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MODIFIED LOG-SOBOLEV INEQUALITIES FOR STRONGLY LOG-CONCAVE

DISTRIBUTIONS

MARY CRYAN, HENG GUO, AND GIORGOS MOUSA

Abstract. We show that themodified log-Sobolev constant for a naturalMarkov chain which converges

to an r-homogeneous strongly log-concave distribution is at least 1/r. As a consequence, we obtain

an asymptotically optimal mixing time bound for this chain. Applications include the bases-exchange

random walk in a matroid.

1. Introduction

Let π : {0, 1}n → R>0 be a discrete distribution. Consider the generating polynomial of π:

gπ(x) =
∑

S⊆[n]

π(S)
∏

xi∈S

xi.

We call a polynomial log-concave if its logarithm is concave, and strongly log-concave if it is log-concave
at the all one vector 1 a�er taking any sequence of partial derivatives. �e distribution π is strongly
log-concave if gπ is.

An important example of strongly log-concave distributions is the uniform distribution over the
bases of a matroid (Anari et al., 2018a; Brändén and Huh, 2019). �is discovery leads to the break-
through result that the exchange walk over the bases of a matroid is rapidly mixing Anari et al. (2018a),
which implies the existence of a fully polynomial-time randomised approximation scheme (FPRAS) for
the number of bases of any matroid (given by an independence oracle).

�e bases-exchange walk, denoted by PBX, is defined as follows. In each step, we remove an element
from the current basis uniformly at random to get a set S. �en, we move to a basis containing S
uniformly at random. �is chain is irreducible and it converges to the uniform distribution over the
bases of a matroid. Brändén and Huh (2019) showed that the support of an r-homogeneous strongly
log-concave distribution πmust be the set of bases of a matroid. �us, to sample from π, we may use a
random walk PBX,π similar to the above. �e only change required is that in the second step we move
to a basis B ⊃ S with probability proportional to π(B).

Let P be a Markov chain over a state space Ω, and π be its stationary distribution. To measure the
convergence rate of P, we use the total variation mixing time,

tmix(P, ε) := min
t

{t | ‖Pt(x0, ·) − π‖TV 6 ε},

where x0 ∈ Ω is the initial state and the subscript TV denotes the total variation distance between two
distributions. �e main goal of this paper is to show that for any r-homogeneous strongly log-concave
distribution π,

tmix(PBX,π, ε) 6 r

(

log log
1

πmin
+ log

1

2ε2

)

,(1)

where πmin = minx π(x). �is will improve the previous bound tmix(PBX,π, ε) 6 r
(

log 1
πmin

+ log 1
ε

)

due to Anari et al. (2018a). Since πmin is most commonly exponentially small in the input size (e.g.
when π is the uniform distribution), the improvement is usually a polynomial factor. Our bound is
asymptotically optimal without further assumptions, as the upper bound is achieved when π is the
uniform distribution over the bases of some matroids (Jerrum, 2003).1

1One such example is the matroid defined by a graph which is similar to a path but with two parallel edges connecting

every two successive vertices instead of a single edge. Equivalently, this can be viewed as the partition matroid where each
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Our main improvement is a modified log-Sobolev inequality for π and PBX,π. To introduce this
inequality, we define the Dirichlet form of a reversible Markov chain P, over state spaceΩ, as

EP (f,g) :=
∑

x,y∈Ω

π(x)f(x)
[

I− P
]

(x,y)g(y),

where f,g are two functions over Ω, and I denotes the identity matrix. Moreover, let the entropy of
f : Ω → R>0 be

Entπ (f) := Eπ(f log f) − Eπ f log Eπ f,

where we follow the convention that 0 log 0 = 0. If we normalise Eπ f = 1, then Entπ (f) is the relative
entropy (or Kullback–Leibler divergence) between π(·)f(·) and π(·).

�e modified log-Sobolev constant (Bobkov and Tetali, 2006) is defined as

ρ(P) := inf

{

EP (f, log f)

Entπ (f)
| f : Ω → R>0 , Entπ (f) 6= 0

}

.

Our main theorem is the following, which is a special case of Theorem 6.

�eorem 1. Let π be an r-homogeneous strongly log-concave distribution. �en

ρ(PBX,π) >
1

r
.

Since tmix(P, ε) 6 1
ρ(P)

(

log log 1
πmin

+ log 1
2ε2

)

(cf. Bobkov and Tetali, 2006), Theorem 1 directly

implies the mixing time bound (1).
In fact, we showmore than Theorem 1. Following Anari et al. (2018a) and Kaufman and Oppenheim

(2018), we stratify independent sets of the matroidM by their sizes, and define two random walks for
each level, depending on whether they add or delete an element first. For instance, the bases-exchange
walk PBX,π is the “delete-add” or “down-up” walk for the top level. We give lower bounds for the
modified log-Sobolev constants of both random walks for all levels. For the complete statement, see
Section 3 and Theorem 6.

