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1 TITLE: Prediction of metabolic clusters in early lactation dairy cows using models based on 

2 milk biomarkers

3 FIRST AUTHOR: J. De Koster

4 INTERPRETIVE SUMMARY

5 Early lactating dairy cows were grouped into clusters at 15 and 37 DIM based on k-means 

6 clustering of 4 blood metabolites. These metabolic clusters were used to identify (IM)-

7 BALANCED metabolic profiles. Subsequently, phenotypic production parameters was 

8 modelled showing significant differences in dry matter intake and energy balance between 

9 clusters. Finally, 3 sets of milk biomarkers were compared according to their predictive 

10 accuracy for the observed metabolic profile. Accuracy was highest using Fourier transformed 

11 mid-infrared spectra and milk metabolites & enzymes. The metabolic profiles can be used as 

12 novel trait for genetic selection and identification of (IM)BALANCED early lactating dairy 

13 cows. 

14
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32 ABSTRACT

33 The aim of this study was to describe metabolism of early lactation dairy cows by clustering 

34 cows based on glucose, insulin like growth factor I (IGF-I), free fatty acid (FFA), and β-

35 hydroxybutyrate (BHB) using the k-means method. Predictive models for metabolic clusters 

36 were created and validated using three sets of milk biomarkers (milk metabolites and enzymes, 

37 glycans on the immuno-gamma globulin (IgG) fraction of milk, and Fourier transformed mid-

38 infrared spectra (FT-MIR) of milk). Metabolic clusters are used to identify dairy cows with a(n) 

39 (im)balanced metabolic profile. Around 14 and 35 days in milk, serum or plasma concentrations 

40 of BHB, FFA, glucose and IGF-I, were determined. Cows with a favorable metabolic profile 

41 were grouped in BALANCED (n=43) and compared with OTHERBAL (n=64). Cows with an 

42 unfavorable metabolic profile were grouped in IMBALANCED (n=19) and compared with 

43 OTHERIMBAL (n=88). Glucose and IGF-I were higher in BALANCED compared with 

44 OTHERBAL. FFA and BHB were lower in BALANCED compared with OTHERBAL. Glucose 

45 and IGF-I were lower in IMBALANCED compared with OTHERIMBAL. FFA and BHB were 

46 higher in IMBALANCED. Metabolic clusters were related to production parameters. There was 

47 a trend for a higher daily increase in fat and protein corrected milk yield (FPCM) in 

48 BALANCED while FPCM of IMBALANCED was higher. Dry matter intake (DMI) and the 

49 daily increase in DMI were higher in BALANCED and lower in IMBALANCED. Energy 

50 balance was continuously higher in BALANCED and lower in IMBALANCED. Weekly or bi-

51 weekly milk samples were taken and milk metabolites and enzymes (milk glucose, glucose-6-

52 phosphate, BHB, lactate dehydrogenase, N-acetyl-β-D-glucosaminidase, isocitrate), IgG 

53 glycans (19 peaks) and FT-MIR (1,060 wavelengths reduced to 15 principal components) 

54 determined. Milk biomarkers with or without additional cow information (DIM, parity, milk 

55 yield features) were used to create predictive models for the metabolic clusters. Accuracy for 

56 prediction of BALANCED (80%) and IMBALANCED (88%) was highest using milk 
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57 metabolites and enzymes combined with DIM and parity. The results and models of the present 

58 study are part of the GplusE project and identify novel milk based phenotypes that may be used 

59 as predictors for metabolic and performance traits in early lactation dairy cows. 

60 Key words: metabolic clustering, dairy cows, prediction, milk biomarkers
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61 INTRODUCTION

62 Physiological adaptations of dairy cows in the transition period are well described (Bell and 

63 Bauman, 1997, Drackley et al., 2005). As parturition approaches, growth hormone (GH) 

64 concentrations start to increase while insulin and insulin like growth factor I (IGF-I) 

65 concentrations decrease (Lucy et al., 2009). Growth hormone enhances milk production 

66 through partitioning of nutrients towards the mammary gland (Lucy, 2008), lipolysis increases, 

67 lipogenesis is almost completely downregulated and hepatic gluconeogenesis is stimulated 

68 (Bauman, 1999, Lucy, 2008). Growth hormone induces the production of IGF-I by the liver 

69 which inhibits GH secretion by the hypophysis (Lucy, 2008). Homeorhetic adaptation 

70 mechanisms in the periparturient period decrease the expression of GH receptors by the liver 

71 which downregulate hepatic IGF-I production, known as uncoupling of the GH-IGF-I axis 

72 (Lucy, 2008). Decreased IGF-I concentrations in the periparturient period relieves negative 

73 feedback on pituitary GH production (Lucy, 2008). As lactation progresses, recoupling of the 

74 GH-IGF-I axis is characterized by repleted IGF-I levels and effectuated by slightly elevated 

75 insulin levels (Lucy, 2008).

