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Abstract

Low-speed rarefied gas flow in a lid-driven cavity is chosen as a test case in order

to assess the accuracy and efficiency of both the Direct Simulation Bhatnagar-Gross-

Krook (DSBGK) method and the Discrete Velocity Method (DVM) for solving the

BGK kinetic equation. Various lid-speeds and a broad range of rarefaction levels,

from slip to near free-molecular flows, are investigated. The DSBGK and DVM

results are in satisfactory agreement for all the examined cases in 2D and 3D. As

a statistical method, the stochastic noise of the DSBGK method is much smaller

than that of the conventional Direct Simulation Monte Carlo (DSMC) method, and

is independent of the Mach number. To achieve the required accuracy, the DSBGK

simulations need more CPU time than the DVM simulations, i.e. for the 2D cases, a

factor of 2 to 15 times more for convergence, and about 50 to 80 times more overall,

including the time-averaging process. However, for 3D cases, the third direction

in the DVM velocity grid is needed, so the computational cost of DSBGK is now

only 0.16 to 0.51 times that of the DVM for the convergence process, and 1.6 to 5.8

times that of the DVM overall. The efficiency of the DSBGK method can also be

expected to be enhanced in large-scale 3D simulations, where the computational cost

for time-averaging becomes negligible in comparison with the convergence process.

The DSBGK simulations require much less memory, even at low Mach numbers,

than the DVM simulations; in the test cases with the required accuracy, about 10

simulated molecules per cell in the DSBGK simulations are sufficient for an arbitrary
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Kn, while the DVM requires at least 4 × 24 and 4 × 24 × 12 velocity grids for the

2D and 3D cases, respectively, even at Kn = 0.1. Finally, we discuss the ray effects

of the DVM, which exist in flow problems with a discontinuous boundary and are

caused by incompatibility of the velocity grid, the spatial grid, and the order of

accuracy of the numerical scheme.

Keywords: Rarefied gas dynamics, Kinetic equation, Direct simulation BGK

method, Discrete velocity method, Low speed flows, Ray effects

1. Introduction1

When the mean free path of gas molecules becomes appreciable compared to the2

characteristic flow length, the conventional Navier-Stokes equations fail, and gas3

kinetic theory should be applied to study the rarefied gas dynamics. Low-speed4

rarefied gas flows are characteristic of both MEMS and tight porous media [1, 2].5

While the Direct Simulation Monte Carlo (DSMC) method [3] is the most popular6

molecular-based technique for modelling rarefied flows [4, 5, 6], it is computationally7

expensive and essentially impractical for low-speed flows due to stochastic noise.8

For example, to find the gas permeability of porous media, a large pressure ratio is9

usually applied between the inlet and the outlet to increase the signal-to-noise ratio10

and hence reduce the sampling required [7, 8, 9]. In the near-continuum regime,11

however, the flow velocity is large, and the obtained permeability is very likely not12

independent of the pressure gradient because of the nonlinear Forchheimer effect. It13

is therefore important to develop efficient and accurate numerical methods in order14

to simulate low-speed rarefied gas flows.15

The information-preservation (IP) DSMC is probably the first attempt to simu-16

late low-speed flows efficiently [10]. In addition to the macroscopic quantities that17

can be obtained by conventional sampling, IP-DSMC introduces information quan-18

tities (such as the information velocity and information temperature) to reduce the19

statistical noise significantly. However, the evolution of these information quantities20

is ad-hoc; for example, the shear viscosity needs to be adjusted.21

The Low-variance Deviational Simulation Monte Carlo (LVDSMC) solver has22

been proposed in Refs. [11, 12, 13]. In this method, computational efficiency is23

2



significantly improved by simulating only the deviation from an equilibrium state.24

Since the computational cost does not depend on the Mach number (Ma), rarefied25

gas flows with Ma as low as 10−5 have been simulated. This is in sharp contrast26

to DSMC, in which the required statistical sampling leads to a computational cost27

that is proportional to Ma−2 [14]. LVDSMC has also been extended to solve the28

linearized Bhatnagar-Gross-Krook (BGK) kinetic model equation [15, 16] and the29

McCormack kinetic equation for binary gas mixtures [17]. Excellent agreement with30

other deterministic solvers has been reported. There have been other reports of31

stochastic techniques coupled with deterministic methods to reduce the variance of32

particle methods [18, 19, 20, 21].33

The Direct Simulation BGK (DSBGK) method is also a particle-based approach34

and has been recently proposed for improving the efficiency of rarefied gas flow sim-35

ulations at very low speeds [22]. It has been validated against DSMC simulations for36

several benchmark problems over a wide range of Knudsen numbers (Kn, defined as37

the ratio of the mean free path to the characteristic flow length) [23, 24]. Compared38

with the standard DSMC technique, the DSBGK method achieves high efficiency39

by avoiding generating a large number of random fractions in the intermolecular40

collision process, and by using increments (instead of transient values) of molecular41

variables to update macro quantities in each cell based on the conservation laws42

of mass, momentum and energy. This updating algorithm significantly reduces the43

stochastic noise due to discontinuous events of simulated molecules randomly mov-44

ing into and out of cells. A comparative analysis of the algorithms of the DSMC45

and DSBGK methods, with comparisons of simulation results produced by each, is46

presented in Ref. [24].47

The Discrete Velocity Method (DVM), on the other hand, deterministically solves48

the Boltzmann equation, or simplified models [25, 26]. DVM has been widely used49

to produce reliable data for rarefied gas flows from low to high speed [27, 28, 29].50

Although the DVM offers accurate fluctuation-free solutions, it generally requires51

high dimensionality in the distribution function, which may lead to a high demand52

in computational memory and cost (although a memory reduction technique has53

recently been proposed [30]). In addition to the dimensions in spatial space, the54
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DVM also usually needs three-dimensional discretization in molecular velocity space,55

whereas particle-based methods (such as DSMC and DSBGK) only need a number of56

simulated molecules per cell to dynamically discretize the molecular velocity space.57

For 1D and 2D flow problems, the dimensions of DVM in molecular velocity space58

can be reduced [31]. Moreover, if only the steady state solution is of interest, DVM59

can accelerate its rate of convergence by using implicit time-marching schemes or60

other iterative schemes [26, 32]. To the best of the authors’ knowledge, particle-based61

methods usually have no such acceleration opportunities without losing accuracy,62

due to their time-evolutionary nature. Although the timestep ∆t in the DSMC63

method is not restricted by the Courant-Friedrichs-Lewy (CFL) stability condition,64

the error in the transport coefficients has been found to be proportional to ∆t2 [33,65

