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Key points: 

 Alternative strategies to represent fine-scale forest canopy structure within a standard 

energy-balance snow model were tested. 

 Only canopy representations that distinguish between near and distant canopy elements 

simulated realistic snow distributions. 

 The proposed approach uses standard canopy parameters only and can thus be transferred 

to other model frameworks. 
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Abstract 1 

Modelling spatiotemporal dynamics of snow in forests is challenging, as involved processes are 2 

strongly dependent on small-scale canopy properties. In this study, we explore how local canopy 3 

structure information can be integrated in a medium-complexity energy-balance snow model to 4 

replicate observed snow patterns at very high spatial resolutions. Snow depth distributions 5 

simulated with the Flexible Snow Model (FSM2) were tested against extensive experimental data 6 

acquired in discontinuous subalpine forest stands in Eastern Switzerland over three winters. 7 

While the default canopy implementation in FSM2 fails to capture the observed snow depth 8 

variability, performance is considerably improved when local canopy cover fraction and 9 

hemispherical sky view fraction are additionally accounted for (30% reduction in RMSE). 10 

However, realistic snow depth distribution patterns throughout the season are only achieved if 11 

effective temperatures of near and distant canopy elements are discerned, and if a mechanism to 12 

mimic preferential deposition of snow in canopy gaps is included. We demonstrate that by 13 

diversifying the canopy structure input in order to reflect respective portions of the canopy 14 

relevant to different processes, even a simple model based on widely used process 15 

parameterizations and canopy metrics can be applied for high-resolution simulations of the sub-16 

canopy snow cover with just a few modifications. The presented approaches could be 17 

implemented in commonly used land surface models, allowing upscaling experiments and 18 

development of sub-grid parameterizations without necessitating complex high-resolution 19 

models.  20 

1. Introduction  21 

The large spatial overlap of forest and seasonal snow makes the sub-canopy snow cover 22 

a key control of eco-hydrological processes at high latitudes and in alpine regions (Lundquist et 23 

al. 2013; Trujillo et al. 2012). In these environments, accurate models are needed to predict 24 

potential effects of ongoing climate and vegetation changes in support of water resources 25 

management (Beniston 2003; Marty et al. 2017; Tape et al. 2006). However, forest snow 26 

dynamics are shaped by complex interacting processes that are controlled by the structure of the 27 

overhead canopy and thus display large spatial and temporal variation. Snow interception by the 28 

canopy (Hedstrom & Pomeroy 1998; Moeser et al. 2015b; Roth & Nolin 2019) and subsequent 29 

sublimation and unloading to the ground (MacKay & Bartlett 2006; Pomeroy et al. 1998), 30 

shading of shortwave radiation (Hardy et al. 2004; Malle et al. 2019; Musselman et al. 2012a) 31 

and emission of longwave radiation by the vegetation (Essery et al. 2008b; Pomeroy et al. 2009; 32 

Webster et al. 2016) all vary with canopy structure in specific ways and thus contribute to 33 

heterogeneous snow depth distribution patterns, which are difficult to replicate with models 34 

(Clark et al. 2011a). 35 

The forest snow model inter-comparison project SNOWMIP2 (Essery et al. 2009; Rutter 36 

et al. 2009) evaluated 33 forest snow models differing in both process complexity and canopy 37 

implementation approaches. Major deficiencies of forest snow models were identified, and it was 38 

concluded that increased model complexity did not necessarily entail better performance (Rutter 39 

et al. 2009). Since then, the forest snow research community has come a long way: numerous 40 

measurement campaigns have generated a wealth of field data, comprising snow distribution 41 

observations (Dickerson‐Lange et al. 2015; Harpold et al. 2014; Mazzotti et al. 2019a; Schneider 42 

et al. 2019), micrometeorological records (Mahat & Tarboton 2014; Roth & Nolin 2017) and 43 

distributed measurements at the level of individual processes (Lawler & Link 2011; Mazzotti et 44 

al. 2019b; Moeser et al. 2015b; Webster et al. 2016). Forest snow research has also substantially 45 
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benefited from the increased availability of canopy structure information from a variety of remote 46 

sensing products (Ginzler & Hobi 2015; Harpold et al. 2014; Moeser et al. 2015a; Varhola & 47 

Coops 2013). As a consequence, many snow routines in hydrological and land surface models 48 

have been enhanced to incorporate more accurate representations of forest snow processes 49 

(Boone et al. 2017; Ellis et al. 2013; Gouttevin et al. 2015; Mahat & Tarboton 2014; Mahat et al. 50 

2013; Sun et al. 2018). Yet in many cases, the canopy is represented as one layer whose energy 51 

balance is coupled to that of the snowpack (Broxton et al. 2015; Mahat & Tarboton 2012; Moeser 52 

et al. 2016; Musselman et al. 2012b).  53 

Recent studies concerned with physically-based forest snow modelling have generally 54 

either focused on describing individual processes, or on implementing parameterizations of these 55 

processes into full snow cover models. In the former case, efforts to link process variability to 56 

canopy-structural variability at very small scales are common (Lawler & Link 2011; Musselman 57 

et al. 2012a; Webster et al. 2016). In contrast, studies evaluating the performance of full forest 58 

snow models have mostly been tested at the site scale only, using canopy parameters that 59 

represented effective spatial averages (Ellis et al. 2010; Gouttevin et al. 2015; Mahat et al. 2013). 60 

To date, few studies have incorporated local canopy structure into energy balance forest snow 61 

models to evaluate simulated variations across very small spatial scales: Musselman et al. 62 

(2012b) improved simulations of point-scale snowmelt dynamics by forcing the detailed snow-63 

physics model SNOWPACK (Lehning et al. 2006) coupled to a 1-layer canopy with time series 64 

of direct-beam shortwave radiation transmissivity. Moeser et al. (2016) obtained realistic spatial 65 

snow-depth distributions (2m resolution) with the Factorial Snowpack Model (Essery 2015) by 66 

implementing a novel interception model that uses detailed canopy structure parameters (Moeser 67 

et al. 2015b). Broxton et al. (2015) introduced SnowPALM, a model specifically designed for 68 

distributed forest-stand simulations (1m resolution), which aims at capturing differences between 69 

under-canopy and near-canopy pixels. SnowPALM accounts for horizontal interactions between 70 

grid cells through explicit simulation of shading and wind-redistributed snowfall.   71 

Broxton et al. (2015) further demonstrated the utility of meter-scale simulations for 72 

evaluating errors that arise when the non-linear forest snow processes are integrated over larger 73 

modelling units. With increasing availability of canopy structure information and computational 74 

resources, high-resolution modelling could enhance our understanding of inaccuracies inherent to 75 

common model applications (Essery et al. 2009; Sohrabi et al. 2019). Such model experiments 76 

should use process formulations that can be applied consistently throughout varying spatial 77 

scales. However, it is essentially unknown how well ‘standard’ medium-complexity models 78 

intended for and validated at the site scale are suited to replicate small-scale spatial snow 79 

variability that arises from complex processes.  80 

In this study, we explore how a physically-based snow model with simple 81 

parametrizations of energy fluxes and a 1-layer canopy representation can be applied to yield 82 

meaningful high-resolution simulations (<10m). To this end we use a forest snow scheme that 83 

incorporates process parameterizations used in many land surface models. Specific objectives 84 

are:  85 

1. To assess empirical relations between extensive snow depth and co-located canopy 86 

structure data, motivating the choice of local canopy parameters for modelling. 87 