76 Homeorhetic mechanisms commonly observed during the transition period supports the 

77 metabolic prioritization of the lactating mammary gland leading to a sharp increase in milk 

78 production (Bauman and Currie, 1980). The increase in DMI in postpartum cows lags behind 

79 the increased milk production which results in a period of negative energy balance (EBAL) 

80 (Grummer et al., 2004). Severe negative EBAL is a risk factor for metabolic, infectious and 

81 reproductive disorders (Moyes et al., 2013). Metabolic indicators for the severity of the negative 

82 EBAL are used to detect individual cows, which are unable to cope with the altered metabolic 

83 challenge of lactation. Elevated free fatty acids (FFA) and BHB, and decreased glucose and 

84 IGF-I are reported as biomarkers of metabolic imbalanced cows which are more at risk for an 

85 unsuccessful transition from the dry period to lactation (Ingvartsen et al., 2003, Puppel and 
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86 Kuczynska, 2016). Cut-off values for FFA and BHB have been determined to predict negative 

87 health consequences in the periparturient period (McArt et al., 2013, Ospina et al., 2013). 

88 However, the metabolic profile of individual cows within a herd shows a high level of 

89 variability (Ingvartsen et al., 2003). Especially the correlation between FFA and BHB is 

90 difficult to explain. While some cows with normal BHB levels have high FFA levels, vice versa 

91 other cows with normal FFA levels have high BHB levels, demonstrating unexplained inter-

92 individual variability within one group of cows (Ospina et al., 2013, McCarthy et al., 2015). 

93 This inter-individual variability represents inter-individual ability of cows to adapt to the altered 

94 metabolic challenge of lactation and demonstrates the limitations of monitoring metabolism 

95 based on a single metabolic indicator (Ingvartsen et al., 2003, Bjerre-Harpoth et al., 2012, 

96 Moyes et al., 2013). Moreover, monitoring early lactation metabolism requires early 

97 identifiable biomarkers. Due to better accessibility and the ease of automated repeat sampling 

98 owing to recently developed ‘in-line’ sampling and analytical technologies, milk is the 

99 preferred medium in which biomarkers can be measured (Ingvartsen and Friggens, 2005, 

100 Nielsen et al., 2005a, Egger-Danner et al., 2015). It is highly probable that certain glycan 

101 structures (Zhao and Keating, 2007), milk metabolites and enzymes (Weekes et al., 1983, 

102 Wallace and Matthews, 2002, Bjerre-Harpoth et al., 2012) or mid-infra-red spectra (Voelker 

103 and Allen, 2003, Maury et al., 2007, Soyeurt et al., 2011) of bovine milk can serve as 

104 biomarkers to monitor early lactation metabolism and performance but comparable prediction 

105 methodologies are lacking.

106 The aim of this study was to combine concentrations of blood metabolites to describe 

107 metabolism of dairy cows in early and peak lactation by clustering cows based on 

108 concentrations of glucose, IGF-I, FFA, and BHB. Metabolic clusters are used to identify dairy 

109 cows with a(n) (im)balanced metabolic profile. Furthermore, the relationship between 

110 metabolic clusters and production parameters (DMI, fat-protein-corrected milk production 
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111 (FPCM), BW, EBAL and BCS) are determined. Finally, three sets of milk biomarkers (milk 

112 metabolites and enzymes (milk biomarker 1, MBM1), glycans on the immunoglobulin-gamma 

113 (IgG) fraction of milk (milk biomarker 2, MBM2), and Fourier transformed mid-infrared 

114 spectra (FT-MIR) of milk (milk biomarker 3, MBM3)) are used to create and validate 

115 predictive models for the different metabolic clusters. 

116 MATERIALS AND METHODS

117 The experiments were carried out in accordance with the standards recommended by the EU 

118 Directive 2010/63/EU for animal experiments. Detailed description of the experiments, 

119 laboratory analysis of blood and milk, production data etc. are given in Foldager et al. (2018) 

120 and described in brief below. 

121 Animals and Sampling

122 Samples and data between calving and 50 days post calving (1-50 DIM) were obtained from 

123 130 Holstein Friesian cows (parity 2: n = 42; parity 3: n = 51; parity ≥ 4 : n = 37) in four research 

124 herds: AU (Aarhus University, Denmark), UCD (UCD Lyons Research farm, University 

125 College Dublin, Ireland), AFBI (Agri-Food and Biosciences Institute, Northern Ireland, UK), 

126 and FBN (Leibniz Institute for Farm Animal Biology, Germany). Cows were milked twice 

127 daily.

