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ABSTRACT

We reanalyse the anisotropic galaxy clustering measurement from the Baryon Oscillation Spectroscopic Survey (BOSS), demonstrat-
ing that using the full shape information provides cosmological constraints that are comparable to other low-redshift probes. We find
Ωm = 0.317+0.015

−0.019, σ8 = 0.710±0.049, and h = 0.704±0.024 for flat ΛCDM cosmologies using uninformative priors on Ωch2, 100θMC,
ln 1010As, and ns, and a prior on Ωbh2 that is much wider than current constraints. We quantify the agreement between the Planck 2018
constraints from the cosmic microwave background and BOSS, finding the two data sets to be consistent within a flat ΛCDM cos-
mology using the Bayes factor as well as the prior-insensitive suspiciousness statistic. Combining two low-redshift probes, we jointly
analyse the clustering of BOSS galaxies with weak lensing measurements from the Kilo-Degree Survey (KV450). The combination of
BOSS and KV450 improves the measurement by up to 45%, constraining σ8 = 0.702±0.029 and S 8 = σ8

√
Ωm/0.3 = 0.728±0.026.

Over the full 5D parameter space, the odds in favour of a single cosmology describing galaxy clustering, lensing, and the cosmic
microwave background are 7 ± 2. The suspiciousness statistic signals a 2.1 ± 0.3σ tension between the combined low-redshift probes
and measurements from the cosmic microwave background.

Key words. large-scale structure of the Universe – cosmological parameters

1. Introduction

The last decade has seen the field of cosmology being trans-
formed into a precision science, with many of the parameters
that describe our Universe being constrained to sub per-cent pre-
cision. This remarkable achievement has been largely driven by
the observations of the cosmic microwave background (CMB)
conducted by the WMAP (Hinshaw et al. 2013) and Planck
(Planck Collaboration et al. 2018) satellites. While the constrain-
ing power of the CMB still reigns supreme, other, independent,
observations of the more recent Universe have begun to be able
to constrain certain parameters at a precision comparable to that
achieved by Planck (e.g., Dark Energy Survey Collaboration
et al. 2018; Riess et al. 2019). This has led to the rise of a range of
‘tensions’ between data sets: disagreements that do not reach the
level of statistical significance to warrant a claim to the detection
of deviation from ΛCDM but that are large enough to cause dis-
comfort because their occurrences are deemed to be somewhat
too unlikely to be a statistical fluke.

In this Letter, we provide another datum in this evolving
picture of cosmic concordance by providing new, independent
constraints on ΛCDM from the clustering of galaxies. One of

? e-mail: ttr@roe.ac.uk

the most powerful probes of cosmology in the low-redshift
Universe comes from observations of the large-scale structure
(LSS) of the Universe. Analyses of the clustering of galaxies, ei-
ther through measurements of the baryon acoustic oscillations
(BAO), redshift-space distortions (RSD), or the full shape of
two-point statistics by the Baryon Oscillation Spectroscopic Sur-
vey (BOSS) collaboration (Alam et al. 2017), have been able to
break degeneracies in the parameter space allowed by Planck,
thus further increasing the precision of the parameters that un-
derlie the ΛCDM concordance model of cosmology and ruling
out deviations from it. These analyses only constrained ΛCDM,
or extensions thereof, in conjunction with other data sets and
did not attempt to constrain ΛCDM with BOSS data alone. In-
stead, the consensus analysis of the final BOSS Data Release 12
(DR12) data (Alam et al. 2017) provides constraints in terms of
geometric quantities describing the tangential and radial BAO
scales, as well as the growth rate of structure and amplitude of
matter fluctuations, fσ8. In this parameterisation, a particular
point in parameter space need not correspond to a valid ΛCDM
cosmology, since the different distance measures and growth of
structure are considered to be independent. Full-shape analyses
of the anisotropic clustering signal of galaxies are able to break
degeneracies (Loureiro et al. 2019; Kobayashi et al. 2019) be-
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tween parameters and thus constrain cosmology without relying
on external data sets.