2. To evaluate how commonly used canopy structure representations can be adapted to 88 

allow realistic replication of observed snow depth distribution patterns. 89 
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3. To provide a framework for consistent and accurate model simulations of forest 90 

snow distributions from fine to coarser scales that will facilitate upscaling 91 

experiments.  92 

This paper is structured as follows: Section 2 gives an overview of the available snow 93 

depth and canopy structure data and our modelling strategy. Experimental findings and modelling 94 

results are presented in section 3. As the design of each model version resulted from insights 95 

gained with the previous one, results are outlined and interpreted sequentially and unavoidably 96 

anticipate some discussion elements. Section 4 discusses the utility of our approach in a broader 97 

forest snow modelling context, while conclusions from this study are drawn in section 5.  98 

2. Methods  99 

2.1  Study sites and snow depth data 100 

 101 

Figure 1: Left: Overview map of the field areas, locations of the automatic weather station and 102 

the SLF snow measuring field (left) in Switzerland. Right: Example of the Drusatscha low field 103 

site, including the sampling grid, a visualization of the lidar point cloud, and lidar-derived 104 

datasets (see section 2.2.): canopy height model (CHM), directional and non-directional pixel 105 

classification and synthetic hemispherical image (SHI). 106 

Observational data come from discontinuous forest stands in the vicinity of Davos, 107 

Eastern Swiss Alps (Figure 1). The area is characterized by complex terrain and inner-alpine 108 

climate, with mean winter temperatures around -2 °C and an average precipitation of ~400mm 109 

during the winter half-year (October to March, MeteoSwiss, www.meteoswiss.admin.ch). Its 110 

subalpine forests are dominated by Norway spruce (Picea abies) ranging from new-growth to 111 

45m in height. The seven study sites, grouped into three field areas Drusatscha, Ischlag and Laret 112 
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(Figure 1), were established for a long-term forest snow study and have been described in detail 113 

by Moeser et al. (2014). Canopy cover exhibited pronounced variability both between and within 114 

sites (hence the site tags ‘low, medium and high’), whereas terrain influences were minimal. Each 115 

site included six parallel 50m transects intersected orthogonally by six further transects to form a 116 

50x50m grid. Metal poles at intersection points and nylon cord between these were installed to 117 

mark snow depth measurement locations every 2 m along the transects. Intersection points were 118 

georeferenced with a differential GPS (Trimble Geo XH 6000). Predetermining and marking 119 

measurement locations (276 points per site) was key to efficient data collection. Additionally, 120 

two reference open sites comprising a 100m transect each were established at the Laret and the 121 

Ischlag field areas. 122 

Snow depth (HS) was surveyed bi-weekly during three winters (water year  2012-13 to 123 

2014-15). Unfortunately, the sites Ischlag low and Laret high had to be abandoned in the last 124 

winter due to logging activities. Over the entire study period, 34 campaigns generated an 125 

unprecedented dataset of manual forest snow depth measurements including ca. 60,000 data 126 

points. 127 

2.2 Canopy structure metrics 128 

Canopy structure information was retrieved from a detailed lidar dataset (approx. 35 129 

points per m
2
) acquired in September 2010 with a helicopter-borne Riegl LMS Q560 sensor. 130 

Details on lidar survey parameters are outlined in Moeser et al. (2014) who used the dataset to 131 

develop their algorithm for the creation of synthetic hemispherical images by coordinate 132 

transformation (Figure 1). From their study, synthetic hemispherical images were available at all 133 

surveyed points of all our study sites. Point cloud data were also processed to obtain vertically 134 

projected gridded datasets (Figure 1). Canopy height models (CHMs) were computed for 200 x 135 

200 m areas encompassing each site at a 0.5 m resolution following the approach proposed by 136 

Khosravipour et al. (2014). Based on LAStools software (https://rapidlasso.com/lastools/), their 137 

algorithm creates pit-free CHMs by merging partial CHMs corresponding to defined canopy 138 

height bands generated by triangulated irregular networks (TIN) interpolation. The canopy height 139 

models were further binarized based on a 2m threshold as in e.g. Harpold et al. (2014) and 140 

Currier et al. (2019). The resulting binary raster was input to the algorithm presented by Mazzotti 141 

et al. (2019a), which computes every pixel’s distance-to-canopy-edge (DCE) as well as distances 142 

to the north- and south-exposed canopy edges (NDCE, SDCE). 143 

Based on these lidar derivatives, the four canopy structure parameters most commonly 144 

used in snow models (Varhola & Coops 2013) could be computed at each of the surveyed 145 

locations. They include:   146 

 Leaf area index (LAI): the dimensionless ratio of one-sided needle leaf area per unit 147 

ground area (e.g. Chen et al. 1997). Note that in some literature vegetation area index 148 

(VAI) is used instead, which may also include other vegetation elements such as stems 149 

and branches. 150 

 Sky-view fraction (VF): the visible portion of sky in the hemispherical field of view seen 151 

from a specific point, weighted by the sine of elevation angle (e.g. Essery et al. 2008b). 152 

 Canopy cover fraction (CC): the ratio of area covered by the vertical projection of the 153 

canopy relative to ground area in a two-dimensional bounding box (e.g. Mazzotti et al. 154 

2019b). 155 
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 Mean canopy height (mCH): the average height of the canopy elements in a two-156 

dimensional bounding box (e.g. Varhola & Coops 2013).  157 

LAI and VF were derived from the synthetic hemispherical images. We use LAI values 158 

computed by Moeser et al. (2014) who applied standard approaches for calculation of LAI from 159 

real hemispherical images (Miller 1967) implemented in the free software Hemisfer (Schleppi et 160 

al. 2007). Sky-view fraction was calculated according to Essery et al. (2008b). CC and mCH 161 

metrics were derived from the canopy height model over circular domains of varying radii (1-162 

20m) around the point of interest (i.e. CC5 for a radius of 5m, mCHX with a radius of x m). 163 

Additionally, the DCE, NDCE, and SDCE grids served to characterize each point’s position 164 

relative to its surrounding canopy structure. For this purpose, we applied the two classifications 165 

which group pixels that are located within similar canopy structure by defining categories based 166 

on DCE thresholds (Mazzotti et al. 2019a), or alternatively on NDCE and SDCE thresholds 167 

(Figure 1). Pixels were categorized into large and small canopy gaps, canopy edges, and small 168 

and dense clusters of canopy elements according to their DCE value (‘non-directional 169 

classification’). Additionally, they were classified as open or canopy pixels, north- and south-170 

facing edge or overlapping edge pixels based on their NDCE and SDCE values (‘directional 171 

classification’). 172 

2.3 The Flexible Snow Model (FSM2) 173 

The Flexible Snow Model (FSM2) used in this study is a recent upgrade of the Factorial 174 

Snow Model (FSM; Essery 2015). FSM is an open-source energy balance snow model of 175 

medium complexity, i.e. a ‘Type 2’ model in the classification proposed by Vionnet et al. (2012), 176 

and was originally developed for point simulations at open sites. Implemented as a multi-model 177 

framework (e.g. Clark et al. 2015; Essery et al. 2013), FSM includes two alternative 178 

parameterizations for five snow properties and processes, denoted as options 0 (‘simple’) and 1 179 

