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Key Points: 

 Strong diversity of fire activity in Equatorial Asia among El Niño events 

 Importance of local air-sea interaction on fire activity. Cooler Banda Sea leads 

drought and stronger fire activity 

 Fire activity is sensitively driven by local SST changes due to strong local air-sea 

interaction in October  
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Abstract 

Fire activity in Equatorial Asia shows large interannual variability. Teleconnections by El 

Niño–Southern Oscillation and Indian Ocean Dipole are linked to drought and fire events; 

however, we found here that significant role of local Sea Surface Temperature (SST) over the 

Banda Sea in interannual variability of Equatorial Asian burned area in October even after 

removing the linear effects of teleconnections. October is the transient period from dry to wet 

season and strengthened seasonal circulation in October leads to a negative SST anomaly 

through Wind–Evaporation–SST mechanism. This anomalous local air-sea interaction sustains 

the dry season into October and stronger fire activity. Moreover, we found that the sensitivity 

of precipitation to SST is higher in October than in other months, hence fires in Equatorial Asia 

can be sensitively driven by local SST changes. Identification of this sensitivity will underpin 

better predictions of fire activity and air quality in Equatorial Asia. 

 

Plain Language Summary 

Previous studies have emphasized the remote forcing associated with El Niño–Southern 

Oscillation and Indian Ocean Dipole are the most important climate factors in controlling fire 

activity in Equatorial Asia. However, we found here that there is a huge diversity of fire activity 

among El Niño events. In this paper, we newly found that the local air-sea interaction 

significantly influences on fire activity in Equatorial Asia. When the seasonal wind gets 

stronger, the Banda Sea, local sea located between Kalimantan and New Guinea, is cooler and 

it leads to the drought and strong fire activity. We also found that the role of local air-sea 

interaction strongly depends on the seasonality, which is related to seasonal variation of sea 

surface temperature climatology. Our findings will be utilized for better predictions of fire 

activity and air quality in Equatorial Asia.  
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1. Introduction 

The global total of annual summation of fire emissions was 2.17 PgC yr−1 (95% confidence 

interval: 2.04–2.33 PgC yr−1) over 1997–2015 period (van der Werf et al., 2017), while fossil 

fuel and cement emissions were 8.28 PgC yr−1 for the same period (Le Quéré et al., 2016). 

Substantial interannual variability of global fire emissions originates from fire emissions over 

Equatorial Asia (van de Werf et al., 2004; van de Werf et al., 2008). This region shows the 

largest confidence interval of mean fire emissions, 0.09–0.30 PgC yr−1 at 95% confidence level 

based on the bootstrap method (Figure 1a). Forest and peatland fires in Indonesia generate most 

of the fire activity in Equatorial Asia, especially in eastern Sumatra, southern Kalimantan and 

southern New Guinea (Figure 1b). In addition to substantial carbon emissions, Indonesian fires 

lead to hazardous levels of smoke pollution over Equatorial Asia and are linked to 

multitudinous premature deaths (Gaveau et al., 2014; Crippa et al., 2016; Koplitz et al., 2016). 

Equatorial Asian fires generally break out in dry season, August to October. Interannual 

variability of fires is closely related to local drought in that season and tightly coupled to large-

scale atmospheric circulation anomaly in the tropics, such as El Niño–Southern Oscillation 

(ENSO) and Indian Ocean Dipole (IOD) (Field & Shen, 2008; Field et al., 2009; Pan et al., 

2018). Walker circulation is weakened during El Niño, accompanying negative sea surface 

temperature anomalies (SSTA) surrounding Indonesia and eastward shifts of atmospheric 

convection into the central Pacific, in contrast to positive SSTA and precipitation anomaly in 

the eastern Pacific (Hendon, 2003). The positive phase of the IOD is also characterized by cold 

water along the Sumatran coast related to anomalous wind-driven upwelling and less 

precipitation over Equatorial Asia (Saji et al., 1999). This precipitation variation leads to fire-

prone conditions linked to large-scale atmospheric circulation anomaly (Field & Shen, 2008; 

Field et al., 2009). Thus, year-to-year variation of fire activity in Equatorial Asia is predictable 
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on seasonal timescales based on using large-scale SSTA patterns related to ENSO and IOD. 

(Chen et al., 2016b). 