128 Analyses of Glucose, IGF-I, FFA and BHB

129 Blood samples were taken around 14 DIM (15 ± 0.1 DIM, D14) and 35 DIM (37 ± 0.1 DIM, 

130 D35) in serum and heparin tubes by jugular or coccygeal venipuncture. Blood plasma glucose 

131 concentrations were determined using an enzymatic method (ADVIA 1800 Clinical Chemistry 

132 System, Siemens Diagnostics). Plasma FFA concentrations were determined using an 

133 enzymatic method (NEFA C ACS-ACOD assay method, Wako). Plasma BHB concentrations 

134 were determined by measuring absorbance at 340 nm due to the production of NADH at 
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135 alkaline pH in the presence of BHB dehydrogenase. Serum concentrations of IGF-I were 

136 determined using a radioimmunoassay following acid–ethanol extraction using the method 

137 previously described by Beltman et al. (2010). 

138 Analyses of Milk Metabolites and Enzymes, Milk Glycans and FT-MIR

139 Metabolites and Enzymes. Weekly, two AM milk samples were collected starting from 

140 the first week in milk until 50 DIM. At each day of sampling, two separate samples of 

141 approximately 8 mL were obtained and stored at -18°C. Fluorometric assays were used to 

142 determine milk glucose and glucose-6-phosphate (Larsen, 2015), BHB (Larsen and Nielsen, 

143 2005), lactate dehydrogenase (Larsen, 2005), N-acetyl-β-D-glucosaminidase (Larsen et al., 

144 2010) and isocitrate (Larsen, 2014). Urea was determined by spectrophotometry (Nielsen et al., 

145 2005b). Finally, six milk metabolites and enzymes were available as the first set of milk 

146 biomarker (MBM1).

147 IgG Glycans. Weekly, two AM milk samples were collected starting from the first week 

148 in milk until 50 DIM. Milk samples were centrifuged at 4,000 g for 30 min at 4˚C. Five mL of 

149 whole milk internatant was recovered and frozen at -20˚C. In duplicate, 300 µL of thawed 

150 sample was filtered through a 1 µm glass fiber filter plate (Acroprep, VWR International Ltd, 

151 Radnor, PA, USA ) at 3,000 g for 10 min and collected in a 96-well greiner plate (Cruinn 

152 Diagnostics, Dublin, Ireland). All processes relating to IgG purification and IgG-glycan release 

153 were carried out on a Hamilton Robotics StarLet liquid-handling platform (Hamilton Robotics, 

154 Reno, NV, USA) using a protocol adapted from Stöckmann et al. (2013). The N-glycans were 

155 separated on a Waters Acquity UPLC instrument (Waters, Milford, MA, USA) and analyzed 

156 using Empower V3 (Waters 2010, Milford).

157 IgG was captured by passing 290 µL of filtered sample through a Protein G matrix (Phytip G; 

158 200 µl column; 20 µl resin bed. Phynexus, San Jose, CA, USA). The column tips were washed 
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159 five times with a 0.1 M sodium phosphate binding buffer (pH 7.4), eluted with a 0.2 M glycine-

160 hydrochloride buffer (pH 2.5) and neutralized with 1 M Tris-hydrochloride buffer (pH 9.0). The 

161 purified protein was enriched by pooling from two identical plates.

162 One hundred µL of the enriched IgG was transferred to a 96-well ultrafiltration plate (Acroprep, 

163 Omega membrane, 10 kDa, VWR International Ltd) and centrifuged at 3,000 g for 30 min at 

164 room temperature. Fifty µL of a dithiothreitol denaturating buffer was added to each well, 

165 mixed and left at room temperature for 10 min. The sample was then transferred to a 96-well 

166 thermobalanced denaturation plate (Armadillo, High Performance 96-well PCR Plate, Thermo 

167 Scientific, Waltham, MS, US) incubated at 95˚C for 10 min and cooled at room temperature for 

168 20 min. The denatured sample was transferred back onto the ultrafiltration plate and incubated 

169 in 20 µL of 1M Iodoacetamide buffer for 10 min. The sample was washed with 20 µL of 25 

170 mM sodium bicarbonate and filtered. 0.4 µL of PNGase F (2.5 U/mL) (New England Biolabs, 

171 Ipswich, UK) was added to each well and incubated for 30 min at 38°C with agitation. The 

172 released N-glycans were recovered by centrifugation at 3,000 g through a 10 kDa filter for 10 

173 min.

174 Eight µL of the N-glycan sample was incubated with 12 µL of the fluorescent tag 6-

175 aminoquinolyl-N-hydroxysuccinimidyl carbamate (3 mg/mL MeCN) at room temperature. 

