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ARTICLE

Using regulatory variants to detect gene–gene
interactions identifies networks of genes linked
to cell immortalisation
D. Wragg1, Q. Liu1, Z. Lin1, V. Riggio1, C.A. Pugh1, A.J. Beveridge2, H. Brown1, D.A. Hume3, S.E. Harris 4,

I.J. Deary4, A. Tenesa 1 & J.G.D. Prendergast1*

The extent to which the impact of regulatory genetic variants may depend on other factors,

such as the expression levels of upstream transcription factors, remains poorly understood.

Here we report a framework in which regulatory variants are first aggregated into sets, and

using these as estimates of the total cis-genetic effects on a gene we model their non-

additive interactions with the expression of other genes in the genome. Using 1220 lym-

phoblastoid cell lines across platforms and independent datasets we identify 74 genes where

the impact of their regulatory variant-set is linked to the expression levels of networks of

distal genes. We show that these networks are predominantly associated with tumour-

igenesis pathways, through which immortalised cells are able to rapidly proliferate. We

consequently present an approach to define gene interaction networks underlying important

cellular pathways such as cell immortalisation.
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D ifferences in gene expression levels between individuals
underlie substantial variation in complex traits and dis-
eases among human populations1, and arise due to a

combination of differences in the genome of individuals (genetic
effects) and the environment they are exposed to (environmental
effects)2. Understanding how these factors combine, and poten-
tially interact, to shape a gene’s expression level can improve our
understanding of the biological mechanisms underlying impor-
tant phenotypes and disease risk. However, there remain large
gaps in our knowledge of how each gene’s expression level is
determined, partly due to the complexity of gene regulation3.
Each gene may be under the direct or indirect control of dozens
of genetic cis and trans regulatory loci, and transcription and
environmental influences, but how these interact to shape each
gene’s expression levels is still poorly understood.

Consortia such as GTEx4 and GEUVADIS5 have generated
substantial amounts of data on expression quantitative trait loci
(eQTLs) in the human genome. However, these studies have
predominately focused on the effect of individual variants near to
genes, cis-eQTLs, in isolation from their wider cellular
environment6,7. This is partly because exhaustive scans that
include the study of distal effects are burdened by stringent
multiple testing corrections. Each cis-eQTL has, though, been
found to generally only explain a small proportion of the varia-
tion in a gene’s expression between individuals8. This suggests
that for most genes there remains a large amount of variation
unaccounted for.

It seems likely that the effect of cis-eQTLs may often depend
on the expression of upstream genes, higher up in the same
pathway, or, as many eQTLs are thought to act by disrupting the
binding site of transcription factors (TFs)9, the effect of the eQTL
may depend on the expression level of the corresponding TF.
Non-additive interactions between the eQTL and these other
genes’ expression levels may explain some of the uncaptured
variation of the gene’s expression between individuals. Zherna-
kova et al.10 identified many eQTLs whose size of effect was
related to the expression of distal genes, with the overwhelming
majority related to cell type composition differences between the
samples. Each human genome, though, contains millions of
genetic variants and more than twenty thousand genes, and
consequently a comprehensive scan for trans gene–eQTL inter-
actions involves a punitive multiple testing burden which is a
particular issue in scans for non-additive interactions where effect
sizes are generally smaller. Attempts to reduce this search space
have focused on interactions with known TF11 or co-expressed
genes12, under the assumption that the expression of an upstream
regulator will to some extent correlate with the expression of the
gene in question. Previous studies7,13 have also illustrated how
various forms of interactions can lead to genotype-dependent
variance in expression and have restricted their analyses to genes
displaying such effects. These studies have though predominantly
focused on non-additive interactions between nearby eQTLs.

Another option to reduce the search space without having to
restrict the analysis to specific gene sets or cis effects is to first
aggregate the effects of all the cis-genetic variants for each gene
into regulatory variant-sets. A given gene may be associated with
a number of cis-regulatory variants and its expression determined
by the combination of alleles carried across these sites. By mod-
elling the expression of a gene according to an individual’s cis-
regulatory variants, as demonstrated by Gamazon et al.8, it is
possible to capture the total variation in a gene’s expression
explained by known cis-genetic effects, improving the amount of
expression variability explained between individuals. Identifying
interactions with this cis-genetic component involves far fewer
tests than testing each underlying genetic variant in turn, and
would not require any assumptions to be made regarding which

genes may be involved. A previous study illustrated how the cis-
genetic component modelled in this way can be correlated to the
expression level of distal genes to identify directed gene regulatory
networks14. However, non-additive interactions between the
combined cis-genetic effects of genes and the expression of distal
transcripts is largely unexplored.

Epstein-Barr Virus (EBV) is responsible for around 200,000
cases of cancer annually15 and the immortalisation of B cells to
generate lymphoblastoid cell lines (LCLs) has proven to be a good
model for investigating the mechanisms underlying EBV-
associated cancers16. EBV expresses a number of latency genes
both in cancers and LCLs that drive cellular immortalisation16.
These include EBV nuclear antigens (EBNAs) which are TFs that
target both viral and host genes, as well as the latent membrane
protein LMP1 which activates host NF-κB TFs, such as p50, p52,
RelA, RelB and cREL ultimately driving lymphoid cell prolifera-
tion, differentiation and survival17.

In this study we model the expression of each human gene in
LCLs according to their local genetic variation and attempt to
identify non-additive interactions between this cis-genetic com-
ponent of the gene’s expression levels and the expression of other
genes in the genome. Using an independent replication dataset on
a different expression assay we show that this approach can
potentially identify novel gene–gene interactions missed by other
approaches, providing mechanistic insights into human gene
regulation and the networks of genes linked to EBV-induced
cellular immortalisation.