The estimated maximum annual carbon emission over Equatorial Asia during 1995–

2015 was 1.11 PgC yr−1 in 1997 due to severe drought resulting from the 1997/98 El Niño. 

This El Niño was regarded as one of the strongest events in the historical record (Page et al., 

2002; van der Werf et al., 2017). The SSTA in recent 2015/16 El Niño tied with 1997/98 El 

Niño as the strongest; however, carbon emissions from equatorial fires in 2015, 0.40 PgC yr−1, 

were relatively less than the 1997/98 case (Liu et al., 2017a; Wang et al., 2018). Even though 

the 2015/16 case had a similar tropical Pacific SSTA magnitude to 1997/98, the IOD event was 

relatively weaker in 2015/16 than 1997/98 (Chen et al., 2016a; Liu et al., 2017b). Indeed, 

distinct El Niño types have been reported based on the spatial pattern of SSTA, such as Eastern 

Pacific El Niño and Central Pacific El Niño (Ashok et al., 2007; Kao and Yu, 2009; Kug et al., 

2009). In addition, each El Niño has diverse atmospheric teleconnections related to SSTA 

diversity of El Niño events (Larkin & Harrison, 2005; Weng et al., 2007, 2009; Kug et al., 

2010; Kim & Kug, 2019) and interaction with other basin variabilities (Kug & Kang, 2006; 

Ham et al., 2003; Park et al., 2018). Even though El Niño phenomenon has a conventional 

characteristic as positive SSTA in the tropical Pacific, each El Niño is not occurred always 

same and it shows diverse characteristics in terms of spatial and temporal evolutions, 

magnitude, and its atmospheric teleconnections (Wang et al., 2019), therefore we expect this 

El Niño diversity would affect the year-to-year variation of fire activity in Equatorial Asia. 

Our science question here is how El Niño diversity drives the interannual variation of 

fire activity in Equatorial Asia. We analyze fire activity in Equatorial Asia for its connection 

to ENSO, IOD and local SSTA surrounding Indonesia. Based on this preliminary analysis, we 

investigate air-sea interactions over the local sea region, to determine their importance for the 
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interannual variability of fire activity in Equatorial Asia. The novelty of this paper is in the 

focus on local air-sea interactions with fire. 

 

2. Data 

The fourth version of Global Fire Emissions Database (GFED4) burned area product with 0.25° 

× 0.25° resolution is used to quantify the interannual variability of fire over Equatorial Asia 

(90°E–155°E, 11°S–9°N) for the period June 1995 to December 2015 (Giglio et al., 2013). The 

Met Office Hadley Centre sea Ice and Sea Surface Temperature data version 1 (HadISST1) on 

a 1° latitude–longitude grid (Rayner et al., 2003) are used in this study. Based on HadISST1, 

we drive detrended and normalized SSTA-based indices which are Niño3.4 index and Dipole 

Mode Index (DMI). Niño3.4 is the average SST anomaly in the region bounded by 170°W–

120°W, from 5°S–5°N. The DMI is defined by SSTA gradient between the western equatorial 

Indian Ocean (50°E–70°E, 10°S–10°N) and the southeastern equatorial Indian Ocean (90°E–

110°E, 10°S–0°N) (Saji et al., 1999). In order to examine relationship between fire activity and 

large-scale atmospheric circulation, the monthly 10-meter zonal and meridional wind and 

precipitation rate for 1979–2015 are obtained from the European Centre for Medium-Range 

Weather Forecasts Reanalysis-Interim on a 1.5° latitude–longitude grid (Dee et al., 2011) and 

from the Climate Prediction Center Merged Analysis of Precipitation on a 2.5° latitude–

longitude grid (CMAP; Xie & Arkin, 1997), respectively. GFED4 burned area product only 

covers recent 21-years period, but we used the whole period of atmospheric variables in order 

to draw more confidential results with larger sample size. 
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3. Methods and Results 

3.1 Equatorial Asia Fire Diversity 

Niño3.4 index and DMI have been used to explain and predict fire activity in Equatorial Asia 

because ENSO and IOD are major components in driving Equatorial Asia weather conditions 