176 Sixteen µL of each sample was separated using hydrophilic separation chromatography (Glycan 

177 BEH Amide 130Å Column, Waters) and 19 peaks were manually identified and integrated. 

178 Each peak's percentage of the total area under the 19 peaks was used as the IgG glycan measure 

179 for the statistical analyses. This set of 19 was used as second set of milk biomarker (MBM2)

180 Fourier Transformed Mid-Infra-Red spectra. Twice weekly, AM and PM milk 

181 samples were collected starting from the first week in milk until 50 DIM and preserved with 

182 bronopol 0.02% and stored at 4°C. Analyses were done locally on FT2 and FT6000 

183 spectrometers (Foss, Hillerød, Denmark) or at CRA-W (Belgium) by a Standard Lactoscope 
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184 FT-MIR automatic (Delta Instruments, Drachten, The Netherlands). The AM and PM FT-MIR 

185 spectra were combined into a daily spectrum by a weighted average taking into account the AM 

186 and PM milk yields. The FT-MIR spectra of the different instruments were standardized and 

187 merged into a common dataset following the procedure described in Grelet et al. (2015). 

188 Finally, absorbance values at 1,060 wavenumbers were available as third set of milk biomarker 

189 (MBM3). Samples were analyzed locally for fat, protein and lactose content by Fourier 

190 transform infrared spectroscopy with FT2 and FT6000 spectrometers (Foss, Hillerød, 

191 Denmark) or a Standard Lactoscope FT-MIR automatic (Delta Instruments, Drachten, The 

192 Netherlands) and using the predictive models provided by the manufacturers.

193 FPCM, DMI, EBAL and BW Measurements

194 All cows were milked twice daily and daily yields were recorded. Milk samples were collected 

195 twice weekly until 50 DIM and analyzed for composition of protein, fat and lactose by mid-

196 infrared analysis, and for somatic cell count by flow cytometry. Bronopol (0.02%, Sigma-

197 Aldrich) was added as a preservative to all samples. Milk weighted average for milk 

198 components were used in the subsequent analysis. Fat-protein-corrected milk production 

199 (FPCM) was calculated as [(0.337 + 0.116 x milk fat % + 0.06 x milk protein %) x kg of milk] 

200 (CVB, 2007).

201 Body condition score was recorded at the moment of blood sampling using a 1 to 5 scale, with 

202 0.25-point increments (Edmonson et al., 1989). Live weights were recorded twice weekly using 

203 weight scales until 50 DIM. Daily individual DMI were recorded using electronic feeding 

204 system (Insentec, Markneesse, Netherlands). Over the course of the sampling period, weekly 

205 ration samples were collected, dried and shipped for NEL analysis in a single run (Cumberland 

206 Valley Agricultural Services, Maryland). The EBAL was calculated by calculating the daily 

207 difference between energy input and output. The energy input was calculated by multiplying 

208 the weekly NEL density of the ration with the daily DMI of the animal. The energy output was 
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209 calculated according to the National Research Council calculation correcting for NEM using the 

210 last recorded BW of the animal and most recent fat, protein and lactose content together with 

211 the daily milk yield for the NEL (NRC, 2001).

212 Statistical analyses

213 Metabolic Clustering. Due to missing observations, technical and logistical limitations, 

214 only 107 cows were included in the final statistical analyses. The k-means clustering method 

215 was used to group cows based on the log-transformed and standardized concentrations (mean 

216 = 0 and STDEV = 1) of glucose, IGF-I, FFA and BHB on D14 and D35. Sum of squares plots 

217 were used to determine the optimal number of clusters. Three clusters were created in both 

218 periods: A (n = 51), B (n = 51), and C (n = 5) on D14 and D (n = 58), E (n = 25) and F (n = 24) 

219 on D35. Pairwise comparisons of glucose, IGF-I, FFA and BHB between A, B, and C on D14 

220 and D, E and F on D35 were done using an ANOVA. The clustering of the individual cows on 

221 D14 and D35 was compared. Cows in cluster A on D14 and cluster D on D35 were considered 

222 metabolically balanced cows (n = 43, BALANCED). Cows not in cluster A on D14 and cluster 

223 D D35 were grouped together (n = 64, OTHERBAL). Equally, cows in cluster B on D14 and 

224 cluster F on D35 (n = 14) together with cows in cluster C on D14 and cluster F on D35 (n = 5) 

225 were considered metabolically imbalanced cows (n = 19, IMBALANCED). Cows not in these 

226 clusters on D14 or D35 were grouped together (n = 88, OTHERIMBAL). 

