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Abstract—

Executing, verifying and enforcing credible transactions on
permissionless blockchains is done using smart contracts. A key
challenge with smart contracts is ensuring their correctness and
security. To address this challenge, we present a fully automated
technique, SolAnalyser, for vulnerability detection over Solidity
smart contracts that uses both static and dynamic analysis.
Analysis techniques in the literature rely on static analysis with
a high rate of false positives or lack support for vulnerabilities
like out of gas, unchecked send, timestamp dependency. Our
tool, SolAnalyser, supports automated detection of 8 different
vulnerability types that currently lack wide support in existing
tools, and can easily be extended to support other types. We also
implemented a fault seeding tool that injects different types of
vulnerabilities in smart contracts. We use the mutated contracts
for assessing the effectiveness of different analysis tools.

Our experiment uses 1838 real contracts from which we
generate 12866 mutated contracts by artificially seeding 8 dif-
ferent vulnerability types. We evaluate the effectiveness of our
technique in revealing the seeded vulnerabilities and compare
against five existing popular analysis tools — Oyente, Securify,
Maian, SmartCheck and Mythril. This is the first large scale
evaluation of existing tools that compares their effectiveness
by running them on a common set of contracts. We find that
our technique outperforms all five existing tools in supporting
detection of all 8 vulnerability types and in achieving higher
precision and recall rate. SolAnalyser was also faster in analysing
the different vulnerabilities than any of the existing tools in our
experiment.

Keywords—blockchain, smart contract, testing, static analysis,
assertions, fault seeding

I. INTRODUCTION

A blockchain is a distributed ledger that stores a growing
list of unmodifiable records called blocks that are linked to
previous blocks. Executing, verifying and enforcing credible
transactions on blockchains is done using smart contracts [1].
Smart contracts help exchange money, property, shares, or
anything of value in a transparent, conflict-free way while
reducing transaction costs associated with third party contrac-
tors.

A key challenge in developing contracts is to ensure that
they are correct and free of security vulnerabilities, as bugs
in their implementation may result in substantial financial
losses. However, their security and trustworthiness is still in
question. For instance, failure of the contract, DAO [2], due
to unsafe design choices resulted in losses of, approximately,
$50 million. Many other vulnerabilities in contracts have been
reported recently [3], [4], like the Fomo3D attack in 2018 that
led to a loss of $4 million. Contracts can handle large numbers
of virtual coins, which provides enough financial incentive for
attacks. Unlike traditional distributed application platforms,
contract platforms such as Ethereum [5] operate in open
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networks that allow arbitrary participants to join. Thus, their
execution is vulnerable to attempted manipulation by arbitrary
adversaries, as opposed to traditional permissioned networks
where the threat is more restricted. Ethereum and Bitcoin
allow network participants to decide which transactions to
accept, how to order transactions, set the block timestamp,
among others. Contracts which depend on any of these sources
need to be aware of the subtle semantics of the underlying
platform and explicitly guard against manipulation. In contrast
to classical distributed applications that can be patched when
bugs are detected, contracts are irreversible and immutable.
There is no way to patch a buggy contract, regardless of its
worth, without reversing the blockchain. This makes it critical
to reason about the correctness of contracts before deployment.

Over the last couple of years, several techniques have

been proposed for analysis of vulnerabilities in smart con-
tracts [6]-[10]. Current solutions all rely on static analysis
and symbolic execution to check the safety and correctness
of smart contracts. These are complex, require significant
analysis time, have restricted applicability (do not handle
constructs like loops), a high rate of false positives, do not
scale easily to large contracts and do not handle all types of
well known vulnerabilties [11]. The techniques we propose in
this paper will allow complete automated analysis of smart
contracts, using both static and dynamic techniques to reduce
the number of false positives, and handle the entire syntax of
smart contracts. To help evaluate the rigor and effectiveness
of different analysis tools, we developed a fault seeder that
can inject well known vulnerabilities in smart contracts. The
contributions in this paper are as follows,

1) Static checks: Statically analyse source code of Solidity
smart contracts to assess locations prone to vulnerabili-
ties. We then instrument the source code with assertions
that act as correctness property checks.

2) Test generator: We built an automated input gen-
eration tool for smart contracts, referred to as
InputGenerator, that provides inputs for all trans-
actions and functions in a contract.

3) Runtime Monitoring: We trigger the presence of vul-
nerabilities when the property checks are violated during
execution of smart contracts on the Ethereum Virtual
Machine (EVM). The smart contracts are executed with
inputs provided by our InputGenerator. The tool
chain that combines static and dynamic checks along with
input generation (Contributions 1, 2 and 3) is referred to
as SolAnalyser.