Results
Independent replication of gene expression prediction models.
Using lymphoblastoid cell line (LCL) gene expression and whole-
genome sequencing (WGS) data across 876 Scottish individuals of
European ancestry from the Lothian Birth Cohort 1936
(LBC1936, http://www.lothianbirthcohort.ed.ac.uk)18,19, we
trained models of gene expression levels from SNPs located
between 1Mb upstream of each gene’s transcription start site and
1Mb downstream of its termination site using PrediXcan8. These
models provide a prediction of a gene’s expression based solely on
the cis-genetic variants an individual carries (Fig. 1a). The R2 of
the prediction models are largely uncorrelated to gene size
(R2 between gene size and prediction accuracy= 0.00167; Sup-
plementary Fig. 1). For the 9,316 gene probes with significant
prediction models, 4283 were removed due to excessive kurtosis
in their observed expression values. From the remaining 5033
gene probes, 1387 (28%) with a prediction R2 ≥ 0.1, representing
1205 genes (Fig. 2a) were retained.

To see which of these prediction models replicated in an
independent population, the same models were used to predict
expression levels in a set of 344 European individuals from the
1000 Genomes (GEUVADIS) Consortium with matching LCL
expression data. Despite the differences between these datasets,
including the LBC1936 expression being measured with micor-
arrays rather than RNA-seq data, these new model predictions
have an R2 ≥ 0.1 with the measured expression at 361 of the 1205
genes retained from the analysis of the LBC1936 dataset (Fig. 2b),
of which 311 pass the kurtosis filter. These 311 genes with strong,
reproducible, cis-regulatory genetic effects were retained in
downstream analyses.

Regulatory variant-set-dependent variance in gene expression.
The aim of this study was to identify whether the impact of the
expression level of a distal gene, geneB, on a gene, geneA,
potentially depends on geneA’s set of regulatory variants (as
represented by its PrediXcan predicted expression levels; Fig. 1b).
To do this we first investigated the evidence for uncaptured
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interactions potentially underlying the expression of this set of
311 geneAs by mapping variance of expression quantitative trait
loci (veQTL) linked to these genes. Previous studies have high-
lighted how genetic and environmental interactions can lead to
genotype-dependent variance in a gene’s expression7,20. We
illustrate why this is the case using simulated data in Fig. 3. If the
effect of an eQTL depends on a second factor, for example the
expression level of a TF to which it binds, chromatin regulator or
an upstream gene in the same pathway, then the gene’s expres-
sion will only be high under the correct combination of eQTL
genotype and second gene’s expression level. As shown in Fig. 3b
this interaction between the eQTL and second gene will lead to
differences in the variance in the expression of the gene depen-
dent upon the eQTL’s genotype. Even if the interacting factor is
unknown, the presence of genotype-dependent variance in
expression levels can point towards a potential interaction con-
tributing to the gene’s expression level. Although traditionally the
study of veQTL has been restricted to individual variants, as we
show in Fig. 3d–f the same principle extends to sets of regulatory
variants. If a gene is under the control of multiple cis-regulatory
variants the same effect is still expected to be observed, with
greater variance in expression levels depending on the corre-
sponding set of regulatory variants an individual carries.

As each different predicted expression level in this analysis
corresponds to a unique set of cis-genotypes we explored, using
the LBC1936 dataset whether variance of expression differed by
predicted expression levels across individuals, indicating the
potential existence of uncaptured interactions with the cis-
regulatory variant-sets. Using a non-parametric approach analo-
gous to that of Brown et al.7, but extended beyond single SNPs to
sets of regulatory variants (see methods), we identify 129 genes
(41%; Spearman’s rho FDR <0.05) in the LBC1936 dataset
showing evidence of variant-set-dependent variance in expression

levels when accounting for any eQTL effects. In the GEUVADIS
dataset 201 of the 311 genes (65%) show set-dependent variance
effects, of which 87 overlap those found in the LBC1936 analysis
(Supplementary Data 1). Consequently, more than a third of all
genes under strong cis-regulatory control show reproducible
evidence of set-dependent variance in expression. For compar-
ison, Brown et al.7 found veQTL for 508 out of 13,660 genes, of
which 23 are also present within the 87 genes identified in both of
our datasets (Supplementary Data 1). An example veQTL found
across both the LBC1936 and GEUVADIS datasets is shown in
Fig. 4. The cis-regulatory variants of SLFN5 (Schlafen family
member 5) explain ~60–70% of its variation in expression levels
between individuals. The variance in expression levels is, though,
greater among those individuals carrying regulatory variant-sets
linked to higher expression of this gene, as indicated by the
association between its predicted expression levels and the square
of the residuals after regressing out the eQTL effect (see
methods). These results suggest that uncaptured interactions
with these regulatory variant-sets potentially exist among a large
proportion of these genes.

Regulatory variant-set interactions with distal genes. To iden-
tify if other genes potentially interacting with the cis-genetic
components of these genes might explain the observed variant-
set-dependent variance in expression, the predicted expression of
each of the 311 genes (366 gene probes) was tested for a statistical
interaction with the observed expression of every other gene in
the genome, while accounting for sex, age and population
structure (see Methods). A total of 8,268,610 probe pairs were
tested in the LBC1936 dataset, of which 237,291 display evidence
for a significant interaction (ANOVA F-test FDR <0.05). Of these
gene–gene interactions 3953 (across 7,052 probe pairs) replicate

Gene

Observed expression

Predicted expression

Cis-eQTL

a

b
Observed expressionA Predicted expressionA= ×

Gene a Gene b

Observed expressionB Error+

Fig. 1 Employing a gene’s cis-eQTL complement to identify genetic interactions. a SNPs within 1Mb of a gene’s transcription start and termination sites
were used to train an expression level prediction model using PredictDB. Predictions from these models correspond to the additive effect of all cis-
regulatory variants for a given gene. b The observed expression of geneA can then be modelled as an interaction (X) between its cis-eQTL (predicted
expression) and the observed expression of other genes in the genome (geneB). The error term represents, for example, uncaptured environmental or trans
effects linked to variation in the expression of geneA, not capture by these other terms.
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in the GEUVADIS dataset following multiple testing correction
(Supplementary Data 2), with 2821 (5185 probe pairs, i.e., 74%)
showing a consistent direction of effect between datasets, sig-
nificantly more than expected by chance (comparison of sign
concordance of the interaction coefficient between datasets
among significant gene–gene interactions versus all gene pairs
tested P < 2.2 × 10−16, χ2= 1948.2, df= 3). To minimise the
impact of potential statistical artefacts, gene pairs where the
interaction might also be explained by a nearby genetic variant
(12 unique pairs in LBC1936 and 7 pairs in GEUVADIS, 19
unique pairs in total; Supplementary Data 3 and 4) or the
expression of a third gene (271 pairs in LBC1936, 109 pairs in
GEUVADIS, 364 unique pairs in total—of which 7 were pre-
viously identified as having interacting SNPs, 2 in LBC1936, 5 in
GEUVADIS; Supplementary Data 5 and 6) were removed, leaving
2472 reproducible, putative regulatory variant-set by gene
expression interactions (across 4699 probe pairs) where the
impact of a gene’s set of regulatory variants are associated with
the expression of a distal gene (summarised in Supplementary
Table 1).