227 Metabolic and Production Performance of Metabolic Clusters. Pairwise comparisons 

228 between BALANCED vs OTHERBAL and IMBALANCED vs OTHERIMBAL were done using 

229 a linear mixed effect model after log transformation of the metabolite and hormone 

230 concentrations with period (D14 and D35) as repeated observation within the random factor 

231 cow. Linear mixed effect models were constructed for the FPCM, DMI, EBAL and BW of the 

232 cows in the metabolic cluster (BALANCED vs OTHERBAL and IMBALANCED vs 

233 OTHERIMBAL) with day post calving as repeated observation within the random factor cow. All 
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234 pairwise comparisons were done using the Tukey’s post hoc test. Residuals of the models were 

235 checked and found to be normally distributed. Interaction effects were removed from the model 

236 if non-significant (P < 0.05). Significance and tendency were declared at P < 0.05 and 0.05 ≤ 

237 P < 0.10, respectively. Results are presented as LSMEANS ± SEM unless otherwise stated.

238 Prediction of Metabolic Clusters

239 Feature Preparation of FT-MIR. Due the nature of the FT-MIR data, a dimension 

240 reduction step was needed to reduce the high number of variables (n = 1,060) in contrast with 

241 glycan (n = 19) or blood metabolites (n = 6). First, wavenumbers were removed known to be 

242 non-informative due to the water component in milk (Grelet et al., 2016). Next, FT-MIR spectra 

243 were reduced using a principal component analysis. Exploration of the variance plot revealed 

244 15 principal components (PC) that contributed most to the entire variation in FT-MIR data. 

245 After the filter and reduction step, 1,060 wavenumbers were reduced to 15 PC which were used 

246 in the remainder of the analysis. 

247 Biomarker Preparation. Each set of biomarkers was subsequently split into 3. One set 

248 of the biomarkers without additional cow information, one set of the biomarkers including the 

249 DIM at sampling and the parity of the animal, and one set of the biomarkers including the DIM 

250 at sampling, the parity of the animal, and milk yield features (number of milkings, the 

251 minimum, maximum, mean, stdev, sum of milk yield in the period up to the sampling). 

252 Random Sampler. Three sets of milk biomarkers (MBM1, MBM2, and MBM3) were 

253 available as predictors to classify the animals according to their metabolic cluster. However, 

254 for each of the biomarkers and according to the research protocol, multiple samples at varying 

255 DIM were available. A random sampler was created to select one sample per animal from 1 to 

256 50 DIM. As such, the sampler works as if an official milk recording organization entered each 
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257 of the participating research herds and sampled all cows at random stages in lactation on a given 

258 day.

259 Random Forest. In the next step, 10 models were created using the aforementioned 

260 random milk recording sampler as dataset and a random forest (RF) classifier to predict 

261 BALANCED and IMBALANCED cows in each run. Each RF used 1,000 trees and a maximum 

262 depth of 5. One third of the features were selected to be used as candidates for splitting at each 

263 tree node. A separate training and test dataset was created for BALANCED and 

264 IMBALANCED cows by randomly splitting the animals by a ratio of 75/25. All features were 

265 standardized before entering the model to have a mean of 0 and standard deviation of 1. The 

266 accuracy (% of cows with a correctly predicted metabolic cluster) was selected as the evaluation 

267 metric to rank the performance of each of the models. The final minimum, maximum and 

268 average accuracy of the models were reported. A schematic overview of the different steps in 

269 the data preparation, model creation and validation and statistical analysis is given in Figure 1.

270 RESULTS

271 Metabolic Clusters

272 Metabolic clustering based on concentrations of glucose, IGF-I, FFA and BHB using the k-

273 means method resulted in 3 distinct metabolic clusters on D14 and D35. On D14, glucose 

274 concentrations were highest in A, intermediate in B, and lowest in C, IGF-I concentrations were 

275 highest in A, intermediate in C and lowest in B, while FFA and BHB concentrations were lowest 

276 in A, intermediate in B and highest in C (Table 1). On D35, glucose and IGF-I concentrations 

277 were higher in D compared with E and F, FFA concentrations were higher in F compared with 

278 D and E, and BHB concentrations were lowest in D, intermediate in E and highest in F (Table 

279 1). 

