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Abstract

Recent progress in energy storage raises the possibility of creating large-scale storage facilities at

lower costs. This may bring economic opportunities for storage operators, especially via energy

arbitrage. However, storage operation in the market could have a noticeable impact on electricity

prices. This work aims at evaluating jointly the potential operating profit for a price-maker storage

facility and its impact on the electricity prices in the New York state market. Based on historical

data, lower and upper bounds on the supply curve of the market are constructed. These bounds are

used as an input for the robust self-scheduling problem of a price-maker storage facility. Our com-

putational experiments show that the robust strategies thus obtained allow to reduce significantly

the loss exposure while maintaining reasonably high expected profits.

Keywords: energy storage, electricity market, bidding strategy, arbitrage, quantile regression,

robust optimization

1. Introduction

Over the last five years, great progress has been achieved in the field of energy storage. Among

the different technologies of energy storage, this progress has been especially significant in the field of

batteries. A few years ago, provided their limited power and energy capacity, batteries were mainly

considered as a mean to support renewables, damping the variability of wind and PV systems [1].5

The recent deployment of large-scale batteries, exemplified by the 70 MW system brought online

in California in late 2016 [2], heralds new potential applications for batteries. As of February 15,
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2018, the Federal Energy Regulatory Commission (FERC) has mandated that RTOs/ISOs modify

their market policies to allow energy storage to participate in wholesale markets as a price maker,

when either buying or selling energy [3]. FERC further mandates that storage operators as small as10

100kW must be allowed to bid into these markets. Given these changes in market regulation, as well

as the technological advancement and cost reductions associated with greater storage deployment,

one might anticipate that storage will indeed become an influential price maker in the near future.

The deregulation of the electricity sector in many regions has led to the emergence of whole-

sale electricity markets and thus created economic opportunities for energy storage [4]. The price15

volatility on these markets is indeed a potential source of profit for energy storage facilities, which

can buy (and store) electricity during periods of low demand (and low prices) and sell it back to the

grid during periods of high demand (and high prices). This type of opportunity in the market is

referred to as energy arbitrage. Other applications exist and may be profitable for energy storage,

such as ancillary services, and operating reserve [5].20

In this paper, we focus on energy arbitrage. This is one of the best understood and more

interesting applications in volatile markets. Such opportunities are especially present in New York’s

day-ahead electricity market (DAM), which will be the focus of our study. Figure 1a shows the

evolution of the hourly price in 2016. Over the span of this year, the prices ranged between

$0.01/MWh and $93.23/MWh. One can also observe a total of 1000 hours when a price lower25

than $8.85/MWh was reached, and 1000 hours with prices greater than $32.55/MWh. The daily

difference between off-peak price and peak-price is illustrated in Figure 1b: this highlights the daily

frequency of opportunities for energy arbitrage.

As a result of these opportunities, the energy storage sector is likely to attract investment in

the years to come. However, investing in such large-scale facilities requires an accurate evaluation30

of the potential benefits of energy arbitrage. One possibility to assess the profits of a large-scale

energy storage facility is to determine what would have been an optimal operating plan during the

past years and compute the associated profit. This consists in formulating the optimal hourly bids

for each day. In practice, in energy markets, the bids are classified into two types: self-schedule

bids and economic bids [6]. A self-schedule bid does not include a price component: it indicates35

that the participant is willing to buy/sell electricity regardless of the price. An economic bid does

include a price component: it indicates that the participant is willing to buy/sell electricity provided

that the cleared market price is at most/at least the submitted price bid. In the case of energy
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(a) Year 2016 (b) July-August 2016

Figure 1: Hourly electricity prices in NY day-ahead market

storage, the self-scheduling formulation is generally preferred [7, 4, 8], because the hourly bids are

interdependent. For instance, the storage operator needs to be certain that his purchase bids have40

been accepted so that he can sell this electricity later.

Many studies have been conducted to assess the profitability of energy storage facilities doing

energy arbitrage in different electricity markets. Different storage technologies are considered in

these studies, but storage facilities are generally characterized by three main features regardless of

the technology: the power capacity (in MW), the energy capacity (typically given in MWh), and45

an efficiency quantifying the losses incurred during both charging and discharging operations. The

energy capacity of a storage device may also be seen as the number of hours of full power output.

These studies may be divided in two categories depending on the power capacity of the energy

storage facility.

The first category assumes that the energy storage facilities are price-takers, which means that50

their operation does not significantly affect the market price. This is generally the case when the

storage power capacity is small compared to the total demand or supply in the market, so that

the demand or supply is not affected by the storage operation. The value of small energy storage

devices in two jurisdictions of the US, PJM and New York state (NY) are estimated in [4] and [9]

respectively. [4] examines the effect of two parameters on the value of storage (efficiency and energy55

capacity) and establishes that this value may range from $60/kW-year to $120/kW-year depending

on these parameters. The impact of the price of fuel (natural gas and coal) on the value of arbitrage

is also highlighted: hourly on-peak prices are often set by natural gas or coal generation, therefore
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increases in the price of commodities lead to increases in the value of storage. [9] underlines the

economic opportunity in NY for energy storage installations, and compares the economics of two60

technologies (sodium sulfur batteries and flywheel). The resulting revenues are comparable with

those in PJM. In [10], Sioshansi et al. explore the value drivers behind energy arbitrage for two

different technologies (pumped-hydro storage and compressed air storage). In particular, it is shown

that, due to its hybrid nature, compressed air storage is more sensitive to gas price fluctuations. A

model is proposed in [11] to optimize the schedule of energy storage devices participating in both65

energy and reserve markets in different regions of the USA. The combination of energy arbitrage

and operating reserve increase the value of energy storage in some markets. Finally, Wang et al.

propose a novel framework in [12] to optimize the bidding strategy of a storage unit considering

both the day-ahead and the following day markets. A special emphasis is put on the determination

of the optimal state of charge at the end of the day-ahead.70

This first set of studies provides a picture of the arbitrage value of energy storage in different

markets. However, these studies assume that the storage operation does not affect the market

price, which is a valid assumption provided that the storage capacity is sufficiently small. Our

study focuses on larger-scale facilities, which may affect more significantly the demand and supply

on the market when they operate. Charging during low-demand periods and discharging during75

peak periods will reduce the price gap, and therefore the arbitrage value. In this case, the energy

storage facility becomes price-maker. To accurately assess the potential profits of a large-scale

energy storage facility, it is essential to account for the impact of storage operation on the price.

A few studies have addressed the self-scheduling of a large-scale energy storage facility [7, 4,

13, 8]. The general idea is to describe, at each time step, the market price pt as a non-increasing80

function of the quantity qt submitted by the energy storage on the market, i.e. pt = ft(qt), where

qt can either be positive (when discharging) or negative (when charging). The variable t refers to

the time slicing of the market, according to the frequency with which the bids are formulated. In

the case of the day-ahead market, bids have to be formulated on an hourly basis. For the sake of

simplicity, it is convenient to express qt as the difference of two non-negative variables: qt = P dt −P ct85

where P dt is the discharging power and P ct is the charging power at time step t. Based on these

variables, the energy level of the storage Et at each time step t can be computed. Hence, the

self-scheduling problem may be formulated as follows:
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max
{Pt}Tt=1,{Et}T+1

t=1

T∑
t=1

(P dt − P ct )ft(P
d
t − P ct )−

T∑
t=1

C(P dt + P ct ) (1a)

subject to 0 ≤ P dt ≤ P dmax ∀t ∈ J1, T K (1b)

0 ≤ P ct ≤ P cmax ∀t ∈ J1, T K (1c)

Et+1 = Et + ηP ct −
1

η
P dt ∀t ∈ J1, T K (1d)

0 ≤ Et ≤ Emax ∀t ∈ J1, T + 1K (1e)

E1 = ET+1, (1f)

where J1, T K denotes all the integers between 1 and T .

The objective function (1a) describes the profit of the storage operator. The first part computes90

the revenues from selling electricity to the market minus the costs from buying electricity from

the market. The operating costs of the facility are substracted in the second part of the objective

function: C corresponds to the marginal cost due to operation and degradation during the hours

of charging and discharging. These revenues and costs are summed for each hour of the horizon,

since the day-ahead market requires hourly bids. Constraints (1b),(1c) and (1e) describe the limits95

of storage in terms of power capacity and energy capacity. Constraint (1d) computes the state of

charge of the storage at each period of time. The losses during both charging and discharging are

taken into account by means of an efficiency η. Here we assume the same charging and discharging

efficiency, as we model lithium-ion batteries for which this assumption holds [14]. However, it would

be easy to incorporate different charging/discharging efficiencies in this model for different types of100

batteries, should it be desirable to the storage operator. The initial and final state of charge are

specified in (1f).