�e previous work of Anari et al. (2018a), building upon (Kaufman and Oppenheim, 2018), focuses
on the spectral gap of PBX,π. It is well known that lower bounds of the modified log-Sobolev constant
are stronger than those of the spectral gap. �us, we need to seek a different approach. Our key lemma,
Lemma 10, shows that the relative entropy contracts by a factor of 1 − 1

k
when we go from level k to

level k−1. Theorem 1 is a simple consequence of this lemma and Jensen’s inequality. In order to prove
this lemma, we used a decomposition idea to inductively bound the relative entropy, which appears to
be novel.

Prior to our work, similar bounds have been obtained only for strongly Rayleigh distributions,
which, introduced by Borcea et al. (2009), are a proper subset of strongly log-concave distributions.
Hermon and Salez (2019) showed a lower bound on the modified log-Sobolev constant for strongly
Rayleigh distributions, improving upon the spectral gap bound of Anari et al. (2016). �e work of
Hermon and Salez (2019) builds upon the previous work of Jerrum et al. (2004) for balanced matroids
(Feder and Mihail, 1992). All of these results follow an inductive framework inspired by Lee and Yau
(1998), which is apparently difficult to carry out in the case of general matroids or strongly log-concave
distributions. �e approach we took is entirely different.

In Section 2 we introduce necessary notions and briefly review relevant background. In Section 3
we formally state our main results. In Section 4 we prove modified log-Sobolev constant lower bounds
for the “down-up” walk. In Section 5 we finish by dealing with the “up-down” walk.

2. Preliminaries

In this section we define and give some basic properties of Markov chains, strongly log-concave
distributions, and matroids.

block has two elements and each basis is formed by choosing exactly one element from every block. �e Markov chain PBX,π

in this case is just a lazy random walk on the Boolean hypercube.
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2.1. Markov chains. Let Ω be a discrete state space and π be a distribution over Ω. Let P : Ω ×
Ω → R>0 be the transition matrix of a Markov chain whose stationary distribution is π. �en,
∑

y∈Ω P(x,y) = 1 for any x ∈ Ω. We say P is reversible with respect to π if

π(x)P(x,y) = π(y)P(y, x).(2)

We adopt the standard notation of Eπ for a function f : Ω → R, namely

Eπ f =
∑

x∈Ω

π(x)f(x).

We also view the transitionmatrixP as an operator that maps functions to functions. More precisely,
let f be a function f : Ω → R and P acting on f is defined as

Pf(x) :=
∑

y∈Ω

P(x,y)f(y).

�is is also called the Markov operator corresponding to P. We will not distinguish the matrix P from
the operator P as it will be clear from the context. Note that Pf(x) is the expectation of f with respect
to the distribution P(x, ·). We can regard a function f as a column vector in R

Ω, in which case Pf is
simply matrix multiplication.

�e Hilbert space L2(π) is given by endowing R
Ω with the inner product

〈f,g〉π :=
∑

x∈Ω

π(x)f(x)g(x),

where f,g ∈ R
Ω. In particular, the norm in L2(π) is given by ‖f‖π := 〈f, f〉π.

�e adjoint operator P∗ of P is defined as P∗(x,y) =
π(y)P(y,x)

π(x)
. Indeed, P∗ is the (unique) operator

that satisfies 〈f,Pg〉π = 〈P∗f,g〉π. It is easy to verify that if P satisfies the detailed balanced condition
(2) (so P is reversible), then P is self-adjoint, namely P = P∗.

�e Dirichlet form is defined as:

EP (f,g) := 〈(I− P)f,g〉π ,(3)

where I stands for the identity matrix of the appropriate size. Let the Laplacian L := I− P. �en,

EP (f,g) =
∑

x,y∈Ω

π(x)g(x)L(x,y)f(y)

= gT diag(π)Lf,

where in the last line we regard f, g, and π as (column) vectors over Ω. In particular, if P is reversible,
then L∗ = L and

EP (f,g) = 〈Lf,g〉π = 〈f,L∗g〉π = 〈f,Lg〉π = EP (g, f)

= fT diag(π)Lg.(4)

In this paper all Markov chains are reversible and we will most commonly use the form (4). Another
common expression of the Dirichlet form for reversible P is

EP (f,g) =
1

2

∑

x,y∈Ω

π(x)P(x,y)(f(x) − f(y))(g(x) − g(y)),

but we will not need this expression in this paper. It is well known that the spectral gap of P, or
equivalently the smallest positive eigenvalue of L, controls the convergence rate of P. It also has a
variational characterisation. Let the variance of f be

Varπ (f) := Eπ f2 − (Eπ f)2 .

�en

λ(P) := inf

{

EP (f, f)

Varπ (f)
| f : Ω → R , Varπ (f) 6= 0

}

.