280 Production and Metabolic Performance in BALANCED vs OTHERBAL
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281 By comparing the metabolic clusters of individual cows on D14 and D35, 43 cows were 

282 identified to have a balanced metabolic profile (cluster A on D14 and cluster D on D35, Table 

283 2) during the postpartum period and were grouped together in BALANCED. All other cows (n 

284 = 64) were grouped in OTHERBAL. Glucose and IGF-I concentrations increased towards D35 

285 in both groups and were higher in BALANCED compared with OTHERBAL (Table 3). FFA 

286 concentrations decreased towards D35 in both groups and were lower in BALANCED 

287 compared with OTHERBAL (Table 3). BHB concentrations were lower in BALANCED 

288 compared with OTHERBAL but did not change in between periods (Table 3). There was no 

289 difference in FPCM yield in BALANCED compared with OTHERBAL (Figure 2, Table 4). DMI 

290 and the daily increase in DMI were higher in BALANCED (Figure 2, Table 4). The decrease 

291 in BW was more pronounced in OTHERBAL. Energy balance was continuously higher in 

292 BALANCED compared with OTHERBAL (Figure 2, Table 4). The BCS of OTHERBAL 

293 decreased from D14 to D35, but not in BALANCED (Table 3).

294 Production and Metabolic Performance in IMBALANCED vs OTHERIMBAL

295 By comparing the metabolic clusters of individual cows on D14 and D35, 19 cows were 

296 identified to have an imbalanced metabolic profile (5 cows in cluster C on D14 and cluster F 

297 on D35, and 14 cows in cluster B on D14 and cluster F on D35, Table 2) during the postpartum 

298 period and were grouped together in IMBALANCED. All other cows (n = 88) were grouped in 

299 OTHERIMBAL. Glucose concentrations were lower in IMBALANCED cows and were not 

300 different on D14 compared with D35 (Table 5). IGF-I concentrations were lower in 

301 IMBALANCED compared with OTHERIMBAL and increased in both groups on D35 (Table 5). 

302 FFA and BHB concentrations were higher in IMBALANCED in both periods. While FFA 

303 concentrations decreased on D35 compared with D14, BHB concentrations were not different 

304 in between periods (Table 5). FPCM yield of IMBALANCED cows was higher compared with 

305 OTHERIMBAL (Figure 3, Table 6). DMI and the daily increase in DMI were lower in 
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306 IMBALANCED (Figure 3, Table 6). The decrease in BW was more pronounced in 

307 IMBALANCED. Energy balance was continuously lower in IMBALANCED (Figure 3, Table 

308 6). IMBALANCED cows had a higher BCS and the decrease in BCS towards D35 was more 

309 pronounced when compared with OTHERIMBAL (Table 5).

310 Prediction of Metabolic Clusters

311 A total of 5,400 cross-validation models were summarized in Table 7 and 8. The average 

312 prediction accuracy of BALANCED cows was highest (76%) for FT-MIR spectra. The average 

313 prediction of BALANCED cows outperformed the prediction of the separate metabolic clusters 

314 on D14 and D35. Overall, the highest accuracy was found at 80% accuracy using milk 

315 metabolites and enzymes combined with DIM and parity followed by FT-MIR spectra 

316 combined with DIM, parity and milk yield features (79% accuracy). The lowest CV in accuracy 

317 between the different runs was found in FT-MIR Spectra predictions with DIM and parity. 

318 The average prediction accuracy of IMBALANCED cows was highest (81%) for metabolites 

319 and enzymes with DIM and parity. In contrast to the BALANCED cows, the prediction of 

320 IMBALANCED cows outperformed the prediction of the separate metabolic clusters on D14 

321 and D35 except for milk metabolites and enzymes combined with DIM, parity and milk yield 

322 features, IgG glycans combined with DIM, parity and milk yield features and predictions using 

323 FT-MIR spectra. The highest accuracy was found at 88% accuracy using Metabolites and 

324 enzymes in combination with DIM and parity or FT-MIR Spectra (87% accuracy). 

325 DISCUSSION

326 This research is part of an EU funded project “Genotype plus Environment” (GplusE) aiming 

327 to identify novel milk based phenotypes that may be used as predictors for health traits in dairy 

328 cows (Crowe et al., 2018). The present study describes how milk based phenotypes are linked 
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329 with clustering of cows in metabolic balance and imbalance, and the relationship with 

330 production performance parameters. 

331 Different metabolites and hormones can be used to characterize the metabolism of cows in early 

332 lactation. The altered metabolic environment in the periparturient period increases the rate of 

333 adipose tissue lipolysis. A certain level of FFA is considered normal and necessary. However, 

334 when lipolysis is excessive, FFA concentrations increase and this is associated with a 

335 detrimental impact on immunity, metabolism and milk production (Roche et al., 2013, 

336 Contreras et al., 2018). A part of the circulating FFA are converted into ketone bodies by the 

337 liver. Excessive production of ketone bodies may lead to (sub)clinical ketosis (Roche et al., 

338 2013). Glucose concentrations are tightly controlled by homeostatic mechanisms (De Koster 

339 and Opsomer, 2013). Cows suffering from severe negative EBAL have lower glucose 

340 concentrations (Wathes et al., 2011). The usefulness of glucose as single indicator of metabolic 