It is worth noting that our model assumes that both a charge and discharge bid can be submitted

to the market for the same hourly period. This is without loss of generality as we demonstrate in

Appendix 6.1 that this problem always identifies an optimal solution that avoids submitting charge105

at discharge bids for the same period, i.e. all optimal solutions satisfy the additional non-linear

constraint: P ct P
d
t = 0 for all t.

Two main methods have been proposed in the literature to model the function ft describing

the impact of storage operation on the price. In both cases, it is necessary to understand the price

formation process. For each hour, suppliers and consumers submit bids (which are composed of a110
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quantity, and a price) to the market. After collecting and sorting all these bids, a supply curve and

a demand curve may be constructed. The price is then given by the intersection between the two

curves.

The first method is the most general, and uses the residual demand curve, which is defined as

the market demand curve minus the quantity supplied by other participants. It provides a direct115

relation between the quantity submitted by the energy storage and the resulting market price. [8]

and [13] approximate the residual demand curve of the Iberian market by a sigmoid function, and

solve the corresponding non-linear self-scheduling problem. This formulation is particularly relevant

when the market demand is elastic.

In practice, it is often the case that electricity demand can be assumed to be inelastic. It is then120

sufficient to model the effect of storage operation on price through a supply curve π(d), where d is the

demand. Hence, the effect of the storage unit can be taken into account through ft(q) = π(dt − q).

Since the storage is self-scheduling, its operation is indeed equivalent to an increase (when charging)

or a decrease (when discharging) in the demand. [4] and [7] exploit respectively the supply curve of

the Alberta and PJM electricity markets to formulate the self-scheduling problem of a price-maker125

energy storage. In [4], a linear supply curve is constructed for each month based on historical data

of prices and quantities. In [7], actual supply curves from the Alberta market are used for years

2010 to 2014. For each hour, based on the supply curve and the demand, generation price quota

curves (GPQC) and demand price quota curves (DPQC) are constructed to model respectively

the price impacts of discharging and charging. This stepwise approximation of the supply curve130

around the value of the demand allows the formulation of a mixed-integer linear program for the

self-scheduling problem.

This paper addresses the economic assessment of energy arbitrage opportunities for a large-scale

energy storage operator in the day-ahead market of NY. We will assume that at the moment of

submitting his bids, while the operator of such a facility has an accurate idea of the hourly electricity135

demand, he is unaware of the market clearing price and in particular the exact effect of his bid on

this price. This represents realistic operating conditions given that such operators would usually

be unaware of the bids that will be submitted by other participants, or even of their conditions of

operations (e.g. cost of resources, periods of maintenance, etc.). We will instead assume that the

operator employs historical observations of electricity demand, market price, and available hourly140

wind power production to construct an uncertainty model for the potential supply curves, which
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consists of a nominal supply curve, a maximal supply curve, and a minimal supply curve. This

uncertainty model will be employed by a robust formulation of the self-scheduling problem (1) that

will account for the level of aversion the operator has with respect to the possibility of daily losses.

It is worth emphasizing that this is in sharp contrast with the approach presented in [7] and [4],145

which both assume that the supply curve for every hour of the day is exactly known in advance, or

equivalently that the operator is insensitive to estimation errors. Furthermore, our approach will

model the supply curve as a piecewise linear function which better captures the increasing marginal

impact of supply on prices during high demand periods compared to the piecewise constant model

employed in [4].150

Overall, the contributions of this paper can be summarized as follows:

• We present for the first time a method to characterize the market price uncertainty that a

price-maker participant is confronted with when submitting a self-scheduled bid in a day-

ahead market. Our approach is based on performing least squares and quantile regressions

on historical observations of total demand, market prices, and wind power production.155

• We present for the first time a decision model that employs robust optimization to model

the risk aversion of an energy storage operator. In particular, the model will control using

a budget Γ under which magnitude of perturbation of a nominal daily profit curve is the

operator comfortable with the possibility of a financial loss.

• We show that the robust bidding strategy obtained using this model with a budget of uncer-160

tainty of two hours (Γ = 2) allows to reduce the risk of a financial loss (from 3.01% to 1.09%

with respect to the nominal strategy), while maintaining the expected profit at a reasonable

level (10.8% below the profit obtained with the nominal strategy).

The remainder of the paper is organized as follows. In Section 2, the modelling of the supply

curve, and of its variability is described. In Section 3, the robust self-scheduling problem of a price-165

maker storage facility is developed. In Section 4, the developed model is applied and the robust

strategy of the storage operator, as well as its impact on the market prices, are analyzed.

2. Modelling the supply curve in the day-ahead market of NY

The methodology used in this paper, which is based on the construction of the supply curve,

requires a good understanding of the organization of the NY electricity markets, as well as a careful170
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study of the data extracted from this market.

2.1. New York Electricity Markets

In the state of New York, electricity is traded in a number of competitive electricity markets, all

of which are administered by the regional transmission organization called New York Independent

System Operator (NYISO). The NYISO is also responsible for operating the state’s bulk electricity175

grid, and for long-term planning for the state’s electric power system. The electricity grid serves

about 20 million people and has historically been required to supply peaks of demand as high as

32 GW in 2015 (see [15]). In comparison, the total power capacity from sources within the state

currently reaches 39 GW, with half of the capacity originating from dual fuel power plants (facilities

capable of using natural gas in combination with another fossil fuel). The other half of the total180

capacity is mainly nuclear (14%), hydro (11%), and gas-only (10%) power plants. The NYISO

has also ambitious plans for the development of wind and solar power facilities. In particular, a

dramatic increase of the wind power capacity occured over the last 10 years (from 48 MW in 2005

to 1746 MW in 2015).

Among all the markets operated by the NYISO, this article focuses on the energy day-ahead185

market, which accounts for over 94% of energy exchanges [16]. In this market, energy suppliers

and consumers submit economic bids for each hour of the following day. While the price curves for

supply and demand are the key factors determining the market prices, the transmission of electricity

also plays a noticeable role. Indeed, bottlenecks can occur on the electricity grid if large volumes

need to be transmitted to meet demand in a particular zone. Thus, the NYISO employs a nodal190

pricing scheme, that gives rise to local marginal prices (LMP) for each of the 11 zones of NY.

These LMPs are the result of three contributions: the marginal cost of energy (which is uniform

over the state), the cost of losses in transmission lines, and a cost related to congestion in the zone

considered. Our study will focus on the main contributor to market prices, namely the marginal cost

of energy. The reasons for doing so are two-fold. First, we do not address the issue of determining195

the optimal location for the storage facility. Hence, the most consistent price to take into account is

the marginal cost of energy, which is the same statewide. Secondly, to model the price-maker effect

of energy storage, we will use a relation between the load (or supply) and the price via the supply

curve. Yet the only component of the price which is directly related to the load is the marginal cost

of energy: as the load increases, energy sources with increasingly high marginal costs of production200
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have to be dispatched to meet the demand. On the other hand, the two other contributions of the

price are not directly related to the load, but rather to local transmission constraints.

As shown in Figure 2a, our data set consists of a list of historical pairs {(pi, di)}N=366×24
i=1 , ranging

from January 1st, 2016 to December 31st, 2016, and describing on an hourly basis the market price

and corresponding electricity demand observed on the energy day-ahead market supervised by205

NYISO. One can observe that the supply curve describing the relationship between the demand

and the price is subject to high variability. There are indeed many reasons why bids submitted by

suppliers might vary from day to day (or even hour to hour):

• marginal costs incurred by each supplier in the market fluctuate depending on the price of

commodities such as natural gas, oil, etc.;210

• the production capacity of renewable resources is sensitive to meteorological conditions (wind,

rainfall, sunshine) ;

• a power plant may become unavailable at times because of maintenance, etc.

It is reasonable to conclude that predicting exactly where the intersection between the supply curve

and the inelastic demand curve will occur for any given hour of the day is a very difficult task.215

Under such conditions, one should employ a representation that accounts for variability in the

supply curve when searching for an optimal bidding strategy.

2.2. Constructing a nominal supply curve

We first attempt to identify a nominal representation of the supply curve by employing the least

squares method to perform a regression, following the idea proposed in [4]. Specifically, under the

assumption that the supply curve has a parametric form p = π̂(d; δ), one can identify the best fit

for δ ∈ Rm by solving the following optimization problem :

min.
δ

(1/N)

N∑
i=1

(pi − π̂(di; δi))
2 .