(‘more complex’). For the purpose of this study, we considered only one model configuration, 180 

with option 1 chosen for all snow properties and processes (snow albedo, snow density, snow 181 

compaction, and snow hydrology) except for turbulent exchange, as the assumptions underlying 182 

the stability correction implemented in FSM are likely to be violated in discontinuous forests 183 

(Conway et al. 2018).  184 

FSM2 offers the addition of a one-layer canopy implementation, which is common in 185 

land-surface models and makes it applicable to forested areas. Standard parameterizations of 186 

canopy processes applied in established models such as CLASS (Bartlett et al. 2006), ISBA 187 

(Boone et al. 2017) and CLM (Oleson et al. 2013) are included; see the Appendix for a 188 

description. At every modelled forest location, FSM2 requires information on site characteristics 189 

in terms of canopy parameters. By default, only vegetation area index (VAI, c.f. Section 2.2) and 190 

canopy height (ℎ𝑐) are needed, while transmissivity 𝜏 and vegetation fraction 𝑓𝑣  are computed 191 

internally as functions of VAI. However, 𝑓𝑣  and 𝜏 can also be specified as optional user inputs if 192 

specific values are available. In the context of local-scale modelling, this versatility permits 193 

integration of canopy structure metrics that incorporate different viewing perspectives and / or 194 

portions of the canopy, depending on what is relevant for the process in question. 195 

The model used by Moeser et al. (2016) constituted an unpublished precursor of FSM2. 196 

Since then, the model code has undergone substantial re-structuring and replacement of some 197 

process parameterizations. Recently, FSM2 was applied in a study by Magnusson et al. (2019) on 198 

scale errors for simulations ranging between 1 and 50 km. This paper uses FSM2 version 2.0.1 199 

(doi: 10.5281/zenodo.2593345). 200 
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2.4 Meteorological driving data  201 

FSM2 is driven by meteorological input data including incoming short- and longwave 202 

radiation, rain- and snowfall rates, air temperature, relative humidity, wind speed and surface air 203 

pressure. All required meteorological data were obtained at hourly resolution from the automatic 204 

weather station in Davos (DAV2), operated by MeteoSwiss (www.meteoswiss.admin.ch, Figure 205 

1) and located within 4 km of all sites. 206 

Total precipitation, measured by a heated gauge, was partitioned into solid and liquid 207 

components (PS and PL) applying the same partitioning function as in Magnusson et al. (2014) 208 

and Moeser et al. (2016): 209 

𝑃𝑆 =  𝑃𝑡𝑜𝑡

𝑃𝑐𝑜𝑟𝑟

1 + 𝑒
𝑇𝑎−𝑇𝑃

𝑚𝑃

 

Pcorr denotes an undercatch correction factor for solid precipitation, which was calibrated 210 

on a seasonal basis by comparing measured precipitation to bi-weekly surveys of snow water 211 

equivalent (SWE) at the nearby SLF measurement field (Figure 1) during cold periods (Ta < 212 

0°C). Values ranging from 1.3 (2013/14) to 1.4 (2014/15) are in good agreement with those 213 

reported in other studies in the same region (e.g. Egli et al. 2009; Wever et al. 2014). The 214 

parameters TP = 1.04 °C (threshold temperature where PS = PL = 0.5) and mP = 0.15 °C 215 

(temperature range corresponding to mixed precipitation) were calibrated on FSM2 results at the 216 

open sites and are consistent with Magnusson et al. (2014) and Moeser et al. (2016). 217 

Secondary precipitation correction factors specific to each field area were applied to 218 

account for the strong horizontal precipitation gradient arising from topographic conditions, 219 

which generally yield more snow at the field areas Laret and Drusatscha north of Wolfgang pass 220 

(Figure 1). These factors were computed for each season and field area individually as the ratio of 221 

peak SWE at the respective open field area to peak SWE measured at the SLF snow field, similar 222 

to Vögeli et al. (2016). Furthermore, the standard atmospheric lapse rate of -0.65°C/100m of 223 

elevation gain was applied to the air temperature time series to account for elevation differences 224 

between the sites. All other data (incoming radiation, relative humidity, wind speed and air 225 

pressure) were unchanged for all sites. Simulations at the open areas Laret, Ischlag and Davos 226 

were performed to ensure satisfactory input data quality and model performance independent of 227 

canopy-induced processes.  228 

2.5 Model application and evaluation strategy  229 

FSM2 was chosen for this study because it uses standard process parameterization 230 

approaches (c.f. Section 2.3). Moreover, its flexible structure and canopy parameters input offer a 231 

convenient testbed for alternative canopy structure representations. We explored different ways 232 

to leverage the experimentally available canopy structure data (LAI, VF, CCX, mCHX) as canopy 233 

input to FSM2 (VAI, hc, f, τ) without fundamental changes to the process parameterizations used 234 

in the model. The four alternative model versions are briefly introduced in the following:   235 

 FSM2-A: This constitutes the default version of FSM2. Leaf area index LAI and mean 236 

canopy height mCH5 were used as the only canopy input parameters for VAI and hc, 237 

while fv and τ were estimated by the parameterizations implemented in FSM2. As LAI 238 

from synthetic hemispherical images is always non-zero, mCH5 values were set to a 239 
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minimum of 2m (i.e. the threshold used to binarize the CHM) to ensure parameter 240 

compatibility. 241 

 FSM2-B: Here, we attempted a more accurate representation of local canopy conditions 242 

relevant to each process by providing additional user inputs for fv and τ in terms of local 243 

canopy closure CC5 and sky view fraction VF. This allowed us to give more weight to 244 

local canopy information for processes such as interception, while maintaining the overall 245 

canopy layout for processes such as shortwave transmission. As in FSM2-A, hc was given 246 

by mCH5. However, as LAI values obtained from hemispherical imagery integrate canopy 247 

information over a large fetch, VAI was instead determined with a linear function scaling 248 

with CC5 and mCH5 to achieve a more local approximation: 249 

𝑉𝐴𝐼 = 𝑚𝑎𝑥(𝐿𝐴𝐼) ∙ 𝐶𝐶5 ∙
𝑚𝐶𝐻5

𝑚𝑎𝑥(𝑚𝐶𝐻5)
 

 FSM2-C: This version introduced separate treatment of near and distant canopy elements 250 

in the energy balance. VAI, fv and hc were determined as in FSM2-B, but transmissivity 251 

was split into non-local and local components fsky and τ. The parameter fsky was 252 

originally implemented in FSM2 to optionally account for terrain shading at non-forested 253 

sites. In our application to forest simulations, we leveraged the same approach to discern 254 

near and distant canopy elements, with (1-fsky) representing distant canopy and terrain 255 

and (1- τ) denoting near canopy. It follows that τ and fsky are constrained by total 256 

hemispherical sky view, i.e. τ∙fsky = VF. We combined VF and CC5 data to estimate fsky 257 

and τ as follows:  258 

𝜏 = 1 − 𝐶𝐶5 

𝑓𝑠𝑘𝑦 =  
𝑉𝐹

𝜏
 

By using CC5 to define local canopy components, we could avoid introducing an 259 

additional canopy parameter. In those few cases where this led to fsky > 1, all canopy was 260 

treated as local, i.e. fsky = 1 and τ = VF. The temperature of distant canopy and terrain was 261 

assumed to equal air temperature, while only near canopy elements were involved in the 262 

coupled snow and canopy energy balances, with implications for radiative transfer. 263 

