8.80 Hz). 

13C NMR [101 MHz, CD2Cl2, 293 K]: δ (ppm) 192.14; 143.18; 143.00; 139.85; 139.47; 

137.70; 136.93; 136.34; 135.40; 134.16; 133.44; 132.36; 131.70; 129.23; 129.18; 

128.96; 128.00; 125.52; 125.33; 122.62. 

HRMS [APPI, ACN, toluene]: Chemical Formula: C40H20O2 calc. 532.1458, found 

532.1464. 
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Benzo[l]indeno[5,4,3,2,1-nopqr]naphtho[3',2',1':5,6]acenaphtho[3,2,1-cde]tetra-

phene (111) 

 

The reaction was conducted according to procedure for synthesis of nanographenes. 

As a precursor was used 2,2'-(diindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene-3,9-

diyl)dibenzaldehyde 110 (12 mg; 37.5 mmol). 

MS [LDI]: m/z (rel. int.) = 498.47 [M]+ (100). 
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7 Appendix A – Spectra (NMR, MS) 

 

Figure A1. 1H NMR (300 MHz, CD2Cl2, 293 K) spectrum of 7H-benz[de]anthracen-7-one 14. 

 

Figure A2. 13C NMR (75 MHz, CD2Cl2, 293 K) spectrum of 7H-benz[de]anthracen-7-one 14. 
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Figure A3. 1H NMR (300 MHz, CD2Cl2, 293 K) spectrum of 1,6-bis(2-(trifluoromethyl)phenyl)pyrene 23. 

 

Figure A4. 13C NMR (75 MHz, CD2Cl2, 293 K) spectrum of 1,6-bis(2-(trifluoromethyl)phenyl)pyrene 23. 
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Figure A5. 1H NMR (400 MHz, CD2Cl2, 293 K) spectrum of 5-bromo-13,16-difluoro-benzo[s]picene 

45. 

 

Figure A6. 13C NMR (101 MHz, CD2Cl2, 293 K) spectrum of 5-bromo-13,16-difluoro-benzo[s]picene 45. 
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Figure A7. 19F NMR (282 MHz, CD2Cl2, 293 K) spectrum of 5-bromo-13,16-difluoro-benzo[s]picene 

45. 

 

Figure A8. 19F-1H NMR (282 MHz, CD2Cl2, 293 K) spectrum of 5-bromo-13,16-difluoro-

benzo[s]picene 45. 
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Figure A9. 1H NMR (400 MHz, CD2Cl2, 293 K) spectrum of 9-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv] 

picene 46. 

 

Figure A10. 13C NMR (100 MHz, CD2Cl2, 293 K) spectrum of 9-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv] 

picene 46. 
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Figure A11. DEPT90 (101 MHz, CD2Cl2, 293 K) spectrum of 9-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv] 

picene 46. 

 

Figure A12. 1H NMR (300 MHz, CD2Cl2, 293 K) spectrum of 2-(as-indaceno[3,2,1,8,7,6-pqrstuv]picen-

1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 54. 
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Figure A13. 1H NMR (300 MHz, CD2Cl2, 293 K) spectrum of 2,2'-(5-methyl-1,3-phenylene)bis(4,4,5,5-

tetra-methyl-1,3,2-dioxaborolane) 58. 

 

Figure A14. 13C NMR (101 MHz, CD2Cl2, 293 K) spectrum of 2,2'-(5-methyl-1,3-phenylene)bis(4,4,5,5-

tetra-methyl-1,3,2-dioxaborolane) 58. 
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Figure A15. 1H NMR (600 MHz, C2D2Cl4, 293 K) spectrum of 9,9'-(5-methyl-1,3-phenylene)di-as-

indaceno[3,2,1,8,7,6-pqrstuv]picene 56. 

 

Figure A16. 1H NMR (600 MHz, C2D2Cl4, 293 K) spectrum of 1,1'-bias-indaceno[3,2,1,8,7,6-pqrstuv] 

picene 55. 
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Figure A17. 13C NMR (150 MHz, C2D2Cl4, 293 K) spectrum of 1,1'-bias-indaceno[3,2,1,8,7,6-pqrstuv] 

picene 55. 

 

Figure A18. 13C NMR (150 MHz, C2D2Cl4, 293 K) spectrum of 9,9'-(5-methyl-1,3-phenylene)di-as-

indaceno[3,2,1,8,7,6-pqrstuv]picene 56. 
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Figure A19. DEPT (150 MHz, C2D2Cl4, 293 K) spectrum of 9,9'-(5-methyl-1,3-phenylene)di-as-

indaceno[3,2,1,8,7,6-pqrstuv]picene 56. 