(Field & Shen, 2008; Wooster et al., 2012; Chen et al., 2016b). Field et al. (2009) suggested 

that a combined index based on monthly Niño3.4 and DMI, Niño3.4-DMI index, better 

explains the interannual variability of Indonesian precipitation than either Niño3.4 or DMI 

alone. Monthly Niño3.4-DMI index can be calculated based on multiple linear regression 

method, which is expressed below: 

Burned area = 𝛼 ∙ Niño3.4 + 𝛽 ∙ DMI + 휀  (1) 

Burned area − 휀 = 𝛼 ∙ Niño3.4 + 𝛽 ∙ DMI = 𝛾 ∙ Normalized Niño3.4-DMI index 

 (2) 

where burned area is monthly total summation of burned area over Equatorial Asia (90°E–

155°E, 11°S–9°N), 𝛼 and 𝛽 are multiple regression coefficients with respect to normalized 

monthly Niño3.4 and DMI and 휀 is a residual. In other words, monthly Niño3.4-DMI index 

is defined by a summation of partial contributions with respect to normalized Niño3.4 and DMI 

on Equatorial Asian burned area (Field et al., 2009) and 𝛾 in equation (2) is standard deviation 

of monthly Niño3.4-DMI index. Monthly Niño3.4-DMI-related fire activity, 𝛾 , shows 

distinctive seasonal cycle with the major peak in boreal autumn and the minor peak in boreal 

spring (Figure 2). Partial contribution of the burned area with Niño3.4, 𝛼 ∙ Niño3.4  in 

equation (1), follow the seasonal pattern of the Niño3.4-DMI index; however, the maximum 

for partial contribution with DMI, 𝛽 ∙ DMI in equation (1), is in October and it is higher than 

𝛼 ∙Niño3.4 in October and November, possibly because the Indian Ocean dipole peaks in 

October and November. It means that the Indian Ocean dipole also has a substantial role in the 

fire activity together with Niño3.4 as consistent with previous studies (Field et al., 2009; Pan 
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et al., 2018). We found that correlations between burned area and Niño3.4-DMI index are 

significant for all months. However, residuals, 휀 in equation (1), which could not be explained 

by the Niño3.4-DMI index, still have considerable amounts. 

This residual might originate from diverse responses to different characteristics among 

El Niño events, and other components’ contributions. In order to estimate how much the fire 

activity is different among inter-El Niño events, we calculated the standard deviation of the 

residual only for recent seven El Niño events (1997, 2002, 2004, 2006, 2009, 2014 and 2015) 

which were defined when the normalized Niño3.4 SSTA during December–February was 

greater than 1 K. As shown in Fig. 2, the standard deviation of residuals for recent seven El 

Niño years generally follows 𝛾  and 𝛼 , suggesting that stronger magnitudes of El Niño 

impacts are linked to larger residuals. Interestingly, however, the maximum amplitude of the 

residual is in October, while the ENSO impacts show the maximum in September. These results 

suggest that the responses of the fire activity to El Niño forcing are most diverse in October. 

Interestingly, we found that normalized local SSTA over the Banda Sea (120°–130°E, 10°–

0°S) tends to be more negative in case of stronger fire activity years among El Niño events 

(Figure S1). During these events under strong negative local SSTA condition, the actual burned 

area tended to be higher than the explained burned area by regression fitting value based on the 

Niño3.4-DMI index. However, more positive local SSTA is observed with lesser than expected 

burned area using empirical regression line based on Niño3.4-DMI index. For example, in 2002 

and 2009 the fire activity is lesser than the regression line between Niño3.4-DMI and burned 

area, and SST anomalies are weaker over the Banda Sea. In contrast, fire activities are higher 

than the regression line in case of 2004 and 2014, when negative local SST anomalies show a 

certain degree (−0.8 to −1.1°C). Even though the interannual variability of the burned area 

follows by Niño3.4-DMI index to a certain degree, it is suggested that local SSTA also have a 

role in fire activity during El Niño years. This result implies that local SSTA and its relevant 
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climate condition can also contribute to Equatorial Asian fire activity in addition to large-scale 

teleconnection influence in the tropics. 