4) Fault seeding tool: To help evaluate the effectiveness
of SolAnalyser and compare it with existing analysis



tools, we create a smart contract mutation tool, MuCon-
tract, that takes the original contracts and creates several
faulty versions based on common vulnerabilities observed
in real contracts.

5) Empirical Evaluation: We evaluate the effectiveness
of SolAnalyser in detecting vulnerabilities on 1838
real contracts and their faulty versions. We compare
precision and recall achieved by our technique against five
recent popular analysis tools: Oyente, Securify, Maian,
SmartCheck and Mythril.

We found SolAnalyser with static and dynamic checks
supported by test generation, was effective at detecting vul-
nerabilities across all 1838 contracts and the 12866 mutated
versions, with a precision of 72% and recall rate of 100%.
Our technique was capable of detecting more types of vul-
nerabilities than all five existing analysis tools used in our
experiment. Securify performs well in detecting arithmetic
vulnerabilities - overflow, underflow and division by zero but
has limited support for other vulnerabilities. Oyente performed
poorly with low precision(9%) and recall (42%). Maian does
not provide adequate support for different vulnerabilities but is
good at detecting unchecked send vulnerability. SmartCheck
and Mythril support 4 to 6 vulnerability types but precision
and recall rates were not high, with Mythril doing better than
SmartCheck. Finally, SolAnalyser had a lower analysis
overhead than all 5 existing tools, scaling easily to larger
contract sizes. Overall, SolAnalyser for automated smart
contract analysis outperforms existing analysis tools in terms
of support, scalability, and accuracy.

The rest of this paper is organised as follows. We present
background on smart contracts and well known vulnerabilities
in Section II. Related work in smart contract analysis is
discussed in Section III. Our approach for static and dynamic
analysis, test generation and fault seeding is discussed in
Section IV. Experiment setup and results of our empirical
evaluation is discussed in Sections V and VI, respectively.

II. BACKGROUND

Our techniques for smart contract analysis targets the
Ethereum blockchain, an open-source platform supporting
smart contracts. A smart contract holds some amount of virtual
coins (Ether), has its own private storage, and is associated
with a predefined executable code. A contract state consists
of two main parts: a private storage and the amount of
virtual coins it holds (balance). Contract code can manipulate
variables like in traditional imperative programs. The code of
an Ethereum contract is in a low-level, stack-based bytecode
language referred to as Ethereum virtual machine (EVM)
code. Users define contracts using high-level programming
languages, the most popular being Solidity [12] which is a
JavaScript-like language, that is then compiled into EVM code
using the solc compiler. To invoke a contract at an address,
users send a transaction to that address. A transaction typically
includes: payment to the contract for the execution and input
data for the invocation.

On the EVM, each transaction is charged a certain amount
of gas based on the operations within it. Aim of the gas system
is to eliminate unnecessary operations in transactions. The gas
fee schedule for the different operation types is published in
the Ethereum yellow paper [5]. If the amount of gas required

for transactions exceeds the gas limit provided by the contract
owner, an out of gas exception is triggered.

A. Common Vulnerabilities

In this Section, we discuss eight well-known vulnerabilities
that have limited support with existing tools and that are
reported frequently in the smart contract weakness classi-
fication (SWC) registry [13]. Many of the other common
vulnerabilities (32 others) are well supported by existing tools
and we do not see the value in repeating analysis for them with
our framework. A description of these other vulnerabilities and
tools supporting them can be found in our report available at
https://github.com/sefaakca/FirstyearReport.

Integer Overflow/Underflow: The Solidity programming lan-
guage supports unsigned and signed integers with widths
ranging from 8 to 256 bits (eg. uint8, uint16). Smart contracts
make heavy use of arithmetic operations for computations in
transactions. Computations that exceed the size of the integer
type result in overflow/underflow that may cause deviation
from desired behaviour, making it a security vulnerability [8].
Integer overflow was recently detected in a token smart con-
tract (BECToken) that erroneously allowed a large amount of
tokens to be sent to receiver addresses in its Batch Transfer
function.