Moreover, fv was replaced by (1 - VF) for weighing the turbulent transfer coefficient 264 

between the canopy air space and the ground.  265 

 FSM2-D: In this version, all canopy parameters were computed as in FSM2-C. In 266 

addition, a simple local precipitation scaling was introduced to mimic preferential 267 

deposition of precipitation (Lehning et al. 2008) and redistribution of snow intercepted by 268 

the canopy (Mahat & Tarboton 2014): 269 

𝑆𝑓,𝑐𝑜𝑟𝑟 =  𝑆𝑓,𝑟𝑎𝑤  (1.1 − 0.2 ∙ 𝐶𝐶5), 270 

where the limits of this rescaling (+/- 10%) were motivated by Mahat and Tarboton 271 

(2014). 272 

The approaches included in each model version were motivated by results from the 273 

previous one, which is why further details on the above model choices will be discussed 274 

alongside results in section 3.2. The four versions were run at all seven sites for the three winters 275 
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(October 1
st
 to May 31

st
; 2012/13-2014/15), yielding a daily time series of snow depth (HS) for 276 

276 points per site, i.e. 1932 points in total.  277 

Model performance was evaluated by comparing simulations at the grid intersection 278 

points of each field site to observed values aggregated over a 5m radius (i.e. 9 measurements per 279 

validation point, 16 validation points per site). This choice is discussed in section 3.1, but it 280 

matches the canopy structure evaluation fetch of the parameters CC5 and mCH5 used in the 281 

model. We assessed the root mean square error (RMSE) and the mean absolute error (MAE) of 282 

snow depth, the mean absolute error of the standard deviation of snow depth within each field 283 

area (STDerr), Pearson’s correlation coefficient (R) between observed and simulated HS, and the 284 

Kling-Gupta efficiency (KGE; Gupta et al. 2009). The KGE statistic combines a correlation, a 285 

bias and a variability component, and has been applied to snow model performance assessment 286 

by Magnusson et al. (2015). These goodness-of-fit metrics were computed separately for each 287 

field area and survey date.  288 

3. Results 289 

3.1 Empirical relationships between snow distribution and canopy structure 290 

Correlations between snow depth and local canopy structure metrics 291 

Analyzing correlations between snow depth and canopy structure metrics served to 292 

identify canopy parameters to potentially include in FSM2. We computed correlation coefficients 293 

(Pearson’s R) between point snow depth measurements and all canopy parameters, including CC 294 

and mCH evaluated with varying radii, for all sites and survey dates. The temporal evolution of 295 

these correlations is shown in Figure 2 (left panel) based on data from Laret low as an example. 296 

A summary of correlation statistics at each site is provided in the right panel, where canopy 297 

metrics were ranked by their R values for each individual campaign and the average rank over the 298 

entire study period is reported for each canopy metric and site. Two general trends emerge: First, 299 

the stronger correlations between snow depth and metrics that are based on a small evaluation 300 

fetch (up to 5m) highlight the control of small-scale canopy structure on snow distribution. 301 

Second, CC-based parameters exhibit the strongest correlations with snow depth, while 302 

correlations to VF and LAI are remarkably weaker, suggesting that high-resolution modelling 303 

may benefit from incorporating a local CC metric. Correlation patterns further show strong 304 

temporal consistency, with generally higher R values during the accumulation period than during 305 

the ablation period. This may suggest that a single canopy parameter alone cannot accurately 306 

describe snow distribution once ablations processes have started to superimpose accumulation 307 

patterns.  308 

Our choice to implement CC and mCH based on a 5m evaluation fetch (i.e. CC5, mCH5) 309 

into FSM2 is also motivated by the data shown in Table 1, reporting correlation coefficients 310 

between CC based on different radii and HS aggregated over the same spatial unit. Contrary to 311 

results in Figure 2, correlations here improve for larger evaluation fetches; this is due to 312 

averaging snow depth data, which smooths out the scatter intrinsic to the observational data 313 

generating from random effects such as local ground roughness. Such random variability cannot 314 

be captured by the model. We therefore assessed the 5m spatial scale to be the best tradeoff 315 

between correlation strength, sample size and aggregation of observational data. At the same 316 

time, this scale is compatible with the experimental design of our sites, as aggregated points 317 

could be centered around transect intersections.  318 
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 319 

Figure 2: Correlations between local snow depth and different canopy structure variables. Left: 320 

At the Laret low site, for all individual campaigns throughout three seasons (dashed lines mark 321 

the separation between seasons). Right: At all sites, average rank of R over the entire study 322 

period. Note that correlation coefficients are reported as absolute values.  323 

Table 1: Maximum and average correlation coefficients between canopy closure (CC) computed 324 

over varying evaluation fetches and snow depth (HS) aggregated over the same spatial scale. R 325 

max is the maximum correlation found for any site or survey date and R mean is the average over 326 

all sites and campaigns. The sample size on which these statistics are based is also included. 327 

CC and HS evaluation fetch 1m 2m 5m 10m 20m 

R max -0.79 -0.85 -0.95 -0.99 -0.97 

R mean -0.58 -0.65 -0.82 -0.89 -0.76 

Sample size 1932 672 112 28 3 

Linking snow depth patterns and spatial canopy arrangement 328 

To derive expected model behavior, we further investigated how the spatial organization 329 

of the canopy, described in terms of DCE-based directional and non-directional classifications, 330 

affects snow depth patterns. Median snow depths within each pixel class were compared for both 331 

the non-directional (Figure 3, left) and the directional (Figure 3, right) classifications. Differences 332 

in snow depth between non-directional DCE classes are pronounced over the entire course of the 333 

season(s) and are much more distinct than differences between snow depths at canopy edges 334 

facing opposite aspects (red and purple lines on the right panel of Figure 3). Data from the 335 

Ischlag high site are shown as an example, but these patterns are generally consistent for all sites 336 

and seasons. This finding conforms with Mazzotti et al. (2019a), who came to the same 337 

conclusion based on forest snow distribution data derived from airborne lidar; however, data 338 

presented here offer a much larger temporal range. While several studies have highlighted the 339 

impacts of directional effects such as aspect-dependent irradiance and wind-driven preferential 340 

deposition on snow distribution (Broxton et al. 2015; Currier & Lundquist 2018; Hiemstra et al. 341 

2006), these effects are mainly observed along the edges of forest stands and of large forest gaps. 342 

In contrast, our sites reside within discontinuous forest stands characterized by relatively small 343 

gaps (<2H, c.f. Lawler & Link, 2011). Our data attest to the prevalence of non-directional effects 344 

over directional ones at such within-stand locations. This suggests that within discontinuous 345 
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forest, even a model with a simple canopy implementation may be sufficient to capture the 346 

principal links between snow depth and canopy structure pattern.  347 

 348 

Figure 3: Temporal evolution of observed average snow depth (HS) for different pixel 349 

classifications (dashed lines mark the separation between seasons, 2012/13 to 2014/15). Left: 350 

Non-directional classification based on distance-to-canopy-edge (DCE) threshold; Right: 351 

Directional classification aiming at delineating edges of opposite aspect based on NDCE and 352 

SDCE thresholds. 353 

3.2 Simulations of spatiotemporal snow depth distribution dynamics with alternative 354 

canopy representations  355 

The following sections outline and discuss results obtained with the four model versions 356 

individually, where the sequential order reflects the learning process that drove our model 357 

development. Different aspects of our results are presented in four separate figures, which are 358 

repeatedly referred to as we interpret and discuss the results of every model version separately. 359 