3



�e usefulness of λ(P) is due to the following

tmix(P, ε) 6
1

λ(P)

(

1

2
log

1

πmin
+ log

1

2ε

)

,(5)

where πmin = minx∈Ω π(x). See, for example, Levin and Peres (2017, �eorem 12.4).

�e (standard) log-Sobolev inequality relatesEP

(√
f,
√
f
)

with the following entropy-like quantity:

Entπ (f) := Eπ(f log f) − Eπ f log Eπ f(6)

for a non-negative function f, where we follow the convention that 0 log 0 = 0. Also, log always stands
for the natural logarithm in this paper. �e log-Sobolev constant is defined as

α(P) := inf







EP

(√
f,
√
f
)

Entπ (f)
| f : Ω → R>0 , Entπ (f) 6= 0







.

�e constantα(P) gives a be�er control of themixing time of P, as shown by Diaconis and Saloff-Coste
(1996),

tmix(P, ε) 6
1

4α(P)

(

log log
1

πmin
+ log

1

2ε2

)

.(7)

�e saving seems modest comparing to (5), but it is quite common that πmin is exponentially small in
the instance size, in which case the saving is a polynomial factor.

What we are interested in, however, is the following modified log-Sobolev constant introduced by
Bobkov and Tetali (2006):

ρ(P) := inf

{

EP (f, log f)

Entπ (f)
| f : Ω → R>0 , Entπ (f) 6= 0

}

.

Similar to (7), we have that

tmix(P, ε) 6
1

ρ(P)

(

log log
1

πmin
+ log

1

2ε2

)

,(8)

as shown by Bobkov and Tetali (2006, Corollary 2.8).
For reversible P, the following relationships among these constants are known,

2λ(P) > ρ(P) > 4α(P).

See, for example, Bobkov and Tetali (2006, Proposition 3.6).
�us, lower bounds on these constants are increasingly difficult to obtain. However, to get the

best asymptotic control of the mixing time, one only needs to lower bound the modified log-Sobolev
constant ρ(P) instead of α(P) by comparing (7) and (8). Indeed, as observed by Hermon and Salez
(2019), by taking the indicator function 1

π(x)
1x for all x ∈ Ω,

α(P) 6 min
x∈Ω

{

1

− logπ(x)

}

.

In our se�ing of r-homogeneous strongly log-concave distributions, we cannot hope for an uniform
bound for α(P) similar to Theorem 1, as the right hand side of the above can be arbitrarily small for
fixed r.

By (3) and (6), it is clear that if we replace f by cf for some constant c > 0, then both EP (f, log f)

and Entπ (f) increase by the same factor c. �us, in order to bound ρ, we may further assume that
Eπ f = 1. �is assumption allows a simplification Entπ (f) = Eπ(f log f). Indeed, in this case, π(·)f(·)
is a distribution, and Entπ (f) is the relative entropy (or Kullback–Leibler divergence) between π(·)f(·)
and π(·).
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2.2. Strongly log-concave distributions. We write ∂i as shorthand for
∂

∂xi
, and ∂I for an index set

I = {i1, . . . , ik} as shorthand for ∂i1 . . . ∂ik .

Definition 2. A polynomial p ∈ R[x1, . . . , xn]with non-negative coefficients is log-concave at x ∈ R>0

if its Hessian ∇2 log p is negative semi-definite at x. We call p strongly log-concave if for any index set

I ⊆ [n], ∂Ip is log-concave at the all-1 vector 1.

�e notion of strong log-concavity was introduced by Gurvits (2009a,b). �ere are also notions
of complete log-concavity introduced by Anari et al. (2018b), and Lorentzian polynomials introduced by
Brändén and Huh (2019). It turns out that all three notions are equivalent. See Brändén and Huh (2019,
�eorem 5.3).

�e following property of strongly log-concave polynomials is particularly useful (Anari et al., 2018b;
Brändén and Huh, 2019).

Proposition 3. If p is strongly log-concave, then for any I ⊆ [n], the Hessian matrix ∇2∂Ip(1) has at
most one positive eigenvalue.

In fact,∇2∂Ip(1) having at most one positive eigenvalue is equivalent to ∇2 log ∂Ip(1) being neg-
ative semi-definite, but we will only need the direction above.

A distribution π is called r-homogeneous (or strongly log-concave) if gπ is.

2.3. Matroids. A matroid is a combinatorial structure that abstracts the notion of independence. We
shall define it in terms of its independent sets, although many different equivalent definitions exist.
Formally, a matroid M = (E, I) consists of a finite ground set E and a collection I of subsets of E
(independent sets) that satisfy the following:

• ∅ ∈ I;
• if S ∈ I, T ⊆ S, then T ∈ I;
• if S, T ∈ I and |S| > |T |, then there exists an element i ∈ S \ T such that T ∪ {i} ∈ I.