Division by zero: Division by zero errors is another common
cause of undesired behaviour in arithmetic operations in smart
contracts. The Solidity compiler, Solidity version 0.4.15 on-
wards, can detect division by zero errors only if it can statically
determine the divisor to be zero. If this is not the case, like
when the divisor is data dependent on inputs to the smart
contracts, then the Solidity compiler will not be able to catch
division by zero vulnerabilities. Developers are expected to
manually insert checks for such division by zero cases.
Timestamp dependency: Any operation on the blockchain re-
lies on a timestamp, a smart contract receives a timestamp that
specifies the time when the block was generated. A malicious
miner could manipulate the timestamp for the generated block
for devious purposes. This timestamp dependence vulnerabil-
ity was exploited in the GovernMental Ponzi scheme [14]. The
malicious miner generated a block for his transaction with a
modified timestamp that delayed his transaction to be the final
one, helping him win the funds from the smart contract.
Authorisation through tx.orgin: tx.origin is a global
variable in Solidity which returns the address of the account
that sent the transaction. Using the variable for authorisation
could make a contract vulnerable if an authorized account calls
a malicious contract. A call could be made to the vulnerable
contract that passes the authorisation check since tx.origin
returns the original sender of the transaction which in this
case is the authorised account. The suggested fix is to use
msg.sender for authorisation. Example contracts with this
weakness can be found in the Smart Contract Weakness
registry [13].

Unchecked send: A smart contract is able to call another
contract with specific function calls such as send, transfer, call
etc. Calling an external contract can create some anomalies
in the contract. Since, even if the called contract throws an
exception, execution will not stop. If the call fails accidentally
or an attacker forces the call to fail, it may cause unexpected
behavior in the subsequent program logic [13].



Repetitive call function: According to Ethereum yellow pa-
per [5], the call operation is a gas costly operation. Using call
operations in a loop may result im undesired behavior such as
Unexpected Ether balance or DoS With Block Gas Limit.
Out of gas: Every transaction is associated with an upper
bound on the amount of gas that can be spent, and therefore
the amount of computation allowed. This is the gas limit,
mentioned earlier. If the gas spent exceeds this limit, the
transaction will fail resulting in an out of gas exception. This
vulnerability may be used in a Denial of Service attack.

III. RELATED WORK

In the last few years, several analysis tools for detect-
ing vulnerabilities in smart contracts have been proposed.
We analysed twenty different existing tools in literature,
namely, ContractFuzzer, EasyFlow, Maian, Echidna, Sereum,
ECFChecker, Securify, SmartCheck, Zeus, Vandal, MadMax,
Mythril, Manticore, Gasper, Porosity, Solgraph, Remix, Dr Y’s
Ethereum Contract Analyzer, F*, and Oyente. Sixteen of them
use static analysis and four of them use dynamic analysis
— namely EasyFlow, Echidna, Sereum and ECFChecker. In
general, we find static analysis techniques are prone to high
false alarm rates and analysis times. Dynamic analysis, on
the other hand, may miss vulnerabilities as it depends on the
quality of inputs used in execution and analysis. We discuss
each of the 20 existing tools, vulnerability types supported,
and their limitations in the following paragraphs.

ContractFuzzer [15] is a static analysis tool. It generates
inputs for a smart contract with respect to the application
binary interface file using a fuzzing technique. It supports
exception disorder, re-entrancy, timestamp dependency, dan-
gerous delegate call and freezing ether vulnerabilities. It is
prone to a high rate of false alarms (or false positives if
positive label is used for absence of bugs) for certain types of
vulnerabilities such as timestamp dependency (62% reported
in their paper [15]).

EasyFlow [16] is a taint analysis based tracking technique
to monitor transactions. The tool only focuses on detecting
integer overflow vulnerabilities. Maian [17] is a static analysis
tool. It uses symbolic execution and concrete validation tech-
niques to detect unchecked send, freezing ether and unchecked
selfdestruct vulnerabilities. It has limited support for different
vulnerability types. In our experiment in Section V, we find
Maian is effective at detecting unchecked send vulnerability
compared to existing tools.

Echidna [18] is a Haskell library designed for property-
based testing of EVM code. It uses grammar-based fuzzing
to generate tests based on user provided predicates or test
functions. Writing the predicates and test functions requires
significant expertise and is time consuming.

Sereum [19] and ECFChecker [20] are dynamic analysis
tools that focus on only detecting re-entrancy vulnerabilities.
Securify [9] uses abstract interpretation to check violation
patterns or compliance properties on the semantics extracted
from the smart contract. We found in our experiment that
Securify has a significant time overhead in analysis and also
reports many false alarms.