We briefly introduce these figures here for context: Figure 4 presents the temporal evolution of 360 

snow depths simulated by the four FSM2 versions at the 16 intersection points of the Drusatscha 361 

low site alongside corresponding observations. CC5 is used as a color scale, where each line 362 

represents one of the 16 intersection points with its unique CC5 value and serves to illustrate the 363 

variation of snow depth with local canopy structure. In contrast, Figure 5 and Figure 6 show 364 

temporal snapshots of observed and modelled snow depth distributions around peak of winter for 365 

two different sites and seasons, helping to visualize spatial snow depth patterns and their position 366 

relative to the canopy. The corresponding canopy height models reveal strong differences in 367 

canopy structure between these two examples. Lastly, observed and simulated snow depths at all 368 

field sites are directly compared at individual locations in Figure 7, from a survey in the 369 

accumulation period (left panels) and one in the ablation period (right panel).  370 
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 371 

Figure 4: Temporal evolution of simulated (FSM2-A to D) and observed (field data) snow depth 372 

(HS) at the 16 intersection points of the Drusatscha low site. The color scale visualizes CC5 at the 373 

points.  374 
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 375 

Figure 5: Spatial snow depth (HS) distribution observed at the Drusatscha low site on 12 March 376 

2013 (upper left), co-located canopy height model (CHM), and model results for the same date 377 

obtained with the four FSM2 versions (lower 4 panels). 378 
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 379 

Figure 6: Same panels as in Figure 5 but showing data from Ischlag high on 5 March 2014. 380 
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 381 

Figure 7: Comparison of observed snow depths (HS) at the 16 intersection points of all sites and 382 

model results obtained by the four FSM2 versions, for a campaign in the accumulation season 383 

(left) and one during the ablation season (right).  384 



Confidential manuscript submitted to Water Resources Research 

 

    

16 

FSM2-A: Default canopy implementation underestimates spatial variability  385 

The default FSM2 version, FSM2-A, strongly underestimates the spread in snow depth 386 

at points characterized by varying canopy cover fraction throughout the whole simulation period 387 

(Figure 4, first panel). As a consequence, simulated snow depth distributions at peak of winter are 388 

homogeneous, regardless of whether strong local differences in canopy density exist within the 389 

site or whether the site features low canopy-structural variability (Figure 5 vs. Figure 6, center 390 

left panels). Simulated HS values therefore poorly match individual observations during both the 391 

accumulation and the ablation period (Figure 7, first row).  392 

These results suggest that canopy structure variability is not adequately captured by 393 

standard LAI estimates and canopy height alone. At the local scale, different processes involved 394 

in the snow mass and energy balances are affected by different portions of the canopy (Moeser et 395 

al. 2015a), but the limited canopy structure input in FSM2-A does not account for these 396 

differences. In particular, LAI estimates based on hemispherical photography are inappropriate 397 

for characterizing local canopy in gaps: LAI is always non-zero even when no canopy is present 398 

directly overhead. Unavoidably, this leads to overestimations of interception in gaps, creating 399 

comparably homogeneous snow depth distribution as a consequence (Moeser et al. 2016). This 400 

example illustrates issues arising from the application of parameterizations developed at the stand 401 

scale (such as the Hedstrom & Pomeroy (1998) interception model) to simulations at the point (or 402 

meter) scale. Achieving successful process representation at very small scales may require 403 

diverse canopy structure input to allow distinction between overhead and surrounding canopy. 404 

Respective approaches have been implemented by Ellis et al. (2013) and Broxton et al. (2015) to 405 

enable simulations at gap locations that are sheltered and shaded by the canopy but have no 406 

interception.  407 

FSM2-B: Default inclusion of local parameters entails shortcomings in both accumulation 408 

and ablation processes 409 

To address issues identified with FSM2-A, the canopy parameterization strategy applied 410 

in FSM2-B attempted to diversify the canopy structure input, with the aim of representing the 411 

different processes by using canopy parameters that incorporate a spatial scale relevant to those 412 

processes. By providing FSM2 with locally measured inputs of CC5, VF and mCH5, simulated 413 

interception could be controlled by the overhead canopy (CC5, vertical perspective). At the same 414 

time, radiation transfer remained affected by surrounding canopy elements (VF, hemispherical 415 

perspective).  416 

Including additional forest structure information changed simulation results 417 

dramatically, but not generally for the better (Figure 4, second panel). Despite improved 418 

representation of local interception, the spread in HS is still underestimated during the 419 

accumulation period (Figure 7, second row left). The resulting snow depth patterns at peak of 420 

winter are still hardly visible (Figure 5, center right panel) or even reversed compared to 421 

observations (Figure 6, center right panel). The model melts snow too early in general and in 422 

gaps in particular. This resulted in consistent underestimations of snow depths during ablation 423 

(Figure 7, second row right). 424 

Combining canopy parameters that integrate different perspectives entails potential 425 

problems that are best illustrated by considering the single point with consistently the highest 426 

accumulation and latest melt (dark blue line in Figure 4, second panel), the only intersection point 427 

with CC5 = 0 (i.e. within a large gap) at the Drusatscha low site. The much faster melt of points 428 
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characterized by a small CC5 (other blue lines in Figure 4) reveals a discontinuity in the model at 429 

the transition from zero to non-zero CC5 values (for equal VF), which is a consequence of model 430 

structure: while shortwave radiation is attenuated by the same transmissivity τ = VF in both cases, 431 

coupled energy balances of canopy and sub-snow require a canopy cover fraction (i.e. a non-zero 432 

fv). Where this is not fulfilled, i.e. for CC5 = 0, fluxes resulting from the energy balance 433 

equations, for instance longwave radiation enhancement, are completely eliminated. In contrast, 434 

longwave radiation is dictated by VF at locations with CC5 > 0, where rapid snowmelt indicates 435 

too high sub-canopy energy input. As shown by Gouttevin et al. (2015), this known shortcoming 436 

of 1-layer canopy models is likely due to an overestimation of effective canopy temperatures.  437 

These results highlight that given the interplay between energy balance components, it is 438 

important that parametrizations of individual processes be evaluated within the full context of an 439 

energy balance model. Canopy gaps characterized by CC5 = 0 and VF < 1 are frequent in forest 440 

stands, contributing substantially to forest snow spatial variability (Dickerson‐Lange et al. 2015; 441 

Mazzotti et al. 2019a; Murray & Buttle 2003; Sun et al. 2018), but FSM2-B fails to correctly 442 

capture snow cover dynamics at these locations, with shortcomings both in the accumulation and 443 

the ablation periods (Figure 7, second row). These were sequentially addressed in the two 444 

following model versions.  445 

FSM2-C: Distinction between near and distant canopy elements improves simulated energy 446 

exchange  447 

The distinction between local and non-local canopy elements implemented in FSM2-C 448 

specifically tackled the discontinuity in canopy gaps identified in FSM2-B. By accounting for 449 

distant canopy elements with vegetation temperature given by air temperature and independent of 450 

the canopy energy balance, longwave radiation enhancement can take effect even at locations 451 

with CC5 = 0. At the same time, the dissimilar canopy temperatures of near and distant elements 452 

dampen the impact of too high vegetation temperatures for locations with CC5 > 0. Indeed, this 453 

approach eliminated the discontinuity effectively, delayed snowmelt in canopy gaps relative to 454 

dense canopy (Figure 4, third panel), and improved the match between simulations and 455 

observations, both at the level of snow distribution patterns (Figure 5 and Figure 6, lower left 456 

panels) and individual values, especially later in the season (Figure 7, third row).  457 