 

3.2 Local SST Impacts on Fire activity 

To understand the diverse response of the Equatorial Asian fire to El Niño, we need to know 

what other factors affect the residual. In order to find them, we calculated a partial regression 

of the gridded SST with the Equatorial Asia burned area index for October after linearly 

removing the effect of Niño3.4-DMI index, which is express below: 

Burned area = 𝛾 ∙ Niño3.4-DMI + 𝛿 ∙ Gridded SSTA + 휀  (3) 

where 𝛾 and 𝛿 are multiple regression coefficients with respect to normalized Niño3.4-DMI 

index and SSTA in each grid for October, and 𝛿 is shown in Figure 3a. The fire activity in 

October is related to surface cooling in the Southern Hemisphere and surface warming in the 

Northern Hemisphere over the surrounding seas of Equatorial Asia (Figure 3a). This north-

south dipole pattern of the correlation might be linked to a co-varying atmospheric circulation. 

Interestingly, the partial regression shows strong relationship with SST in the Banda Sea (120°–

130°E, 10°–0°S). This sea is the nearest regions in which the strongest fire activity is occurring, 

as shown in Fig. 1b. This result indicates that the local cold sea surface can provide a favorable 

condition for vigorous fire activity. 

In order to understand how the local SST affects the fire activity, we calculate the 

relationship between normalized local SSTA over the Banda Sea (120°–130°E, 10°–0°S) and 

gridded precipitation over the Maritime Continent, after removing ENSO and IOD effects 

(Figure 3b), which is express below: 

Local SSTA index = 𝛾 ∙ Niño3.4-DMI + 𝛿 ∙ Gridded Precipitation + 휀  (4) 

where 𝛾 and 𝛿 are multiple regression coefficients with respect to normalized Niño3.4-DMI 

index and precipitation anomaly in each grid, and 𝛿 is shown in Figure 3b. It is evident that 
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the SSTs in the Marginal Seas of Indonesia are positively correlated to local precipitation, 

consistent with the previous study (Aldrian and Susanto 2003). This positive relation indicates 

that SST variability tends to induce local convective response there as pointed out by previous 

studies (Aldrian and Susanto 2003; Hendon, 2003), rather than the convective activity leading 

to the SST change. This result supports the expectation that the negative SST anomalies over 

the Marginal Seas of Indonesia suppress convective activity, leading to severe drought in the 

dry season. 

Even though El Niño and positive phase of IOD are related to negative SSTA over the 

Banda Sea, local SSTA can be also affected by local air-sea interaction. Figure 3c shows the 

atmospheric circulation pattern associated with the SST variation over the Banda Sea after 

removing the effect of normalized Niño3.4-DMI index as same as equation (3). It is clear that 

this local SST cooling is linked to the anomalous southeasterly wind which is the same 

direction with climatological wind. This wind anomaly indicates enhancement of the wind 

speed, which induces evaporative cooling of SST, suggesting a strengthening seasonal 

monsoon pattern described by Chang et al. (2005), Iskandar (2010), Kubota et al. (2011) and 

Hamada et al. (2012). 

The correlation between burned area with local SSTA in October is the highest among 

SSTA-based indices (Table 1). Also, partial correlations without local SST are non-significant. 

Therefore we should consider local SSTA as important for understanding the interannual 

variation of fire activity in Equatorial Asia, in addition to large-scale teleconnections such as 

the ENSO and IOD. However, this mechanism is only found in October, and not in September 

which has the maximum fire activity over Equatorial Asia (Table 1). Indeed, the coldest season 

in this area is July–September due to SST cooling by wind-driven evaporation, that is, Wind–

Evaporation–SST mechanism described by Xie & Philander (1994), as a part of seasonality 

(Kida & Richards, 2009). Also, seasonal cycle of precipitation also has the minimum in this 
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period due to the suppression of convection linked to the coldest SST (Field & Shen, 2008). 

However, as SST is getting warmer by weakening wind-driven evaporation after August, the 

relationship between SST and precipitation is changing with climatological mean value of SST 

(Figure 4). 

Previous studies argued that there is the non-linear relationship between SST and 

convection in the tropics (Graham & Barnett, 1987; Waliser & Graham, 1993; Lau et al., 1997). 