Figure 2 presents the nominal curves obtained when π̂(d; δ) is chosen to be an affine function (a.k.a.

linear regression) and a piecewise linear function with breakpoints at 25.558 and 28.098. Both of220

these regressions were performed using the software R version 3.2.0 with the “Segmented” package

(available online) [17]. This package allows one to determine jointly the optimal breakpoints and

9



(a) Linear regression (b) Piecewise linear regression

Figure 2: Best fitted models for the nominal supply curve based on historical data {(pi, di)}N
i=1. (a) presents the

calibrated affine function π̂(d; δ∗) with an R2 of 0.5641. (b) presents the calibrated piecewise linear function π̂(d; δ∗)

with an R2 of 0.5923.

slopes of a piecewise linear function, given that the number of breakpoints is pre-specified. One can

also obtain the R2 statistic of the fitted function which captures the amount of data variability that

can be explained by the fitted model. The fact that this statistic increases from 0.5641 to 0.5923225

when employing the piecewise linear function confirms that the latter function provides a better

fit. We can also expect that the piecewise linear model provides a more accurate description of how

the marginal market price can be affected by the magnitude of the demand. This is indeed a key

element in the context of the price-maker formulation such as in problem (1) given that it defines

the impact that the storage facility will have on the market price.230

In order to improve the amount of price variance explained by our nominal model, we also

attempted to model the influence of wind variability on the supply curve. In particular, we used

the NYISO data about the hourly wind power production {(wi)}Ni=1 for each hour of our data set.

Since one can usually assume that wind energy has a negligible marginal cost [18], meeting the total

demand at the lowest cost is equivalent to meeting the “net demand” (the total demand minus the235

wind power production) at the lowest cost. For this reason, we perform the same regressions as

before but on the modified data set {(pi, ni)}Ni=1 where each ni := di − wi. The resulting linear

and piecewise linear regressions produced R2 statistics of 0.6139 and 0.6485 respectively; increases

which support this approach.

The conclusions of this fitting of a nominal supply curve motivate the use of the following
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function to model the impact of storage:

f̂t(qt) := π̂(dt − qt − wt; δ∗) = π̂w(nt − qt) ,

240

where

π̂w(y) =


2.086y − 17.354 if 0 ≤ y ≤ 25.558

4.249y − 72.636 if 25.558 < y ≤ 28.098

6.705y − 141.45 if 28.098 < y.

(2)

2.3. Constructing upper and lower bounds for the supply curve

We now turn to the characterization of the variability of the supply curve and the effect of this

variability on the cash flows that will be produced when scheduling storage. We use the historical

data set {(pi, di, wi)}Ni=1 to calibrate two bounding functions π+
w (n) and π−w (n) so that they return

for a given net load n, a confidence interval [π−w (n), π+
w (n)] for the realized market price. This can245

be done using quantile regression (as introduced in [19]).

Quantile regression is similar in spirit to the well-known least squares method. One first needs to

identify a parametric form for π+
w (n) and π−w (n), which we will refer to as π+

w (n; δ+) and π−w (n; δ−).

Given a confidence level α, which we choose to be α = 10%, we will fit the δ+ and δ− parameters

to the data set {(pi, ni)}Ni=1 but this time using a regression function that aims at capturing the

α/2-th and 1− α/2-th quantile respectively. Specifically, the optimization models take the form:

δ∗− = arg min
δ−

(1/N)

N∑
i=1

max
(

(1− α

2
)(π−w (ni; δ−)− pi) ,

α

2
(pi − π−w (ni; δ−))

)
δ∗+ = arg min

δ+
(1/N)

N∑
i=1

max
(α

2
(π+
w (ni; δ+)− pi) , (1− α

2
)(pi − π+

w (ni; δ+))
)
.

Intuitively, the first optimization model penalizes more severely over-evaluations than under-evaluations

of the price in order to return an under-estimator while the second model does the opposite. The

connection to the notion of quantile estimation emerges when one assumes that, conditionally on

observing ni, the α/2-th quantile of the market price can be computed using a member of the250

parametric family π−w (ni; δ−). In this case, as N converges to infinity, then δ− can be shown to

converge in probability to the true value, and similarly in the case of δ+. In contrast, the method

of least squares offers a similar type of convergence but towards the conditional expected value of
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the market price. We refer interested readers to [20] for a thorough presentation of this regression

scheme.255

In our implementation, we model the lower and upper bounds of the supply curve with piecewise

linear functions. For the sake of consistency with the nominal supply curve determined in Section

2.2, the same breakpoints are used. This modeling decision also has the advantage of reducing the

number of binary variables involved in the mixed-integer convex quadratically constrained program

that is proposed in Section 3.3 to identify robust self-scheduled bids. It was however necessary to260

include an additional breakpoint at 12.817 GW in order to prevent the lower bounding function

from returning negative prices. Negative prices are known not to occur in the New York market

because of the way the price selection mechanism is designed. This is however not the case in all

electricity market given that negative prices do emerge temporarily in some markets because of

generators that are unwilling or unable to interrupt suddenly their output.265

For completeness, we present below the resulting linear program that needs to be solved in order

to obtain the calibrated parameters for the lower bounding function:

min.
δ,t,y

(1/N)

N∑
i=1

ti

subject to ti ≥ (1− α

2
)(yi − pi) , ∀ i = 1, . . . , N

ti ≥
α

2
(pi − yi) , ∀ i = 1, . . . , N

yi =

3∑
j=1

δj(ni − γj)1{ni ≥ γj}

δ ≥ 0 ,

where γ1 = 12.817, γ2 = 25.558, and γ3 = 28.098 are the three breakpoints at which the piecewise

linear function changes slope, while each δj captures by how much the slope increases from one

piece to the other. Finally, 1{y ≥ 0} is the indicator function that returns one if the condition is270

satisfied and zero otherwise.

Based on the result of our calibration, we will employ in the remainder of the paper the following

calibrated curves to capture how low and how large the market price might be when submitting a

bid of P dt or P ct :

f−t (qt) := π−(dt − wt − qt) = π−w (nt − qt) f+
t (qt) := π+(dt − wt − qt) = π+

w (nt − qt) ,

12



where

π−w (y) =



0 if 0 ≤ y ≤ γ1

2.269y − 29.081 if γ1 < y ≤ γ2

3.508y − 60.767 if γ2 < y ≤ γ3

6.248y − 137.764 if γ3 < y

& π+
w (y) =


2.272y − 9.023 if 0 ≤ y ≤ γ2

3.320y − 35.820 if γ2 < y ≤ γ3

7.884y − 164.069 if γ3 < y .

(3)

The regressions (nominal, lower bound, and upper bound, detailed in equations (2) and (3), respec-

tively) are graphed in Figure 3. Given our choice of α, we note that quantile regression guarantees

our upper and lower bounds encapsulate 90% of the historical data [21]. An extremely risk averse

storage operator could update the choice of α to ensure an even broader coverage of historical out-275

liers. The main goal of these models, achieved through quantile regression, is to obtain an accurate

representation of the uncertainty set for each value of net load, with this information utilized in the

robust self-scheduling optimization model (see Section 3). In this work, for ease of interpretability,

we model price as dependent solely on net demand. However, we acknowledge that future work

could improve the explained price variance by incorporating more explanatory variables, such as280

solar irradiance, hydro conditions, thermal fuel prices, generator outage conditions, etc.

3. Robust formulation of the self-scheduling problem

In this section, we propose a robust optimization model for a storage facility operator that is

risk-averse regarding the uncertainty in the actual market price when submitting self-scheduled bids

to a day-ahead market. We review in Section 3.1 some background on the general methodology285

before focusing on the choices we made in this application. Next, Section 3.2 discusses how the

approach presented in [22] can be used to robustify problem (1) in a way that immunizes the

operator against potential daily losses. We then present in Section 3.3 how this robust problem can

be reformulated as a mixed-integer convex quadratically constrained program.

3.1. Background on robust optimization290

Robust optimization is a technique for optimization under uncertainty, that has received an

increasing amount of interest in the last ten years. Contrary to other approaches that handle

uncertainty, such as stochastic programming, it removes the need to identify a probabilistic model of
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the likelihood of every possible future outcomes, replacing it with the characterization of a so-called

uncertainty set. In principle, the robust optimization paradigm seeks solutions that remain feasible295

under any potential outcomes that fall within the prescribed uncertainty set. Its first application

to mathematical programming dates from [23] where the authors proposed that each uncertain

parameter be circumscribed to its respective interval. This approach was quickly considered overly

conservative as it allowed worst-case scenarios where all the parameters take on their extreme

values simultaneously. This issue was addressed in [24], where Ben-tal and Nemirovski propose300

the use of ellipsoidal uncertainty sets that do not allow for such events to be considered. Even

more recently, the authors of [25] introduced a polyhedral set known as the budgeted uncertainty

which allows one to control the level of conservatism through the use of a “budget” parameter

Γ which defines how many of the uncertain parameters are allowed to reach an extreme value.