34].66

In this paper we assess the accuracy and computational efficiency of two different67

methods for solving the BGK kinetic equation — the DSBKG method and the DVM.68

Our chosen benchmark problems are the lid-driven cavity flows in 2D and 3D, which69

are characterized by shear-driven and flow compression phenomena that have been70

studied previously [35, 36, 37, 38, 39].71

2. The BGK equation and its numerical solution72

The Bhatnagar-Gross-Krook (BGK) kinetic model equation simplifies the Boltz-73

mann equation by using a relaxation-time approximation [15]. It can produce good74

results when thermal effects are negligible. Therefore, the relaxation time is chosen75

to recover only the shear viscosity, according to the Chapman-Enskog expansion in76

the continuum flow limit. Without an external body force, the BGK equation takes77

the following form:78

∂f

∂t
+ c · ∇f = −1

τ
(f − feq) , (1)

where f = f(x, c, t) is the velocity distribution function of gas molecules with79

molecular velocity c = (cx, cy, cz) at position x = (x, y, z) and time t, and feq is the80

equilibrium distribution function defined by the Maxwellian:81

feq =
n

(2πkBT/m)3/2
exp

(
− mξ2

2kBT

)
, (2)
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where n, m, T and kB are the gas number density, molecular mass, temperature82

and the Boltzmann constant, respectively; ξ = c − u is the peculiar velocity, with83

u the macroscopic flow velocity. Conservative flow variables W ≡ (n, nu, ne)T are84

calculated as velocity moments of the distribution function, i.e.85

W =

∫
ψfdc, (3)

where ψ = (1, c, c2/2)
T

, and e = (u2 + 3kBT/m)/2 is the specific total energy.86

The relaxation time τ in Eq. (1) is related to the dynamic viscosity µ and the87

local pressure p by τ = µ/p = µ/(nkBT ). For gas molecules interacting through the88

inverse power-law potential, the dynamic viscosity µ depends on the temperature T89

as90

µ = µ0

(
T

T0

)ω
, (4)

where ω is the viscosity index and µ0 is the reference viscosity at the reference91

temperature T0. For a lid-driven cavity flow, the reference temperature is chosen as92

the bounding wall temperature T0 = Tw = 273 K. Without loss of generality, argon93

gas with m = 6.63× 10−26 kg, µ0 = 2.117× 10−5 Ns/m2 and ω = 0.81 is used here.94

The mean free path λ0 of gas molecules and the Knudsen number Kn are defined95

as96

λ0 =
µ0

p0

√
πkBT0

2m
, Kn =

λ0

Lchar

, (5)

respectively, where Lchar is the characteristic length. The Mach number Ma is defined97

as98

Ma =
uw√

γkBT0/m
, (6)

where γ is the specific heat ratio and uw is the speed of the moving lid.99

To fully determine the rarefied gas flow, the gas-surface interaction should be100

specified. In this paper, we consider the Maxwell diffuse boundary condition at101

the solid wall, i.e. the velocity distribution function for gas molecules entering the102

computational domain is given by103

fB,diff(cr) = neff

(
m

2πkBTw

)3/2

exp

(
−m|cr|2

2kBTw

)
, (7)

where cr is the reflected velocity of gas molecules relative to the wall, and the104

effective number density neff is determined from the impermeable condition, that is,105
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the number of gas molecules moving to the wall is equal to that reflected from the106

same wall.107

2.1. The DSBGK method108

As the DSBGK method is a relatively new technique, some significant description109

is appropriate here. The DSBGK method for solving the BGK equation is proposed110

in Ref. [22], and further detailed in Ref. [24] where the extension to problems with111

an external body force is discussed. The simulation timestep ∆t and computational112

domain cell size ∆x are selected as in the DSMC method when simulating problems113

of high Kn. Each simulated molecule l carries four molecular variables: position114

xl, molecular velocity cl, number Nl of real molecules represented by the simulated115

molecule, and Fl that is equal to f(xl, cl, t). The variables ntr,j,utr,j, Ttr,j of each cell116

j are updated using xl, cl and the increment of Nl based on the mass, momentum117

and energy conservation principles of the intermolecular collision process. They118

are then used in turn to update the molecular variables according to the BGK119

equation and an extrapolation of the acceptance-rejection scheme. The cell variables120

ntr,j,utr,j, Ttr,j are transitional variables and converge to nj,uj, Tj that are defined121

by the moments of f , as discussed in Ref. [24] (after Eq. (13) in that paper).122

At the initial state, xl and cl are selected according to the uniform initial dis-123

tribution f0 = feq,0, and the initial Nl is the same for all the simulated molecules124

(as in DSMC simulations). The initial Fl can then be determined accordingly, i.e.,125

Fl = f0(xl, cl, 0). In the simulation process, each simulated molecule l moves on a126

uniform trajectory until encountering boundaries. During each ∆t, the trajectory of127

each simulated molecule may be divided into several segments by the cell interfaces.128

The time interval used by the simulated molecule l for the segment located inside129

the cell j is denoted by ∆jtl. Fl can be updated by the integration of the BGK130

equation along each trajectory segment in sequence, i.e.131

Fl,new = feq,j + (Fl − feq,j) exp(−∆jtl/τ), (8)

where feq,j is the local equilibrium distribution defined by using the transient ntr,j,132

utr,j and Ttr,j of the cell j.133
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According to an extrapolation of the acceptance-rejection scheme [22], [xl, cl, Nl(f2/f1)l]all134

is a representative sample of f2 if [xl, cl, Nl]all is a representative sample of f1, where135

(f2/f1)l is the ratio of f2 and f1 at the point (xl, cl). Thus, Nl can be updated136

according to Fl for each trajectory segment:137

Nl,new = NlFl,new/Fl, (9)

from which we obtain ∆jNl = Nl,new−Nl for the trajectory segment of the simulated138

molecule l located inside the cell j. This is the number increment of real molecules139

of class cl due to the intermolecular collisions inside the cell j during the current140

timestep. We compute the summation
∑
∈j ∆jNl over those trajectory segments141

located inside cell j during the current timestep. Mass conservation in the inter-142

molecular collision process inside cell j requires
∑
∈j ∆jNl = 0. Thus, we reduce ntr,j143

if
∑
∈j ∆jNl > 0 and then

∑
∈j ∆jNl will be reduced at the next timestep according144

to Eqs. (2), (8) and (9), and vice versa. This auto-regulation scheme ensures that145 ∑
∈j ∆jNl approaches zero. Similarly,

∑
∈j(∆jNlmcl) and

∑
∈j(∆jNlmc

2
l /2) can be146

used to regulate utr,j, Ttr,j according to the momentum and energy conservations.147