In this Letter, we revisit the full-shape analysis of correla-
tion function wedges of Sánchez et al. (2017, hereafter S17) and
derive constraints on the parameters of flat ΛCDM cosmologies.
In Sect. 2, we review the methodology and data used in S17 and
comment on the changes and additional model validation carried
out for the present analysis. Section 3 presents the constraints on
ΛCDM that we can derive from the clustering of BOSS galaxies,
while Sect. 4 discusses these results, both by themselves, and in
the context of other low-redshift cosmological probes. Specifi-
cally, we perform a joint analysis with cosmic shear measure-
ments from the Kilo-Degree Survey (KV450, Hildebrandt et al.
2018) to showcase the power such combined probe studies will
gain over the next decade. Finally, we conclude in Sect. 5.

2. Methods

This work closely follows the analysis of S17, only changing
the sampling space and priors. In this section we briefly review
the data and modelling and refer the interested reader to S17 for
details.

2.1. Data

We consider the full BOSS DR12 data set, which is split into
two redshift bins 0.2 ≤ z < 0.5 and 0.5 ≤ z < 0.75 (see
Alam et al. 2017). The redshifts are converted into distances at
a fiducial cosmology with Ωm = 0.31 and h = 0.7. For both
redshift bins we measure the anisotropic correlation function
ξ(µ, s) using the Landy & Szalay (1993) estimator, where µ is
the cosine of the angle between the line of sight and the sep-
aration vector between the pair of galaxies, and s denotes the
comoving distance between the pair of galaxies. The correlation
functions are then binned in µ into three equal-sized ‘wedges’:
0 ≤ µ < 1/3, 1/3 ≤ µ < 2/3, 2/3 ≤ µ < 1; and binned in s
into bins of width ∆s = 5 h−1Mpc between smin = 20 h−1Mpc
and smax = 160 h−1Mpc. The data covariance matrix is estimated
from 2045 MD-Patchy mock catalogues (Kitaura et al. 2016).

2.2. Model

The non-linear evolution of the matter density is described by
a formulation of renormalised perturbation theory (Crocce &
Scoccimarro 2006) that restores Galilean invariance, referred to
as gRPT (Crocce et al. in prep.). The galaxy density δg is related
to the matter density δ by (Chan et al. 2012)

δg = b1δ +
b2

2
δ2 + γ2G2 + γ−3 ∆3G + . . . . (1)

The operators G2 and ∆3G are defined as

G2(Φv) = (∇i jΦv)2 − (∇2Φv)2

∆3G = G2(Φ) − G2(Φv) , (2)

where Φ and Φv refer to the normalised matter and velocity po-
tentials, respectively. Our bias model has thus the free param-
eters b1, b2, γ2, and γ−3 . Following S17, we fix γ2 to the local
Lagrangian bias γ2 = − 2

7 (b1 − 1), which leaves us with three
bias parameters per redshift bin.

The RSD power spectrum is modelled as (Scoccimarro 2004;
Taruya et al. 2010):

P(k, µ) = W∞(i f kµ)
(
P(1)

novir(k, µ) + P(2)
novir(k, µ) + P(3)

novir(k, µ)
)
, (3)

0.6
0

0.7
5

0.9
0

ns

0.6

0.7

0.8

0.9

1

σ
8

0.64

0.68

0.72

0.76

h

0.2
4

0.2
7

0.3
0

0.3
3

0.3
6

Ωm

0.6

0.75

0.9

n s

0.6 0.7 0.8 0.9 1.0

σ8

0.6
4

0.6
8

0.7
2

0.7
6

h

smin = 15 h−1Mpc

smin = 20 h−1Mpc

smin = 30 h−1Mpc

smin = 40 h−1Mpc

Fig. 1. Cosmological parameters inferred from the Minerva mocks for
different choices of the minimum separation scale used in the measure-
ment. The true cosmology is indicated with dashed lines, while the cos-
mological constraints are shown in red (smin = 15 h−1Mpc), blue (smin =
20 h−1Mpc), orange (smin = 30 h−1Mpc), and green (smin = 40 h−1Mpc).

where f denotes the logarithmic growth rate and the generating
function of the velocity differences in the large-scale limit W∞(λ)
includes non-linear corrections to account for the fingers-of-God
effect and is parameterised in S17 as

W∞(λ) =
1√

1 − λ2a2
vir

exp
 λ2σ2

v

1 − λ2a2
vir

 . (4)

Here σ2
v is given by σ2

v = 1
3

∫
d3kP(k)/k2. The velocity disper-

sion and higher moments of the velocity difference distribution,
such as the kurtosis, are characterised by avir, a free parameter
that describes the contribution of velocities at small scales. The
Pnovir terms in the bracket of Eq. (3) are computed using gRPT
at one-loop order and the bias model of Eq. (1) (see Sect. 3.1 and
Appendix A in S17 for details).