These important works contributed significantly to the popularization of the method. Overall, one305

might consider the following advantages that a robust optimization framework typically has over

stochastic programming:

• For many classes of optimization problems, the robust optimization formulation is computa-

tionally tractable (see [26]) while a stochastic programming approach might be confronted to

the challenge of performing high-dimensional integration.310

• The non-probabilistic approach used in robust optimization allows the decision-maker to im-

munize against uncertainty without having to define a distribution for the uncertain param-

eters.

The latter advantage is especially practical in the case of data-driven problems, where there is no

particular reason to represent the random vector with a distribution of a specific form, such as315

the normal distribution. In the case of stochastic programming, it is necessary to identify and

calibrate a joint distribution for the vector of uncertain parameters. This distribution defines both

the marginal likelihood of each parameter taken separately and the specifics of how each of them is

correlated to others. When the random vector is large and the observations rather limited, then it

can easily be the case that there are many distribution models that could explain the observations320

equally well thus making this choice rather arbitrary. This difficulty has given rise to what might

be thought of as the “Optimizer’s curse” (see [27]) given that the solution that is identified by a

stochastic program can easily over-exploit the selected distribution model resulting in an optimistic
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view of future performance which can lead to great post-decision disappointment.

For these reasons, the robust optimization approach has been applied in many different domains325

including power systems operations. In particular, from the market operator’s perspective, more

and more sources of uncertainty have to be taken into account in the unit commitment problem.

Given the increasing penetration of variable energy sources (wind, solar), and the recent devel-

opment of price-responsive demand, solving this problem has become more challenging. In [28],

Bertsimas et al. propose a two-stage adaptive robust optimization model for the security con-330

strained unit commitment problem in the presence of nodal net injection uncertainty. In [29], a

polytopic uncertainty set is constructed to capture wind uncertainty, and is then integrated in the

robust formulation of the unit commitment problem. Finally, [30] proposes a robust optimization

approach to provide a robust unit commitment schedule for the thermal generators in the day-ahead

market that minimizes the total cost under the worst wind power output scenario. We also refer335

the reader to [31] and [32], where robust models are developed to optimize the long-term invest-

ment plans (both in energy storage facilities and in the transmission network expansion) that will

guarantee a feasible system operation under various renewable energy output scenarios. To the

best of our knowledge, their is no prior work on applying a robust optimization approach to the

self-scheduling problem of a storage facility operator.340

3.2. The robust optimization model

When confronted to historical observation of market prices such as those studied in Section

2, it is easy to see how a storage facility operator might express some concerns regarding the

implementation of a self-scheduling bid strategy that does not account for price uncertainty. In

particular, since supply curves are usually monotonic, it is often the case that such a “nominal345

strategy” would recommend to charge the battery during the lowest demand hour, and sell this

electricity back when the demand is at its highest level. As seen in Figure 3, when price uncertainty

is large, doing so exposes the operator to the risk that the realized market price for the period with

low demand (i.e. a scheduled charge) be higher than during the period where a discharge was

planned, hence leading to a net financial loss. This motivates the use of a robust optimization350

approach that will allow the storage facility operator to control his exposure to net financial losses.

In what follows, we derive a robust optimization model based on the paradigm presented in

[22] which can directly exploit the description of uncertainty that was presented in Section 2.3,
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Figure 3: Situation where the nominal strategy exposes the operator to a net financial loss. The values h1 and h2

represent two periods with respectively low and high demand thus motivating a charge at period 1 followed by a

discharge at period 2 when considering the nominal supply curve π̂w. When implementing this strategy, the operator

is exposed to the risk that the realized market price coincide with the upper bound π+
w for period 1 and lower bound

π
−
w for period 2 leading to a net loss.

defining a nominal, lower and upper bound for f(·). Specifically, problem (1) is modified by adding

a constraint that rejects a self-scheduling strategy if it has the potential of leading to a net loss

when the nominal supply curve suffers a certain level Γ of perturbation. This gives rise to the

following robust self-scheduling problem:

max.
{P c

t ,P
d
t ,Et}Tt=1

T∑
t=1

(P dt − P ct )f̂t(P
d
t − P ct )−

T∑
t=1

C(P dt + P ct ) (4a)

subject to

T∑
t=1

(P dt − P ct )ft(P
d
t − P ct )−

T∑
t=1

C(P dt + P ct ) ≥ 0 , ∀ (f1, f2, . . . , fT ) ∈ F(Γ) (4b)

(1b)− (1f) ,

where F(Γ) captures all supply curves that can be obtained by a Γ perturbation of f̂t, mathemati-

cally speaking

F(Γ) :=

(f1, . . . , fT )

∣∣∣∣∣∣∣∣∣∃ (θ, θ−, θ+) ∈ R3T
+ ,

θt + θ+
t + θ−t = 1 , ∀ t ∈ J1, T K∑T

t=1 θ
−
t + θ+

t ≤ Γ

ft(·) = θtf̂t(·) + θ−t f
−
t (·) + θ+

t f
+
t (·) , ∀ t ∈ J1, T K

 .

16



In a language similar to the one used by the authors of [25], one can interpret Γ as the maximum

number of time periods during which the supply curve is allowed to reach either of the two supply

curve bounds π−w or π+
w that were identified using the historical data. One might also recognize that

in the construction of F(Γ), we model for each time period t a triplet (θt, θ
−
t , θ

+
t ) that will let the

market price at period t take on any convex combination of f−t (·), f̂t(·), and f+
t (·). Furthermore,

when Γ = 0, problem (4) reduces to the nominal problem (1) since in this case all (θt, θ
+
t , θ

−
t ) =

(1, 0, 0) leading to F(Γ) = {f̂(·)}. Alternatively, when Γ = T , constraint (4b) reduces to

∑
t:Pd

t ≥P c
t

(P dt − P ct )f−t (P dt − P ct )−
∑

t:Pd
t <P

c
t

(P dt − P ct )f+
t (P dt − P ct )−

T∑
t=1

C(P dt + P ct ) ≥ 0 ,

which effectively assumes that the market price always end up being the most unfavorable with

respect to the self-scheduling strategy.

It is also possible to interpret the robust constraint (4b) as an approximation of the following

chance constraint:

P
( T∑
t=1

(P dt − P ct )f̃t(P
d
t − P ct )−

T∑
t=1

C(P dt + P ct ) ≥ 0
)
≥ 1− ε ,

where f̃t(·) is the random mapping that is assumed to have produced the historical price observa-

tions, and ε ∈ [0, 1] characterizes the amount of probability with which we are comfortable that the

constraint might not be respected. Based on the definition of F(Γ), it is possible to evaluate the

probability that the historical observation of market price be a member of our uncertainty set :

P
(
f̃ ∈ F(Γ)

)
≈ (1/N)

N∑
i=1

1{∃ f ∈ F(Γ) , pt = ft(0), ∀ t} ,

where we count what is the proportion of historical observations for which the observed price could

be a result of evaluating one of the functions in F(Γ) at zero (given that the contribution of the355

battery facility was null historically). Figure 4 presents the estimated level of protection depending

on the size of Γ. This approach can give the decision-maker an idea of the value of Γ to use

depending on the level of protection needed. However, it leads to an overly conservative choice of

Γ. We follow a more empirical approach, which consists in experimenting with different values of

Γ. This will be described in Section 4.360

Remark 1. It is worth repeating the fact that in cases where the time period is too short for the

battery operator to schedule both a charging and discharging of the battery, there is no need to add
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Figure 4: Chance-constraint oriented calibration of Γ

the following non-linear constraint to problem (4):

P dt P
c
t = 0 , ∀ t ∈ J1, T K .

The reason is that, as demonstrated in Appendix 6.1, problem (4) always identifies an optimal

solution that satisfies this constraint.

3.3. Mixed-integer convex quadratically constrained reformulation

The robust model introduced in Section 3.1 cannot be solved using off-the-shelf solvers because

it is formulated as a semi-infinite problem. To address this issue, one needs to identify a tractable

reformulation for constraint (4b). To do so, we first rewrite the constraint using the following

equivalent form:

ψ(P d, P c) ≥
T∑
t=1

C(P dt + P ct ) (5)

where

ψ(P d, P c) := min
(f1,...,fT )∈F(Γ)

T∑
t=1

(P dt − P ct )ft(P
d
t − P ct ) .
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Based on the definition of F(Γ), one can readily obtain a linear programming representation of

ψ(P d, P c), namely:365

ψ(P d, P c) = min
θ,θ+,θ−

T∑
t=1

θt(P
d
t − P ct )f̂t(P

d
t − P ct ) + θ−t (P dt − P ct )f−t (P dt − P ct )

+θ+
t (P dt − P ct )f+

t (P dt − P ct ) (6a)

subject to θt + θ+
t + θ−t = 1 , ∀ t ∈ J1, T K (6b)

T∑
t=1

θ−t + θ+
t ≤ Γ (6c)

θ ≥ 0 , θ+ ≥ 0 , θ− ≥ 0 (6d)

Moreover, by linear programming duality, one can show that the dual problem of problem (6) takes

the form:

ψ(P d, P c) = max
s,λ

T∑
t=1

λt − Γs (7a)

subject to λt ≤ (P dt − P ct )f̂t(P
d
t − P ct ) , ∀ t ∈ J1, T K (7b)

λt − s ≤ (P dt − P ct )f−t (P dt − P ct ) , ∀ t ∈ J1, T K (7c)

λt − s ≤ (P dt − P ct )f+
t (P dt − P ct ) , ∀ t ∈ J1, T K (7d)

where λ ∈ RT and s are the dual variables respectively associated to constraints (6b) and (6c).