The auto-regulation schemes used in the ordinary DSBGK simulations to update148

the cell variables after each timestep are therefore149

nnew
tr,j =

ntr,jVj −
∑
∈j ∆jNl

Vj
,

unew
tr,j =

ntr,jVjutr,j −
∑
∈j(∆jNlcl)

nnew
tr,j Vj

,

T new
tr,j =

ntr,jVj(3kBTtr,j/2 +mu2
tr,j/2)−

∑
∈j(∆jNlmc

2
l /2)− nnew

tr,j Vjm(unew
tr,j )2/2

nnew
tr,j Vj3kB/2

,

(10)

where Vj is the volume of cell j.150

Now, we discuss how the DSBGK method reduces the stochastic noise in cell151

variables. When using particle-based methods to solve a kinetic equation, the ve-152

locity of each particle is usually updated independently according to the kinetic153

equation, which consequently satisfies the conservation laws on average but violates154

conservation during each timestep. The incurred stochastic noise due to this viola-155

tion can be reduced when solving the Boltzmann equation by using a special particle156

simulation method [40]. In this regard, the DSBGK method also adopts the special157
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scheme in Eq. (10) to impose conservations in each cell for each timestep to reduce158

noise.159

In addition to the noise caused by violation of conservation laws, there is another160

type of noise in particle simulation due to frequent and random events of simulated161

molecules moving into and out of each cell. The cell variables calculated by the162

transient molecular variables inside the concerned cell therefore suffer from signif-163

icant noise since the number of simulated molecules inside each cell on average is164

small. This is the source of significant stochastic noise in DSMC and molecular165

dynamic (MD) simulations. Instead of using transient values of molecular variables,166

their increments along molecular trajectories are used in the DSBGK method to up-167

date/regulate the cell variables. Although the molecular variables entering into each168

cell are still random and noisy, by integrating the BGK equation along the molecular169

trajectories, their variations are smooth. Consequently, noise in the cell variables170

is significantly reduced by using Eq. (10) to update the cell variables, compared to171

the DSMC and other particle simulation methods that define the cell variables by172

using transient molecular variables.173

At a wall boundary (with en as the outward normal direction), cl and then Fl174

are updated after molecular reflection at xl on the wall; Nl remains unchanged to175

conserve mass. The reflected velocity cr is randomly selected, as in the DSMC176

method, and then cl is updated to cr + uw, where uw is the wall velocity. (The177

subscript l has been omitted for clarity in the notation of the incoming and reflected178

velocities.)179

We introduce fB(c) as the distribution function f at the reflection point xl at180

time t in a local Cartesian reference frame moving at uw, so that fB(c) = f(xl, c+181

uw, t). With an appropriate expression for fB(c), we then have Fl,new = fB(cr). The182

distribution fB(ci)|ci·en<0 of the incoming molecules is known from the molecular183

information in the adjacent cell, and fB(cr)|cr·en>0 is the distribution of reflected184

molecules.185

Theoretically, fB(ci) depends on the incoming molecules. When the wall velocity186

is small, and to further reduce stochastic noise, a simple boundary condition is187

proposed: we use cell variables rather than the molecular variables to determine188

8



fB(ci) as a local equilibrium distribution, i.e.189

fB,simple(ci) = ntr,j

(
m

2πkBTtr,j

)3/2

exp

[
−m(ci − (utr,j − uw))2

2kBTtr,j

]
, (11)

where ntr,j,utr,j, Ttr,j are the quantities of cell j close to the reflection point xl.190

Then, the number flux of incoming molecules per unit wall area per unit time is:191

Nin,simple = −
∫
ci·en<0

fB,simple(ci)(ci · en)dci

= ntr,j

√
kBTtr,j

2πm

[
exp(−û2

in) +
√
πûin(1 + erf(ûin))

]
,

(12)

where ûin = −(utr,j − uw) · en/
√

2kBTtr,j/m. Similarly, the number flux Nout of192

reflected molecules is:193

Nout =

∫
cr·en>0

fB,diffuse(cr)(cr · en)dcr

= neff

√
kBTw

2πm
.

(13)

Now Nout = Nin,simple according to mass conservation, so we obtain an estimate for194

neff :195

neff,simple = ntr,j

√
Ttr,j

Tw

[exp(−û2
in) +

√
πûin(1 + erf(ûin))]. (14)

Then we update Fl by Fl,new = fB,diffuse(cr), where neff = neff,simple. Compared to196

the statistically accurate boundary condition that we develop below, this simple197

boundary condition helps to reduce stochastic noise in the DSBGK simulations,198

especially at low Ma. The numerical error incurred by the simple boundary will be199

analyzed in Sections 3.1-3.3.200

For closed flow problems, density drift has been observed in previous DSBGK201

simulations after a large number of timesteps when using this simple implementation202

of the boundary condition. To reduce the magnitude of the density drift, 2000203

simulated molecules per cell are employed in the following study of 2D cavity flows.204

However, the DSBGK accuracy is almost unchanged when using only 10 simulated205

molecules per cell and more time-averaging samples. Correspondingly, the sampling206

process of density could stop after only about 100 timesteps to avoid deviation207

due to the slow density drift, because the transient density distribution has low208

stochastic noise. In the following simulations, we will use only 100 samples for209
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number density n and larger number of samples for other macroscopic parameters,210

unless stated otherwise. Note that this unphysical density drift disappears when211

simulating open flow problems, because fixed number densities are applied at the212

open boundaries (e.g., the channel flow problem [24]). By contrast, flow velocity and213

temperature are not subject to unphysical drift, even in closed problems, thanks to214

the specified constraints at the boundary. Additionally, the density drift in closed215

problems becomes unnoticeable if the perturbation is very small (e.g. for the 2D216

cavity flow problem with uw = 10−6 m/s) [41].217

If the flow velocity is not small (e.g. for the cavity flow problem with uw = 50218

m/s), the density drift can be eliminated by using a statistically accurate boundary219

condition [41] in which the incoming number flux is directly calculated by using the220

information of incoming simulated molecules, although the correspondingly com-221

puted flux is noisy. As in the DSMC method, it is convenient for the DSBGK222

method to calculate the net flux Γ(Q) of any molecular quantity Q(c) in unit time223

and across unit area of the boundary surface, viz.224

Γ(Q) =
1

∆t∆S

∑
l

Nl[Q(ci)−Q(cr)]l, (15)

where the summation is over the simulated molecules reflected on the sub-area ∆S225

during the current timestep ∆t; Q(ci) and Q(cr) are the incoming and reflected226

quantities, respectively. If Q = mc or mc2/2, then Γ(Q) represents the stress or227

heat flux, respectively. Similarly, the incoming number flux is computed as:228

Nin =
1

∆t∆S

∑
l

Nl. (16)

As Nout = Nin again, we obtain a statistically accurate formula for neff , i.e.229

neff =

√
2πm

kBTw

1

∆t∆S

∑
l

Nl, (17)

where
∑

lNl usually contains large stochastic noise. Fl,new = fB,diffuse(cr) is imple-230

mented to update Fl during the simulation process, and neff is updated by using231

Eq. (17) after each ∆t.232

The workflow of a DSBGK simulation can then be summarized as follows:233

10



1. Initialization. Generate the domain cells and simulated molecules and assign234

them initial values for ntr,j,utr,j, Ttr,j and xl, cl, Fl, Nl, respectively.235

2. Each simulated molecule l moves on a uniform trajectory until encountering236

boundaries. During each ∆t, the trajectory of each simulated molecule may237

be divided into several segments by the cell interfaces. Then, xl, Fl, Nl are de-238

terministically updated along each segment in sequence. When encountering239

wall boundaries, cl is updated to cr + uw according to the reflection model,240

and Fl is correspondingly updated to fB(cr). In open flow systems, simu-241

lated molecules are removed from the computational domain when they move242

across open boundaries, and new simulated molecules are generated at the243

open boundaries. The variables ntr,j,utr,j, Ttr,j of each cell j are updated at244

the end of each ∆t.245

3. After convergence, ntr,j,utr,j, Ttr,j provide the discrete solutions of the BGK246

equation at steady state.247

2.2. The Discrete Velocity Method (DVM)248

For a 2D case, two reduced velocity distribution functions are introduced to cast the249