In dry seasons over Equatorial Asia, precipitation is positively correlated to local SST, but not 

in the wet season (Haylock & McBride, 2001; Aldrian & Susanto, 2003; Hamada et al., 2012), 

indicating the sensitivity of precipitation to SST is related to the climatological SST. As shown 

in Figure 4, if the SST is lower than a certain degree (approximately 29°C), the precipitation is 

positively correlated to the SST, but this relationship can break down if SST is higher, 

consistent with Lau et al. (1997). The sensitivities of precipitation to SST increase according 

to the seasonal variation of SST climatology from August to November (Figure 4). The 

sensitivity is weak when SST is too low, as in August (1.96 mm d−1 °C−1), but it becomes 

stronger as the climatological SST becomes higher, reaching 3.79 mm d−1 °C−1 in October. The 

sensitivity of precipitation to SST is highest in October and November, suggesting the 

interannual variation of local SST in October has a significant role in precipitation variation, 

which is directly associated with fire activity over Equatorial Asia. However, in December, the 

sensitivity of precipitation to SST breaks down, like in August, due to too high climatological 

SST. 

In addition to the total burned area in Equatorial Asia, we also analyzed the burned area 

at 1° × 1° latitude-longitude grid scale to quantify a relative role of local SST on regional scale 

fire activity as compared to Niño3.4 and DMI. Contributions of Niño3.4, DMI and local SST 

on October burned area over Equatorial Asia are driven by multiple linear regression (Figure 

S2). Niño3.4 index explains burned area over the southern part of New Guinea (Figure S2a) 
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and DMI has a larger contribution in the eastern part of Sumatra than Niño3.4 (Figure S2b). 

On the other hand, fire activity in the southern part of Kalimantan, which has the largest fire 

activity over Equatorial Asia, mainly associates with the interannual variation of local SST 

(Figure S2d). In addition, the contribution of local SST on October burned area is larger than 

the contribution of the Niño3.4-DMI index (Figure S2c), especially for the southern part of 

Kalimantan. Therefore, local SST impacts must not be overlooked if we are to understand the 

interannual variation of fire activity in Equatorial Asia, especially for October. 

 

4. Concluding Remarks 

Large-scale atmospheric circulation changes such as ENSO and IOD have been considered to 

explain interannual variability of fire in Equatorial Asia, but we found here that the local SST 

over the Banda Sea in October is also important for explaining drought-related fire activity in 

Equatorial Asia. We found that diverse fire responses to ENSO or IOD are caused by local air-

sea interaction status which is known as Wind–Evaporation–SST mechanism (Xie & Philander, 

1994; Kida & Richards, 2009). In addition, the high sensitivity of precipitation to SST 

contributes to occurrence of drought even for a weak negative SSTA over the Banda Sea. For 

this diverse local sea response to ENSO or IOD, there is a possibility that various El Niño 

flavors may contribute to diverse atmospheric circulation and air-sea interaction changes over 

the Equatorial Asia region (Larkin & Harrison, 2005; Kug et al., 2009; Kug et al., 2010; 

Capotondi et al., 2015; Kim & Kug, 2019). For example, less fire activity in 2015/16 El Niño 

as compared to 1997/98 El Niño implies diverse fire response to El Niño flavors (Chen et al., 

2016a; Field et al., 2016; Liu et al., 2017a; van der Werf et al., 2017; Wang et al., 2018). Even 

though August to October mean Niño3.4 indices have equal magnitude as 2.1°C for 1997/98 

and 2015/16 El Niño, 2015/16 has stronger SSTA over the central Pacific and less dry condition 

over Equatorial Asia than 1997/98 (Chen et al., 2016a; Lim et al., 2017). Moreover, October 
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Banda Sea SSTA is −0.36°C in 2015/16, while −0.63°C in 1997/98. Therefore, less 

precipitation due to negative local SSTA might contribute to stronger fire activity in 1997/98 

as compared to 2015/16, even though El Niño strength is similar. In contrast to El Niño 

diversity, fire activity has less diversity among La Niña events than El Niño events and this is 

consistent with less La Niña diversity in terms of spatial pattern in SSTA as shown in Kug & 

Ham (2011). 