�e first condition guarantees that I is non-empty, the second implies that I is downward closed, and
the third is usually called the augmentation axiom. We direct the reader to Oxley (1992) for a reference
book on matroid theory. In particular, the augmentation axiom implies that all the maximal indepen-
dent sets have the same cardinality, namely the rank r of M. �e set of bases B is the collection of
maximal independent sets of M. Furthermore, we denote by M(k) the collection of independent sets
of size k, where 1 6 k 6 r. If we dropped the augmentation axiom, the resulting structure would be a
non-empty collection of subsets of E that is downward closed, known as a (abstract) simplicial complex.

Brändén and Huh (2019, �eorem 7.1) showed that the support of an r-homogeneous strongly log-
concave distribution π is the set of bases of a matroidM = (E, I) of rank r. We equip I with a weight
function w(·) recursively defined as follows:2

w(I) :=

{

π(I)Zr if |I| = r,
∑

I ′⊃I, |I ′|=|I|+1 w(I ′) if |I| < r,

for some normalisation constant Zr > 0. For example, we may choose w(B) = 1 for all B ∈ B and
Zr = |B|, which corresponds to the uniform distribution over B. It follows that

w(I) = (r − |I|)!
∑

B∈B, I⊆B

w(B).

Let πk be the distribution over M(k) such that πk(I) ∝ w(I) for I ∈ M(k). �us π = πr. Let Zk =
∑

I∈M(k)w(I) be the normalisation constant of πk. In fact, for any 0 6 k 6 r, k!Zk = Z0 = w(∅).
It is straightforward to verify that for any I ∈ I,

∂Igπ(1) =
∑

B∈B,I⊂B

π(B) =
1

Zr

∑

B∈B,I⊂B

w(B).(9)

2One may define w(I) to be a k!
r!

fraction of the current definition for I ∈ M(k). �is alternative definition will elim-

inate many factorial factors in the rest of the paper. However, it is inconsistent with the literature (Anari et al., 2018a;

Kaufman and Oppenheim, 2018), so we do not adopt it.
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We also writew(v) as shorthand for w({v}) for any v ∈ E.
For an independent set I ∈ I, the contraction MI = (E \ I, II) is also a matroid, where II = {J |

J ⊆ E \ I, J ∪ I ∈ I}. We equip MI with a weight function wI(·) such that wI(J) = w(I ∪ J). We
may similarly define distributions πI,k for k 6 r − |I| such that πI,k(J) ∝ wI(J) for J ∈ MI(k).
For convenience, instead of defining πI,k over MI(k), we define it over M(k + |I|) such that for any
J ∈ M(k+ |I|),

πI,k(J) :=

{

k!w(J)
w(I) if I ⊂ J;

0 otherwise.
(10)

Notice that the normalising constant ZI,k =
w(I)
k! .

If |I| 6 r − 2, let WI be the matrix such that Wuv = wI({u, v}) for any u, v ∈ E \ I. �en notice
that

wI({u, v}) = w(I ∪ {u, v})

= (r − |I| − 2)!
∑

B∈B, I∪{u,v}⊆B

w(B)

= (r − |I| − 2)!Zr · ∂u∂v∂Igπ(1).(by (9))

In other words,WI is∇2∂Igπ multiplied by the scalar (r− |I|− 2)!Zr. �us, Proposition 3 implies the
following.

Proposition 4. Let π be an r-homogeneous strongly log-concave distribution over M = (E, I). If I ∈ I

and |I| 6 r − 2, then the matrix WI has at most one positive eigenvalue.

Proposition 4 implies the following bound for a quadratic form, which will be useful later.

Lemma 5. Let f : MI(1) → R be a function such that EπI,1
f = 1. �en

fTWIf 6 w(I).

Proof. Let wI = {wI(v)}v∈E\I. �e constraint EπI,1
f = 1 implies that

∑

v∈E\I wI(v)f(v) = w(I).

Let D = diag(wI) and A = D−1/2WID
−1/2. �en A is a real symmetric matrix. By Proposition 4,

WI has at most one positive eigenvalue, and thus so does A. We may decompose A as

A =

|E\I|
∑

i=1

λigig
T

i ,(11)

where {gi} is an orthonormal basis and λi 6 0 for all i > 2. Moreover, notice that
√
wI is an eigenvec-

tor of A with eigenvalue 1. �us, λ1 = 1 and g1 can be taken as
√
πI,1.

�e decomposition (11) directly implies that

W =

|E\I|
∑

i=1

λihih
T

i ,

where hi = giD
1/2. In particular, h1 = 1√

w(I)
wI. �e assumption

∑

v∈E\I wI(v)f(v) = w(I) can

be rewri�en as 〈h1, f〉 =
√

w(I). �us,

fTWIf =

|E\I|
∑

i=1

λi 〈hi, f〉2 6 〈h1, f〉2 = w(I),

where the inequality is due to the fact that λ1 = 1 and λi 6 0 for all i > 2. �e lemma follows. �

6



3. Main results

�ere are two natural random walks P∧
k and P∨

k on M(k) by starting with adding or deleting an

element and coming back toM(k). Given the current I ∈ M(k), the “up-down” random walk P∧
k first

chooses I ′ ∈ M(k+ 1) such that I ′ ⊃ I with probability proportional tow(I ′), and then removes one
element from I ′ uniformly at random. More formally, for 1 6 k 6 r− 1 and I, J ∈ M(k), we have that

P∧
k (I, J) =











1
k+1

if I = J;
w(I∪J)

(k+1)w(I)
if I ∪ J ∈ M(k+ 1);

0 otherwise.