SmartCheck [10] is a web-based analysis tool that translates
Solidity code into an XML-based intermediate representation
for analysis. We use SmartCheck in our experiment comparing

existing tools. The vulnerabilities supported and its effective-
ness is discussed in detail in Section VI. Zeus [8] uses abstract
interpretation and symbolic model checking to analyse Solidity
contracts. Zeus does not support all constructs in Solidity (like
Throw, Self-destruct, virtual functions, assembly code block).
The tool also reports high false positive rates for integer
overflow/underflow errors and cannot detect division by zero.

Vandal [21] is a security analysis framework for smart con-
tracts. It relies on symbolic analysis techniques. It translates
Solidity bytecode to logic relations. It then checks the presence
of vulnerabilities in translated logic relations. MadMax [22],
built on top of the Vandal and Gasper [23] are static analysis
tools. They check gas related vulnerabilities such as gas costly
loops. Mythril [24] and Manticore [25] are other examples of
analysis tools that use symbolic execution. The main drawback
with these two tools is time complexity. We evaluated both
tools with a small and simple contract, SafeMath [26] with
65 LOC. Mythril took 15 minutes and Manticore around 12
minutes to analyse this simple contract. Additionally, detection
of integer overflow/underflow is associated with a high rate of
false positives [9]. Mythril is discussed in detail in Section VI.
Porosity [27], Solgraph [28] and Dr Y’s Ethereum Contract
Analyzer [29] are other tools to detect vulnerabilities. Dr Y’s
Ethereum Contract Analyser reflects to contract behaviour and
checks the restriction of the contracts. Porosity checks re-
entrancy vulnerability. Solgraph checks presence of unchecked
send vulnerability. F* [6] is an analysis tool that translates
Solidity code to F* language. The tool does not support
structures like loops or struct that are commonly used in
smart contracts. Oyente [7] is a symbolic execution tool that
operates at the EVM byte code level to detect well known
security issues like integer overflow and underflow, timestamp
dependency and re-entrancy. It, however, has been shown to
have a high rate of false positives [8]-[10]. The reasons for
high false positive rate for Oyente is explained in Section VI
in detail. Remix [30] is an online Solidity compiler and static
analyser that is widely used by developers. Remix supports
well known vulnerabilities like re-entrancy, timestamp usage,
tx.origin usage, and out of gas. However, it cannot detect
integer overflow/underflow and division by zero errors.

It is worth noting that two recent surveys [31], [32] compare
analysis tools with respect to their vulnerability detection
capability and discuss techniques used. However, these surveys
simply take results presented in the original paper that have
each been run on different contracts. This makes it impossible
to objectively compare the tools. For the first time, we have
taken a common set of contracts, seeded vulnerabilities, and
checked the effectiveness of 5 existing tools in revealing
the vulnerabilities and compared it against our technique,
presented in Section V. Unlike existing tools in the literature
that perform static analysis, our technique for vulnerability
detection relies on both static and dynamic analysis. We
believe, dynamic analysis will help reduce the number of false
positives, time taken for analysis, and be widely applicable
supporting all Solidity language features, vulnerability types,
and large contract sizes.

IV. APPROACH AND IMPLEMENTATION

Our approach for analysis of smart contracts includes three
main components,
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Fig. 2: MuContract: Artifically seed vulnerabilities in a Solidity Contract to produce Mutated/Buggy Contracts.

1) A vulnerability detection technique, SolAnalyser,
shown in Fig. 1, that combines static analysis,
implemented in ContractAnalyser using SIF [33]
which is a code instrumentation framework for
Solidity, and dynamic analysis, implemented in
ExecutionValidator.

2) An automated input generation for smart contracts, im-
plemented in InputGenerator

3) A tool, MuContract, that artifically seeds differ-
ent types of vulnerabilities in smart contracts, using
SIF. MuContract is used to assess effectiveness of
SolAnalyser in revealing the seeded vulnerabili-
ties. We also use the mutated contracts generated by
MuContract to assess other existing analysis tools in
the literature and compare with SolAnalyser, pre-
sented in Section VI.

We discuss each of these components in the following Sec-
tions.

A. Vulnerability Detection

Our approach for vulnerability detection has three phases:

1) Instrumentation with assertion via SIF.
2) Input generation for instrumented smart contracts.
3) Execution and analysis of instrumented contracts.

As seen in Fig. 1, we use ContractAnalyser to generate smart
contracts with property assertions in phase 1. We automatically
generate inputs for the smart contract in phase 2 using ABI
and bytecode files. Phase 3 uses Ethereum virtual machine for
executing the smart contracts accompanied by dynamic analy-
sis of the execution traces implemented in ExecutionValidator.
We describe each of the phases in the rest of this Section.