As shown in Fig. 5, the patterns of expression we observe are
consistent with those expected from the simulated data (Fig. 3).
In this example, the previously observed set-dependent variance
in expression of SLFN5 (Fig. 4a) is linked to the expression of a
second distal gene, DANCR, with the expression of SLFN5 only
highest on certain cis-regulatory backgrounds when the observed
expression of DANCR is also low. DANCR is a long non-coding
RNA, directly regulated by MYC21, that is associated with
promoting cancer cell proliferation22, whereas SLFN5 is a tumour
suppressor whose expression is negatively correlated to cancer cell
invasiveness23.

A possible limitation of combining the effects of multiple cis-
genetic variants into a single prediction score is the potential for
masking interactions associated with a single regulatory variant.
To investigate this we repeated the above analyses but restricting
the prediction models to just the lead eQTL for each gene. 262
unique genes (306 probes) have prediction models with an R2 >
0.1 in both the LBC1936 and GEUVADIS datasets. Of these, 239
genes are also present in the 311 that pass the corresponding
filters in the variant-set analysis. As shown in Supplementary
Fig. 2 prediction accuracies are generally substantially higher in
the variant-set analysis, with the single best eQTL models largely
only having higher R2 where both models have comparatively
poor prediction accuracies. Repeating the interaction tests with
these single best eQTL prediction models highlights that although
45.5% of interactions are detected in both analyses, 36.1% are
only identified when using the variant-set models. Notably a
subset of interactions (18.4%) are only identified when using the
single best eQTL models, suggesting that the variant-set approach
leads to the larger number of identified interactions, but some
interactions are missed, potentially due to masking effects.

A large proportion of the 2472 interactions identified using the
variant-set models are centred on the same genes (Supplementary
Fig. 3). The genes in these networks show little evidence of
clustering in the genome, with the majority (93%) of interactions
involving genes on different chromosomes. Despite the observed
significant statistical interactions the majority of gene pairs also
show little evidence of being co-expressed, with a mean Pearson’s
r between the expression of genes in each pair across individuals
of only 0.023 ± 0.038 standard deviations (S.D.) in the LBC1936
and 0.028 ± 0.04 in the GEUVADIS dataset. Importantly, of the
different genes whose observed expression interacts with the
predicted expression/regulatory variant-set of the same gene, few
show evidence of being co-expressed (Supplementary Fig. 4).
Gene co-expression has previously been used to identify pairs of
genes potentially falling within the same expression network12.
We consequently tested whether the interacting gene pairs were
generally co-expressed. Correlation tests performed on the
observed expression of the 4699 probe pairs, return 3614 with
significant co-expression in either dataset, while 1908 are
significant across both datasets (Pearson’s correlation FDR <
0.05; LBC1936= 3,127, GEUVADIS= 2395; Supplementary
Data 7). However, correlation estimates are low within these
significantly co-expressed pairs, with a mean r2 of just 0.033 ±
0.043 in LBC1936 and 0.051 ± 0.046 in GEUVADIS. This suggests
that restricting the analysis to co-expressed genes as in previous
studies would have potentially missed a large number of the
putative interactions identified in the current study.

Genotype-dependent variance in expression is thought to be a
potential marker of non-additive interactions. Of the 87 genes
(96 probes) initially identified as showing evidence of set-
dependent variance in expression in both datasets, 48 genes (54
probes) are associated with an interaction between their set of
regulatory variants and the observed expression of at least one
other gene. This is significantly more than expected by chance
(Fisher’s exact test P= 1.21 × 10−16), supporting the hypothesis
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that set-dependent variance in expression can be used to
prioritise genes potentially linked to these interactions. However,
33 genes that do not display evidence of set-dependent variance
also show evidence of interactions between their predicted
expression and the expression of a second gene, for example
OXTR:BHLHE22 (Supplementary Fig. 5A). Although OXTR
displays evidence of genotype-dependent variance in expression
in the GEUVADIS dataset it is not significant in the LBC1936
dataset (Supplementary Fig. 5B). This suggests that although the
identification of veQTLs is an effective approach to prioritise

putative interactions, a third of those identified in this study
would have been missed if pre-filtering by the presence of veQTL
as in other studies.

Little evidence genetic interactions drive the associations. As a
gene’s observed expression level is a combination of cis and trans
genetic effects as well as environmental factors we investigated if
any of these interactions could be explained by interactions just
between the two genes’ cis-regulatory variants i.e., excluding the
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potential trans genetic and environmental effects associated with
geneB. To do this we fitted interactions between the predicted
expression of both genes. From this analysis 28 pairs are significant
in the LBC1936 dataset (ANOVA F-test FDR < 0.05; Supplemen-
tary Data 8) of which only one, FAM167A:PLCG2 (FDR= 0.028),
replicates in the GEUVADIS dataset (FDR= 0.026; Supplementary
Fig. 6).