(12)

�e “down-up” random walk P∨
k removes an element of I uniformly at random to get I ′ ∈ M(k − 1),

and then moves to J such that J ∈ M(k), J ⊃ I ′ with probability proportional to w(J). More formally,
for 2 6 k 6 r,

P∨
k (I, J) =











∑

I ′∈M(k−1),I ′⊂I
w(I)

kw(I ′)
if I = J;

w(J)
kw(I∩J)

if |I ∩ J| = k− 1;

0 if |I ∩ J| < k− 1.

(13)

�us, the bases-exchange walk PBX,π according to π is just P∨
r . �e stationary distribution of both P∧

k

and P∨
k is πk(I) =

w(I)
Zk

=
k!w(I)
r!Zr

.

�eorem 6. Let π be an r-homogeneous strongly log-concave distribution, andM the associated matroid.

Let P∨
k and P∧

k be defined as above onM(k). �en the following hold:

• for any 2 6 k 6 r, ρ(P∨
k ) > 1

k
;

• for any 1 6 k 6 r − 1, ρ(P∧
k ) > 1

k+1
.

�efirst part of Theorem 6 is shown by Corollary 11, and the second part by Lemma 13. Interestingly,
we do not know how to directly relate ρ(P∧

k ) with ρ(P∨
k+1), although it is straightforward to see that

both walks have the same spectral gap (see (16) and (17) below).
By (8), we have the following corollary.

Corollary 7. In the same se�ing as Theorem 6, we have that

• for any 2 6 k 6 r, tmix(P
∨
k , ε) 6 k

(

log log π−1
k,min + log 1

2ε2

)

;

• for any 1 6 k 6 r − 1, tmix(P
∧
k , ε) 6 (k + 1)

(

log log π−1
k,min + log 1

2ε2

)

.

In particular, for the bases-exchange walk PBX,π according to π(·),

tmix(PBX,π, ε) 6 r

(

log log π−1
min + log

1

2ε2

)

For example, for the uniform distribution over bases of matroids, Corollary 7 implies that the mixing
time of the bases-exchangewalk isO(r(log r+log logn)), which improves upon theO(r2 logn) bound
of Anari et al. (2018a). �emixing time bound in Corollary 7 is asymptotically optimal, as it is achieved
for the bases of some matroids (Jerrum, 2003, Ex. 9.14). As mentioned in the introduction, one such
example is the matroid defined by a graph which is similar to a path but with two parallel edges
connecting every two successive vertices instead of a single edge. Equivalently, this can be viewed as
the partition matroid where each block has two elements and each basis is formed by choosing exactly
one element from every block. �e rank of this matroid is n, and πmin = 1

2n
. �e Markov chain PBX,π

in this case is just a lazy random walk on the n-dimensional Boolean hypercube, which has mixing
time Θ(n logn), matching the upper bound in Corollary 7.

4. The down-up walk

In this section and what follows, we always assume that the matroid M and the weight function
w(·) correspond to an r-homogeneous strongly log-concave distribution π = πr.
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We first give some basic decompositions of P∨
k and P∧

k . LetAk be a matrix whose rows are indexed
byM(k) and columns by M(k+ 1) such that

Ak(I, J) :=

{

1 if I ⊂ J;

0 otherwise,

and wk be the vector of {w(I)}I∈M(k). Moreover, let

P
↑
k := diag(wk)

−1Ak diag(wk+1),(14)

P
↓
k+1 :=

1

k+ 1
AT

k.(15)

�en

P∧
k = P

↑
kP

↓
k+1,(16)

P∨
k+1 = P

↓
k+1P

↑
k.(17)

LetDk = diag(πk). Using (14) and (15), we get that

Dk+1P
↓
k+1 = (P

↑
k)

TDk.(18)

For k > 2 and a function f(k) : M(k) → R>0, define f
(i) : M(i) → R>0 for 1 6 i 6 k − 1 such

that

f(i) :=

k−1
∏

j=i

P
↑
j f

(k).(19)

Intuitively, f(i) is the function f(k) “pushed down” to level i. �e key lemma, namely Lemma 10, is
that this operation contracts the relative entropy by a factor of 1− 1

i from level i to level i− 1.

We first establish some properties of f(k).