The 1-layer canopy models fail to represent shading of the lower canopy by the upper 458 

canopy, which is why multi-layer canopies have been proposed to arrive at more realistic 459 

estimates of effective canopy temperatures (Gouttevin et al. 2015). With the presented approach, 460 

the limitations associated with a 1-layer canopy could be circumvented without a considerable 461 

increase in model complexity. Although the proposed weighting based on CC5 is certainly 462 

simplistic, it is justified from a process perspective: based on measurements of incoming sub-463 

canopy longwave radiation, Webster et al. (2016) showed that the approximation of effective 464 

vegetation temperature by air temperature gained accuracy with increasing distance from the 465 

canopy. Distance based weighting of longwave radiation emissions from trees is also 466 

implemented in SnowPALM (Broxton et al. 2015). The relative contributions of sky and canopy 467 

to incoming longwave radiation are dictated by sky-view fraction, but canopy skin temperature is 468 

weighted by a function with length scale parameters calibrated on snow distribution. Their 469 

longwave radiation parametrization is briefly mentioned in the appendix but not discussed in their 470 

study, yet its conceptual similarity to our approach is noteworthy, and it is conceivable that this 471 

parameterization also contributed to the successful representation of spatial snow cover 472 

variability achieved with SnowPALM. 473 
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FSM2-D: Redistribution of canopy snow enhances variability during accumulation 474 

Local variations in canopy snow interception generate spatial variability of snow on the 475 

ground during accumulation, but it is the fate of the intercepted snow that ultimately determines 476 

whether this variability persists over time. Unloading snow from the canopy generally involves 477 

some degree of horizontal redistribution and may even exacerbate spatial variability (Mahat and 478 

Tarboton 2014). Within a 1-D model, however, snow is typically unloaded at the location where 479 

it is intercepted, diminishing variability created by interception (e.g. Moeser et al. 2016). 480 

Disparities between snow depth in canopy gaps and under-canopy locations can be further 481 

enhanced by preferential deposition (Lehning et al. 2008), which likely occurs as a result of 482 

modified near-surface flow fields by the canopy and reduced wind speeds as a consequence (Roth 483 

& Nolin 2017). Both redistribution of intercepted snow and preferential deposition are difficult to 484 

observe, have not been quantified to date and are not usually included in forest snow models.  485 

The precipitation scaling implemented in FSM2-D, suggested to mimic preferential 486 

deposition and redistribution processes, effectively increases snow depth spread during 487 

accumulation without requiring horizontal coupling (Figure 4, fourth panel; Figure 7, fourth row 488 

left). Spatial differences were further facilitated by slightly increasing the canopy snow holding 489 

capacity (motivated by the fact that the default value taken from literature has been suggested 490 

based on stand-scale studies) as well as the residence time of snow in the canopy (allowing 491 

sublimation to be active for longer). The resulting snow depth patterns match observations very 492 

well even at a site with little variability in canopy structure (Figure 5 and Figure 6, lower right 493 

panel), while the good results achieved with FSM2-C in the ablation period remain unaffected 494 

(Figure 7, lower right panel). For better visualization of resulting forest snow patterns, two 495 

animations showing a distributed simulation at the sites Drusatscha low and Ischlag low over the 496 

entire study period are included as supplementary material (Text S1, Movies S1 and S2).  497 

Underestimation of spatial variability during accumulation has been identified in prior 498 

studies and tackled in different ways. Moeser et al. (2016) successfully simulated spatial patterns 499 

of canopy interception, but additionally modified the parameterization of canopy snow 500 

sublimation implemented in FSM2 to arrive at equally distinct below-canopy snow depth 501 

patterns. While the resulting sublimation rates were sufficiently high to preserve these patterns, 502 

potential impacts on other energy fluxes were not addressed in their study. Broxton et al. (2015) 503 

implemented wind-redistributed snow according to Winstral et al. (2002), introducing additional 504 

model parameters calibrated on distributed snow depth data. In contrast, constant precipitation 505 

correction factors were applied to under-canopy areas by Mahat and Tarboton (2014). Our 506 

precipitation scaling function attempts to reconcile these approaches by including a dependency 507 

on small scale canopy structure without increasing the number of canopy structure parameters 508 

involved.  509 

3.3 Model performance metrics 510 

Qualitative results presented in the previous section translate into goodness-of-fit 511 

metrics (Figure 8) that quantify the strong differences in model performance of the four FSM2 512 

versions. The values shown in Figure 8 represent averages of the respective metrics over the three 513 

field areas for each individual survey date. Relative to the default version FSM2-A, deteriorated 514 

performance metrics are found for FSM2-B, with RMSE increasing by 52% (from 0.21m to 515 

0.32m) and MAE by 71% (0.17m to 0.29m) on average. In contrast, model performance is 516 

improved considerably by the modifications introduced in version FSM2-C. RMSE and MAE are 517 

reduced considerably for both FSM2-C and FSM2-D, by 25% (0.16m, 0.13m) and 30% (0.14m, 518 
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0.11m), respectively. The improvements in model spread achieved with FSM2-D are reflected in 519 

a very small error in standard deviation (0.035m averaged over all campaigns), which is only 520 

32% of the error found for FSM2-A (0.108m). Similarly, the slightly negative Pearson’s R 521 

resulting for FSM2-A (-0.15) transforms into a strong positive correlation (0.73) for FSM2-D. 522 

These performance metrics are slightly better than for FSM2-C (STDerr = 0.052m; R = 0.69) due 523 

to the skill of FSM2-D to capture HS variability during the accumulation season. However, 524 

temporal differences are evident even in the case of FSM2-D. The best model performance is 525 

achieved around peak winter (up to R max = 0.86), while model deficiencies are larger early in 526 

the season and towards the end of the accumulation period (R min = 0.3). This could partly be 527 

due to inaccuracies in the model driving data and the function used to partition precipitation 528 

components. The smaller signal-to-noise ratio of the validation data in these periods further 529 

favors lower (apparent) model performance.  530 

 531 

Figure 8: Temporal evolution of the five goodness of fit measures (one panel each) computed 532 

over all field areas for the four FSM2 versions.  533 

The Kling-Gupta efficiency combines the aspects quantified by all other goodness-of-fit 534 

metrics. As expected, FSM2-C and FSM2-D clearly outperform FSM2-A and FSM2-B, and 535 

FSM2-D exhibits slightly improved performance relative to FSM2-C. For FSM2-D, KGE 536 

averaged over all campaigns amounts to 0.54 and maximum KGE to 0.80, while FSM2-A 537 

features a negative average KGE of -0.34. Lastly, the benefits of model performance 538 
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improvements obtained with FSM2-D can be seen from the temporal evolution of the coefficient 539 

of variation of snow depth (CV; Figure 9). The CV is an important variability descriptor, applied 540 

e.g. in the parametrization of snow cover depletion curves (Liston 2004; Luce & Tarboton 2004) 541 

and FSM2-D arrives at the most accurate estimates of the CV metric throughout the season.  542 