341 imbalance has been questioned (Mulligan et al., 2006). However, studies by Bjerre-Harpoth et 

342 al. (2012) and Moyes et al. (2013) identified glucose as an important metabolite to be included 

343 in an index of metabolic imbalance together with FFA and BHB. Late pregnancy and early 

344 lactation are marked by a decrease in the concentration of IGF-I. The nadir IGF-I concentration 

345 is reached in the first week after calving (Butler et al., 2003, Radcliff et al., 2003) and after the 

346 second week, IGF-I concentrations are markedly influenced by the energy status of the cows 

347 (Fenwick et al., 2008, Wathes et al., 2011). Animals with severe negative EBAL have lower 

348 IGF-I concentrations (Fenwick et al., 2008) and IGF-I has been suggested to be an indicator of 

349 the nutritional status (Cohick, 1998, Zulu et al., 2002).

350 Metabolic imbalance is defined as ‘a condition where the regulating mechanisms are 

351 insufficient for the animals to function optimally leading to a high risk of a complex of 

352 digestive, metabolic and infectious problems’ (Ingvartsen, 2006). Metabolic clustering of dairy 

353 cows based on concomitant changes in the concentration of different metabolites improves the 
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354 identification of metabolically balanced cows compared with the use of a single indicator 

355 (Bjerre-Harpoth et al., 2012, Moyes et al., 2013, Grelet et al., 2018). Metabolic clustering using 

356 the k-means method in the present study resulted in three distinct metabolic groups in early and 

357 peak lactation. Based on the comparison of the glucose, IGF-I, FFA and BHB concentrations 

358 between the metabolic groups, group A and D show a balanced metabolic profile on D14 and 

359 D35, respectively (high glucose, high IGF-I, low FFA and low BHB). While the metabolic 

360 profile of group B and C on D14 and group F on D35 show an imbalanced metabolic profile 

361 (low glucose, low IGF-I, high FFA or high BHB). Dairy cows in cluster A on D14 and cluster 

362 D on D35, were identified as metabolically BALANCED throughout the study and had higher 

363 glucose and IGF-I, and lower FFA and BHB compared with other cows in both early and peak 

364 lactation. Dairy cows in cluster C on D14 and cluster F on D35 together with cows in cluster B 

365 on D14 and cluster F on D35, were identified as metabolically IMBALANCED throughout the 

366 study and had lower glucose and IGF-I, and higher FFA and BHB compared with other cows 

367 on D14 and D35.

368 The different metabolic clusters were characterized by differences in FPCM, DMI, BW, BCS 

369 and EBAL in the postpartum period. The relationship between metabolic clusters and FPCM 

370 was weak. The FPCM yield was not different in BALANCED cows. Metabolically 

371 IMBALANCED cows had higher FPCM yield. The weak relationship between milk yield, 

372 metabolic balance and disorders has been described before by Ingvartsen et al. (2003), 

373 Ingvartsen (2006) and Bjerre-Harpoth et al. (2012). Ingvartsen (2006) stated that it is not milk 

374 yield as such that is the cause of metabolic imbalance or disorders but the individual cow’s 

375 inability to cope with the metabolic challenges of early lactation. Dry matter intake was 

376 consistently higher in metabolically BALANCED cows and lower in IMBALANCED cows. 

377 Daily increase in DMI was higher in cows with a favorable metabolic profile (BALANCED 

378 and OTHERIMBAL). The relationship between DMI and metabolism may be explained by the 
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379 fact that certain metabolites (FFA) may regulate feed intake in ruminants by the hepatic 

380 oxidation of these metabolites thereby causing a satiety signal and depressing feed intake 

381 (Ingvartsen and Andersen, 2000, Allen et al., 2009). Energy balance is mainly influenced by 

382 energy intake and less by milk production (Santos et al., 2010). The improved nutritional status 

383 in BALANCED and OTHERIMBAL cows has a positive effect on the EBAL of the animals. 

384 While IMBALANCED cows were in severe negative EBAL throughout the study. Body weight 

385 is affected by different factors in postpartum cows: frame size, DMI, stage of lactation and 

386 EBAL. As such, BW is not a good predictor for the severity of the negative EBAL or the 

387 mobilization of energy (Schröder and Staufenbiel, 2006). However, automated daily 

388 measurement of BW has been used to assess the energy status of dairy cows (van Straten et al., 

389 2008, Thorup et al., 2012). The more pronounced decrease in BW in OTHERBAL and 

390 IMBALANCED compared with BALANCED and OTHERIMBAL, respectively, can be 

391 explained by a higher degree of mobilization of energy reserves due to the severe negative 

392 EBAL or a lower gut fill due to the decreased DMI or a combination of both factors. BCS is a 

393 subjective indicator for the mobilization of subcutaneous adipose tissue. Especially the 

394 postpartum decrease in BCS is associated with metabolic and infectious disorders (Roche et al., 

395 2013). Cows with an unfavorable metabolic profile (OTHERBAL and IMBALANCED) had a 

396 more pronounced decrease in BCS from D14 to D35, indicative for a higher degree of body fat 

397 mobilization. 