Indeed, the fact that ψ(P d, P c) is equal to the optimum of this dual problem is guaranteed by

strong duality which applies since problem (6) is both feasible and bounded for all P d and P c and370

for all Γ ≥ 0.

Given that we have obtained a representation of ψ(P d, P c) as the optimal value of a maximiza-

tion problem, one can establish that constraint (5) is equivalent to verifying whether there exists

an assignment (λ, s) that satisfies constraints (7b)-(7d) and that also satisfies

T∑
t=1

λt − Γs ≥
T∑
t=1

C(P dt + P ct ) . (8)
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We can conclude that our robust optimization (4) is equivalent to:

max.
Pd,P c,E,λ,s

T∑
t=1

(P dt − P ct )f̂t(P
d
t − P ct )−

T∑
t=1

C(P dt + P ct ) (9a)

subject to (8)

(1b)− (1f)

(7b)− (7d) .

This new formulation allows to overcome the semi-infinite nature of the original robust model.

However, the nature of the resulting problem depends on the nature of the three functions f̂t(·),

f−t (·), and f+
t (·) modelling the effect of the self-scheduled bid on market price under the nom-375

inal, upper and lower supply curve. In the case that the supply curves are piecewise linear, as

those constructed in Section 2, one can show that the resulting problem can be reformulated as a

mixed-integer convex quadratically constrained program provided that the slope of each piece of

these supply curves is non-negative. For completeness, we present below the mixed-integer con-

vex quadratically constrained program that is equivalent to problem (4). This problem can be380

solved using one of several commercial solvers. We used CPLEX version 12.7 to produce the results

presented in Section 4, where each run completed within a few seconds.
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max.
Pd,P c,E,λ,s,ν,ψ,y

T∑
t=1

ψt −
T∑
t=1

C(P dt + P ct ) (10a)

subject to

T∑
t=1

λt − Γs ≥
T∑
t=1

C(P dt + P ct ) (10b)

λt ≤ ψt , ∀ t ∈ J1, T K (10c)

ψt ≤
4∑
j=1

−âjytj2 + (ntâj − b̂j)ytj + ntb̂jνjt , ∀ t ∈ J1, T K (10d)

λt − s ≤
4∑
j=1

−a−j ytj
2 + (nta

−
j − b

−
j )ytj + ntb

−
j νtj , ∀ t ∈ J1, T K (10e)

λt − s ≤
4∑
j=1

−a+
j ytj

2 + (nta
+
j − b

+
j )ytj + ntb

+
j νtj , ∀ t ∈ J1, T K (10f)

nt − P dt + P ct =

4∑
j=1

ytj , ∀ t ∈ J1, T K (10g)

γj−1νtj ≤ ytj ≤ γjνtj , ∀ j = 1, . . . , 4 , ∀ t ∈ J1, T K (10h)

4∑
j=1

νtj = 1 , ∀ t ∈ J1, T K (10i)

ν∈ {0, 1}T×4 (10j)

(1b)− (1f) ,

where ψ ∈ RT , while the pairs of parameters (âj , b̂j), (a−j , b
−
j ), and (a+

j , b
+
j ) respectively refer to

the slopes and offsets of the j-th linear pieces of π̂w(·), π−w (·), and π+
w (·). Finally, γ1, γ2, and γ3 are

the locations of the three breakpoints, while γ0 = 0 and γ4 = maxt nt + P cmax. We refer the reader385

to Appendix 6.2 for more details on obtaining this reformulation.

4. Results and discussion

We study the case of a storage facility with 100 MW discharging and charging power and 300

MWh energy capacity (i.e. 3 hours of full power output), which is a bit more than the size of the

largest battery project brought online so far [2]. For both charging and discharging operations,390

we consider a 90% efficiency, and a $1/MWh variable cost due to operation and degradation [33].
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We choose a scheduling horizon of one day, namely T = 24, which is the minimum horizon that

can be considered, since bids have to be transmitted for every hour of the subsequent day on the

day-ahead market. Though longer-term horizons may allow to consider both intra- and inter-day

arbitrage, it appeared that, in the case of NYISO day-ahead market, most of the arbitrage value395

was coming from intra-day peak price differential. This is especially the case when the energy

capacity considered for the storage facility is limited: in our case, only 3 hours are necessary for a

full charge. This can be done daily during off-peak hours to take advantage of the peak hours.

Moreover, this shorter horizon allows to assume that the perfect forecast of future net demand

during each one-day period is available. This assumption is supported by the public availability of400

day-ahead demand forecasts from the NYISO itself [34]. Though these NYISO forecasts are not

perfect, they represent the best available information. While our reliance on historical data may

positively bias the calculated profits, we expect any bias should be mitigated when adjusting the

risk aversion parameter included in the robust optimization model.

In Section 4.1, we analyze the different bidding strategies obtained according to the chosen405

level of risk-aversion (namely the value of Γ). Next, Section 4.2 discusses the performance of these

strategies, both in terms of expected profit and protection against risk of financial loss. Especially,

this evaluation will provide the decision-maker a mean to determine a proper value of Γ. Finally,

the impact of the implementation of energy storage on the market prices is investigated in Section

4.3.410

4.1. Robust self-scheduling strategy

In this subsection, to demonstrate the importance of the robust formulation, we analyze the

bidding strategy according to the level of conservatism chosen by the storage operator.

To this end, it is necessary to choose a specific day of the year. The bidding strategy indeed

depends on the expected price for each hour of the day, and these price forecasts are computed415

based on the hourly load, according to the supply curve. Thus, the bidding strategy varies with

the load profile, which is different every day.

To provide a better comparison, two types of days can be distinguished according to their load

profile. They lead to two different types of strategies, as we will observe further. We will see

that for both types of days, the nominal strategy consists in purchasing electricity to charge the420

storage during off-peak hours, before selling electricity and discharging the storage during peak
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hours. However, this nominal strategy has to evolve when the storage operator seeks to be immune

to the risk of loss. This is where the strategies for the two types of days start to be different.

The first type of day is the most common, an example of this kind can be observed in Figure 5: it

corresponds to the case when the price during off-peak hours in the most adverse situation (namely,425

the upper curve, since the storage wants to purchase electricity during off-peak hours) is greater

to the price during peak hours in the most adverse situation (namely, the lower curve, since the

storage wants to sell electricity during peak hours). For this type of day, if the most adverse situation

occurs (namely (θt, θ
+
t , θ

−
t ) = (0, 1, 0) during the purchasing hours and (θt, θ

+
t , θ

−
t ) = (0, 0, 1) during

the selling hours), the storage may incur losses if the nominal strategy described previously is430

implemented.

The second type of day offers larger arbitrage opportunities, with a greater peak price differen-

tial. An example can be observed in Figure 6. In this case, the off-peak price in the most adverse

situation is lower than the peak price in the most adverse situation. Thus, the storage operator

is guaranteed to make a profit when implementing the nominal strategy, even in the most adverse435

situation.

We may now analyze the bidding strategies observed according to the level of conservatism

(specified by the value of Γ). We start with the first type of day, studying increasing integer values

of Γ.

• When Γ = 0, the robust model is equivalent to the deterministic model. In this case, the440

optimal strategy (referred to as the nominal strategy), presented in Figure 5a, consists in

charging during lowest price hours and discharge during highest price hours, and all these

operations are conducted at maximum power capacity. The charging and discharging oper-

ations are concentrated during the smallest number of hours, to take advantage of the most

favourable hours.445

• As Γ increases, the strategy is unchanged until Γ = 3. For small budgets of uncertainty, the

nominal strategy still ensures profits, even in the most adverse situations. Thus, our model

allows to maintain the nominal strategy.

• For Γ = 4, the operator has to modify his strategy, to avoid being exposed to losses: the

operating profit associated to the nominal strategy would be negative in the most adverse450

situation. The overall operational trend of the storage facility is still to charge when prices
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are low and discharge when prices are high. However, the robust strategy suggests spreading

the purchases and the sales over a greater number of hours, even if these hours are less

favorable in terms of nominal profit (see Figure 5b). This strategy avoids being exposed to

maximal deviations in the supply curve during each of the operating hours. When Γ = 5 (see455

Figure 5c), this trend is amplified (the purchases and sales are distributed over 7 hours and

4 hours respectively, while they were distributed over 5 hours and 3 hours with Γ = 4).