 

Figure A20. 13C-1H HETCOR (150 MHz, C2D2Cl4, 293 K) spectrum of 9,9'-(5-methyl-1,3-phenylene)- 

di-as-indaceno[3,2,1,8,7,6-pqrstuv]picene 56. 
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Figure A21. 1H-13C HMBC (400 MHz, DMSO, 293 K) spectrum of of 9,9'-(5-methyl-1,3-phenylene)- 

di-as-indaceno[3,2,1,8,7,6-pqrstuv]picene 56. 

 

Figure A22. 1H-1H COSY (400 MHz, DMSO, 293 K) spectrum of of 9,9'-(5-methyl-1,3-phenylene)- 

di-as-indaceno[3,2,1,8,7,6-pqrstuv]picene 56. 
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Figure A23. 1H NMR (400 MHz, DMSO, 293 K) spectrum of 1,6-bis(2-fluorophenyl)pyrene 59. 

 

Figure A24. 13C NMR (101 MHz, DMSO, 293 K) spectrum of 1,6-bis(2-fluorophenyl)pyrene 59. 
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Figure A25. 1H-13C HSQC NMR (101 MHz, DMSO, 293 K) spectrum of 1,6-bis(2-fluorophenyl)pyrene 

59. 

 

Figure A26. 19F NMR (377 MHz, DMSO, 293 K) spectrum of 1,6-bis(2-fluorophenyl)pyrene 59. 
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Figure A27. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 1,3,6,8-tetrakis(2-fluorophenyl)pyrene 62. 

 

Figure A28. 19F NMR (282 MHz, CDCl3, 293 K) spectrum of 1,3,6,8-tetrakis(2-fluorophenyl)pyrene 62. 
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Figure A29. 13C NMR (101 MHz, CDCl3, 293 K) spectrum of 1,3,6,8-tetrakis(2-fluorophenyl)pyrene 62. 

 

Figure A30. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 3,9-bis(2-fluorophenyl)diindeno[4,3,2,1-

cdef:4',3',2',1'-mno]chrysene 65a. 
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Figure A31. 13C NMR (101 MHz, CDCl3, 293 K) of 3,9-bis(2-fluorophenyl)diindeno[4,3,2,1-cdef:4',3',2', 

1'-mno]chrysene 65a. 

 

Figure A32. 1H NMR (400 MHz, CD2Cl2, 293 K) of 3,9-bis(2-fluoro-5-methylphenyl)diindeno[4,3,2,1-

cdef:4',3',2',1'-lmno]chrysene 65b. 
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Figure A33. 13C NMR (101 MHz, CD2Cl2, 293 K) of 3,9-bis(2-fluoro-5-methylphenyl)diindeno[4,3,2,1-

cdef:4',3',2',1'-lmno]chrysene 65b. 

 

Figure A34. 1H NMR (300 MHz, CD2Cl2, 293 K) of benzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-

as-indaceno[8,1,2,3-klmno]chrysene 66a. 
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Figure A35. 1H NMR (400 MHz, CD2Cl2, 293 K) of 3,11-dimethylbenzo[6,7]-as-indaceno[8,1,2,3-bcdef] 

benzo[6,7]-as-indaceno[8,1,2,3-klmno]chrysene 66b. 

 

Figure A36. 13C NMR (101 MHz, CD2Cl2, 293 K) spectrum of 3,11-dimethylbenzo[6,7]-as-indaceno[8,1, 

2,3-bcdef]benzo[6,7]-as-indaceno[8,1,2,3-klmno]chrysene 66b. 
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Figure A37. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 7-fluoro-1-methylene-1,2,3,4-tetrahydro-

naphthalene 75. 

 

Figure A38. 13C NMR (101 MHz, CDCl3, 293 K) spectrum of 7-fluoro-1-methylene-1,2,3,4-tetrahydro-

naphthalene 75. 
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Figure A39. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 6-fluoro-4-methyl-1,2-dihydronaphthalene 

76. 

 

Figure A40. 13C NMR (101 MHz, CDCl3, 293 K) spectrum of 6-fluoro-4-methyl-1,2-dihydronaphthalene 

76. 



Appendix 

159 
 

 

Figure A41. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 7-fluoro-1-methylnaphthalene 77. 

 

Figure A42. 13C NMR (101 MHz, CD2Cl2, 293 K) spectrum of 7-fluoro-1-methylnaphthalene 77. 
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Figure A43. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 2-(7-fluoronaphthalen-1-yl)acetonitrile 79. 