 543 

Figure 9: Temporal evolution of simulated (solid lines) and observed (symbols) coefficient of 544 

variation of snow depth (CV) at the three field areas for the four FSM2 versions. 545 

4. Discussion  546 

The spatial dynamics of snow accumulation and melt in forested environments is of 547 

great relevance for eco-hydrological processes (Lundquist & Dettinger 2005; Trujillo et al., 2012) 548 

and land-surface energy exchange (Liston, 2004; Loranty et al., 2014). They should hence be 549 

captured effectively in model applications from catchment to regional scales. Because mass and 550 

energy exchange processes are controlled by small-scale canopy-structural features, models 551 

require a high spatial resolution to explicitly resolve canopy-snow interactions (Clark et al., 552 

2011a; Broxton et al., 2015). Recent efforts to incorporate such canopy-dependent process 553 

representations into forest snow models have generally increased model complexity at the 554 
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expense of parsimony. Here, we have demonstrated that spatiotemporal forest snow distribution 555 

dynamics can also be reproduced with standard forest snow models commonly used in larger-556 

scale applications. We have particularly showcased how the integration of local canopy 557 

information allowed accurate high-resolution (2m) simulations with only minor modifications to 558 

model structure.  559 

Most modelling applications require spatial resolutions coarser than typical forest snow 560 

process scales (Blöschl, 1999; Clark et al. 2011a). Yet, they can benefit from high-resolution 561 

simulations in two ways: First, variability that arises from relevant but unresolved processes is 562 

commonly treated by sub-grid parametrizations, an example being the derivation of fractional 563 

snow-covered area from depletion curves (Essery & Pomeroy, 2004; Luce & Tarboton, 2004; 564 

Helbig et al., 2015). However, approaches specific to forested terrain are still rare (Czyzowska-565 

Wisiniewski et al., 2015; Kostadinov et al., 2019) and further development of these methods 566 

demands data or simulations that depict realistic levels of spatial variability. While forest snow 567 

models set up based on stand-scale parameters  (i.e. FSM2-A) underestimate spatial variations, 568 

simulations following the approach of FSM2-D are potentially suited to inform novel 569 

parameterizations of sub-grid variability. Second, model upscaling experiments can serve to 570 

investigate errors arising from model coarsening and corresponding spatial aggregation of canopy 571 

properties (e.g. Broxton et al., 2015). Respective studies may even lead to the derivation of 572 

effective canopy parameters suitable for coarser-scale simulations and/or correction functions to 573 

account for resolution-induced biases (Essery et al., 2009). To this end, single-model solutions 574 

that allow consistent process representation and coupling across spatial resolutions from meter to 575 

coarse grid scale constitute an ideal framework, rather than assuming transferability of results 576 

from a separate high resolution model to a coarse-scale model with a different set of 577 

parameterizations.  578 

It is therefore a particular asset of our modelling approach that spatial accuracy is 579 

enhanced while the structure of standard, widely used models is preserved. More complex 580 

solutions put either high demands on computational resources and data availability, or do not 581 

easily translate to coarser scales if model structure changes are involved: For example, 582 

Musselman et al (2012b) introduced a space- and time-varying external input variable to account 583 

for direct-beam irradiance; the interception parametrization of Moeser et al. (2016) includes three 584 

dedicated canopy metrics and requires the model to track cumulative precipitation per storm 585 

event; and snowfall distribution as implemented by Broxton et al. (2015) relies on information 586 

about wind-direction dependent exposure at each modelled location. In FSM2-D however, spatial 587 

variability of energy balance terms is achieved by discerning near and distant canopy elements 588 

based on already used canopy descriptors, while preferential deposition and redistribution of 589 

snow are treated conceptually without necessitating  horizontal coupling between grid cells. 590 

FSM2-D achieves considerably improved performance with only minimal model 591 

changes, yet our approach also entails limitations. Disregarding directionality in radiation transfer 592 

may deteriorate model performance, particularly along forest edges during the ablation period 593 

where preferential melt is most evident (Mazzotti et al., 2019). Further, tree wells cannot be 594 

accurately resolved if very specific processes such as the bending of branches under snow load 595 

and subsequent unloading patterns are neglected (Sturm 1992). By confining canopy structure 596 

parameters to the widely used metrics LAI, VF, CCx and mCHx, our modelling approach is 597 

essentially well suited to assess forest snow distribution over larger areas (Varhola et al. 2014). 598 

But the relevance of directional processes varies with climatic conditions and may hamper model 599 
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transferability under certain circumstances, particularly (1) in dry high-isolation environments 600 

that feature pronounced discontinuities due to disturbances (Biederman et al., 2014; Harpold et 601 

al., 2014b), and (2) where forest snow is affected by wind-drift (Revuelto et al., 2015; Dickerson-602 

Lange et al., 2017). Similar uncertainties arise when considering model transferability across 603 

different forest types. Like many other forest snow studies (Varhola et al., 2010), our work has 604 

been focused on evergreen conifer forests; but to date, datasets from deciduous stands are more 605 

scarce, and model applicability to these environments remains to be tested. In this context, the 606 

increasing availability of snow distribution datasets from airborne lidar offers more opportunities 607 

to further validate and improve the modeling approaches presented here.  608 

Yet, the sole use of snow depth data for model performance assessment does not allow 609 

investigating potential equifinality issues and error compensation mechanisms (Beven, 2006; 610 

Clark et al., 2011b). Future forest snow model development and validation efforts should 611 

therefore also verify that the variability of individual processes is adequately captured. This is 612 

particularly important for processes that are controlled by local canopy-structure characteristics 613 

and thus exhibit strong spatial heterogeneity, such as shortwave radiation transfer, snow 614 

interception, and its subsequent unloading and sublimation. Experimental data that would have 615 

permitted process-level model evaluation were unfortunately not available at our sites for the 616 

period of this study. Follow-up research should leverage latest methods for the acquisition of 617 

spatially resolved micrometeorological data under heterogeneous canopy (Malle et al., 2019; 618 

Mazzotti et al. 2019b) to better constrain sub-canopy energy fluxes. Eventually, a multi-layer 619 

canopy representation may be needed to better resolve individual energy balance components that 620 

involve vertical gradients, for instance absorption of shortwave radiation and resulting canopy 621 

surface temperature inhomogeneities (Gouttevin et al., 2015; Webster et al., 2017). 622 

5. Conclusion 623 

This study has investigated how an energy-balance snow model of medium complexity 624 

coupled to a 1-layer canopy representation can be applied to realistically replicate small scale 625 

(<10m) variability of forest snow. Our results suggest that separate treatment of near and distant 626 

canopy elements allows balancing their impact on local energy exchange, mitigating 627 

discontinuity issues in canopy gaps and preventing overly rapid melt during ablation. Preferential 628 

deposition of precipitation and redistribution processes should be accounted for to create 629 

sufficient variability during snow accumulation. Both concepts were successfully implemented in 630 