3D molecular velocity space into 2D [26], i.e.250

g =

∫
f(x, c, t)dcz, h =

∫
c2
zf(x, c, t)dcz. (18)

For convenience, in what follows we denote c = (cx, cy), ξ = (ξx, ξy) and x = (x, y).251

Using g and h, macroscopic variables can be computed as n =
∫
gdc, nu =

∫
cgdc,252

and ne = 1
2

∫
(c2g+ h)dc. The governing equations for the two reduced distribution253

functions can be deduced from Eq. (1) in the form of the generic function φ = (h, g)254

as255

∂φ

∂t
+ c · ∇φ = −φ− φeq

τ
, (19)

where the reduced equilibrium distribution functions φeq = (heq, geq) are

geq(x, c, t) =

∫
feq(x, c, cz, t)dcz =

nm

2πkBT
exp

[
− mξ2

2kBT

]
, (20a)

heq(x, c, t) =

∫
c2
zfeq(x, c, cz, t)dcz = kBTgeq/m. (20b)
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DVM is one of the most common deterministic approaches for solving the Boltz-256

mann equation and its simplified models [25, 26]. It projects the continuous molec-257

ular velocity space c into a set of fixed Nc discrete velocities c(ii) (ii = 1, 2, .., Nc).258

As a result, for the BGK model, the governing equation (19) is replaced by a system259

of Nc independent equations. Here, we discretize this system in time by a fully260

time-implicit Godunov-type scheme [26, 32]:261 [
1

∆t(ts)
+ c(ii) · ∇+

1

τ (ts)

]
∆φ(ts) = RHS(ts),

RHS(ts) =
1

τ (ts)

[
φ(ts)

eq − φ(ts)
]
− c(ii) · ∇φ(ts),

(21)

where ∆φ(ts) = φ(ts+1) − φ(ts) needs to be determined at the timestep ts. RHS(ts) is262

the explicit part, and the spatial derivative is approximated by a third-order upwind263

scheme. For instance, the derivative with respect to the x-direction at point xjj is264

evaluated by:265

∂φ(ts)

∂x

∣∣∣∣∣
jj

=

(2φ
(ts)
jj+1 + 3φ

(ts)
jj − 6φ

(ts)
jj−1 + φ

(ts)
jj−2)/(6∆x), c

(ii)
x > 0 ,

(−2φ
(ts)
jj−1 − 3φ

(ts)
jj + 6φ

(ts)
jj+1 − φ

(ts)
jj+2)/(6∆x), c

(ii)
x < 0 .

(22)

The left-hand side of Eq. (21) is the implicit part, and the spatial derivative is266

approximated by a first-order upwind scheme. By marching in the appropriate267

direction, e.g. increasing x in the case of c
(ii)
x > 0, the unknown ∆φ(ts) can be268

obtained directly without solving a system of equations.269

Note that ∆t in Eq. (21) is a pseudo-timestep that is defined by the CFL con-270

dition, i.e. ∆t = η∆xmin/cmax
x , where η is the CFL number, ∆xmin is the minimum271

spatial grid size, and cmax
x is the maximum discrete speed. While η here can be272

smaller than 1 to capture transient behaviour, it can also be set as large as 104 (as273

it is in the studies below) to obtain a steady-state solution.274

In order to evaluate the flow variables in Eq. (3), the product Gaussian quadra-275

tures in the velocity polar coordinates c = (cp cosϕ, cp sinϕ) and the velocity spher-276

ical coordinates c = (cpsin θ cosϕ, cpsin θ sinϕ, cp cos θ) are used for 2D and 3D sim-277

ulations, respectively [36, 42]. For example, the flow variables in the 3D case are278
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approximated as:279

W =

∫ ∞
0

∫ 2π

0

∫ π

0

ψfc2
p sin θdθdϕdcp ≈

Ncp∑
k=1

Nϕ∑
j=1

Nθ∑
i=1

w(k)
cp w

(j)
ϕ w

(i)
θ F

(
c(k)
p , ϕ(j), θ(i)

)
,

(23)

where F = ψfc2
p exp

(
c2
p

)
; Ncp , Nϕ and Nθ are the numbers of discretized points in280

the radius cp, azimuth ϕ and inclination θ, respectively, of the velocity space; c
(k)
p281

and w
(k)
cp are the half-range Gauss-Hermite abscissae and weights, while cos θ(i) and282

w
(i)
θ are the Gauss-Legendre abscissae and weights in [−1, 1] [43, 44]. The nodes ϕ(j)

283

are uniformly spaced on [0, 2π] and w
(j)
ϕ = 2π/Nϕ. We denote the total number of284

velocity grid points by Nc = Ncp × Nϕ and Nc = Ncp × Nϕ × Nθ for 2D and 3D285

velocity grids, respectively.286

Our simulations start from the global equilibrium state. The convergence crite-287

rion for the steady-state, which is based on the velocity flow field, is checked every288

timestep as follows:289

E(t) =

∑
|u(t)− u(t−∆t)|∑

|u(t)|
< 10−6. (24)

3. 2D cavity flows290

As our first test case for comparison of the DSBGK method and the DVM, we291

consider the rarefied gas flow inside a square cavity of size L = 1 µm and this size292

is used as the characteristic length Lchar = L. Cartesian coordinates are used, with293

the origin located at the bottom left corner of the cavity, as shown in Fig. 1 (a), in294

which X = x/L and Y = y/L. From the origin, the positive X- and Y -directions295

point towards the bottom right corner and the top left corner, respectively. The top296

lid moves in the positive X-direction with a constant speed uw. The cavity walls297

are maintained at a constant temperature Tw = T0.298

Lid-driven cavity flows in 2D are simulated by both the DSBGK method and299

the DVM over a wide range of Knudsen and Mach numbers. We choose the lid300

speeds to be uw = 0.001, 1, 10, and 50 m/s, which correspond to Ma = 3.2× 10−6,301

3.2× 10−3, 3.2× 10−2, and 0.16, respectively. We also choose Kn = 0.1, 1 and 8, to302

cover the slip, transition, and free-molecular flow regimes, respectively. Initially, the303

gas is in global equilibrium described by Eq. (2), with zero flow velocity and uniform304
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Figure 1: Schematic of the flow test cases: (a) 2D lid-driven cavity, (b) 3D lid-driven cavity.