 

Figure A44. 13C NMR (101 MHz, CDCl3, 293 K) spectrum of 2-(7-fluoronaphthalen-1-yl)acetonitrile 

79. 
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Figure A45. 1H NMR (400 MHz, DMSO, 293 K) spectrum of 2-(7-fluoronaphthalen-1-yl)acetic acid 80. 

 

Figure A46. 13C NMR (101 MHz, CDCl3, 293 K) spectrum of 2-(7-fluoronaphthalen-1-yl)acetic acid 

80. 
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Figure A47. 1H NMR (400 MHz, DMSO, 293 K) spectrum of 8-fluoroacenaphthylen-1(2H)-one 81. 

 

Figure A48. 13C NMR (101 MHz, DMSO, 293 K) spectrum of 8-fluoroacenaphthylen-1(2H)-one 81. 
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Figure A49. 1H NMR (400 MHz, C2D2Cl4, 293 K) spectrum of 1,7,13-trifluorodecacyclene 70. 

 

Figure A50. 13C NMR (101 MHz, CD2Cl2, 293 K) spectrum of 1,7,13,19-tetrafluorotridecacyclene 72. 
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Figure A51. 13C NMR (101 MHz, CDCl3, 293 K) spectrum of 1,7,13,19-tetrafluorotridecacyclene 72. 

 

Figure A52. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 7-bromo-1-methylene-1,2,3,4-tetrahydro-

naphthalene 83. 
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Figure A53. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 7-bromo-1-methylene-1,2,3,4-tetrahydro-

naphthalene 83. 

 

Figure A54. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 7-bromo-1-methylene-1,2,3,4-tetrahydro-

naphthalene 83. 
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Figure A55. 13C NMR (101 MHz, CDCl3, 293 K) spectrum of 7-bromo-1-methylene-1,2,3,4-tetrahydro-

naphthalene 83. 

 

Figure A56. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 6-bromo-4-methyl-1,2-dihydronaphthalene 

84. 
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Figure A57. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 6-bromo-4-methyl-1,2-dihydronaphthalene 

84. 

 

Figure A58. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 6-bromo-4-methyl-1,2-dihydronaphthalene 

84. 
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Figure A59. 13C NMR (100 MHz, CDCl3, 293 K) spectrum of 6-bromo-4-methyl-1,2-dihydronaphthalene 

84. 

 

Figure A60. 1H NMR (400 MHz, CDCl3, 293 K) spectrum of 7-bromo-1-methylnaphthalene 85. 
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Figure A61. 13C NMR (100 MHz, CDCl3, 293 K) spectrum of 7-bromo-1-methylnaphthalene 85. 

 

Figure A62. 1H NMR (300 MHz, CDCl3, 293 K) spectrum of 7-bromo-1-(bromomethyl)naphthalene 86. 
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Figure A63. 13C NMR (75 MHz, CDCl3, 293 K) spectrum of 7-bromo-1-(bromomethyl)naphthalene 86. 

 

Figure A64. 1H NMR (300 MHz, CDCl3, 293 K) spectrum of 2-(7-bromonaphthalen-1-yl)acetonitrile 87. 
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Figure A65. 13C NMR (75 MHz, CDCl3, 293 K) spectrum of 2-(7-bromonaphthalen-1-yl)acetonitrile 87. 

 

Figure A66. 1H NMR (400 MHz, DMSO, 293 K) spectrum of 2-(7-bromonaphthalen-1-yl)acetic acid 88. 
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Figure A67. 13C NMR (100 MHz, DMSO, 293 K) spectrum of 2-(7-bromonaphthalen-1-yl)acetic acid 

88. 

 

Figure A68. 1H NMR (300 MHz, CDCl3, 293 K) spectrum of 8-bromoacenaphthylen-1(2H)-one 89. 
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Figure A69. 13C NMR (75 MHz, CDCl3, 293 K) spectrum of 8-bromoacenaphthylen-1(2H)-one 89. 

 

Figure A70. 1H NMR (400 MHz, C2D2Cl4, 293 K) spectrum of 1,7,13,19-tetrabromotridecacyclene 90. 
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Figure A71. 13C NMR (101 MHz, CDCl3, 293 K) spectrum of 1,7,13,19-tetrabromotridecacyclene 90. 