Phase 1: Instrumentation with assertion via SIF. This phase
implemented in ContractAnalyser performs instrumen-
tation using Solidity Instrumentation Framework, SIF [33]. We
first implement a visifor that traverses all the nodes in the smart
contract AST. When a node is visited, the ContractAnalyser
first checks whether the node type is susceptible to any of
the well known vulnerabilities. It also checks the operator
type and operand types within the node. For example, an

expression node with arithmetic operations may be prone to an
overflow/underflow error. The analyser then generates relevant
assert statements on the result of the operations in the node
that flags a vulnerability when the assert statement fails. The
assert statement node is added after the node under analysis in
the program control flow. For division by zero vulnerability,
we insert a pre condition, before the node under analysis with
a division operator, that asserts the divisor expression is greater
than zero. Table I illustrates the different types of vulnerabil-
ities checked by the ContractAnalyser and the corresponding
assert and pre conditions inserted. Source code for our tools
is available at https://github.com/sefaakca/ContractAnalyser.

Phase 2: Input generation for smart contracts.

In this phase, we automatically generate inputs for instru-
mented smart contracts. First, we use Solidity compiler to
generate Application binary interface (ABI) and bytecode files.
ABI file holds information regarding functions in the contracts
such as function name, function type, input types, and output
types etc. Bytecode file holds the predefined bytecode of the
smart contract. Then, using these two files, we generate inputs
for smart contracts. Our input generator, implemented in Java,
supports all Solidity types such as signed/unsigned integers
types with widths ranging from 8 to 256. The generated
inputs call each of the functions in the smart contract at
least once. Source code for the input generator is available
at https://github.com/sefaakca/RandomInputGenerator.

Phase 3: Execution and analysis of instrumented contracts.
The instrumented Solidity code with property assertions is
executed in the Ethereum Virtual Machine (EVM) [34]. We
use the inputs created in Phase 2 to execute the contract
so that each transaction and function within the contract is
invoked at least once. We implemented the ExecutionVal-
idator in nodejs—v8.11.3—as an extension to EVM to anal-
yse the execution trace produced by EVM and to report
triggered vulnerabilities, if any. We use five different ex-
ternal node modules (ethereumjs—-vm, ethjs—signer,
ethjs, crypto-js, and web3) to combine EVM and exe-
cution trace analysis in the ExecutionValidator. ExecutionVal-
idator reads the input file produced by the InputGenerator for



TABLE I: Types of vulnerabilities and assertions for property check

Operation

Type of vulnerability

Assertions for property check

Addition
a=b+c

Unsigned overflow

Post-condition:
a>=b && a >=c

Signed overflow/underflow

Post-condition:
(c >=0 && a >=b) ||
(c <0 && a <b)

Subtraction
a=b-c

Unsigned underflow

Post-condition:
b>=a&&b>=c

Signed overflow/underflow

Post-condition:
(c >=0 && a <=b) ||
(c <0 && a >b)

Multiplication
a=b*c

Unsigned overflow

Post-condition:
(b!'=0&& c !=0)?
(a>=b&&a>=c):
(a==0)

Signed overflow/underflow

Post-condition:

(b!=0&& c !=0)?
(a/b==c&&a/c==b):
(a==0)

Division

a=b/c Division by zero

Pre-condition:
c!=0

a given contract. Each transaction field in the input file is sent
to the EVM with a unique id, account address, input variables
and bytecode of the contract for execution. Upon execution,
EVM returns the execution trace in the form of runtime
opcodes, similar to assembly code. ExecutionValidator checks
the runtime opcodes for the presence of certain keywords
(shown below) that indicate failure of instrumented assertions
and consequently, presence of vulnerabilities. The keywords
that ExecutionValidator scans for in the execution trace are,

o TIMESTAMP: timestamp usage

¢ ORIGIN: transaction origin usage

o INVALID: integer overflow, underflow or division by zero
o CALL-REVERT: unchecked send

o CALL: repetitive call function

If any of these keywords are present, an error showing the vul-
nerability type, function name in the code and the transaction
id that triggered it is reported to the user.

For out of gas vulnerability, ExecutionValidator compares
cost of transaction against the gas limit set at the time of
execution. Cost of transaction is computed by EVM using
opcodes in the transaction and gas usage associated with
each opcode. If the transaction cost exceeds the set limit, an
error containing gas limit, transaction cost and the function
invocation that triggered it is reported.