temperature T0. The uniform number density is adjusted to obtain the desired value305

of Kn.306

Unless stated otherwise, the number of uniform spatial cells/grids is 602 for both307

the DSBGK and the DVM simulations. For simplicity of comparison between the308

two methods, uniform spatial grids are implemented in this study. However, DVM309

can be easily extended to non-uniform grids [45], and DSBGK is unchanged when310

using non-uniform grids [24]. We use an 8× 80 velocity grid in the DVM, and em-311

ploy 2000 simulated molecules per cell in the DSBGK method with the statistically312

accurate boundary condition Eq. (17) (or the simple boundary condition Eq. (14))313

for Ma = 0.16 (or for Ma < 0.16). The DSBGK simulations need 500 samples to314

smooth the results for arbitrary Ma and Kn. Coarser spatial and velocity grids (or315

smaller numbers of simulated molecules per cell) will be tested in Section 3.4 below.316

Note that the DSBGK simulations use dimensional quantities, while the DVM sim-317

ulations employ only dimensionless quantities scaled by a relevant reference value,318

e.g. Lchar, n0, uw, T0. Perturbed macroscopic quantities obtained by the two methods319

are reported in our results below, i.e.320

ñ =
n− n0

n0

, ũ =
u

uw

, ṽ =
v

uw

, T̃ =
T − T0

T0

, (25)

where u and v are the components in the X and Y directions, respectively, of the321

macroscopic velocity vector u = (u, v). (Hereafter, the tildes on these perturbed322

macroscopic quantities are omitted for simplicity.)323
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3.1. Validation324

Figure 2 shows DVM, DSBGK and published DSMC [37] profiles of the perturbed u325

and v velocity components along the vertical centreline (X = 0.5) and the horizontal326

centreline (Y = 0.5), respectively, for various Ma and Kn. Figures 2 (a),(c),(e) show327

that the velocity slip at the moving lid increases considerably with Kn, while the328

increase at the bottom wall is negligible. For a moderate Mach number of 0.16, where329

heat flux is insignificant, the DVM and DSBGK (with the statistically accurate330

boundary condition) results agree very well with the published DSMC data [37] for331

Kn = 0.1, 1 and 8, in which the variable hard-sphere (VHS) molecular model with332

ω = 0.81 was used.333

For Ma < 0.16, the DSBGK results obtained using the statistically accurate334

boundary condition are dominated by stochastic noise (not shown here), so the335

simple but smooth boundary condition is used instead. Consequently, the DSBGK336

results have a small discrepancy from the DSMC data. Compared with the DVM337

method in solving the same BGK equation, the maximum discrepancy in the u338

profiles between the DVM and DSBGK methods is about 7.5% at Ma = 3.2× 10−6,339

Kn = 1, and occurs only in the flow region with relatively small perturbation.340

Similarly, Figs. 2 (b),(d),(f) show that the v profiles obtained by the two methods341

are in good agreement with the DSMC data at Ma = 0.16, Kn = 0.1, 1 and 8. The v342

profiles resemble a cosine function, with one maximum and one minimum near the343

left and right walls, respectively. These extrema are almost anti-symmetrical with344

respect to the cavity centre; this has also previously been shown using the linearized345

kinetic equation [46]. As the Mach number decreases, the v profile remains nearly346

unchanged in the DVM results, while a small discrepancy is observed in the DSBGK347

results due to the use of the simple boundary condition. The maximum discrepancy348

in the v profiles between the DVM and DSBGK methods is approximately 2.5% at349

Ma = 3.2× 10−6 and Kn = 0.1.350

Note that it has been reported independently in Ref. [37] (see Fig. 4 of that351

paper) that the u profile is independent of Ma, and the v profile remains essentially352

unchanged with Mach number for Ma ≤ 0.32. This is confirmed by the present353

DVM and DSBGK results. Although not shown here, the u and v profiles produced354
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(a) u at Kn= 0.1 (b) v at Kn= 0.1

(c) u at Kn= 1 (d) v at Kn= 1

(e) u at Kn= 8 (f) v at Kn= 8

Figure 2: Profiles of the perturbed horizontal velocity u (left column) and perturbed vertical

velocity v (right column) along the vertical centreline (X = 0.5) and horizontal centreline (Y =

0.5), respectively, of the 2D lid-driven cavity. The DVM and DSBGK results are compared with

published DSMC data [37]. Note that the flow velocity has been normalized by the lid velocity uw.
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by the DVM and DSBGK simulations for Ma = 3.2 × 10−2 and 3.2 × 10−3 are355

indistinguishable from those for Ma = 3.2× 10−6.356

3.2. Effect of Mach number357

The impact of Mach number is investigated by fixing Kn = 1 and producing simu-358

lations for Ma = 3.2 × 10−6, 3.2 × 10−3, 3.2 × 10−2, and 0.16. DSMC results are,359

to the knowledge of the authors, not available in the literature for low-Ma flows,360

except results for Ma = 0.16 that have been included in Fig. 2. We therefore use the361

accurate DVM results as reference data, which are obtained using an 8×80 velocity362

grid.363

In Figs. 3 and 4, we find that the values of u and v remain almost constant for all364

examined Ma, except their minima slightly increase for Ma = 0.16. The maximum365

u is located at the centre of the top wall, and u is negative in the major part of the366

cavity near the bottom, left and right walls. The positive and negative regions of v367

are found toward the left and right walls, respectively, and the extrema are located368

just under the top corners.369

The u and v contour lines obtained by both the DVM and DSBGK simulations370

are identical at Ma = 0.16, in which the DSBGK uses the statistically accurate371

boundary condition, but are noticeably different at lower Mach numbers, in which372

the DSBGK uses the simple boundary condition. The maximum discrepancies are373

about 7.5% for u along X = 0.5, and 1.0% for v along Y = 0.5, at Ma = 3.2× 10−6.374

The maximum discrepancies for the n and T profiles along the horizontal centerline,375

which are observed near the walls at Ma = 3.2×10−6, are 4.7% and 2%, respectively.376

The contours of n are shown in Fig. 5. The gas is compressed and expanded near377

the top right and top left corners, respectively, causing a respective rise and fall in n378

at the top corners. The magnitude of the maximum and minimum in the n contours379

increases with Ma as the gas compression and expansion become stronger at higher380

lid speeds. The DVM and DSBGK results only differ slightly in their predicted n381

for all Ma.382

The T contour plots in Fig. 6 show that the hot and cold regions in the flow field383

are toward the top right (gas compression) and top left (gas expansion) corners,384

respectively. Similar to the dependence of n on Ma, the maximum and minimum385
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(a) Kn=0.1, Ma=3.2 × 10−6 (b) Kn=1, Ma=3.2 × 10−6 (c) Kn=8, Ma=3.2 × 10−6

(d) Kn=0.1, Ma=3.2 × 10−2 (e) Kn=1, Ma=3.2 × 10−2 (f) Kn=8, Ma=3.2 × 10−2

(g) Kn=0.1, Ma=0.16 (h) Kn=1, Ma=0.16 (i) Kn=8, Ma=0.16

Figure 3: Contours of the perturbed horizontal velocity u in the 2D lid-driven cavity flow obtained

using the DVM (the black solid line and coloured background) and the DSBGK method (the white

dash-dot line).
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(a) Kn=0.1, Ma=3.2 × 10−6 (b) Kn=1, Ma=3.2 × 10−6 (c) Kn=8, Ma=3.2 × 10−6