The Alcock-Paczynski effect (Alcock & Paczynski 1979) is
accounted for by rescaling s = s′q(µ′) and µ = µ′ q‖

q(µ′) , where

q(µ) =
√

q2
‖µ
′2 + q2

⊥(1 − µ′2). Here, q⊥ = DM(z)/Dfid
M (z) and

q‖ = Hfid(z)/H(z), where DM(z) is the comoving angular diame-
ter distance at the the mean redshift z of the galaxy sample, H(z)
denotes the Hubble rate, and the superscript ‘fid’ is assigned to
quantities in the fiducial cosmology that was used to convert the
measured redshifts to distances.

2.2.1. Validation on simulation

The model described in Sect. 2.2 has been extensively validated
in S17. Further tests were done for the Fourier space wedges
analysis of Grieb et al. (2017), which used the same bias and
RSD model. The model was tested on the Minerva simulations
(Grieb et al. 2016; Lippich et al. 2019), the BOSS RSD chal-
lenge, and the MD-Patchymock catalogues (Kitaura et al. 2016).
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During these tests, the LSS parameters q⊥, q‖, and fσ8 were
varied. This parameter space does not map one-to-one to flat
ΛCDM, since it allows to arbitrarily combine angular and ra-
dial distances, as well as the growth of structure. As we discuss
in Sect. 3.1, restricting the sample space to flat ΛCDM can sig-
nificantly tighten the parameter ranges allowed by the data.

In light of this increased sensitivity, we deem it prudent to
revisit some of the model validation carried out in S17. Specif-
ically, we analyse the Minerva simulations using our RSD and
bias model with the same parameters and priors as our cos-
mological results. The Minerva mocks were created from N-
body simulations with N = 10003 particles, evolved in a L =
1.5 h−1Gpc box. The z = 0.31 and z = 0.57 snapshots were
processed into a halo catalogue with a minimum halo mass of
Mmin = 2.67 × 1012 h−1M� and then populated with the halo oc-
cupation distribution model of Zheng et al. (2007).

Figure 1 shows the posteriors derived from the mean sig-
nal of 300 Minerva realisations, using a covariance matrix cor-
responding to one simulation volume. This yields parameter
uncertainties that are at least 7% smaller than those derived
from the data. Figure 1 demonstrates the effect of changing
the minimum separation of the measurement on the inferred
parameter constraints, analogous to figure 4 in S17. The in-
put cosmology is recovered well for all scale cuts considered
(smin = 15, 20, 30, 40 h−1Mpc), consistent with the results of
S17. While Fig. 1 suggests that the model is robust down to a
minimum separation of smin = 15 h−1Mpc, we nevertheless fol-
low S17 with a minimum separation of smin = 20 h−1Mpc. Fur-
ther tests on simulations are presented in Appendix A.

2.2.2. Sampling and priors

The parameter inference is performed with two pipelines:
CosmoMC (Lewis & Bridle 2002) – the same setup as in
S17 – and CosmoSIS (Zuntz et al. 2015), using MultiNest
(Feroz et al. 2009, 2013) to perform nested sampling. The
agreement with Planck is assessed using the public nuisance
parameter-marginalised plik_lite_TTTEEE+lowl+lowE like-
lihood (Planck Collaboration et al. 2019).

For our fiducial analysis, we choose uninformative priors for
all parameters except for Ωbh2, since BOSS is not able to con-
strain this parameter by itself. Even though our Ωbh2 prior is
informative in the sense that it restricts the posterior, it is still
chosen very conservatively, being approximately 25 times wider
than the Planck uncertainty and ∼ 10 times wider than the re-
cent big bang nucleosynthesis (BBN) constraints on Ωbh2 of
Cooke et al. (2018). Furthermore, we find that different Ωbh2

priors choices only impact the h constraints, while leaving the
other parameters virtually unchanged. The upper prior ranges for
Ωch2 and ns were lowered from those chosen in S17 to avoid nu-
merical convergence issues, but remain uninformative. Since the
prior ranges for the non-linear bias and RSD parameters in S17
were restricting the posteriors, we significantly extend the prior
ranges of these parameters in this analysis.