Lemma 8. Let k > 2 and f(k) : M(k) → R>0 be a non-negative function onM(k) such that Eπk
f(k) =

1. �en we have the following:

(1) for any 1 6 i < k, J ∈ M(i), f(i)(J) = EπJ,k−i
f(k);

(2) for any 1 6 i 6 k, Eπi
f(i) = 1.

Proof. For (1), we do an induction on i from k − 1 to 1. �e base case of k − 1 is straightforward to
verify. For the induction step, suppose the claim holds for all integers larger than i (i < k − 1). �en
we have that

f(i)(J) = P
↑
i f

(i+1)(J) =
∑

I∈M(i+1):I⊃J

w(I)

w(J)
· f(i+1)(I)

=
∑

I∈M(i+1):I⊃J

w(I)

w(J)
· EπI,k−i−1

f(k)(by IH)

=
∑

I∈M(i+1):I⊃J

w(I)

w(J)

∑

K∈M(k):K⊃I

(k− i− 1)!w(K)

w(I)
· f(k)(K)

=
∑

K∈M(k):K⊃J

|{I ∈ M(i + 1) : J ⊂ I ⊂ K}| · (k− i− 1)!w(K)

w(J)
· f(k)(K)

=
∑

K∈M(k):K⊃J

(k− i)!w(K)

w(J)
· f(k)(K)

= EπJ,k−i
f(k).
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For (2), we have that

Eπi
f(i) =

∑

J∈M(i)

πi(J)EπJ,k−i
f(k)

=
∑

J∈M(i)

w(J)

Zi

∑

K∈M(k):K⊃J

(k− i)!w(K)

w(J)
· f(k)(K)(by (1))

=
∑

K∈M(k)

∑

J∈M(i):J⊂K

(k− i)!w(K)

Zi
· f(k)(K)

=
∑

K∈M(k)

k!w(K)

i!Zi
· f(k)(K) =

∑

K∈M(k)

w(K)

Zk
· f(k)(K)(as k!Zk = i!Zi)

= Eπk
f(k) = 1. �

Now we are ready to establish the base case of the entropy’s contraction.

Lemma 9. Let f(2) : M(2) → R>0 be a non-negative function defined onM(2). �en

Entπ2

(

f(2)
)

> 2Entπ1

(

f(1)
)

.

Proof. Without loss of generality we may assume that Eπ2
f(2) = 1 and therefore Eπ1

f(1) = 1 by (2)
of Lemma 8. Note that for v ∈ E,

f(1)(v) =
∑

S∈M(2):v∈S

w(S)

w(v)
f(2)(S).

We will use the following inequality, which is valid for any a > 0 and b > 0,

a log
a

b
> a − b.(20)

Noticing that Z1 = 2Z2, we have

Entπ2

(

f(2)
)

− 2Entπ1

(

f(1)
)

=
∑

S∈M(2)

π2(S)f
(2)(S) log f(2)(S) − 2

∑

v∈E

π1(v)





∑

S∈M(2):v∈S

w(S)

w(v)
f(2)(S)



 log f(1)(v)

=
∑

S∈M(2)

(

π2(S)f
(2)(S) log f(2)(S) − 2

∑

v∈S

π1(v)
w(S)

w(v)
f(2)(S) log f(1)(v)

)

=
∑

S∈M(2)

(

w(S)

Z2

f(2)(S) log f(2)(S) − 2
∑

v∈S

w(v)

Z1

· w(S)

w(v)
f(2)(S) log f(1)(v)

)

=
∑

S={u,v}∈M(2)

w(S)

Z2

f(2)(S)
(

log f(2)(S) − log f(1)(v) − log f(1)(u)
)

>
∑

S={u,v}∈M(2)

w(S)

Z2

(

f(2)(S) − f(1)(v)f(1)(u)
)

=
∑

S∈M(2)

π2(S)f
(2)(S) −

∑

S={u,v}∈M(2)

w(S)

Z2

· f(1)(v)f(1)(u)

= 1−
1

2Z2

·
(

f(1)
)

T

W∅f
(1),

where the inequality is by (20) with a = f(2)(S) and b = f(1)(u)f(1)(v) when b > 0, and when b = 0

we have a = 0 as well. �us, the lemma follows from Lemma 5 with I = ∅ andw(∅) = Z1 = 2Z2. �
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We generalise Lemma 9 as follows.

Lemma 10. Let k > 2 and f(k) : M(k) → R>0 be a non-negative function defined onM(k). �en

Entπk

(

f(k)
)

>
k

k− 1
Entπk−1

(

f(k−1)
)

.

Proof. We do an induction on k. �e base case of k = 2 follows from Lemma 9.
For the induction step, assume the lemma holds for all integers at most k for any matroid M. Let

f(k+1) : M(k + 1) → R>0 be a non-negative function such that Eπk+1
f(k+1) = 1.