(d) Kn=0.1, Ma=3.2 × 10−2 (e) Kn=1, Ma=3.2 × 10−2 (f) Kn=8, Ma=3.2 × 10−2

(g) Kn=0.1, Ma=0.16 (h) Kn=1, Ma=0.16 (i) Kn=8, Ma=0.16

Figure 4: Contours of the perturbed vertical velocity v in the 2D lid-driven cavity flow obtained

using the DVM (the black solid line and coloured background) and the DSBGK method (the white

dash-dot line).
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(a) Kn=0.1, Ma=3.2 × 10−6 (b) Kn=1, Ma=3.2 × 10−6 (c) Kn=8, Ma=3.2 × 10−6

(d) Kn=0.1, Ma=3.2 × 10−2 (e) Kn=1, Ma=3.2 × 10−2 (f) Kn=8, Ma=3.2 × 10−2

(g) Kn=0.1, Ma=0.16 (h) Kn=1, Ma=0.16 (i) Kn=8, Ma=0.16

Figure 5: Contours of the perturbed number density n in the 2D lid-driven cavity flow obtained

using the DVM (the black solid line and coloured background) and the DSBGK method (the white

dash-dot line).
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temperatures near the top corners also vary with Ma. However, unlike with n, these386

significant variations of T are not confined to the top corners as the Mach number387

increases. Instead, the hot region expands leftward, while the cold region draws in388

towards the left and extends downwards. The T distributions produced by the DVM389

and DSBGK methods are generally in good agreement with each other for all Ma.390

(a) Kn=0.1, Ma=3.2 × 10−6 (b) Kn=1, Ma=3.2 × 10−6 (c) Kn=8, Ma=3.2 × 10−6

(d) Kn=0.1, Ma=3.2 × 10−2 (e) Kn=1, Ma=3.2 × 10−2 (f) Kn=8, Ma=3.2 × 10−2

(g) Kn=0.1, Ma=0.16 (h) Kn=1, Ma=0.16 (i) Kn=8, Ma=0.16

Figure 6: Contours of the perturbed temperature T in the 2D lid-driven cavity flow obtained

using the DVM (the black solid line and coloured background) and the DSBGK method (the white

dash-dot line).

3.3. Effect of Knudsen number391

To assess the effects of rarefaction, we compare our simulation results at Ma =392

3.2 × 10−2, and Knudsen numbers Kn = 0.1, 1 and 8. The macroscopic flow fields393
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are presented in subfigures d), e) and f) of Figs. 3 to 6. Although the u and v394

flow patterns remain almost unchanged, the magnitudes of u and v decline with395

increasing Kn. For Knudsen numbers increasing from 0.1 to 8, the magnitude of the396

maximum (minimum) u reduces around 47% (17%); for v, it is about 14% (13%).397

Likewise, the magnitudes of the maxima and minima in the n field decrease with398

increasing Kn. From Kn = 0.1→ 8, the magnitudes of the maximum and minimum399

of n reduce by about 37%. The regions of low and high n also expand downward with400

increasing Kn. The temperature in the hottest (coldest) region increases (decreases)401

by 33% (39%) as the Knudsen number rises from 0.1 to 8.402

Using the simple boundary condition in DSBGK produces very good agreement403

with DVM for n and T contours at all Kn. The u and v contours of DSBGK deviate404

slightly from those of DVM at Kn = 1, 8, and this deviation diminishes at Kn = 0.1.405

3.4. Effects of velocity and spatial grids, and computational costs406

So far, we have focused on the accuracy of the DVM and DSBGK methods at407

different Kn and Ma using either a high resolution velocity grid or a large number of408

simulated molecules per cell. For practical applications, it is important to strike a409

balance between computational accuracy and efficiency. So we test different reduced410

velocity grids in the DVM simulations and reduced numbers of simulated molecules411

per cell in the DSBGK simulations, for Ma = 3.2×10−3 and Kn = 0.1, 1 and 8. The412

simple boundary is again used to stabilize the DSBGK simulations. The timestep413

in the DSBGK simulations is fixed at ∆t = 2.0∆x
√
m/(2kBT0) for different Kn to414

clarify the relation between the timesteps and the corresponding CPU simulation415

time, which is the wall clock time for both DVM and DSBGK simulations, unless416

stated otherwise.417

Allowing tolerances of a maximum local relative deviation (from the accurate418

DVM results obtained with an 8×80 velocity grid) of 10% in u, v, n, T profiles along419

the horizontal centreline, the velocity grids of the DVM method can be reduced to420

4× 24, 4× 40, 4× 48 at Kn = 0.1, 1, 8, respectively, while the number of simulated421

molecules per cell in the DSBGK method can be decreased to 10 for all Kn. Figures422

7 to 9 show the contours of macroscopic quantities obtained by the DVM and the423
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DSBGK using these numerical parameters, alongside the reference contours obtained424

by the DVM with an 8× 80 velocity grid.425

The accuracy of the DSBGK method does not deteriorate when using only 10426

simulated molecules per cell, except for a small drift in the density distribution.427

However, the stochastic noise is significantly increased, so 5000 samples are needed428

to smooth the results. Although the number of simulated molecules per cell used by429

the DSBGK method is small, the molecular velocities inside each cell are dynam-430

ically updated via the frequent and random events of simulated molecules moving431

into and out of each cell (from the perspective of the Eulerian description). The432

molecular velocities along all representative trajectories are also dynamically up-433

dated via the frequent and random molecular reflections at the boundary (from434

the perspective of the Lagrangian description). Thus, the dynamic discretization435

of using few simulated molecules per cell in the DSBGK method can sample from436

the whole velocity space and therefore allow as fine discretization of the unbounded437

molecular velocity space as desired with the increase of simulation time. This is the438

same as in the DSMC method.439

The DVM contours with coarse velocity grids can be seen to oscillate around the440

reference solutions in the regions far from the two top corners. This can be explained441

as “ray effects”, which are known as major shortcomings of the DVM when applied to442

neutron transport and radiative transfer problems involving discontinuous boundary443

conditions [47, 48, 49]. These effects are due to the finite discretization of velocity444

space tending to capture discontinuities, whereas the finite discretization of spatial445

space tending to smooth the flow field. The velocity grid therefore should be fine446

enough so that the error due to ray effects can be compensated by the error due447

to numerical diffusion, which is related to the spatial grid and spatial discretization448

scheme [50].449

In Fig. 10, the ray effects (wavy contours) can be clearly observed in the DVM450

solution with a 602 spatial grid and a 4 × 40 velocity grid, for the case of Ma =451

3.2 × 10−3,Kn = 8. The effects are diminished by increasing the velocity grid to452