• For Γ = 6, the uncertainty is such that no strategy can guarantee positive operating profit.

The optimal strategy thus consists in not operating (see Figure 5d). We understand that

there is a certain value of Γ (between 5 and 6) above which the strategy will consist in not460

operating. We estimated empirically that this value is Γ = 5.25.

With the second type of load profile, the price differential between off-peak and peak hours is

such that the nominal strategy guarantees a positive operating profit, even in the most adverse

situation. Thus, the bidding strategy is the same regardless the value of Γ. This strategy is

presented in Figure 6.465

From this analysis, it emerges that, when a certain level of risk-aversion is reached, the robust

model starts providing different bidding strategies to reduce the risk. But this reduction of the risk is

done at the expense of the nominal profit: these more conservative strategies are indeed suboptimal

in the nominal situation where the supply curve does not deviate from its expected position (namely

(θ, θ+, θ−) = (1, 0, 0)). The reduction in the nominal profit due to the risk aversion of the operator470

is quantified in Figure 7. To this end, we look at the profit that would have been obtained in the

nominal situation with the strategies presented in figures 5a-5d. For values of Γ ranging from 0 to

3, we observed previously that the bidding strategy was unchanged. Hence, the nominal profit is

also unchanged. For Γ = 4 and Γ = 5, the wider distribution of the purchases and the sales causes a

slight reduction in the nominal profit. From Γ ≈ 5.25, the nominal profit is zero, since the optimal475

strategy for this level of uncertainty is to not operate.

Figure 7 provides, for an arbitrary day of the first type, an idea of the effect of robustness on

the theoretical profit obtained in the nominal situation. Although this figure corresponds to an

arbitrary day, the shape of the curve would be the same for any day of the first type: the first

effect of robustness (for low values of Γ) is indeed to suggest to distribute the operations, resulting480

in a slight decrease of the nominal profit. For greater values of Γ the most conservative strategy is
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(a) With Γ ∈ {0, 1, 2, 3} (b) With Γ = 4

(c) With Γ = 5 (d) With Γ = 6

Figure 5: Self-scheduling strategy for the first type of day with varying levels of protection (Γ)

Figure 6: Self-scheduling strategy for the second type of day for all levels of protection (Γ)

25



Figure 7: Nominal profit for different levels of risk-aversion

suggested (namely, no operation): it leads to a zero nominal profit. The value of Γ where the robust

solution switches from operating to not operating depends on the specifics of each day. However,

the storage operator needs to choose a value of Γ that he will use for every day of the year. Hence it

is critical to assess the effect of the choice Γ over an entire year. This can be done by applying the485

robust strategies obtained to real instances of the uncertain variables, to evaluate the performance

of the robust model over a larger sample of realizations for (θ, θ+, θ−).

4.2. Experimental results

The sample data of year 2016 is used to test the robust strategies on different instances of the

uncertain variables (θ, θ+, θ−). Our approach follows the idea introduced by Bertsimas in [25], and490

consists of experimenting with different values of Γ, to compare the performance of the model. It

provides the decision-maker with a tool to compare, when increasing Γ, the corresponding loss in

the expected profit with the related increase in robustness. This empirical approach is different

from the chance-constraint approximation introduced in Section 3.3, and will be privileged.

We understand that the choice of Γ corresponds to a tradeoff between the expected profit and495

the risk. The risk is evaluated using two different metrics: the probability to incur losses, and the

“worst-case” profit (represented by the 2nd percentile of the profits obtained over the year). The

results are presented in Figures 8, where the 90% confidence interval is presented.

Figure 8a shows that the expected profit is reduced as Γ increases: this can be referred to as the

price of robustness. However, this robustness allows risk reduction, both in terms of loss probability500
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(a) Expected profit (b) Loss probability

(c) Second percentile of the profit

Figure 8: Experimental study of the performance of different robust strategies (corresponding to different values of

Γ) for 2016
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(a) Risk evaluated using the loss probability (b) Risk evaluated using the 2nd percentile

Figure 9: Trade-off between the expected profit and the risk

(see Figure 8b) and in terms of “worst-case” profit (see Figure 8c). For values of Γ greater than 4,

the loss probability equals zero: the robust model allows the identification of days when operating

is too risky.

These figures highlight the necessity of finding a compromise between expected profit and risk.

The objective of the decision-maker is to find a value of Γ for which the expected profit is not cur-505

tailed too much with respect to the deterministic model, while reducing risk. Figure 9 illustrates

this tradeoff, representing simultaneously the experimental value achieved for both objective (ex-

pected profit and risk management). It appears that, in the case of Γ = 2, the risk is significantly

reduced, both in terms of loss probability (1.09% loss probability compared with 3.01% with the

nominal strategy) and “worst-case” profit ($ -83.94 versus $ -1237.54), while the expected profit510

remains reasonably high ($3143 compared with $3525 using the nominal strategy).

Therefore, Γ = 2 would be a reasonable choice for the storage operator. Figures 10a and 10b

present the results that would have been obtained for year 2016 for a storage facility operating

using Γ = 2. Figure 10a shows the weekly profits obtained: we notice that the highest profits are

reached during the summer, which is as expected for the summer-peaking system of New York state.515

Indeed, 49% of the profits are realized between the 1st of June and the 31st of August. Moreover,

the general daily price profile observed in figures 5 and 6 leads the storage facility to charge during

the night (generally between 12 a.m. and 7 a.m.) and to discharge during the evening (mainly

between 4 p.m. and 10 p.m.). Despite the choice to be immunized against risk using Γ = 2, the
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(a) Weekly profit (b) Hours of charging and discharging

Figure 10: Storage operation for 2016, Γ = 2

storage activity is significant, with more than 300 days of operation in 2016.520

4.3. Impact of storage operation on the market

The impact of storage operation on the price was incorporated into the self-scheduling problem

to avoid over-estimating the potential arbitrage profits for a large storage facility. This formulation

allows to investigate the overall impact of the storage implementation on the prices. This may be

especially interesting from the perspective of the market operator.525

Though the size of the energy storage facility considered in the study is comparable to the

biggest existing size for a battery system, it is still marginal with respect to the size of the market

(the charging and discharging power considered is equivalent to 0.3% of the highest load in New-

York state). It might be of interest to study the price impacts of the storage for greater sizes.

The highest sizes considered in this section are not realistic for a single energy storage facility,530

but this may be seen as an approximation of the implementation of several storage facilities on

the market, assuming that these facilities are operated simultaneously by the same player. With

the federally mandated changes in market participation of storage [3], we anticipate similarly large

storage players in the near future.

Tables 1 and 2 present respectively the impact of differently-sized storage on the prices during535

charging and discharging hours. The storage facilities are assumed to be scheduled using Γ = 2.

As expected, we notice that the storage operation reduces the price differential between off-peak

hours (the discharging hours in Table 1) and peak hours (the charging hours in Table 2). During

discharging operations, the energy storage facility causes a significant decrease in the average price,

ranging from 0.67% to 4.54% depending on the size of the storage. During charging operations, the540

relative increase in the price varies from 1.30% to 11.25%.
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Size Size No. hours discharging Price average Average Price Change

(% of the market) (GW) ($/MWh)

Without With ($/MWh) %

0.3 0.1 1086 28.79 28.59 -0.19 -0.67

1 0.3 1458 27.80 27.38 -0.42 -1.52

2 0.6 1885 27.17 26.56 -0.61 -2.25

5 1.5 2403 26.97 26.02 -0.95 -3.53

10 3 2626 27.27 26.03 -1.24 -4.54

Table 1: Average price comparison without and with storage during discharging hours for different sizes of storage

(Γ = 2)

Size Size No. hours charging Price average Average Price Change

(% of the market) (GW) ($/MWh)

Without With ($/MWh) %

0.3 0.1 1313 12.33 12.49 0.16 1.30

1 0.3 1465 12.36 12.77 0.42 3.40

2 0.6 1698 12.56 13.24 0.68 5.40

5 1.5 1956 13.19 14.33 1.15 8.71

10 3 2035 13.49 15.01 1.52 11.25

Table 2: Average price comparison without and with storage during charging hours for different sizes of storage (Γ = 2)
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(a) Global curve (b) 1000 most expensive hours

Figure 11: Price duration curve for 2016 with and without storage

We may also notice that the number of hours of operation, both charging and discharging,

increases with the size of storage. This is due to the integration of the price-maker effect in the

self-scheduling. When the storage size increases, it is sometimes better to distribute the purchases

and sales over more hours to avoid reducing too much the peak price differential.545

Figure 11 presents the price duration curves without storage and with the largest storage for

the year 2016. For the sake of clarity, the duration curves obtained with other sizes for the storage

facility are not represented. Especially, for smaller sizes, the resulting curve is closer to the original

curve (with no storage in operation). Figure 11 allows to measure the overall impact of storage on

the prices for all the hours of the year. We notice that the presence of storage slightly reduces the550

volatility of the prices, lowering the highest prices and increasing the lowest prices. A focus on the

1000 first hours of the price duration curve (see Figure 11b) provides a more accurate overview of

the impact during the most expensive hours of the year. The presence of storage allows to lower

the maximal price by 12% (from 93.23$/MWh to 82.12$/MWh).