 

Figure A72. 1H NMR (400 MHz, DMSO, 293 K) spectrum of 2-(3,8-bis(2-fluorophenyl)pyren-1-yl)benz 

aldehyde 103. 
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Figure A73. 13C NMR (101 MHz, DMSO, 293 K) spectrum of 2-(3,8-bis(2-fluorophenyl)pyren-1-yl)benz 

aldehyde 103. 

 

Figure A74. 19F NMR (282 MHz, DMSO, 293 K) spectrum of 2-(3,8-bis(2-fluorophenyl)pyren-1-yl)benz 

aldehyde 103. 
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Figure A75. 1H NMR (400 MHz, DMSO, 293 K) spectrum of 2,2'-(3,8-bis(2-fluorophenyl)-pyrene-1,6-

diyl)dibenzaldehyde 102. 

v  

Figure A76. 13C NMR (101 MHz, DMSO, 293 K) spectrum of 2,2'-(3,8-bis(2-fluorophenyl)-pyrene-1,6-

diyl)dibenzaldehyde 102. 
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Figure A77. 19F NMR (282 MHz, DMSO, 293 K) spectrum of 2,2'-(3,8-bis(2-fluorophenyl)-pyrene-1,6-

diyl)dibenzaldehyde 102. 

 

Figure A78. 1H NMR (400 MHz, CD2Cl2, 293 K) spectrum of 2,2'-(diindeno[4,3,2,1-cdef:4',3',2',1'-lmno] 

chrysene-3,9-diyl)dibenzaldehyde 110. 
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Figure A79. 13C NMR (101 MHz, CD2Cl2, 293 K) spectrum of 2,2'-(diindeno[4,3,2,1-cdef:4',3',2',1'-

lmno]chrysene-3,9-diyl)dibenzaldehyde 110.  
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Figure A80. Mass spectrum (HRMS, APPI, toluene) of 5-bromo-13,16-difluoro-benzo[s]picene 45. 

 

Figure A81. Mass spectrum (MALDI-TOF) of 5-bromo-13,16-difluoro-benzo[s]picene 45: a) without 

matrix; b) with DHB matrix; c) with DCTB matrix. 

 

Figure A82. Mass spectrum (HRMS, APPI, toluene) of 9-bromo-as-indaceno[3,2,1,8,7,6-pqrstuv]-

picene 46. 

a 

b 

c 
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Figure A83. Mass spectrum (LDI) of 1,1'-bias-indaceno[3,2,1,8,7,6-pqrstuv]picene 55. 

 

Figure A84. Mass spectrum (HRMS, APPI) of 1,1'-bias-indaceno[3,2,1,8,7,6-pqrstuv]picene 55. 
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Figure A85. Mass spectrum (LDI) of 9,9'-(5-methyl-1,3-phenylene)di-as-indaceno[3,2,1,8,7,6-pqrstuv] 

picene 56. 

 

Figure A86. Mass spectrum (HRMS, APPI) of 9,9'-(5-methyl-1,3-phenylene)di-as-indaceno[3,2,1,8,7,6-

pqrstuv]picene 56. 
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Figure A87. Mass spectrum (LDI) of 1,6-bis(2-fluorophenyl)pyrene 59. 

 

Figure A88. Mass spectrum (LDI) of 3,9-bis(2-fluorophenyl)diindeno[4,3,2,1-cdef:4',3',2',1'-lmno]- 

chrysene 65a.  



Appendix 

183 
 

 

Figure A89. Mass spectrum (HRMS, APPI) of 3,9-bis(2-fluorophenyl)diindeno[4,3,2,1-cdef:4',3',2',1'-

lmno]chrysene 65a. 

 

Figure A90. Mass spectrum (LDI) of 3,9-bis(2-fluoro-5-methylphenyl)diindeno[4,3,2,1-cdef: 4',3',2',1'-

lmno]chrysene 65b. 
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Figure A91. Mass spectrum (HRMS, APPI) of 3,9-bis(2-fluoro-5-methylphenyl)diindeno[4,3,2,1-cdef: 

4',3',2',1'-lmno]chrysene 65b. 

 

Figure A92. Mass spectrum (LDI) of benzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-as-indaceno- 

[8,1,2,3-klmno]chrysene 66a. 
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Figure A93. Mass spectrum (HRMS, APPI) of benzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-as-

indaceno[8,1,2,3-klmno]chrysene 66a. 

 

Figure A94. Mass spectrum (LDI) of 3,11-dimethylbenzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-

as-indaceno[8,1,2,3-klmno]chrysene 66b. 
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Figure A95. Mass spectrum (HRMS, APPI) of 3,11-dimethylbenzo[6,7]-as-indaceno[8,1,2,3-bcdef]- 

benzo[6,7]-as-indaceno[8,1,2,3-klmno]chrysene 66b. 