4× 80, by reducing the spatial grid to 302, or by using a lower-order scheme, i.e. a453

first order upwind scheme, rather than Eq. (22). The contours obtained by the first454
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two options are almost identical to each other (and to the reference contours shown455

in Fig. 9) and slightly differ from the results using the third option. Among these456

three options for this case of high Kn, the second option, i.e. compatible coarse457

velocity and spatial grids with a high-order upwind scheme, provides accurate data458

at relatively cheap computational cost.459

In addition to velocity grid size, the layout of velocity grid is also important to460

mitigate ray effects. For instance, a 322 velocity grid in Cartesian coordinates yields461

significant ray effects, whereas a 4 × 80 velocity grid in polar coordinates (about462

one-third size of the Cartesian grid) does not. These ray effects are sensitive to Nϕ463

but not to Ncp , e.g. a 4 × 80 velocity grid can provide an identical solution to an464

8× 80 velocity grid (see Figs. 9 and 10).465

In addition, Figs. 7 to 9 show that ray effects increase with Knudsen number,466

since the collision process is dominated by the streaming process. To mitigate ray467

effects when a linearized kinetic equation is used, the perturbed distribution func-468

tion can be split into two parts: the part induced by the wall velocity can be solved469

analytically along characteristic directions, whereas the other part is solved numer-470

ically [36].471

It is also important to compare the computational costs of the DVM and DSBGK472

methods in achieving the required solution tolerances. A comparison of computa-473

tional costs is given in Table 1. All the serial calculations are performed using a474

single CPU core on an Alfahd compute node (High-Performance Computing facil-475

ity at King Fahd University of Petroleum and Minerals) with an Intel Xeon CPU476

E5-2680 v4 and 128 GB of memory. The codes are compiled with Intel Fortran477

Compiler version 18.0 using -O3 -xCORE-AVX2 flags. The total number of timesteps478

required by the DVM simulations is minimal when Kn = 1, while that required by479

the DSBGK method increases with Kn. The DSBGK method requires less than one480

minute of CPU time to obtain converged solutions, which is about 2 to 15 times481

more expensive than the DVM. However, the overall CPU time for a DSBGK sim-482

ulation is much longer, about 50 to 80 times higher than that of DVM, due to the483

time-averaging process.484

For large-scale simulations, the efficiency of the DSBGK method should be en-485
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(a) u (b) v

(c) n (d) T

Figure 7: Contours of the perturbed u, v, n and T in the 2D lid-driven cavity flow obtained by

the DVM using an 8 × 80 velocity grid (black solid lines), the DVM using a 4 × 24 velocity grid

(blue dashed lines), and the DSBGK method using 10 simulated molecules per cell with the simple

boundary condition and 5000 samples (red dash-dot lines); Ma = 3.2× 10−3,Kn = 0.1.
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(a) u (b) v

(c) n (d) T

Figure 8: Contours of the perturbed u, v, n and T in the 2D lid-driven cavity flow obtained by

the DVM using an 8 × 80 velocity grid (black solid lines), the DVM using a 4 × 40 velocity grid

(blue dashed lines), and the DSBGK method using 10 simulated molecules per cell with the simple

boundary condition and 5000 samples (red dash-dot lines); Ma = 3.2× 10−3,Kn = 1.
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(a) u (b) v

(c) n (d) T

Figure 9: Contours of the perturbed u, v, n and T in the 2D lid-driven cavity flow obtained by

the DVM using an 8 × 80 velocity grid (black solid lines), the DVM using a 4 × 48 velocity grid

(blue dashed lines), and the DSBGK method using 10 simulated molecules per cell with the simple

boundary condition and 5000 samples (red dash-dot lines); Ma = 3.2× 10−3,Kn = 8.
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(a) u (b) v

(c) n (d) T

Figure 10: For the 2D flow case with Ma = 3.2 × 10−3,Kn = 8, ray effects (wavy contours) in

the DVM solution when using a 4 × 40 velocity grid and a 602 spatial grid (blue solid lines) are

diminished by increasing the velocity grid to 4× 80 (black dash lines) or by decreasing the spatial

grid to 302 (red dot lines) or by reducing the order of accuracy to a first order upwind scheme

(green dash dot line).

28



Table 1: The computational costs of using the DVM and DSBGK methods in the 2D lid-driven

cavity flow problem for Ma = 3.2× 10−3 and with 602 spatial grids/cells.

DVM DSBGK

Kn 0.1 1 8 0.1 1 8

velocity grids Ncp ×Nϕ 4× 24 4× 40 4× 48 - - -

simulated molecules per cell - - - 10 10 10

timesteps for convergence 124 44 51 200 400 1600

timesteps in total 124 44 51 5200 5400 6600

CPU time (s) for convergence 0.97 0.65 1.05 2 4 16

overall CPU time (s) 0.97 0.65 1.05 51 53 65

hanced, since the fixed CPU time used for the time-averaging process (i.e. 5000 ∆t,486

as we used here) will become negligible compared to the CPU time needed for con-487

vergence (e.g. increasing from 200 ∼ 1600 ∆t used here to millions of ∆t). Thus, the488

comparison of CPU time required for the convergence process alone is also an impor-489

tant indicator for large-scale problems. Note also that the comparison of efficiency490

made here is for this 2D case, where the discretization of velocity space in the third491

direction is not required in the DVM simulations. Further efficiency comparisons492

will be made below for the 3D case, where the full 3D velocity grid should be used493

in DVM.494

The computational cost can be further reduced by using coarse spatial grids, as495

long as the cell size is smaller than the mean free path (as in DSMC simulations).496

We therefore report on how the simulation accuracy is affected when the number497

of spatial grids/cells reduces from 602 to 102, for the case with Kn = 1, Ma =498

3.2× 10−2. Since we focus on the discretization in physical space, high resolution is499

still maintained in the velocity space here, i.e. the DVM simulation uses an 8 × 80500

velocity grid, while the DSBGK simulation employs 2000 simulated molecules per501

cell and the simple boundary condition.502

Figure 11 shows the contours of the macroscopic quantities obtained by the503

DSBGK and DVM methods with the coarse spatial grid. The DVM results using a504

602 spatial grid are also plotted as a reference solution. It can be seen that the n505
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and T contours given by both methods on the coarse spatial grid are in satisfactory506

agreement with the reference ones. However, the u and v contours of the coarse507

solutions of both methods have some deviations from the reference solutions. This508

numerical error is expected to occur also with other simulation methods when using509

coarse spatial grids to save computational cost. Balancing computational accuracy510

with efficiency becomes a key issue when simulating large-scale problems, e.g. gas511

flows in porous media.512

(a) u (b) v

(c) n (d) T

Figure 11: Contours of the macroscopic flow quantities in the 2D lid-driven cavity with Kn = 1

and 3.2 × 10−2 obtained using a 602 spatial grid (DVM: black solid lines) and a 102 spatial grid

(DVM: blue dashed lines, DSBGK: red dash-dot lines).
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4. 3D cavity flows513