Our main cosmological parameter constraints are presented
in Table 1, while constraints from other prior choices and de-
tails of the sampled parameters and their priors are discussed in
Appendix B.

Table 1. Posterior constraints (marginal means with 68% confidence
interval) derived from BOSS DR12 data alone, as well as the combi-
nation of BOSS DR12 and cosmic shear from the Kilo-Degree Survey
(KV450).

Parameter BOSS BOSS+KV450

Ωm 0.317+0.015
−0.019 0.323+0.014

−0.017
σ8 0.710 ± 0.049 0.702 ± 0.029
h 0.704 ± 0.024 0.691 ± 0.023
ns 0.815 ± 0.085 0.863 ± 0.071
S 8 0.729 ± 0.048 0.728 ± 0.026

3. Results

3.1. Constraining LSS

The BOSS DR12 consensus analysis (Alam et al. 2017) does
not constrain ΛCDM directly but rather the parameters FAP(z) =

DM(z)H(z), DV(z)/rd =
(
DM(z)2cz/H(z)

) 1
3 /rd, and fσ8, where

rd is the sound horizon at the drag epoch. In Fig. 2 we present our
constraints on these parameters at the mean redshifts z = 0.38
and z = 0.61 of the two redshift bins. We consider two cases:
first, we derive constraints individually for the two redshift bins,
analogously to the BOSS analyses. These individual constraints
are shown in purple, while those from previous BOSS DR12
analyses are shown in orange (S17) and cyan (BOSS DR12 con-
sensus results, Alam et al. 2017), while the Planck 2018 results
are in blue. Our constraints are in good agreement with those of
S17 but are markedly tighter owing to the restrictions of the flat
ΛCDM parameter space. This shrinking of the allowed param-
eter range is especially pronounced for FAP and can be under-
stood by noting the tight correlation between DM(z) and H(z) in
ΛCDM. This correlation was not respected in S17, since there

the shape of the linear power spectrum was fixed, while q⊥
rfid

d
rd

,

q‖
rfid

d
rd

, and fσ8 were varied. The constraints can be further tight-
ened by jointly analysing the two redshift bins, as is demon-
strated by the red contours.

3.2. Constraining ΛCDM

Having established consistency with previous BOSS results and
explored the increased sensitivity when restricting ourselves to
flat ΛCDM, we now present the corresponding cosmological
parameters. Figure 3 presents the main results of this work; it
shows the posterior distributions of Ωm, the amount of matter
in the Universe; σ8, the present-day standard deviation of lin-
ear matter fluctuations on the scale of 8 h−1Mpc; the Hubble
parameter h; and the scalar power-law index nS for BOSS in
red and Planck in blue. We find good agreement between BOSS
and Planck, with σ8 being the most deviant parameter, being
low at 2.1σ significance. We also demonstrate internal consis-
tency of our results: in Appendix C we find consistency between
the constraints from the two BOSS redshift bins analysed inde-
pendently. In Appendix D we find consistent results when we
reduce the maximum allowed clustering scale, removing large-
scale data that is potentially biased by variations in the stellar
density (Ross et al. 2017). The posterior distributions for all sam-
pled parameters are shown in Appendix B.
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Fig. 2. Constraints on the parameters FAP, DV/rd, and fσ8 at redshifts z = 0.38 and z = 0.61. The results from Sánchez et al. (2017) and the
BOSS DR12 consensus analysis (Alam et al. 2017) are shown in orange and cyan, respectively. Restricting the parameter space to flat ΛCDM in
each BOSS redshift bin yields the purple contours. The joint constraints from both redshift bins (while sampling in flat ΛCDM) are shown in red.
Finally, the blue contours correspond to the Planck 2018 constraints on these parameters.
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Fig. 3. Constraints on flat ΛCDM derived from BOSS DR12 correlation
function wedges (red) and Planck 2018 (blue).