FSM2 without increasing either model complexity or the number of canopy parameters involved, 631 

but with substantial improvements in model performance. The suggested approach is compatible 632 

with commonly used land surface models and may therefore allow a large community of model 633 

developers to assess their model in similar high-resolution applications. 634 

Rapidly evolving remote sensing technologies and computational resources are 635 

increasing the availability of detailed canopy structure datasets and the potential to run high-636 

resolution simulations over more and larger areas. In view of future work, we envision three 637 

cases: For regional scale applications, our single-model approach facilitates transference of 638 

process understanding gained from high-resolution simulations to coarser scales through intrinsic 639 

upscaling experiments. For catchment scale applications, the efficiency of the approaches 640 

presented here enables high resolution simulations that explicitly resolve canopy-snow 641 

interactions, even over entire watersheds. This provides unique opportunities to assess eco-642 

hydrological implications of, e.g., natural and management–induced forest disturbances. For 643 

process-level studies, an approach that resolves detailed forest snow distribution patterns with 644 
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commonly-used model concepts provides a suitable baseline for the evaluation of alternative, 645 

more complex process representations.  646 
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Appendix: Description of the FSM2 forest canopy model 661 

The canopy energy balance in FSM2 largely follows Bewley et al. (2010). Shortwave 662 
transmission through the canopy is 663 

𝜏 = exp (−0.5VAI) 

and the above-canopy albedo is 664 

𝛼 = (1 − 𝜏)𝛼𝐶 + 𝜏2𝛼𝑔 

for dense canopy albedo 𝛼𝑐 and ground albedo 𝛼𝑔, neglecting multiple reflections and assuming 665 

diffuse radiation. Snow cover fractions 𝑓𝑐𝑠  on the canopy and 𝑓𝑔𝑠  on the ground are used to 666 

interpolate between snow-free and snow-covered albedos (Essery, 2015). Net shortwave radiation 667 
absorbed by vegetation and the ground are 668 

𝑆𝑊𝑣 = (1 − 𝜏)(1 − 𝛼𝑐 + 𝛼𝑔𝜏)𝑆𝑊↓ 

and 669 

𝑆𝑊𝑔 = (1 − 𝛼𝑔)𝜏𝑆𝑊↓, 

where 𝑆𝑊↓ is the downwards shortwave radiation flux above the canopy. Assuming that 670 

vegetation and snow on the ground are blackbodies with surface temperatures 𝑇𝑣 and 𝑇𝑔, net 671 

longwave radiation is 672 

𝐿𝑊𝑣 = (1 − 𝜏)(𝐿𝑊↓ + 𝜎𝑇𝑔
4 − 2𝜎𝑇𝑣

4) 

and 673 

𝐿𝑊𝑔 = 𝜏𝐿𝑊↓ − 𝜎𝑇𝑔
4 + (1 − 𝜏)𝜎𝑇𝑣

4, 

where 𝜎 is the Stefan-Boltzmann constant and 𝐿𝑊↓ is the downwards longwave radiation flux 674 
above the canopy. 675 

Momentum roughness lengths 𝑧0𝑓  for snow-free ground and 𝑧0𝑠 for snow are combined to give a 676 

ground roughness length 677 

𝑧0𝑔 = 𝑧0𝑓
1−𝑓𝑠𝑧0𝑠

𝑓𝑠 . 
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For vegetation of height ℎ covering fraction 𝑓𝑣  of the ground, the roughness length and 678 

displacement height are 𝑧0𝑣 = 0.1ℎ𝑐 and 𝑑 = 0.67𝑓𝑣ℎ𝑐 . The combined roughness length is 679 

𝑧0 = 𝑧0𝑔
1−𝑓𝑣𝑧0𝑣

𝑓𝑣 . 

Neglecting the influences of atmospheric stability, aerodynamic resistances for heat transfer are 680 

𝑟𝑎 =
1

𝑘𝑢∗
ln (

𝑧 − 𝑑

𝑧0
) 

between the canopy air space and the atmosphere, 681 

𝑟𝑔 =
1

𝑘𝑢∗
[
1 − 𝑓𝑣

ln 10
+ 0.004𝑓𝑣]

−1

 

between the ground and the canopy air space, and 682 

𝑟𝑣 =
20

VAI𝑢∗
1/2

 

between the vegetation and the canopy air space, where 𝑘 is the von Kármán constant, 𝑧 is the 683 
meteorological measurement height and 684 

𝑢∗ = 𝑘𝑈𝑎 [ln (
𝑧 − 𝑑

𝑧0
)]

−1

 

is the friction velocity for above-canopy wind speed 𝑈𝑎. 685 

Sensible heat fluxes are parametrized as 686 

𝐻 =
𝜌𝑐𝑝

𝑟𝑎
(𝑇𝑐 − 𝑇𝑎) 

between the canopy air space at temperature 𝑇𝑐 and above-canopy air at temperature 𝑇𝑎,  687 

𝐻𝑔 =
𝜌𝑐𝑝

𝑟𝑔
(𝑇𝑔 − 𝑇𝑐) 

between the ground and the canopy air space, and 688 

𝐻𝑣 =
𝜌𝑐𝑝

𝑟𝑣
(𝑇𝑣 − 𝑇𝑐) 

between the vegetation and the canopy air space. Similarly, moisture fluxes are parametrized as 689 

𝐸 =
𝜌

𝑟𝑎
(𝑄𝑐 − 𝑄𝑎) 

between the canopy air space with humidity 𝑄𝑐 and above-canopy air with humidity 𝑄𝑎,  690 

𝐸𝑔 =
𝜌

𝑟𝑎𝑔

[𝑄sat(𝑇𝑔) − 𝑄𝑐] 

between the ground and the canopy air space, and 691 

𝐸𝑣 =
𝜌

𝑟𝑎𝑣

[𝑄sat(𝑇𝑣) − 𝑄𝑐] 

between the vegetation and the canopy air space, where 𝑄sat is the temperature-dependent 692 

saturation humidity if the vegetation and the ground are snow-covered. If they are not, moisture 693 

fluxes are limited by water availability factors depending on soil moisture. 694 

The energy and mass conservation equations 695 

𝐻 = 𝐻𝑔 + 𝐻𝑣 , 
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𝐸 = 𝐸𝑔 + 𝐸𝑣 , 

𝐿𝑊𝑔 + 𝑆𝑊𝑔 = 𝐺 + 𝐻 + 𝐿𝑠𝐸𝑔 + 𝐿𝑓𝑀 

and 696 

𝐿𝑊𝑣 + 𝑆𝑊𝑣 = 𝐻𝑣 + 𝐿𝑠𝐸𝑠 + 𝐶can

𝑑𝑇𝑣

𝑑𝑡
 

form a set of equations for the unknown 𝑄𝑐, 𝑇𝑐, 𝑇𝑠, 𝑇𝑣, ground heat flux 𝐺 and melt rate 𝑀; 𝐿𝑓 697 

and 𝐿𝑠 are latent heats for melting and sublimation of snow, and 𝐶can is the canopy heat capacity, 698 
assumed to be proportional to VAI. The equations are linearized and solved iteratively. 699 

The model for interception of falling snow by the canopy is based on Hedstrom and Pomeroy 700 

(1998) as implemented by Essery et al. (2003). If the canopy holds a mass of 𝑆𝑣 at the beginning 701 

of a timestep of length 𝛿𝑡 with snow falling at rate 𝑆𝑓 , the increase in intercepted mass over the 702 

timestep is 703 

𝛿𝑆𝑣 = (𝑆max − 𝑆𝑣) [1 − exp (−
𝑓𝑣𝑆𝑓𝛿𝑡

𝑆max
)] 

where 𝑆max = 4.4VAI is the maximum canopy snow holding capacity. Snow unloads from the 704 

canopy at rate 𝜏𝑢
−1𝑆𝑣 with different values of the time constant 𝜏𝑢 for cold and melting snow. 705 
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