We now consider the rarefied gas flow inside a cubic cavity of size L = 1 µm, which is514

an extension in the Z-direction of the square cavity examined in Section 3. The top515

lid (in the X−Z plane at Y = 1) moves in the positive X-direction with a constant516

speed uw, see Fig. 1 (b). We fix Ma = 3.2× 10−3 and choose Kn = 0.1, 1 and 8, to517

cover the slip, transition, and free-molecular flow regimes. The number of uniform518

spatial cells/grids is 603 for both the DSBGK and DVM simulations. We use the519

accurate DVM results as reference data, which are obtained using a 4 × 80 × 40520

velocity grid.521

By comparing the u, v, n, T contours on the plane Z = 0.5 obtained by the522

3D reference solutions with those obtained by the 2D reference solutions (shown523

in Figs. 7-9), the side wall (Z = 0, 1) effects on the middle plane are seen to be524

negligible when Kn = 0.1. Although it is not illustrated here, the side wall effects525

increase with Knudsen number and change the T profiles most significantly.526

We examine effects of using 10 simulated molecules per cell in the DSBGK527

method, and coarse velocity grids in the DVM. The coarse DVM grids used in528

the 2D case are now extended in the inclination θ with Nθ = 12 for this 3D case, i.e.529

4× 24× 12, 4× 40× 12, 4× 48× 12 for Kn = 0.1, 1, 8, respectively. The deviations530

of both methods from the reference solution on the plane Z = 0.5 are similar to the531

2D case. For example, Fig. 12 shows the u, v, n, T contours on the planes Z = 0.5532

and Y = 0.5 for the case with Kn = 8. The DVM results (left column of Fig. 12)533

show that although the number of distinct discrete cz (Ncp ×Nθ) is much less than534

that of distinct discrete cx or cy (Ncp × Nθ × Nϕ), the ray effects (wavy contours)535

observed in the plane Y = 0.5 are less obvious than those in the plane Z = 0.5.536

Moreover, the ray effects in the plane Y = 0.5 are more pronounced near the two537

lateral walls at Z = 0, 1. These can be explained by the fact that the discontinuities538

in wall velocity with respect to the X− and Y−directions exist in all the Z−planes,539

while those with respect to the Z−direction exist only in the planes Z = 0, 1.540

The serial computational costs of the two numerical methods for the 3D cavity541

problem, using the same machine as in the 2D cavity problem, are compared in542

Table 2. Dependence of the number of timesteps on Knudsen number recalls that543
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(a) u (DVM) (b) u (DSBGK)

(c) v (DVM) (d) v (DSBGK)

(e) n (DVM) (f) n (DSBGK)

(g) T (DVM) (h) T (DSBGK)

Figure 12: The 3D lid-driven case with Ma = 3.2× 10−3, Kn = 8: contours of the perturbed u, v,

n and T on the planes Z = 0.5 and Y = 0.5, obtained by the DVM using a 4 × 48 × 12 velocity

grid (left column), and the DSBGK method using 10 simulated molecules per cell with the simple

boundary condition and 5000 samples (right column).
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Table 2: The computational costs of using the DVM and DSBGK methods in the 3D lid-driven

cavity flow problem for Ma = 3.2× 10−3 and with 603 spatial grids/cells.

DVM DSBGK

Kn 0.1 1 8 0.1 1 8

velocity grids Ncp ×Nϕ ×Nθ 4× 24× 12 4× 40× 12 4× 48× 12 - - -

simulated molecules per cell - - - 10 10 10

timesteps for convergence 146 67 278 200 400 2400

timesteps in total 146 67 278 5200 5400 7400

CPU time (s) for convergence 1162 882 4473 185 376 2279

overall CPU time (s) 1162 882 4473 4857 5115 7033

of the 2D case for both DVM and DSBGK. To reach steady state, the CPU time544

spent by DVM is about 2 to 6 times more than that needed by the DSBGK method.545

Including the time-averaging process, however, makes the overall computational cost546

of the DSBGK method from 1.6 to 5.8 times that of the DVM.547

5. Conclusions548

We have compared the DVM and DSBGK methods for solving the BGK gas kinetic549

model applied to low-speed lid-driven cavity flows over a range of Knudsen and Mach550

numbers. For the 2D case with Ma = 0.16, the velocity profiles along the centrelines551

predicted by the two methods are in good agreement with those reported using552

the standard DSMC method [37]. When the Mach number decreases, the velocity553

profiles predicted by the DVM and DSMC methods are essentially independent of554

Ma, while those of the DSBGK method vary by up to 7.5% (in the u profile) and 2.5%555

(in the v profile) due to the use of the simple boundary condition. This maximum556

discrepancy occurs only in the region with relatively small perturbations. Overall,557

the DVM and DSBGK techniques produce results in good agreement.558

For 2D case, the magnitudes of the perturbed number density and perturbed559

temperature in the flow field are observed to increase with the Mach number, while560

the velocity field remains nearly unchanged. Among the investigated macroscopic561

quantities, only the temperature distribution is sensitive to the Mach number: the562
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cooler region constrict leftward and expands downward with increasing Mach number563

while the hotter region expands leftward. For both 2D and 3D cases, the variations564

of all the macroscopic quantities, except the temperature, reduce significantly with565

increasing Knudsen number. The regions of low/high number density and temper-566

ature in the flow field expand with increasing Knudsen number, while the velocity567

distributions remain unchanged.568

To reduce the “ray effects” in the DVM simulations that are induced by the569

discontinuous boundary condition, the velocity grid should be compatible with the570

spatial grid and the accuracy order of the numerical scheme. With a third-order571

upwind scheme and a 602 spatial grid, the molecular velocity grids of the DVM in572

2D can be reduced to 4× 24, 4× 40, 4× 48 points for Kn = 0.1, 1, 8, respectively, if573

we accept a maximum local relative error of 10% in the u, v, n, T profiles along the574

horizontal centreline of the 2D cavity. For the 3D cavity with a 603 spatial grid, the575

corresponding velocity grids of the DVM are 4× 24× 12, 4× 40× 12, 4× 48× 12.576

Similarly, the number of simulated molecules per cell in the DSBGK method can577

also be reduced to 10 for all Kn to achieve the same tolerance. The time-averaging578

process in the DSBGK method needs to be prolonged with decreasing number of579

simulated molecules per cell to reduce stochastic noise in the solution. This modest580

number of simulated molecules per cell does, however, result in a much smaller581

memory requirement for the DSBGK method than for the DVM.582

The total number of DSBGK timesteps increases with Kn, while the required583

DVM timesteps are at a minimum at Kn = 1. Compared to a deterministic method584

like the DVM, the DSBGK method needs additional computational effort for the585

time-averaging process. For 2D flow problems, the DVM velocity space can also be586

projected from 3D to 2D to make computational savings. Consequently, the overall587

CPU time consumed by the DSBGK simulations is much larger than that of the588

DVM in the 2D cavity case, although for the 3D case the computational costs of589

the two methods become comparable. The efficiency of the DSBGK method can590

be expected to be enhanced in large-scale 3D simulations, where the required CPU591

time for time-averaging becomes a negligible part of the overall simulation.592
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