3.3. Consistency with Planck

In light of the low σ8 values favoured by BOSS we wish to quan-
tify the agreement between BOSS and Planck over the whole
parameter space. We consider two statistics: the Bayes’ factor R,

expressed as the ratio

R =
ZBOSS+Planck

ZBOSSZPlanck
(5)

between the evidence ZBOSS+Planck for a model where the cos-
mological parameters are shared between BOSS and Planck, and
the evidences ZBOSS and ZPlanck for a model with separate sets
of cosmological parameters. Handley & Lemos (2019) pointed
out the prior-dependence of the R statistic and proposed a new
statistic S , called ‘suspiciousness’, that ameliorates the effect of
the prior on the estimate of consistency. Both statistics are com-
puted using anesthetic (Handley 2019).

We find log R = 4.0 ± 0.2, corresponding to odds of 57 ±
13 in favour of a single cosmology describing both BOSS and
Planck. The suspiciousness is log S = 0.13 ± 0.11 with model
dimensionality d = 4.8 ± 0.5, which can be converted into a
tension probability of p = 0.45 ± 0.03. In terms of ‘sigmas’, this
corresponds to a 0.76±0.05σ tension, indicating good agreement
between BOSS and Planck.

4. Discussion

In the previous section we have presented constraints on flat
ΛCDM from the clustering of BOSS DR12 galaxies. Our results
agree with those of Loureiro et al. (2019), who considered the
angular power spectrum of BOSS DR12 galaxies in tomographic
bins. Their parameter uncertainties are significantly larger than
ours, however, owing to the restriction to large scales of their
analysis.

Two recent analyses (d’Amico et al. 2019; Ivanov et al.
2019) of the BOSS DR12 power spectrum multipoles from Beut-
ler et al. (2017) also found cosmological constraints very sim-
ilar to ours. Both analyses report a low amplitude of matter
fluctuations compared to Planck: d’Amico et al. (2019) find
ln 1010As = 2.72 ± 0.13, while Ivanov et al. (2019) quote
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σ8 = 0.721 ± 0.043, both in excellent agreement with our re-
sults of ln 1010As = 2.74 ± 0.17 and σ8 = 0.710 ± 0.049. Unlike
our analysis, both d’Amico et al. (2019) and Ivanov et al. (2019)
fix ns, and either fix the baryon fraction or impose a tight prior
on Ωbh2. Their theoretical modelling differs significantly to that
of the present analysis, both in the treatment of matter clustering
and, more importantly, that of RSD. Here we use a full para-
metric function for the fingers-of-God effect, Eq. (4), while they
account for RSD (and other effects) by including a set of counter-
terms. Ivanov et al. (2019) use the same biasing parametrisation
as here, albeit with different priors. Nevertheless, the cosmolog-
ical constraints are very similar between our analyses, signalling
that the conclusions are not driven by improvements or changes
in the theoretical model but by the BOSS data itself.

While our results are consistent with Planck when consider-
ing the whole parameter space, the preference for low values of
σ8 is interesting in the context of other low-redshift cosmolog-
ical probes, such as weak gravitational lensing. Weak lensing is
sensitive to the parameter combination S 8 = σ8

√
Ωm/0.3, which

is found to be lower than that of Planck by all stage-3 weak lens-
ing surveys (e.g., Troxel et al. 2018; Hildebrandt et al. 2018;
Hikage et al. 2019).

If there is new physics that affects the clustering of matter at
low redshift relative to what one might expect based on CMB
physics, it would be worthwhile to ask how we can combine
low-redshift data sets to detect such new physics. It has been
shown that combining two-point statistics of gravitational lens-
ing, galaxy positions, and their cross-correlations in so-called
3×2pt analyses can yield powerful constraints on cosmology
(van Uitert et al. 2018; Joudaki et al. 2018; Dark Energy Sur-
vey Collaboration et al. 2018). These analyses did not make use
of the full power of BOSS, however. While a full 3×2pt analysis
of BOSS and weak lensing would be beyond the scope of this
Letter, we showcase the potential of such a combination by con-
sidering a joint analysis of the results presented in Sect. 3 with
cosmic shear measurements from 450 sq. degrees of the opti-
cal and near-infra-red Kilo-Degree Survey (KV450, Hildebrandt
et al. 2018). We chose KV450 for convenience, but a similar
analysis could also be carried out for weak lensing from the Dark
Energy Survey (DES, Troxel et al. 2018) or Hyper Suprime-Cam
(HSC, Hikage et al. 2019; Hamana et al. 2019).