Tables 3 and 4 present respectively the impact of storage operation on the price during discharg-555

ing and charging hours, for the maximal size of storage. We notice that the number of operating

hours decreases when the risk-aversion increases. This result may be surprising, since we observed

that risk aversion led the operator to distribute his purchases and sales over a larger time window.

However, the increasing level of risk-aversion concurrently reduces the number of days when the

storage is operating, to avoid incurring losses. The decrease in the number of operating hours is560
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Gamma No. hours discharging Price average Average Price Change

($/MWh)

Without With ($/MWh) %

0 3562 25.42 23.55 -1.87 -7.35

1 3383 25.69 24.06 -1.64 -6.37

2 2626 27.27 26.04 -1.24 -4.54

3 1538 31.26 29.97 -1.29 -4.13

4 928 36.23 34.84 -1.38 -3.82

5 630 39.55 38.16 -1.39 -3.51

Table 3: Average price comparison without and with storage during discharging hours for different values of Γ

Gamma No. hours charging Price average Average Price Change

($/MWh)

Without With ($/MWh) %

0 2377 13.26 15.03 1.77 13.36

1 2302 13.27 15.03 1.76 13.26

2 2035 13.49 15.01 1.52 11.25

3 1427 14.55 15.92 1.37 9.45

4 938 16.42 17.8 1.38 8.39

5 666 17.6 18.94 1.34 7.62

Table 4: Average price comparison without and with storage during charging hours for different values of Γ

explained by this second effect.

Tables 3 and 4 both show that the impact of storage on the price is limited when the risk

aversion of the storage increases. The increase during the charging hours drops from 13.36% for

Γ = 0 to 7.62% for Γ = 5, while the decrease during the discharging hours drops from 7.35% for

Γ = 0 to 3.51% for Γ = 5. This is due to the conservative strategies, which imply lower charging565

and discharging power, because of the distribution of purchases and sales.
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5. Conclusion

This paper proposes an original approach to determine the optimal bidding strategy of a large

energy storage facility doing arbitrage in a context of price uncertainty. A robust optimization

framework is proposed to deal with price uncertainty. This framework is based on a representation570

of the market supply curve that integrates the impact of storage operation on market prices. Specif-

ically we model the supply curve as a function of net demand, i.e., load minus wind production, as

a mean to explain the variance in price while maintaining an interpretable representation. Using

quantile regression to model the uncertainty bounds on the price per level of net demand, we can

guarantee that 90% of the variation in price is captured in the uncertainty set. A more risk-averse575

storage operator could opt for an even more inclusive representation of variations.

The robust optimization formulation integrates the risk aversion of the energy storage operator

with respect to financial loss through the operator’s choice of a budget of uncertainty Γ. This allows

a broad variety of strategies to be implemented, according to the magnitude of the budget with

which the operator is comfortable. The nominal strategy (i.e. Γ = 0) consists in benefiting from580

the lowest (respectively highest) demand hours to charge (respectively discharge) the battery with

high power output. As the level of risk aversion increases, the general trend is then to distribute

the storage operations over an increasing range of time steps to avoid being impacted by a maximal

perturbation at each hour of operation. Though greater values of Γ provide more conservative

strategies, thus lower expected profits, they result in a decrease in terms of risk exposure. A good585

compromise between these two objectives is reached using Γ = 2: the loss probability is thus

lowered from 3.01% to 1.09%, while the expected profit is reduced by only 10.80% with respect to

the nominal strategy.

Finally, we assess the overall impact of energy storage market participation on price. It is found

that larger energy storage facilities can provoke a great increase in off-peak prices (up to 13.36%590

for zero risk-aversion operators) and a great decrease in peak prices (up to 7.35%). This effect is

mitigated when the storage operator is risk averse.

In closing, we point out that the issues relating to the location of the storage facility was

not addressed. To evaluate the actual profits of the storage facility, transmission costs should be

incorporated in the self-scheduling model. The representative supply curves and the developed595

robust model could be used in future work to formulate an optimization framework to find the

optimal location for the storage facility.
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6. Appendix

6.1. Optimal solutions to problems (1) and (4) satisfy P dt P
c
t = 0

In this appendix, we demonstrate that the set of optimal solutions for problems (1) and (4)

necessarily satisfy the constraint:

P dt P
c
t = 0 , ∀t ∈ J1, T K . (11)

The main part of this demonstration consists of the following proposition.600

Proposition 1. Let the tuplet {(P dt , P ct , Et)}T+1
t=1 be any solution that satisfies (1b)-(1f) but not

(11), then there exists a solution {(P̄ dt , P̄ ct , Ēt)}T+1
t=1 that satisfies (1b)-(1f) and (11), and achieves

strictly greater performance with respect to

ψ({(P dt , P ct )}Tt=1) :=

T∑
t=1

(P dt − P ct )ft(P
d
t − P ct )−

T∑
t=1

C(P dt + P ct ) (12)

for any choice of {ft}t∈J1,T K such that each ft is non-negative and non-increasing and for any

C > 0.

Proof. Let us consider an assignment {(P dt , P ct , Et)}T+1
t=1 that satisfies (1b)-(1f) but not (11). Our

proof decomposes in two steps. We first show that given any initial choice for Ē1 such that Ē1 ∈

[E1, Emax], we can construct an assignment for {P̄ dt }Tt=1, {P̄ ct }Tt=1, {Ēt}T+1
t=2 that satisfies constraints605

(1b)-(1e) and (11), and achieves a strictly larger value according to ψ. We then confirm that it is

always possible to identify a Ē1 ∈ [E1, Emax] for which this constructed assignment also satisfies

(1f).

Step 1: Given any initial reference battery charge Ē1 ∈ [E1, Emax], for any time step t =

1, . . . , T , we construct the following candidate solution

P̄ dt :=

 P dt − P ct if P dt ≥ P ct
0 otherwise

(13)

P̄ ct :=

 min
(
P ct − 1

η2P
d
t ; 1

η (Emax − Ēt)
)

if P dt ≤ η2P ct

0 otherwise
(14)

Ēt+1 := Ēt + ηP̄ ct −
1

η
P̄ dt (15)
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We start by highlighting a few properties of the constructed {(P̄ dt , P̄ ct , Ēt)}T+1
t=1 . In particular, since

P dt ≥ 0 and P ct ≥ 0 it is clear from their definitions that for all t, P̄ dt ≤ P dt and P̄ ct ≤ P ct . Given

that {P dt }Tt=1, {P ct }Tt=1 does not satisfy (11), there must also exist a t̄, such that both P dt̄ > 0 and

P dt̄ > 0 thus we have that

P̄ dt̄ ≤ max(0, P dt̄ − P
c
t̄ ) < P dt̄ P̄ ct̄ ≤ max(0, P ct̄ − P

d
t̄ ) < P ct̄ .

Furthermore, one can establish that Ēt ≥ Et recursively from t = 1 to t = T + 1. Of course, for

t = 1 this is the case based on how Ē1 was initialized. Next, assuming that Ēt ≥ Et, we can

inductively show that it is also the case that Ēt+1 ≥ Et+1 for each of the three possible scenarios.

If P dt ≥ P ct , then

Ēt+1 = Ēt −
1

η
(P dt − P ct ) ≥ Et +

1

η
P ct −

1

η
P dt ≥ Et + ηP ct −

1

η
P dt = Et+1 ,

since η ∈]0, 1]. Alternatively, if P ct ≥ P dt ≥ η2P ct , then

Ēt+1 = Ēt ≥ Et ≥ Et + ηP ct −
1

η
P dt = Et+1 ,

since η2P ct − P dt ≤ 0. Thirdly, when P dt ≤ η2P ct , we have that

Ēt+1 = Ēt + ηmin

(
P ct −

1

η2
P dt ;

1

η
(Emax − Ēt)

)
= min

(
Ēt + ηP ct −

1

η
P dt ; Emax

)
= min

(
Et + ηP ct −

1

η
P dt ; Emax

)
≥ Et+1 ,

since both terms in the minimum operator are larger or equal to Et+1.