To explore this putative genetic interaction further we
investigated which interactions remained after accounting for
the cis-genetic component of the second gene’s expression, i.e.,
whether any interactions could be completely explained by the
identified eQTLs. To do this, we repeated the test for an
interaction between the predicted expression of the first gene and
the observed expression of the second, but also accounted for the

genotypes at all of the cis-regulatory variants identified by
PrediXcan for the second gene. By controlling for the effects of
the nearby regulatory variants we were able to test whether the
cis-genetic variants for geneB could completely explain the
observed interaction. The statistical interaction is no longer
observed in 80 gene pairs (35 in LBC1936, 50 in GEUVADIS), of
which 5 gene pairs are common to both datasets (Supplementary
Data 9). The previously identified interaction based on cis-
regulatory variants, FAM167A:PLCG2, remains significant in this
analysis (ANOVA F-test; LBC1936 FDR= 4.59 × 10−05, df= 397;
GEUVADIS FDR= 0.0056, df= 264). These analyses suggest
that the links between these gene pairs are not predominantly
driven by genetic interactions between their cis-regulatory
variants.
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The interaction networks are linked to cell immortalisation.
The predicted expression of LDHC (lactate dehydrogenase C),
involved in anaerobic glycolysis and ATP synthesis, shows a
significant statistical interaction with the expression of 360 genes.
Interactions with multiple factors is potentially indicative of a
hidden strong interaction with an untested trans factor driving
the pathway as a whole11. The genes interacting with LDHC are
enriched for the mitochondrion organisation (hypergeometric
test FDR= 8.3 × 10−10) and oxidative phosphorylation (hyper-
geometric test FDR= 9.9 × 10−3) GO terms (Supplementary
Table 2, Supplementary Data 10), indicating they are linked to the
same ATP metabolic pathways as LDHC and likely reflect
underlying biological links. Likewise, the neurogenesis GO term is
enriched among the genes showing a statistical interaction with
the SYNGR1 gene that is associated with presynaptic vesicles in
neuronal cells. SLFN5, an interferon inducible immune gene24, is
preferentially associated with genes linked to interferon response,
and FLVCR1-AS1, that has been shown to sponge microRNAs25

is associated with the targets of miR-21. This association with
genes involved in shared pathways suggests these observed links
are not spurious associations.

A common theme to these networks is a strong link to cancer
and cell immortalisation. In primary cells the expression of LDHC is
largely restricted to the testes26, but the gene has been shown to be
reactivated in proliferating tumour cells27,28 to enable ATP
synthesis via aerobic glycolysis. SLFN5 has been shown to promote
tumourigenesis in glioblastomas29 and FLVCR1-AS1 knockdown in
hepatocellular carcinomas inhibits cell proliferation25. Analysing
the interacting genes as a whole, as well as strong associations with
genes linked to the BRCA1 tumour suppressor and MYCN
oncogene, one of the strongest enrichments is for genes down-
regulated in nasopharyngeal carcinomas, a form of cancer strongly
associated with the EBV transformation of epithelial cells30. The
association of these networks with EBV transformation is supported
by other enriched terms such as targets of the histone methyl-
transferase EZH2 which is linked to epigenetic regulation in EBV-
transformed B cells31.

To explore the links between these networks and EBV
immortalisation we examined the binding to the promoters of
these interacting genes of various key EBV latency proteins and
NF-κB subunits. As illustrated in Fig. 6 the interacting genes in
these networks are strongly enriched with binding of the EBV
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transcriptional coactivators EBNA2 and EBNALP at their
promoters when compared to other genes expressed in these cell
lines but not members of these networks. NF-κB subunits,
including relA and p52, that are induced by the EBV latent
membrane protein LMP116, are also found to be bound at 3–4
times the levels at these interacting genes. This suggests that these
networks at least in part reflect gene pathways targeted by the
EBV transformation machinery.

Additional variance explained by the observed interactions. We
finally quantified how much additional expression variance is
explained by the interactions identified. On average (median) a

given interaction explains an additional 0.68% ± 0.98 S.D. of the
variation in a gene’s expression in the LBC1936 dataset and
2.0% ± 1.3 in the GEUVADIS dataset above and beyond the
additional variance explained by the main effects of the interac-
tion gene (Fig. 7; Supplementary Data 11). However, as the genes
in each network show little evidence of co-expression, this suggest
that each is potentially explaining different variation in the
expression of the central gene. To explore this, stepwise regres-
sion was used to identify the set of independent geneB’s for each
geneA (having 2 or more interactions; Supplementary Data 12).
On average the set of non-redundant distal genes explains a
further 13.2% ± 9.7 (S.D.) of the variation in a geneA’s expression
in the LBC1936 and 17.6% ± 11.0 in the GEUVADIS datasets,
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with the interaction effects alone (i.e., excluding the main effects)
explaining 2% ± 2.2 and 5% ± 3.6 of the variation, respectively.
The correlation between the variance explained for each gene is
high between datasets (Fig. 7c) with the exception of MXRA7
where the variance explained by both the cis-genetic and main
trans expression effects observed in the LBC1936 are less than
half that observed in the GEUVADIS dataset. It is possible this
results from greater technical variation in the measurement of
this gene’s expression in the LBC1936 microarray compared to
the GEUVADIS sequencing data. Consequently, although each
individual interaction explains a relatively small proportion of
expression variance, collectively they can explain a substantial
proportion of the variation in a gene’s expression levels not
captured by eQTLs alone.

Discussion
In this study we aimed to identify gene–gene interactions using
WGS and gene expression data, and to cross-validate these using
an independent dataset of a different age profile to reduce false
positives. Castaldi et al.11 highlighted two important methodo-
logical issues when screening for interaction effects between
eQTLs and the expression of distal genes: (1) relates to the pre-
processing of data to account for variability across samples,
libraries, or experimental conditions, which typically includes a
normalisation step to obtain near-Gaussian data; (2) relates to
statistical issues arising in the presence of moderate to strong
interaction effects that can induce substantial heterogeneity of
variance by genotype class, and spurious interactions. The
approach we have taken in this study attempts to minimise the
first of these issues by cross-validating the interactions identified
by the gene expression microarray data using an independent
population and method of gene expression quantification, mRNA
sequencing. As RNA microarray and sequence data are normal-
ised using different methods, the reproducibility of the interac-
tions across these datasets should reduce the likelihood of scale-
dependent effects. Another advantage of replication across these
two datasets is that although the LBC1936 cohort is a set of
unusually old individuals well matched for age and geographic
location, the GEUVADIS cohort is comparatively younger so that
any interactions specific to the unusually elderly nature of the first
cohort are less likely to replicate.