4.1. Joint analysis with weak lensing

Since the overlap region of the KV450 and BOSS footprints only
account for 2% of the BOSS area, we assume the two data sets to
be independent. Inference can thus be carried out by simply mul-
tiplying the likelihoods. We take the CosmoSIS implementation
of the KV450 likelihood, including all nuisance parameters, and
add the bias and RSD model described in Sect. 2.2. The resulting
cosmology constraints are shown in Fig. 4. The BOSS-only and
Planck contours are again shown in red and blue, respectively,
while the joint constraints of BOSS and KV450 are in green. The
KV450-only constraints are shown with dashed lines for illustra-
tive purposes, as the priors, which are those used in Hildebrandt
et al. (2018), differ from those used for the other contours. There
is excellent agreement on S 8 between BOSS and KV450 and the
joint constraint of the two is S 8 = 0.728 ± 0.026, which is 3.4σ
lower than Planck. The disagreement onσ8 is even stronger, with
BOSS and KV450 finding σ8 = 0.702 ± 0.029, which is in 3.6σ
tension with Planck. Over the whole parameter space, the odds
in favour of a single cosmology describing the low and high-
redshift Universe are 7 ± 2 based on the Bayes factor, while the
suspiciousness statistic S indicates a 2.1 ± 0.3σ tension.
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The value of S 8 measured by KV450 is consistent with, but
lower than that of the DES and HSC collaborations. A joint anal-
ysis of BOSS with DES or HSC is therefore expected to be in
less tension with Planck than the joint BOSS and KV450 anal-
ysis presented here. We note however that different methodolo-
gies have been used to estimate the redshift distribution of source
galaxies. Adopting a consistent treatment results in an even bet-
ter agreement between KV450 and DES (Joudaki et al. 2019;
Asgari et al. 2019).

5. Conclusions

In this Letter we have shown that the clustering of BOSS DR12
galaxies can constrain flat ΛCDM without relying on other data
sets. Anisotropic galaxy clustering measurements thus provide
a new tool to independently probe the cosmology of the low-
redshift Universe. Data from future redshift surveys such as
the Dark Energy Spectroscopic Instrument (DESI Collaboration
et al. 2016), will further increase the power of the analysis pre-
sented in this work, and in conjunction with other low-redshift
probes, provide a powerful complement to cosmology derived
from CMB observations.

We restricted ourselves to flat ΛCDM in the present analy-
sis. Relaxing this assumption and considering cosmologies that
allow for curvature, varying masses of the neutrinos, or exten-
sions beyond ΛCDM severely degrades the constraining power
of Planck and makes it reliant on other data, such as galaxy clus-
tering, to break parameter degeneracies (Planck Collaboration
et al. 2018). In light of the findings of this Letter, it is then in-
triguing to ask if and how well BOSS can constrain these ex-
tended cosmologies by itself. We will consider such analyses in
forthcoming work.
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Fig. A.1. Cosmological parameters inferred from the Minerva mocks
for low-redshift sample (orange), high-redshift sample (green), and joint
analysis of both samples (blue). The true cosmology is indicated with
dashed lines.

Appendix A: Validation on simulations

The validation tests described in Sect. 2.2.1 consider a mock
galaxy population that resembles the low and high-redshift bins
of the combined DR12 galaxy sample. Beside checking the ef-
fect of the minimum physical scale on the parameter constraints
for the joint-analysis of the low and high-redshift bins (see
Fig. 1), we also perform this test for the two bins individually.
We find both bins to be robust against changes of the minimum
separation smin. The parameter constraints from the mocks for
smin = 20 h−1Mpc for the two redshift bins individually, as well
as combined, is shown in Fig. A.1.

Appendix B: Parameter constraints and prior
choices

The sampled parameters, their priors, and marginal posteriors
for the fiducial analysis are listed in Table B.1. We furthermore
assume a single massive neutrino with a mass of 0.06 eV. Fig-
ure B.1 shows the posterior distributions of all sampled param-
eters of our model, consisting of five cosmological parameters
Ωch2, Ωbh2, 100θMC, ln 1010As, and ns; and the bias and RSD
parameters b1, b2, γ−3 , and avir for each redshift bin. All parame-
ters, except for Ωbh2, are constrained by the data. The RSD pa-
rameter avir can only take on positive values; the lack of a lower
limit on avir of the high-z bin is therefore not an artefact of the
prior choice.