Recall (10), where we define πv,k overM(k+1) instead of overMv(k). For I ∈ M(k+1), v ∈ M(1)

and v ∈ I,

πk+1(I) =
w(I)

Zk+1

= (k+ 1) · w(v)

(k+ 1)!Zk+1

· k!w(I)

w(v)
= (k+ 1)π1(v)πv,k(I),

as Z1 = (k+ 1)!Zk+1. It implies that

πk+1(I) =
∑

v∈M(1),v∈I

π1(v)πv,k(I) =
∑

v∈M(1)

π1(v)πv,k(I).

�en we have

Eπk+1
f(k+1) log f(k+1) =

∑

v∈M(1)

π1(v)Eπv,k
f(k+1) log f(k+1).

�us, we have the decomposition

Entπk+1

(

f(k+1)
)

=
∑

v∈M(1)

π1(v)Entπv,k

(

f(k+1)
)

+
∑

v∈M(1)

π1(v)
(

Eπv,k
f(k+1)

)

log
(

Eπv,k
f(k+1)

)

=
∑

v∈M(1)

π1(v)Entπv,k

(

f(k+1)
)

+ Entπ1

(

f(1)
)

,(21)

where we use (1) and (2) of Lemma 8. Similarly,

Entπk

(

f(k)
)

=
∑

v∈M(1)

π1(v)Entπv,k−1

(

f(k)
)

+ Entπ1

(

f(1)
)

(22)

For any v ∈ M(1), the contractedmatroidMv withweight functionwv(I) = w(I∪v) for I ⊆ E\{v}
corresponds to an (r− 1)-homogeneous strongly log-concave distribution. (Recall Definition 2.) �us,
we can apply the induction hypothesis onMv at level k and get

Entπv,k

(

f(k+1)
)

>
k

k− 1
· Entπv,k−1

(

f(k)
)

.(23)

Strictly speaking, in (23) we should apply the induction hypothesis to f
(k)
v which is the restriction of

f(k+1) to J ∈ M(k+ 1) and J ∋ v, and then “push it down” to f
(k−1)
v defined over I ∈ M(k) and I ∋ v

as

f
(k−1)
v (I) :=

∑

J∈M(k+1):J⊃I

w(J)

w(I)
· f(k)v (J) =

∑

J∈M(k+1):J⊃I

w(J)

w(I)
· f(k+1)(J).

However, f
(k)
v agrees with f(k+1) on the support of πv,k, and f

(k−1)
v agrees with f(k) on the support

of πv,k−1. �is validates (23).
Furthermore, using the induction hypothesis onM from level k to level 1, we have that

Entπk

(

f(k)
)

> k · Entπ1

(

f(1)
)

.(24)
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�us, (22) and (24) together imply that

∑

v∈M(1)

π1(v)Entπv,k−1

(

f(k)
)

> (k− 1)Entπ1

(

f(1)
)

.(25)

Pu�ing everything together,

Entπk+1

(

f(k+1)
)

=
∑

v∈M(1)

π1(v)Entπv,k

(

f(k+1)
)

+ Entπ1

(

f(1)
)

,(by (21))

>
k

k− 1

∑

v∈M(1)

π1(v)Entπv,k−1

(

f(k)
)

+ Entπ1

(

f(1)
)

,(by (23))

=

(

k+ 1

k
+

1

k(k− 1)

)

∑

v∈M(1)

π1(v)Entπv,k−1

(

f(k)
)

+ Entπ1

(

f(1)
)

>
k+ 1

k

∑

v∈M(1)

π1(v)Entπv,k−1

(

f(k)
)

+
k+ 1

k
Entπ1

(

f(1)
)

(by (25))

=
k+ 1

k
Entπk

(

f(k)
)

.(by (22))

�is concludes the inductive step and thus the proof. �

Lemma 10 implies that the entropy contracts by 1− 1
k in the first half of the random walk P∨

k . Since
the second half of the random walk will not increase the entropy, we have the following corollary.

Corollary 11. For any 2 6 k 6 r,

ρ(P∨
k ) >

1

k
.

Proof. Given any f(k) : M(k) → R>0 such that Eπk
f(k) = 1, letDk = diag(πk). �en we have

Entπk−1

(

f(k−1)
)

=
(

f(k−1)
)

T

Dk−1 log f
(k−1)

=
(

f(k)
)

T
(

P
↑
k−1

)

T

Dk−1 log f
(k−1)

=
(

f(k)
)

T

DkP
↓
k log P

↑
k−1f

(k)(by (18))

>

(

f(k)
)

T

DkP
↓
kP

↑
k−1 log f

(k)(by Jensen’s inequality)

= Entπk

(

f(k)
)

− EP∨
k

(

f(k), log f(k)
)

.

Together with Lemma 10 we have that ρ(P∨
k ) > 1

k . �

5. The up-down walk

In this section we establish an analogous result of Corollary 11, namely for any 1 6 k 6 r − 1,
ρ(P∧

k ) > 1
k+1

. Although ρ(P∧
k ) with ρ(P∨

k+1) share the same spectral gap (recall (16) and (17)), we do

not how to directly relate ρ(P∧
k ) with ρ(P∨

k+1). In fact, even adapting the proof of Corollary 7 seems
difficult. We will use a different decompositional approach.