B. MuContract: Fault Seeding Tool

MuContract seen in Fig. 2, takes a Solidity contract as
input and produces mutated contracts such that each of them
have a single artificially seeded vulnerability. MuContract
operates on the AST of a Solidity contract (generated using
the solc compiler). To seed vulnerabilities, we use the AST
representation and helper functions in SIF. We modify the
AST to seed a particular vulnerability by creating a new
AST node containing the vulnerability. Description of the
vulnerabilities and the corresponding statements inserted is
presented in Table II. Each seeded vulnerability generates a
separate modified AST from the original. Solidity code is
then generated for each of the modified ASTs, referred to
as mutated contracts. It is worth noting that only for the
out of gas vulnerability in Table II, mutation is not done
at the AST level but rather by changing parameters of the

execution environment in ExecutionValidator. Finally, we feed
each of the mutated Solidity contracts to analysis tools such
as SolAnalyser to evaluate their effectiveness in the detecting
the seeded vulnerabilities. Source code of MuCOntract is
available at https://github.com/sefaakca/MuContract.

TABLE II: Vulnerability types seeded using MuContract

Division by zero Statement with division by zero is inserted.

Out of gas Gas limit changed in the exec. environment.
Overflow Computation with overflow inserted.
Underflow Computation with underflow inserted.
Timestamp dependency | Assignment expression with block timestamp.
TxOrigin Condition stmt using the value of tx.origin.

Unchecked send Send function without any
pre or post condition is inserted.

Repetitive call A loop with a Send function is inserted.

V. EXPERIMENT

We evaluate the feasibility and effectiveness of
SolAnalyser in uncovering vulnerabilities in 1838
real smart contracts and their mutated versions. The mutated
versions were generated by our tool, MuContract, by
seeding one of 8 different vulnerability types (discussed
in Section II) into each of the original 1838 contracts. We
compare effectiveness of SolAnalyser against popular
analysis tools, Oyente, Securify, Maian, SmartCheck and
Mythril. We chose these five tools based on: 1. Release date
and feasibility of running the tool. We picked tools from the
last 2 years that were well maintained and documented. We
also checked feasibility of installing and running them. For
instance, ContractFuzzer [15], although recently released in
2018, was not feasible to install and run even after multiple
communications with the authors, 2. Popularity of the tool,
based on citations and number of users. We investigate the
following questions in our evaluation of SolAnalyser:

Q1. Extent of vulnerabiltiy support: What different vulnera-
bility types are each of the analysis tools capable of detecting?

To answer this question, SolAnalyser and the five existing
tools were run on mutated contracts representing several
instances of 8 different vulnerability types discussed in Sec-
tion II. We analysed the output files of the tools to assess



whether they were capable of detecting each of the 8 different
vulnerabilities.

Q2. Effectiveness of SolAnalyser: What is the precision and
recall achieved by SolAnalyser in revealing vulnerabilities in
the mutated contracts?

We use SolAnalyser over the mutated contracts to check if
the assertions and opcode analysis reveal the seeded vulnera-
bilities. InputGenerator within SolAnalyser produces
inputs from the original unchanged contract in JSON format.
The InputGenerator tests each of the functions in the
contract with 100 different input values.

Q3. Comparing Effectiveness of SolAnalyser with Oyente,
Securify, Maian, SmartCheck and Mythril: Which analysis
tool is most effective in revealing different vulnerability types?

We first run all six tools SolAnalyser, Oyente, Securify,
Maian, SmartCheck and Mythril on the original source code
of each of the 1838 smart contracts to assess their capability in
analysing and revealing vulnerabilities. These smart contracts
have been published and are being used, so we do not expect to
find vulnerabilities in them. We then evaluate the effectiveness
of the six tools in uncovering seeded vulnerabilities in the
mutated contracts generated by MuCont ract. We report their
effectiveness using precision and recall rate [35] that are
widely used to evaluate performance of classification tech-
niques. Precision, in our context, measures the proportion of
actual vulnerabilities detected by the tool among all those that
exist in the mutated contracts. Recall measures the proportion
of actual vulnerabilities among all the vulnerabilities reported
by the tool. Positive label is used for presence of vulnerability
and negative class for absence. Thus, True Positive (TP) refers
to mutated contract reported by a tool as vulnerable with the
correct location of seeded vulnerability. False Positive (FP)
is when the tool does not report the seeded vulnerability in
a mutated contract. False Negative (FN) occurs when the
tool reports a vulnerability but at a location different from
the seeded vulnerability in a mutated contract. Precision and
Recall are computed as follows:

TP
TP+ FP’

TP

Recall = m

(D

Precision =

A. Data Set

We collected 1838 unique and verified' smart contracts of
different sizes from Etherscan [36]. Contract names and lines
of code is available at https://github.com/sefaakca/Dataset.
The largest contract in our experiment has 6183 LOC and
average LOC across contracts is 469. From each verified
smart contract, we create mutated contracts by seeding each of
eight different vulnerabity types. In total, we generate 12866
mutated contracts for our data set.