We can then exploit these properties to confirm that all constraints (1b)-(1e) are satisfied. We

already see that (1d) is satisfied by construction of the tuplet. Next, we can look at (1e) and realize

that Ēt ≥ 0 follows directly from the property that Ēt ≥ Et. To show that Ēt ≤ Emax we need

to be more careful and proceed iteratively from t = 1 to t = T + 1. For t = 1, this follows from

Ē1 ≤ Emax. Following the argument that Ēt ≤ Emax, we further confirm by induction that for

t+ 1, we have Ēt+1 ≤ Emax for the three possible scenarios. If P dt ≥ P ct , then

Ēt+1 = Ēt −
1

η
(P dt − P ct ) ≤ Ēt ≤ Emax .

Alternatively, if P ct ≥ P dt ≥ η2P ct , then

Ēt+1 = Ēt ≤ Emax .
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Thirdly, when P dt ≤ η2P ct , we have that

Ēt+1 = Ēt + ηmin

(
P ct −

1

η2
P dt ;

1

η
(Emax − Ēt)

)
≤ Ēt + (Emax − Ēt) = Emax .

In the case of (1b) and (1c), we can straightforwardly confirm that P̄ ct ≤ P ct ≤ P cmax and

P̄ dt ≤ P dt ≤ P cmax, while the non-negativity only need to be verified under the specific condition

where each one is non-zero. Namely, for P̄ dt ≥ 0, we only need to study the case where P dt ≥ P ct

which is trivial since P̄ dt = P dt −P ct ≥ 0. As of P̄ ct ≥ 0, one needs to pay close attention to the case

where P dt ≤ η2P ct , where

P̄ ct = min

(
P ct −

1

η2
P dt ;

1

η
(Emax − Ēt)

)
≥ min(0 ; 0) = 0 ,

since both terms are non-negative: P ct − (1/η2)P dt ≥ 0 and Emax − Ēt since Ēt ≤ Emax.610

The last part of this first step consists of demonstrating that {(P̄ dt , P̄ ct , Ēt)}T+1
t=1 achieves a

strictly larger ψ value than {(P dt , P ct , Et)}T+1
t=1 . In particular, we will show that for each t ∈ J1, T K,

both

C(P̄ dt + P̄ ct ) ≤ C(P dt − P ct ) (16)

(P̄ dt − P̄ ct )ft(P̄
d
t − P̄ ct ) ≥ (P dt − P ct )ft(P

d
t − P ct ) , ∀t ∈ J1, T K . (17)

This would complete our argument given that

ψ({(P̄ dt , P̄ ct )}t∈J1,T K) =
∑

t∈J1,T K

(P̄ dt − P̄ ct )ft(P̄
d
t − P̄ ct )−

∑
t∈J1,T K

C(P̄ dt + P̄ ct )

≥
∑

t∈J1,T K

(P dt − P ct )ft(P
d
t − P ct )−

∑
t∈J1,T K

C(P dt + P ct ) + C(P dt̄ + P ct̄ )− C(P̄ dt̄ + P̄ ct̄ )

≥
∑

t∈J1,T K

(P dt − P ct )ft(P
d
t − P ct )−

∑
t∈J1,T K

C(P dt + P ct ) + C(P dt̄ − P̄
d
t̄ ) + C(P ct̄ − P̄

c
t̄ )

>
∑

t∈J1,T K

(P dt − P ct )ft(P
d
t − P ct )−

∑
t∈J1,T K

C(P dt + P ct ) = ψ({(P dt , P ct )}t∈J1,T K)

The statement in (16) is simply due to the fact that both P̄ dt ≤ P dt and P̄ ct ≤ P ct . On the other

hand, the statement in (17) needs to be studied under the three possible scenarios. If P dt ≥ P ct ,

then

(P̄ dt − P̄ ct )ft(P̄
d
t − P̄ ct ) = (P dt − P ct )ft(P

d
t − P ct ) , ∀t ∈ J1, T K .

36



Alternatively, if P ct ≥ P dt ≥ η2P ct , then

(P̄ dt − P̄ ct )ft(P̄
d
t − P̄ ct ) = 0 ≥ (P dt − P ct )ft(P

d
t − P ct ) ,

since P dt −P ct ≤ 0 and ft(·) is non-negative. Thirdly, when P dt ≤ η2P ct , we first let ∆ := P̄ dt − P̄ ct −

P dt + P ct which can be shown non-negative, i.e.

∆ = P̄ dt − P̄ ct − P dt + P ct = max(
1

η2
P dt − P ct ; Ēt − Emax)− P dt + P ct

≥ 1

η2
P dt − P ct − P dt + P ct ≥ 0 ,

and argue that for all t ∈ J1, T K

(P̄ dt − P̄ ct )ft(P̄
d
t − P̄ ct ) ≥ (P̄ dt − P̄ ct )ft(P̄

d
t − P̄ ct −∆)

≥ (P dt − P ct + ∆)ft(P
d
t − P ct )

≥ (P dt − P ct )ft(P
d
t − P ct ) ,

where we exploited the fact that P̄ dt − P̄ ct = −P̄ ct ≤ 0 and that ft(·) is non-increasing.

We can therefore conclude that ψ({(P̄ dt , P̄ ct )}t∈J1,T K) > ψ({(P dt , P ct )}t∈J1,T K).615

Step 2: We are left with the second part of this proof which consists of showing that there exists

a Ē1 ∈ [E1, Emax] that makes the constructed policy also satisfy (1f). Letting g : [E1, Emax] →

[0 , Emax] be the function that returns ĒT+1 based on the procedure described in (13)-(15) for some

initial reference battery charge Ē1 ∈ [E1, Emax], we can first establish that g(·) is a continuous

function since it is the composition of T continuous functions. One can also confirm that the range

of g(·) is [E1, Emax] since we established that Ēt ∈ [Et, Emax] hence

g(Ē1) = ĒT+1 ∈ [ET+1, Emax] = [E1, Emax] .

Hence, one can make use of the intermediate value theorem on ψ(y) := g(y) − y to establish that

g(·) has a fixed point:

g(E1) ≥ 0 & g(Emax) ≤ Emax ⇒ ψ(E1) ≥ 0 & ψ(Emax) ≤ 0

⇒ ∃y ∈ [E1, Emax], ψ(y) = 0

⇒ ∃Ē1 ∈ [E1, Emax], g(Ē1) = Ē1 .

This completes our proof.
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With Proposition 1 in hand, it is possible to draw the following conclusions.

Corollary 2. Any optimal solution to problems (1) and (4) necessarily satisfies constraint (11).

Proof. In the case of problem (1), this claim is quite straightforward since the objective function

takes directly the form of ψ(·) as defined in (12). Therefore, any solution candidate that does not620

satisfy constraint (11) is necessarily a sub-optimal solution for this problem.

In the case of problem (1), the claim is similarly demonstrated. Namely, given any candidate

{(P dt , P ct , Et)}T+1
t=1 that is feasible, one can construct a new solution {(P̄ dt , P̄ ct , Ēt)}T+1

t=1 that satisfies

constraints (1b) - (1f) and achieves a strictly larger objective value. We can also confirm that this

new candidate satisfies the robust constraint (4b) since for all (f1, f2, . . . , fT ) ∈ F(Γ), we have that:

T∑
t=1

(P̄ dt − P̄ ct )ft(P̄
d
t − P̄ ct )−

T∑
t=1

C(P̄ dt + P̄ ct ) >

T∑
t=1

(P dt − P ct )ft(P
d
t − P ct )−

T∑
t=1

C(P dt + P ct ) ≥ 0

6.2. Details on obtaining reformulation (10)

In order to obtain the mixed-integer convex quadratically constrained model (10), we start by

treating the objective function (9a). The same procedure should then be followed on each one of625

constraints (7b) - (7d). Specifically, we are seeking a mixed-integer convex quadratically constrained

programming representation for the function zf̂t(z) for z ∈ [−P cmax, nt] given that f̂ ’s domain is

the non-negatives. To achieve this, we take the following steps:

zf̂t(z) = zπ̂w(nt − z)

= max
y∈[γ0, γ4] : y=nt−z

(nt − y)

4∑
j=1

(âjy + b̂j)1{γj−1 ≤ y ≤ γj}

= max
y∈R4,ν∈{0, 1}4

4∑
j=1

(nt − yj)(âjyj + b̂jνj)

subject to

4∑
j=1

yj = nt − z

4∑
j=1

νj = 1

γj−1νj ≤ yj ≤ γjνj , ∀ j = 1, . . . , 4 .
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The rest follows from integrating this representation in problem (9) using an epigraph formulation.

One then follows with the reformulation of each constraint in (7b) - (7d). Note however that the630

use of y ∈ R4 and ν ∈ {0, 1}4 can be shared among all four reformulations.
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