Although the second issue, i.e., that a strong interaction
between the regulatory variants and an unmeasured factor may
lead to spurious associations with the factors that are tested, is
difficult to completely exclude, we ensured that nearby variants
and other genes could not be driving the observed associations.
The genes being returned falling within the same pathways sug-
gests that the interactions are not spurious associations, but, as in
any study based on correlations between factors, it is not possible
to exclude the possibility that a factor sitting upstream of all the
genes in the observed networks is the true interacting factor with
the observed interactions showing a strong link to the processes
driving EBV immortalisation.

The majority of interactions identified in this study involved
genes on different chromosomes. The largest networks each
contained in excess of 100 genes, with the largest centred around
LDHC. This is a germ-cell specific gene (www.proteinatlas.org)32,
typically expressed only in the testis, however, multiple splice
variants of the gene have also been found to be significantly
expressed in a wide range of tumours including melanoma,
breast, colon, prostate, lung, renal, ovarian, thyroid and cervical
cancers27. Lactate dehydrogenase catalyzes the final step in
anaerobic glycolysis through the conversion of pyruvate to lac-
tate33. A high glycolytic rate is favourable for proliferating cells,
facilitating the use of glucose to produce high levels of ATP34.

LCLs have been found to produce high levels of lactate, lactate
dehydrogenase and pyruvate, suggesting that activation of the
aerobic glycolytic pathway also occurs in EBV-transformed
lymphoblastoid cells, corresponding to a phenomenon known
as the Warburg effect35—in which proliferating cells tend to
favour aerobic glycolysis36. There is increasing interest in the
possibility of targeting the Warburg effect as a potential ther-
apeutic target in cancers37. However, there are many outstanding
questions as to how and why tumour cells use the Warburg
effect38 and consequently LCLs may provide a convenient and
readily accessible model for this process and the potential role of
gene–gene interactions.

The second largest cluster was centred on MXRA7 and was
enriched for interacting genes observed to be upregulated in
prostate cancer cells following knockdown of the transcriptional
repressor NIPP1. NIPP1 is involved in the maintenance of the
H3K27me3 methylation mark by EZH2 in proliferating cells, and
more generally the total list of all interacting genes was observed
to be substantially enriched for genes down-regulated following
the knockdown of EZH2. EZH2 is upregulated following EBV
infection31, leading to the epigenetic repression of tumour sup-
pressor genes, and GSK126, has been proposed as a potential drug
targeting EBV latency due to its induction of cell cycle arrest and
apoptosis39 via the potent and specific inhibition of EZH2.
Consequently some of the signals detected in this study may
reflect the widespread chomatin changes attributable to the epi-
genetic regulator, EZH2, that is targeted by the EBV nuclear
antigens following infection39.

The network centred on SLFN5 was enriched with genes linked
to interferon gamma upregulation and viral infection. As the
IFN-gamma cytokine is linked to resistance to viral infection it is
down-regulated by EBV proteins40. Although the individual
context-dependent eQTLs previously identified by Zhernakova
et al.10 were predominantly linked to cell type composition dif-
ferences they also observed evidence for a set of cis-eQTLs
dependent on interferon signalling pathways.

Consequently, the approaches in this study highlight networks
of genes linked to EBV-induced cell transformation. We illu-
strated how restricting to genes displaying variant-set-dependent
variation in expression levels would be an effective approach at
reducing the testing burden of this kind of analysis. This
approach has the advantage that it is not necessary to have prior
biological evidence of genes interacting, for example due to them
falling into the same pathway or being co-expressed, allowing for
further interactions to be detected compared to other prioritisa-
tion approaches. There are however limitations to this approach,
primarily that if the gene is not under reasonably strong control
of cis-genetic regulatory variants it is not tested. Also, we show
that although the variant-set approach identifies the most inter-
acting gene pairs, a subset are only identified when using the
single best eQTL, likely due to masking effects linked to indivi-
dual eQTLs. A hybrid analysis combining both these approach
may be most effective at identifying the maximum number of
interaction pairs. As transcript levels do not necessarily equate to
protein levels fitting the protein levels of transcription factors
may better capture extra variation in the expression of genes.

We cross-referenced our genes with significant veQTL against
those identified by several independent studies7,41,42. Specifically,
we identified 12 genes in common (BBS2, C17orf97, CLLU1OS,
DPYSL4, FUT4, LDHC, MXRA7, NMNAT3, PAX8, SERPINB10,
TIMM10, WBSCR27) with the TwinsUK LCL results of Wang
et al.42,43. Cross-referencing Brown et al.’s7 peak veQTL in the same
TwinsUK cohort, we identified 23 genes in common (ACCS,
CHI3L2, CMAHP, CRIPAK, DPYSL4, ERAP1, FAM53A, FAM118A,
FAM167A, GAA, GJC1, PARD6G, PAX8, PIP5K1C, PLA2G4C,
POLR1E, SAMD10, SERPINB10, TLE6, WBSCR27, ZNF239,
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ZNF266, ZNF880). Finally, we cross-referenced the cis- specific
results of Crawford et al.41 that used the GEUVADIS dataset5, from
which 21 genes were identified in common (AEBP1, CCDC126,
CHI3L2, CSTB, ERAP1, FAM118A, FLVCR1-AS1, GJC1, LDHC,
NMAT3, PEX6, PLA2G4C, POLR1E, RIBC2, SERPINB10, SLFN5,
SYNGR1, TIMM10, TMEM106A, XRRA1, ZNF266). The replication
of a number of genes in our results across several independent
studies demonstrates the utility of the approach, but the appearance
of genes such as LDHC across multiple studies suggests these pre-
vious studies may also have been detecting signals linked to the
same immortalisation pathways detected here rather than expres-
sion signatures of the original B cells. Consequently LCLs may
provide a useful, readily accessible model of cellular proliferation,
but their utility for mapping gene interactions relevant to primary
cells may be more limited. Further application of this approach to
large sets of tumour samples will be of particular interest to map
how the observed genetic interactions overlap between different sets
of immortalised cells.