The best-fit model has a χ2 of 172.1 for 168 data points, in
agreement with S17.

To quantify the impact of the choice for the Ωbh2 prior in
our fiducial analysis, we also derive parameter constraints for
the case where we allow Ωbh2 to very freely using a uniform
prior between 0.005 and 0.1. Using such an uninformative prior
degrades the constraints on h and θMC due to their degeneracy

Table B.1. Priors used in this work and in S17, as well as our posteri-
ors (marginal means with 68% confidence interval) derived from BOSS
DR12 data alone. The priors on the cosmological parameters, as well as
the bias and RSD parameters are all uniform (indicated by U(. . . )).

Parameter Prior (S17) Prior (this work) BOSS

Ωch2 U(0.01, 0.99) U(0.01, 0.2) 0.134+0.012
−0.016

Ωbh2 U(0.005, 0.1) U(0.019, 0.026) —
100θMC U(0.5, 10.0) U(0.5, 10.0) 1.062 ± 0.016
ln 1010As U(2.0, 4.0) U(1.5, 4.0) 2.74 ± 0.17
ns U(0.8, 1.2) U(0.5, 1.1) 0.815 ± 0.085

Low-z
b1 U(0.5, 9.0) U(0.5, 9.0) 2.08+0.12

−0.14
b2 U(−4.0, 4.0) U(−4.0, 8.0) 0.86+0.84

−1.2
γ−3 U(−3.0, 3.0) U(−8.0, 8.0) 0.29+0.95

−0.63
avir U(0.2, 5.0) U(0.0, 12.0) 4.12+1.2

−0.96

High-z
b1 U(0.5, 9.0) U(0.5, 9.0) 2.22+0.13

−0.15
b2 U(−4.0, 4.0) U(−4.0, 8.0) 0.66+0.71

−2.4
γ−3 U(−3.0, 3.0) U(−8.0, 8.0) −1.0+1.9

−1.1
avir U(0.2, 5.0) U(0.0, 12.0) < 3.95

h — — 0.704 ± 0.024
Ωm — — 0.317+0.015

−0.019
σ8 — — 0.710 ± 0.049
S 8 — — 0.729 ± 0.048

with Ωbh2 but leaves the constraints on the other parameters un-
changed. We also consider the case where we impose a BBN
prior on Ωbh2. Specifically, we use the conservative BBN prior
Ωbh2 = 0.0222 ± 0.0005, which was derived in Planck Collabo-
ration et al. (2018) based on the primordial deuterium abundance
measurements of Cooke et al. (2018). As with the uninformative
Ωbh2 prior, only the constraints on h are impacted, for which we
find h = 0.700±0.015. The constraints for the three prior choices
are shown in Fig. B.2.

All fiducial chains were run until the Brooks & Gelman
(1998) convergence criterion of R−1 < 0.01 was reached. Some
of the ancillary chains had a slightly weaker convergence criteria
but all chains achieved at least R − 1 < 0.02.

Appendix C: Low-z and high-z

Figure C.1 presents the posterior distributions of Ωm, σ8, h, and
ns analogously to Fig. 3 but considering the two redshift bins
separately. We find that the two redshift bins yield consistent
parameter constraints, considering that the two bins are indepen-
dent. The small differences between the low- and high-redshift
bins furthermore agree well with those found in Ivanov et al.
(2019).

Appendix D: Dependence on smax

Variations of the stellar density across the sky affect the selec-
tion function of BOSS DR12 galaxies and thus their cluster-
ing signal. Ross et al. (2017) showed that the weights assigned
to the BOSS DR12 galaxies sufficiently mitigate this system-
atic for BAO measurements. In a full-shape analysis, such a
residual systematic would boost the clustering signal at large
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Fig. B.1. Posterior distributions for all sampled parameters in our main analysis. The posteriors derived from the BOSS clustering wedges are
shown in red, while those from Planck 2018 are shown in blue.

scales, thus causing the data to prefer lower values of ns. To
test for this possibility, we repeat the parameter inference but
restrict the maximum separation to smax = 100 h−1Mpc and
smax = 130 h−1Mpc. The resulting posterior distributions are
shown in Fig. D.1. Both cuts yield consistent results with our
fiducial choice of smax = 160 h−1Mpc, which was also employed
in S17.
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