  

Figure A96. Mass spectrum (LDI) of 3-(2-fluoro-5-methylphenyl)-10-methylbenzo[6,7]-as-indaceno 

[8,1,2,3-bcdef] indeno[4,3,2,1-lmno]chrysene. 
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Figure A97. Mass spectrum (MALDI) of 3-(2-fluoro-5-methylphenyl)-10-methylbenzo[6,7]-as-indace-

no[8,1,2,3-bcdef]indeno[4,3,2,1-lmno]chrysene: a) without matrix; b) with DHB matrix; c) with DCTB 

matrix. 

 

Figure A98. Mass spectrum (LDI) of 1,7,13-trifluorodecacyclene 70. 

a 

b 

c 
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Figure A99. Mass spectrum (HRMS, APPI) of 1,7,13-trifluorodecacyclene 70. 

 

Figure A100. Mass spectrum (LDI) of 1,7,13,19-tetrafluorotridecacyclene 72. 
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Figure A101. Mass spectrum (HRMS, APPI) of 1,7,13,19-tetrafluorotridecacyclene 72. 

 

Figure A102. Mass spectrum (LDI) of 1,7,13,19-tetrabromotridecacyclene 90. 
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Figure A103. Mass spectrum (HRMS, APPI) of 1,7,13,19-tetrabromotridecacyclene 90. 

 

Figure 104. Mass spectrum (MALDI-TOF) of 2,2'-(3,8-bis(2-fluorophenyl)-pyrene-1,6-diyl)dibenzalde-

hyde 102: a) without matrix; b) with DHB matrix; c) with DCTB matrix. 

a 

b 

c 
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Figure A105. Mass spectrum (HRMS, APPI) of 2,2'-(3,8-bis(2-fluorophenyl)-pyrene-1,6-diyl)dibenz 

aldehyde 102. 

 

Figure A106. Mass spectrum (MALDI-TOF) of 2-(3,8-bis(2-fluorophenyl)pyren-1-yl)benzaldehyde 103: 

a) without matrix; b) with DHB matrix; c) with DCTB matrix. 

 

Figure A107. Mass spectrum (HRMS, APPI) of 2-(3,8-bis(2-fluorophenyl)pyren-1-yl)benzaldehyde 103. 

a 

b 

c 
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Figure A108. Mass spectrum (HRMS, APPI) of 6,14-bis(2-fluorophenyl)tetraceno[2,1,12,11-opqra]-

tetracene 104. 

 

Figure A109. Mass spectrum (HRMS, APPI) of 2,2'-(diindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene-

3,9-diyl)dibenzaldehyde 110. 
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8 Appendix B – HPLC Chromatograms (UV-spectra) 

 

Figure B1. HPLC profile (a) as obtained after reaction CDHF of 3,9-bis(2-fluorophenyl)diindeno[4,3,2,1-

cdef:4',3',2',1'-lmno]chrysene 65a on γ-Al2O3 (230 ºC, 16 h, o-DCB), detected at 360 nm (PBr column, 

Tol:MeOH:7:3 as eluent, 1.0 ml min-1, 35 ºC). UV-Vis spectrum of 3-(2-fluorophenyl)-10-methylbenzo 

[6,7]-as-indaceno[8,1,2,3-bcdef]indeno[4,3,2,1-lmno]chrysene (b) and 3-methylbenzo[6,7]-as-inda- 

ceno[8,1,2,3-bcdef]benzo[6,7]-as-indaceno[8,1,2,3-klmno]chrysene (c) in Tol:MeOH 7:3. 
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Figure B2. HPLC profile (a) as obtained after reaction CDHF of 3,9-bis(2-fluoro-5-methylphenyl)-

diindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene 65b on γ-Al2O3 (230 ºC, 16 h, o-DCB), detected at 

360 nm (PBr column, Tol:MeOH:6:4 as eluent, 1.0 ml min-1, 40 ºC). UV-Vis spectrum of 3-(2-fluoro-5-

methylphenyl)-10-methylbenzo[6,7]-as-indaceno[8,1,2,3-bcdef]indeno[4,3,2,1-lmno]chrysene (b) and 

3,11-dimethylbenzo[6,7]-as-indaceno[8,1,2,3-bcdef]benzo[6,7]-as-indaceno[8,1,2,3-klmno]chrysene 