We have presented a framework with which to identify puta-
tive genetic interactions that considers a gene’s eQTL comple-
ment as opposed to performing an exhaustive search of individual
eQTL. This approach substantially reduces the computational
burden of a genome-wide exhaustive search, addressing to some
extent the challenge of multiple testing. Our results indicate that
interactions between distal genes involved in similar biological
pathways potentially underlie the increased variance in expres-
sion associated with certain sets of regulatory variants for genes.

Methods
Ethics statement. This investigation has been conducted in accordance with the
Declaration of Helsinki and according to national and international guidelines.
Ethics permission was obtained from the Multi-Centre Research Ethics Committee
for Scotland (Wave 1: MREC/01/0/56), the Lothian Research Ethics Committee
(Wave 1: LREC/2003/2/29), and the Scotland A Research Ethics Committee (Wave
2: 07/MRE00/58). All persons gave their informed consent prior to their inclusion
in the study.

Genotype data. WGS data for 930 individuals of European ancestry from the
LBC1936 cohort was generated on the Illumina X platform to a mean depth of 30X
coverage and aligned to GRCh38 by Edinburgh Genomics (https://genomics.ed.ac.
uk/). Variants were called using the HaplotypeCaller in GATK44. VCF files for each
chromosome were filtered using vcftools45 to retain variants with an 80% call rate,
two observed alleles, a minor allele frequency (MAF) >0.01, minor allele count
(MAC) >1, and minimum genotype quality (minGQ) of 40, and output in Plink46

format. Data for 358 Europeans was sourced from the 1000 genomes project
(GEUVADIS; ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502) and genomic
positions were updated from GRCh37 to GRCh38 using CrossMap47 (Supple-
mentary Fig. 7). The datasets were filtered to retain only SNPs common to both
datasets. Each dataset was processed in Plink using the rel-cutoff feature to remove
individuals with observed genomic relatedness >0.025, resulting in a final dataset of
876 LBC1936 and 344 GEUVADIS individuals, and 7,477,426 SNPs. Conversion to
dosage format was performed using the convert_plink_to_dosage.py script that
accompanies PrediXcan8. Principal components analysis (PCA) was performed on
LD filtered datasets using Plink (Supplementary Fig. 8). Briefly, the VCF files were
filtered to remove SNPs within 1Mb of one-another and having r2 > 0.1 using the
–indep-pairwise (1000 kb 50 0.1) function in Plink.

Gene expression data. Expression data were acquired for the 876 LBC1936
individuals48. In summary, peripheral blood mononuclear cells (PBMCs) from
1091 LBC1936 individuals were extracted from whole blood collected at mean age
70 years (S.D.= 0.6 years) at the Edinburgh Clinical Research Facility (ECRF)
Genetics Core, Western General Hospital, Edinburgh. PBMCs underwent Epstein-
Barr Transformation to generate LCLs at the European Collection of Cell Cultures,
Pubic Health England, Porton Down. Frozen LCL pellets were returned to the
ECRF Genetics Core, where RNA was extracted using a Qiagen miRNeasy kit,
biotin-labelled, and genome-wide gene expression levels measured using Illumina’s
HumanHT-12 v4 Expression BeadChip which contains 47,231 probes; a control
RNA sample was included on each array. Individuals with a signal-to-noise ratio
<10 or with fewer than 9000 detected transcripts (P < 0.01) were excluded (n=
130), and only probes expressed in >20% of individuals were retained48. The
microarray data was quantile normalised using the Bioconductor pacakage lumi49,
after which probes with no detectable expression were removed, resulting in 38,764
probes. A mixed model was applied in R using the lme4 package50 to regress-out

sex, age, population structure covariates and technical variation by fitting sex, age,
and the first five eigenvectors resulting from PCA of the genotype data in Plink
(Supplementary Fig. 8) as fixed effects, and sample plate and Sentrix array as
random effects:

exprAi ¼ β0 þ βdagei þ βssexi þ β1PC1i þ β2PC2i þ β3PC3i þ β4PC4i
þβ5PC5i þ μplate;k þ μsentrixArray;m þ ei

ð1Þ

To remove hidden confounders the residuals from this model were further
processed using PEER51 with default settings, assuming 50 hidden factors and 1000
iterations. Convergence was reached after 290 iterations, revealing 14 hidden
factors to be relevant. The residuals from Equation 1 were re-run in PEER, this
time assuming 14 hidden factors, and the residuals of this analysis were used in lieu
of the observed expression values when training the prediction models. A summary
of the effects of this data pre-processing on the resulting prediction models is
provided in the supplement (Supplementary Table 3).

Normalised gene expression data for 344 European individuals from the
GEUVADIS dataset was sourced from the transcriptome sequencing undertaken by
Lappalainen et al.5, available at the EBI (https://www.ebi.ac.uk/arrayexpress/files/E-
GEUV-1/analysis_results/). Briefly, the GEUVADIS expression data was generated
by sequencing mRNA extracted from LCLs, generating an average of 49.8 million
reads per individual after quality control. Further filtering was applied by the
GEUVADIS consortium to scale read counts by the total number of mapped reads
per sample to the median (GEUVADIS dataset from EBI: GD660.
GeneQuantRPKM.txt.gz). We filtered this data further, as per GEUVADIS, to
remove genes with 0 counts in >50% samples. Metadata for the GEUVADIS
samples used in our study was sourced from EMBL-EBI’s ArrayExpress database
(https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/samples/), from
which we identified the assay ID and processing laboratory. These technical
variables were regressed out as random effects, in addition to sample sex and PCA
eigenvectors, using lme4 as described above. We ran PEER on the GEUVADIS
data, as above, which reached convergence for 50 hidden factors after 223
iterations, revealing 17 hidden factors to be relevant. PEER was re-run for 17
factors, converging after 210 iterations, and the residuals from this were used in
lieu of observed expression values for the GEUVADIS dataset when fitting the
prediction models. We further filtered the GEUVADIS derived expression data to
retain only genes with consistent Ensembl gene IDs between release 67, on which
the GEUVADIS expression data genes were annotated, and release 88 on which the
LBC1936 expression data was annotated. For each dataset, genes whose observed or
predicted expression exceeded a kurtosis threshold of 9 (Supplementary Fig. 9)
were removed to prevent potentially misleading results arising from abnormally
distributed data. The moments package for R was used to calculate kurtosis.