Once again, we start with the base case.

Lemma 12. Let I be an independent set ofM such that |I| 6 r − 2. �en ρ(P∧
I,1) > 1/2.
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Proof. Recall that we may assume EπI,1
f = 1 and thus Entπ1

(f) = EπI,1
(f log f). Also, recall (12), for

any u, v ∈ E \ I,

P∧
I,1(u, v) =











1
2

if u = v;
w({u,v})
2w(u)

if {u, v} ∈ M(2);

0 otherwise.

Rewriting the above,

P∧
I,1 =

I

2
+

1

2
diag(w−1

I )WI,

where wI = {wI(v)}v∈E\I. �us, by (4),

EP∧
I,1

(f, log f) = fT diag(πI,1)
(

I− P∧
I,1

)

log f

=
1

2

(

EπI,1
(f log f) − fT diag(πI,1)diag(w

−1
I )WI log f

)

=
1

2

(

EntπI,1
(f) −

1

w(I)
· fTWI log f

)

.

As log x 6 x− 1,

fTWI log f 6 fTWIf− fTWI1

6 w(I) −w(I) = 0,

where in the last line we used Lemma 5 and EπI,1
f = 1. �is finishes the proof. �

Lemma 12 is a strengthening of the fact that the lazy random walk on 1-skeletons of links of a
matroidM (namely P∧

I,1) has spectral gap at least 1/2, (cf. Anari et al., 2018a).

Lemma 13. For any 1 6 k 6 r− 1,

ρ(P∧
k ) >

1

k+ 1
.

Proof. Recall (12) that

P∧
k (I, J) =











1
k+1

if I = J;
w(I∪J)

(k+1)w(I)
if I ∪ J ∈ M(k+ 1);

0 otherwise.

For K ∈ M(k − 1), we extend P∧
K,1 to a square matrix indexed by M(k) as follows,

P∧
K,1(I, J) =











0 if K 6⊂ I;
1
2

if K ⊂ I and I = J;
w(I∪J)
2w(I)

if K = I ∩ J.

Let SK = {K ∪ {v} | v ∈ MK(1)} be the support of πK,1. Notice that for any I ∈ M(k),

|{K | K ∈ M(k− 1), K ⊂ I}| = k,

and if I ∪ J ∈ M(k+ 1), then I ∩ J ∈ M(k − 1). We have

P∧
k −

1

k+ 1
· I = 2

k+ 1

∑

K∈M(k−1)

(

P∧
K,1 −

1

2
· ISK

)

,
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where ISK
is the diagonal matrix with 1 on Sk and 0 otherwise. Equivalently,

I − P∧
k =

k

k+ 1
· I+ 2

k+ 1

∑

K∈M(k−1)

(

1

2
· ISK

− P∧
K,1

)

=
2

k+ 1

∑

K∈M(k−1)

(

ISK
− P∧

K,1

)

.(26)

Furthermore, we have entropy decompositions similar to (22). For any I ∈ M(k), K ∈ M(k − 1) and
K ⊂ I,

πk(I) =
w(I)

Zk
=

w(K)

Zk
· w(I)

w(K)
= kπk−1(K)πK,1(I),

as Zk−1 = kZk. �is implies that

πk(I) =
∑

K∈M(k−1),K⊂I

πk−1(K)πK,1(I) =
∑

K∈M(k−1)

πk−1(K)πK,1(I).

�en, for any f(k) : M(k) → R>0 such that Eπk
f(k) = 1, we have

Entπk

(

f(k)
)

=
∑

K∈M(k−1)

πk−1(K)EntπK,1

(

f(k)
)

+
∑

K∈M(k−1)

πk−1(K)EπK,1
f(k) logEπK,1

f(k).

=
∑

K∈M(k−1)

πk−1(K)EntπK,1

(

f(k)
)

+ Entπk−1

(

f(k−1)
)

,(27)

where f(k−1) is defined in (19). �en Lemma 10 implies that

∑

K∈M(k−1)

πk−1(K)EntπK,1

(

f(k)
)

>
1

k
· Entπk

(

f(k)
)

.(28)

On the other hand, it is straightforward from (26) that

EP∧
k

(

f(k), log f(k)
)

=
∑

K∈M(k−1)

2

k+ 1
Eπk

f
(

ISK
− P∧

K,1

)

log f

=
2k

k+ 1

∑

K∈M(k−1)

πk−1(K)EP∧
K,1

(f, log f)

>
k

k+ 1

∑

K∈M(k−1)

πk−1(K)EntπK,1
(f)(by Lemma 12)

>
1

k+ 1
· Entπk

(

f(k)
)

.(by (28))

�is finishes the proof. �
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