(c) in Tol:MeOH 6:4. 
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9 Appendix C – X-Ray Crystallographic Data 

9,12-Dibromo-as-indaceno[3,2,1,8,7,6-pqrstuv]picene (47) 

Empirical formula C26H10Br2 

Formula weight 482.16 

Temperature (K) 153 

Crystal system  orthorhombic 

Space group Pnma  

a (Å) 16.9127(5) 

b (Å) 25.0146(9) 

c (Å) 3.90987(16) 

α (°) 90 

β (°) 90 

γ (°) 90  

Volume (Å3)  1654.1(1) 

Z 4  

Dber (g.cm-3) 1.936  

μ (mm) ‐1 6.274 

F(000) 944.0  

Crystal size (mm) 0.316 × 0.06 × 0.033 

Radiation CuKα (λ = 1.54184 Å) 

2Θ (°) 5.5 ≤ 2Θ ≤ 61.5 

Index ranges -18 ≤ h ≤ 18,  

-26 ≤ k ≤ 27,  

-4 ≤ l ≤ 3 

Reflections collected 3178 

Independent reflections 1297  

Data/restraints/parameters 1297/0/127  

Goodness-of-fit on F2 1.044  

Final R indexes R1 = 0.0445, wR2 = 0.1163 

Largest peak/hole (e Å-3) 0.76/-0.52 

  

Measurement: SuperNova, Dual, Atlas 

Data reduction  

Absorption correction: SADABS 2014 

Structure solution: SHELXS-2014 

Refinement SHELXS-2014 
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3,9-Diphenyldiindeno[4,3,2,1-cdef:4',3',2',1'-lmno]chrysene (52) 

Empirical formula C38H20 

Formula weight 476.54 

Temperature (K) 100 

Crystal system  orthorhombic 

Space group P212121 

a (Å) 7.4347(4) 

b (Å) 14.0208(7) 

c (Å) 21.5954(10) 

α (°) 90 

β (°) 90 

γ (°) 90 

Volume (Å3)  2251.1(2) 

Z 4 

Dber (g.cm-3) 1.406 

μ (mm) 0.080 

F(000) 992 

Crystal size (mm) 0.41×0.21×0.07 

Radiation MoKα (λ = 0.71073 Å) 

2Θ (°) 3.4 ≤ 2Θ ≤ 57.4 

Index ranges -10 ≤ h ≤ 10,  

-18 ≤ k ≤ 18,  

-29 ≤ l ≤ 29 

Reflections collected 100207 

Independent reflections 5800 

Data/restraints/parameters 5800/0/343 

Goodness-of-fit on F2 1.044 

Final R indexes R1 = 0.0423, wR2 = 0.1018 

Largest peak/hole (e Å-3) 0.48/-0.23 

  

Measurement: APEX 3 (Bruker AXS, 2016) 

Data reduction SAINT (Bruker AXS, 2009) 

Absorption correction: SADABS 2014/5 (Bruker AXS, 2014) 

Structure solution: SHELXTL NT 6.12 (Bruker AXS, 2002) 

Refinement SHELXTL 2014/6 (Sheldrick, 2008) 
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Diindeno[1,2,3-cd:1',2',3'-jk]pyrene (60) 

Empirical formula C28H14 

Formula weight 350.42 

Temperature (K) 153.05(10) 

Crystal system  monoclinic 

Space group C2/c 

a (Å) 19.4832(12) 

b (Å) 3.89259(16) 

c (Å) 21.7491(11) 

α (°) 90 

β (°) 103.415(5) 

γ (°) 90 

Volume (Å3)  1604.45(14) 

Z 8 

Dber (g.cm-3) 1.451 

μ (mm) 0.630 

F(000) 728.0 

Crystal size (mm) 0.785 × 0.075 × 0.045 

Radiation CuKα (λ = 1.54184) 

2Θ (°) 8.358 ≤ 2Θ ≤ 145.098 

Index ranges 23 ≤ h ≤ 16, 

-4 ≤ k ≤ 3, 

-20 ≤ l ≤ 26 

Reflections collected 2196 

Independent reflections 1526 

Data/restraints/parameters 1526/0/127 

Goodness-of-fit on F2 1.082 

Final R indexes R1 = 0.0510, wR2 = 0.1353 

Largest peak/hole (e Å-3) 0.26/-0.23 

  

Measurement: SuperNova, Dual, Atlas 

Data reduction  

Absorption correction: SADABS 2014 

Structure solution: SHELXS-2014 

Refinement SHELXL-2014 
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