A potential issue with the LBC1936 microarray data is that some genes were
represented by multiple probes. If these different probes for the same gene are
largely redundant this has the potential to skew the P-value distribution and
consequently the FDR values. Previous studies have collapsed probes for the same
gene into one value, for example by taking the mean, first principal component or
top association52, however part of the reason for including multiple probes for a
gene on the arrays was because of the presence of different isoforms whose
expression levels was not well captured by one probe. We observed many pairs of
probes for the same genes that showed little correlation (e.g., see Supplementary
Fig. 10) and consequently collapsing them into one value would likely reduce our
ability to detect associations. We therefore instead tested whether the presence of
multiple probes was actually skewing the P-value distribution and consequently
FDR statistics. To do this we recalculated the FDR values of Equation 3 having
excluded genes with multiple probes. As shown in Supplementary Fig. 11 the FDR
values of the remaining genes were perfectly correlated to those when calculated
including the multi-probe genes. This suggests that the presence of multiple probes
for genes was not skewing this analysis.

Testing variant-set-dependent variance in gene expression. Using the
LBC1936 dataset we employed PredictDB8, which fits an Elastic Net linear model,
to predict cis-eQTL from the set of SNPs located between 1Mb upstream of each
gene’s transcription start site and 1Mb downstream of each gene’s termination site.
We used PrediXcan to train models of gene expression levels for genes reported by
PredictDB as having significant prediction models, which are those for which the
coefficient of determination false discovery rate (FDR) was <0.05. Prediction model
R2 values were plotted against their respective gene sizes to determine if there was a
correlation between a gene’s size and its predictive capacity. The same models
trained on the LBC1936 were used to predict gene expression levels in the GEU-
VADIS dataset as a means of validating the efficacy of the prediction models in an
independent dataset. Genes with a coefficient of determination (R2) ≤0.1 between
their predicted and observed expression levels were considered poor gene models
and removed from downstream analyses. Cross-validation therefore required gene
models to have R2 ≥ 0.1 in both the LBC1936 and GEUVADIS datasets. We tested
for evidence of set-dependent variance in expression levels in the LBC1936 by first
fitting the following general linear model (GLM) in R:

obsAi ¼ β0 þ βapred
A
i þ ei ð2Þ

Where obsA are the residuals of Equation 1 and predA is the predicted expression
of geneA in individual i. To determine if the variance in geneA’s expression was
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correlated to its set of cis-eQTLs, the Spearman’s correlation was then calculated
between predA and the square of the residuals from the above model (Equation 2),
for all unique geneA. The same model was applied to the GEUVADIS dataset.
These squared residuals consequently approximately equate to the gene’s absolute
expression levels having accounted for the effects of its cis-eQTLs. The correlation
P-values were converted to FDRs using R’s p.adjust function, and the −log10(FDR)
values of all geneA were compared to those subsequently identified as being
involved in significant gene–gene interactions.

Is variance in expression linked to distal gene expression?. Linking set-
dependent variance in gene expression to distal genes was performed by fitting the
residuals from Equation 1 in the following model:

obsAi ¼ β0 þ βapred
A
i þ βbobs

B
i þ βabpred

A
i obs

B
i þ ei ð3Þ

Where predA is the predicted expression of geneA in individual i, and obsB is the
residual of Equation 1 for each other gene in the genome. The list of geneA

comprised all genes passing the kurtosis threshold and with good prediction
models (R2 ≥ 0.1 in both datasets), while the vector of geneB comprised all genes
passing the kurtosis threshold. The aim of this model was to test if interaction
effects between the predicted expression of geneA (i.e., its set of regulatory variants)
and the observed expression of geneB can explain some of the observed variation in
geneA’s expression between individuals. The coefficient sign and ANOVA F-test P-
values for the interaction term were retained, and the latter converted to an FDR to
account for multiple testing.

Do genetic interactions exhibit a bias in directionality?. To explore whether or
not there was a significant difference in the sign of the coefficient of significant gene
pairs compared to the null, the sign of the interaction term for corresponding gene
pairs from the LBC1936 and GEUVADIS were summarised, providing a count of
gene pairs for each sign combination across the two datasets: [−/−], [−/+], [+/−],
[+/+]. A summary of counts was generated for all gene pairs tested in both
datasets to represent the null distribution irrespective of significance. A chi-squared
test was performed in R to determine if there was a significant difference in the
distribution of coefficient directionality between the null and significant gene pairs.

Comparing regulatory variant-sets to individual cis-eQTL?. To evaluate how
the variant-set approach performed when compared to the single best eQTL for
predicting gene expression and gene–gene interactions, FastQTL53 was run on the
4122 genes (5,033 gene probes) that passed the kurtosis filters in both datasets. The
VCF files provided to FastQTL contained the same SNPs analysed by PredictDB in
the variant-set analyses, together with the same expression data after having
regressed out covariates and performing PEER normalisation. The PCA eigen-
vectors used as covariates in the modelling for the variant-set analyses were also
provided as covariates to FastQTL. The programme was run with seed 123456789
for 1,000 permutations using the default cis-window size (1Mb—consistent with
the PredictDB analyses). For each gene, FastQTL identifies the SNP best associated
with the expression data (Supplementary Data 13 and 14). The allele dosage data
for each of the identified SNPs was then regressed against the observed expression
for its gene, generating R2 values in the same manner as the variant-set analyses.
Genes whose eQTL resulted in good prediction of expression values (R2 > 0.1) were
retained. These genes were subject to the same gene–gene interaction modelling as
the variant-set analyses (Equation 3) but with predicted gene expression predA

replaced with allele dosage data for the SNP identified by FastQTL. The significant
concordant interactions identified from this analysis are provided in Supplemen-
tary Data 15.