B. Opyente, Securify, Maian, SmartCheck and Mythril

We use the latest version of Oyente, Securify, Maian and
Mythril provided in GitHub [24], [37]-[39] to analyse the
1838 contracts and 12866 mutated contracts. For analysis with
SmartCheck, we load the smart contract into the web IDE [40]
and use the analyse feature. All six tools in our experiment
use Solidity compiler versions, 0.4.25 and 0.5.3, based on the
syntax of the contract.

I'source code and byte code conform with each other

VI. RESULTS AND DISCUSSION

In this Section, we report and discuss results in the context
of the research questions presented in Section V.

A. Ql. Extent of Vulnerability Detection

Running SolAnalyser and the existing 5 tools on 12866
mutated contracts revealed the vulnerability types supported
by each tool, shown in Table III. We find SolAnalyser has
the widest support for vulnerability types, handling all 8 types
of vulnerabilities. SmartCheck support 7 of the 8 types of
vulnerabilities. Securify and Mythril have reasonable support,
handling 4 of the 8 vulnerability types. Maian performs worst
in this aspect, only being able to detect uncheckedsend, with
no support for the other 7 vulnerability types. With regards
to vulnerability types, integer overflow and underflow are
detected by 5 of the 6 tools, except Maian. Outofgas is the
vulnerability with weakest tool support. SolAnalyser is the
only tool in our experiment that can detect this vulnerability.

B. Q2. Effectiveness of SolAnalyser

In this Section, we evaluate the effectiveness of SolAnalyser
using the mutated contracts, reporting precision and recall
for different vulnerability types. Precision and recall rate of
the SolAnalyser over all the mutated contracts is shown in
Fig. 3 and 4, respectively. Comparison with other tools shown
in the figures is discussed in the next Section VI-C. Recall
rate of SolAnalyser for each vulnerability type is 100%. This
implies SolAnalyser does not generate any false negatives, i.e.,
it does not erroneously report vulnerabilities at locations that
are mutation free. Precision rate of SolAnalyser for out of gas
vulnerabilities is 100%, implying that all the seeded out of gas
vulnerabilities were revealed by our tool. Precision for times-
tamp dependency was 75% and the remaining vulnerabilities
between 57 — 60%, implying that some of these vulnerabilities
were not caught by our tool. The reason for this was because
the vulnerabilities were embedded within multiple conditional
statements (with conditions, for example, checking type of
user and account balance) that were not reached by the inputs
from InputGenerator. For a sample of 150 contracts,
we manually set the inputs to reach these conditions, which
allowed SolAnalyser to then reveal the seeded vulner-
abilities. Enhancing the InputGenerator component in
our tool to achieve complete control flow coverage within
transactions and functions in the contract will help increase
the precision in detecting different vulnerabilities.

C. Q3. Comparing Effectiveness of SolAnalyser with existing
tools:

In this Section, we compare the precision and recall
achieved by SolAnalyser for the different vulnerabil-
ity types against 5 existing tools: Oyente, Securify, Ma-
ian, Smartcheck, and Mythril. With respect to precision,
SolAnalyser achieves superior performance in detecting
out of gas, timestamp dependency, tx.origin, and unchecked
send over existing tools. Recall rate for SolAnalyser is at
100% for all vulnerability types, significantly better than
existing tools. Securify has the best precision in detecting
integer overflow, underflow, division by zero and repetitive
call. SolAnalyser has comparable precision to Securify in
detecting repetitive calls (56%), and 10% less precision than
Securify in detecting overflow, underflow and division by