Previous studies suggested that statistical models using SSTA-based indices enable to 

understand predict fire activity (Field & Shen, 2008; Field et al., 2009; Chen et al., 2011; 

Wooster et al., 2012; Chen et al., 2016b). In addition to basin-scale SSTA-based indices, the 

local SSTA would be useful for forecasting fire activity, particularly in October, because local 

SSTA have more significant lagged relationships with burned area in October over Equatorial 

Asia than for one month before (September; r=−0.75) and two months before (August; 

r=−0.65). We found that correlation coefficients between burned area in October and local 

SSTA in September without Niño3.4 and IOD effects are −0.44 and −0.50, respectively. This 

result implies that local SSTA in one and two preceding months can be used for October fire 

activity prediction and it provides higher skill than Niño3.4-DMI index. Moreover, the current 

seasonal forecasting models have considerable prediction skills, especially for regional 

Maritime Continent SST and precipitation (Zhang et al., 2016); therefore, the local SSTA 

simulations by seasonal forecasting models also useful to predict Equatorial Asia fire activity 

in October. On the other hand, even though the current Earth System Models simulate process-

based fire activity, they underestimate ENSO-related fire activity (Kim et al., 2016; Kim et al., 

2017). Therefore, we need further investigations into the role of local SSTA-related fire activity 

under greenhouse warming in terms of the long-term carbon cycle (Yin et al., 2016).  
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Table 1. Correlation between burned area in Equatorial Asia and SSTA-based indices in 

October 

Month 
Burned Area 

in Equatorial 

Asia 

Correlation 

Partial 

correlation 

without 

Niño3.4 

Partial 

correlation 

without DMI 

Partial 

correlation 

without local 

SST 

October Niño3.4 0.73**  0.52* 0.39 

DMI 0.75** 0.57**  0.23 

Local SST 0.79** 0.56** 0.40  

September Niño3.4 0.85**  0.80** 0.66** 

DMI 0.67** 0.53**  0.20 

Local SST 0.77** 0.41 0.53*  

* for P<0.05 and ** for P<0.01  
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Figure 1. (a) Mean carbon emission by fire (bar) for Southern Hemisphere Africa (SHAF), 

Northern Hemisphere Africa (NHAF), Southern Hemisphere South America (SHSA), 

Equatorial Asia (EQAS), Boreal Asia (BOAS), Southeast Asia (SEAS) and Australia and New 

Zealand (AUST) over 1997–2015 from the fourth version of Global Fire Emissions Database 

and error bars and numbers are 95% significance ranges of mean carbon emission by fire based 

on the bootstrap method with 10,000 times resampling to estimate mean value (PgC yr−1). (b) 

Mean burned fraction over Equatorial Asia for the period 1997–2015 (% yr−1).  
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Figure 2. Fire activity in Equatorial Asia related to ENSO and IOD. Partial regression 

coefficients of burned area with normalized Niño3.4 as 𝛼 in equation (1) (red), DMI as 𝛽 in 

equation (1) (yellow) on Equatorial Asian burned area. Gray line shows the summation of 

partial contributions with respect to normalized Niño3.4 and DMI, which are explained burned 

area by Niño3.4-DMI index. Standard deviation of residuals, 휀 in equation (1), are shown in 

the black bars for recent seven El Niño events that are 1997, 2002, 2004, 2006, 2009, 2014 and 

2015. Units are Mha.  
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Figure 3. (a) Regression coefficients of gridded SST anomalies in October on the burned area 

over Equatorial Asia (90°–155°E, 11°S–9°N), excluding the influence of normalized Niño3.4-

DMI index for the period 1995–2015. This is 𝛿  in equation (3). Unit is °C Mha−1. (b) 

Regression coefficients of gridded precipitation anomalies (mm d−1) on the SST over the Banda 

Sea (120°–130°E, 10°–0°S), the boxed area in (a), excluding the influence of normalized 

Niño3.4-DMI index for the period 1979–2015. This is 𝛿  in equation (4). (c) Regression 

coefficients of gridded surface wind anomalies (vector and dot) and wind speed (shaded; m s−1) 

on the SST over the Banda Sea, excluding the influence of normalized Niño3.4-DMI index. 

This is 𝛿 in equation (4), but for wind. Hatching, wind vectors and dots are displayed only in 

significant regions at the 95% confidence level calculated using a Student’s t-test.  
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Figure 4. Precipitation (mm d−1) over the Southern Hemisphere Equatorial Asia region (100°–

150°E, 12°S–0°S) versus the local SST (°C) over the Banda Sea (120°–130°E, 10°–0°S). Color 

dots indicate dry season values from August to December and solid lines show the sensitivity 

of precipitation to the local SST. 