Can genetic interactions be explained by an intermediary?. Of the gene pairs
that returned significant results (ANOVA F-test FDR <0.05), the model was
extended further to test (1) if the significant gene–gene interaction could be
explained by any other genetic variants proximal to geneA:

obsAi ¼ β0 þ βapred
A
i þ βbobs

B
i þ βabpred

A
i obs

B
i þ βcsnp

A
i þ ei ð4Þ

Where snpA represents any SNP within the entire range from 1MB upstream of
the transcription start site of geneA to 1MB downstream of its termination site; or
(2) if the interaction could be explained by the expression of a third gene:

obsAi ¼ β0 þ βapred
A
i þ βbobs

B
i þ βabpred

A
i obs

B
i þ βcobs

C
i þ ei ð5Þ

Where obsC is the residual from Equation 1 of any other gene passing the kurtosis
filter. If the interaction term explained no more variation in geneA’s expression
than nearby variants or other genes then it was assumed that a simpler explanation
was that the observed interaction was in fact driven by one of these secondary
factors.

Is the genetic component the driver of genetic interactions?. To test for the
evidence of genetic interactions underlying the gene–gene interactions, we fitted an
interaction between the predicted expressions of both genes, i.e., their cis-genetic

effects, as described below:

obsAi ¼ β0 þ βapred
A
i þ βbpred

B
i þ βabpred

A
i pred

B
i þ ei ð6Þ

As an alternative approach we also tested which interactions remained after
accounting for each of the individual eQTLs associated with geneB in the
PrediXcan model. To do this we extended the model that tested for an interaction
between obsA and predA to account for the genotypes of all of the cis-regulatory
variants identified by PrediXcan for geneB:

obsAi ¼ β0 þ βapred
A
i þ βbobs

B
i þ βabpred

A
i obs

B
i þ βs;1snp

B;1
i ¼ þ βs;nsnp

B;n
i

þβas;1pred
A
i snp

B;1
i ¼ þ βas;npred

A
i snp

B;n
i þ ei

ð7Þ
where snpB represents any eQTL between 1MB upstream of the transcription start
site and 1MB downstream of the termination site of geneB. Although there was the
potential for overfitting in this analysis on average there were 817.36 ± 35.38 S.D.
and 293.62 ± 31.21 residual degrees of freedom in the LBC1936 and GEUVADIS
cohorts respectively.

Does gene co-expression explain the genetic interactions?. To investigate the
relationship between these genetic interactions and gene co-expression, we applied
the Pearson’s correlation statistic to the observed expression of genes in significant
pairs with concordant coefficient signs in both datasets. These tests were performed
in R and P-values converted to FDRs. To determine if there was a linear rela-
tionship between datasets with regards to the co-expression of genes, the R2 values
resulting from the previous test for the two datasets were compared using the
Pearson’s correlation statistic.

Enrichment analyses. FUMA54 was used to test for the enrichment of particular
biological pathways and motifs among the set of interacting geneBs of each geneA

using the hypergeometric test. In this analysis the background gene list was all
geneBs tested (irrespective of significance) and consequently only included genes
expressed in greater than 50% of the samples. The combined set of all, non-
redundant interacting geneBs were also tested in the same way. To investigate the
binding of EBV latency proteins and NF-κB subunits at the promoters of the
interacting geneBs, ChIP-seq data processed by Jiang et al.16 was obtained from the
WashU epigenome browser55 (http://epigenomegateway.wustl.edu/browser/?
genome=hg19&session=AuL8qiK9Bf). To investigate if the observed binding of
these proteins at the promoters of interacting geneBs was greater than expected by
chance, the same number of tested (but not necessarily significant) geneBs were
randomly selected from the background list 100 times. These were used to calculate
a 95% confidence interval around the median binding levels observed across the
total background list of geneBs (Supplementary Table 2).

Variance explained by additive and interaction effects. To determine the
amount of gene expression variance explained by the identified interactions the
following models were employed:
cis-genetic

obsAi ¼ β0 þ βapred
A
i þ ei ð8Þ

cis-genetic+distal gene main effects

obsAi ¼ β0 þ βapred
A
i þ βbobs

B
i þ ei ð9Þ

cis-genetic+distal main+distal interaction

obsAi ¼ β0 þ βapred
A
i þ βbobs

B
i þ βabpred

A
i obs

B
i þ ei ð10Þ

Models were compared with ANOVA and the additional variance explained by
additive and interaction effects was then determined from pseudo R2 values
calculated by subtracting the residual deviance from the null deviance and dividing
the result by the null deviance.

The sum of the additional variation in a gene’s expression explained by its
interactions was calculated by performing stepwise regression. Due to the large
number of interactions involving some geneAs, to address the risk of overfitting, for
each geneA we removed geneBs whose observed expression levels were correlated to
others. This process was performed in R using the findCorrelation function of the
caret package56 with an absolute correlation cutoff of 0.4. For all geneA with ≥2
interactions the above cis-genetic, additive and interaction models were extended
to include all geneB for a given geneA after removing this redundancy. Stepwise
regression was performed 100 times, and for each iteration the order of geneB was
randomised and the data split into an 80% training and 20% test set. The mode of
stepwise search included both forward and backward directions, with the lower
scope being the fit of the cis-genetic model and the upper scope being the full
interaction model. Following each iteration, the deviance, predictors and Akaike
information criterion (AIC) were recorded from the model on which regression
converged. The results were summarised in R. For each set of predictors the model
was compared to the residual by ANOVA using the F-test. Pseudo R2 values were
calculated from the test set for each model with and without the interaction terms
to determine the amount of extra variance explained by the interactions.
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Genotype and normalised gene expression data for the GEUVADIS dataset is available at:
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502 and https://www.ebi.ac.uk/
arrayexpress/files/E-GEUV-1/analysis_results/, respectively. Sequence data for the
Lothian Birth Cohort has been deposited at the European Genome-phenome Archive
(EGA), which is hosted by the EBI and the CRG, under accession numbers
EGAS00001003818 and EGAS00001003819.

Code availability
Statistical modelling was performed in R v3.5.1, all tests are two-tailed with the exception
of the one-tailed hypergeometric test of FUMA. Computer code is available upon request.
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