TABLE III: Extent

of vulnerability support

Name of the tool | divbyzero | overflow | underflow | timestamp | tx.origin | uncheckedsend | reccall | outofGas
SolAnalyser v 4 4 v 4 v v v
Oyente X 4 v 4 X X X X
Securify v 4 v/ 4 X X 4 X
Maian X X X X X 4 X X
SmartCheck v/ 4 v/ 4 4 4 v X
Mythril X 4 v X v v X X
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Fig. 3: Precision rate of Oyente, Securify, SolAnalyser, Maian,
SmartCheck and Mythril for mutations
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Fig. 4: Recall rate of Oyente, Securify, SolAnalyser, Maian,
SmartCheck and Mythril for mutations

zero as the inputs used by SolAnalyser do not reach the
vulnerability in some instances. Nevertheless SolAnalyser
outperforms Securify in recall rate for integer overflow, under-
flow, division by zero, and repetitive calls. SmartCheck also
reports overflow, underflow and division by zero vulnerabilities
but with low precision and recall. The patterns specified in
SmartCheck to detect these vulnerabilities are not complete
and disregards checks inserted by the developer. Mythril has
low precision (< 0.4) and reasonable recall (0.65) in detecting
overflow and underflow. Mythril performs boundary checks,
assuming uint256 type, in arithmetic operations to detect
these vulnerabilities. For signed and unsigned integer widths
that are different from uint256 (Solidity supports signed and
unsigned integer widths from 8 to 256 bits), Mythril is prone to
reporting false positives and false negatives. Oyente supports
detection of integer overflow and underflow but has very poor
precision (< 0.1) and recall (< 0.3). Oyente has a better Recall
rate (0.72) in detecting timestamp dependency than integer
overflow or underflow but misses timestamp dependences
embedded in loops and multiple conditions.

Maian only supports detection of unchecked send vulner-
abilities with low precision (0.19) and high recall (0.95).
Transaction origin usage vulnerability is best detected by
SolAnalyser but is also supported by Mythril and
Smartcheck, albeit with low precision as they miss tx.origin
keywords embedded in loops or conditions. Out of gas vulner-
ability is only supported by SolAnalyser with 100% pre-
cision and recall. Identifying out of gas vulnerability requires
access to parameters in the runtime environment, the capability
for which is not available in other tools. ExecutionValidator
provides this access within SolAnalyser.

a) Summary.: Overall, across all vulnerability types and
mutated contracts, we find SolAnalyser easily outperforms
existing tools taking precision and recall into account. Preci-
sion of SolAnalyser is lower than Securify for arithmetic
vulnerabilities - overflow, underflow and division by zero.
Precision of SolAnalyser for these vulnerabilities can be
improved with better inputs from InputGenerator. Recall of
SolAnalyser is, however, better revealing that it does not
erroneously report vulnerabilities. For the other 5 vulnerability
types, SolAnalyser achieves both better precision and
recall than all 5 existing tools.

b) Analysis time taken by SolAnalyser versus existing
tools.: For analysis using the same hardware, we found
average time taken by each tool per contract to be as follows
in ascending order, 1. SolAnalyser = 13.5 secs, 2. Maian
= 20.1 secs, 3. SmartCheck = 23.5 secs, 4. Oyente = 26.9
secs, 5. Securify = 67.2 secs, Mythril = 167.9 secs. We find
SolAnalyser takes the least amount of analysis time, and
scales easily to large contract sizes.



VII. CONCLUSION AND FUTURE WORK

We have proposed a fully automated technique for vul-
nerability detection in smart contracts that uses code instru-
mentation and execution trace analysis. We present detection
of 8 vulnerability types that have limited analysis support in
literature. Our framework for inserting property checks in So-
lidity code is generic and provides interfaces that can easily be
used to support detection of other types of vulnerabilities. We
perform dynamic analysis on the Ethereum virtual machine.
We also provide support for aritificially seeding different
types of vulnerabilities in Solidity contracts. The mutated
contracts can be used to assess effectiveness of analysis tools
in revealing the seeded vulnerabilities.

We used 1838 verified contracts in our evaluation and
generated 12866 mutated contracts by artifically seeding each
of 8 different vulnerability types. We used the mutated con-
tracts to analyse precision and recall of SolAnalyser and
five other popular existing tools - Oyente, Securify, Maian,
SmartCheck and Mythril. We find SolAnalyser has the
widest support for vulnerabilities, supporting all 8 types unlike
existing tools. Precision (average of 72%) and Recall (average
of 100%) is significantly better than existing tools across all
vulnerability types in the mutated contracts. We find precision
of SolAnalyser can be further enhanced by improving the
quality of inputs produced by the InputGenerator component.
In our future work, we plan to generate inputs that provide
control flow coverage within functions and transactions in
Solidity contracts. Finally, analysis time overhead is lowest
for SolAnalyser (13.5 secs) compared to existing tools.
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