398 The current study furthermore focused on comparing multiple biomarkers to predict the 

399 metabolic clusters as novel phenotypic trait in early lactating dairy cows. To our knowledge, 

400 this is the first study positioning the different sets of milk biomarkers relatively across one 

401 another according to their predictive accuracy. The current scope of the study focused on 

402 comparing different milk biomarkers rather than the individual fine tuning of the individual 

403 biomarkers to increase the predictive accuracy as described by Grelet et al. (2018) for FT-MIR 
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404 and metabolic clustering. From our results, it can be noted that within each set of biomarkers, 

405 adding DIM, parity and milk yield features did not improve the predictive accuracy much. 

406 Hence, it is debatable whether collecting such information is worth the effort compared to the 

407 relatively small gain in predictive accuracy. Overall, we were able to predict BALANCED and 

408 IMBALANCED animals in early lactation with varying prediction accuracy across the 3 sets 

409 of biomarkers. Prediction of IMBALANCED was more accurate across all milk biomarkers 

410 compared to BALANCED where FT-MIR outperformed the other milk biomarkers. Further 

411 efforts are made within the GplusE project for industry wide application of the metabolic 

412 clustering technique. External validation of the BALANCED cows can lead to establishment 

413 of a novel phenotypic trait for genetic selection as suggested by Egger-Danner et al. (2015) and 

414 Crowe et al. (2018). External validation of the IMBALANCED cows can help identifying cows 

415 for specific management strategies such as elective propylenic glycol treatment versus group 

416 treatment as proposed by others (Lomander et al., 2012, Jenkins et al., 2015).

417 CONCLUSION

418 The k-means clustering of blood metabolites was found to effectively identify BALANCED 

419 and IMBALANCED cows across the participating countries within the GplusE project. 

420 Furthermore, production parameters revealed marked differences in dry matter intake and 

421 energy balance, underlining the phenotypic validity of metabolic clusters. Finally, prediction 

422 using both FT-MIR or milk metabolites and enzymes allows implementation of metabolic 

423 clusters across larger cow numbers as novel trait for genetic selection or identification of 

424 imbalanced early lactating dairy cows.
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608 TABLES

Table 1. Glucose, insulin like growth factor I (IGF-I), free fatty acid (FFA) and β-hydroxybutyrate (BHB) concentrations in metabolic clusters1 

around 14 DIM (D14, clusters A, B and C) and 35 DIM (D35, clusters D, E and F). Data are presented as LSMEANS ± SEM.

D14 D35

Cluster1 A B C D E F

Glucose (mM) 3.59 ± 0.04 a 3.36 ± 0.04 b 2.60 ± 0.10 c 3.83 ± 0.04 a 3.46 ± 0.06 b 3.35 ± 0.06 b

IGF-I (ng/mL) 2 115.35 ± 6.66 a 43.26 ± 2.52 b 63.22 ± 10.95 b 136.48 ± 6.77 a 49.44 ± 3.77 b 59.12 ± 4.60 b

FFA (mM) 3 0.46 ± 0.03 a 0.87 ± 0.06 b 1.47 ± 0.32 b 0.33 ± 0.03 a 0.26 ± 0.03 a 0.77 ± 0.11 b

BHB (mM) 0.46 ± 0.02 a 0.65 ± 0.03 b 2.19 ± 0.32 c 0.43 ± 0.02 a 0.52 ± 0.03 b 1.14 ± 0.07 c

abc LSMEANS with different superscript within the same time period differ (P < 0.05).

1 Clusters A, B and C around 14 DIM and clusters D, E and F around 35 DIM were created using the k-means clustering method based on the 

log-transformed and standardized concentrations of glucose, IGF-I, FFA and BHB.

2 Trend for a difference between B and C (P = 0.10).

3 Trend for a difference between B and C (P = 0.06).
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Table 2. Number of cows in metabolic cluster1 A, B, and C around 14 DIM (D14) and 

metabolic cluster D, E and F around 35 DIM (D35).

D35

Cluster1 D E F Total

A 43 3 5 51

B 15 22 14 51D14

C 0 0 5 5

Total 58 25 24 107

1 Clusters A, B and C around 14 DIM and clusters D, E and F around 35 DIM were created 

using the k-means clustering method based on the log-transformed and standardized 

concentrations of glucose, IGF-I, FFA and BHB.
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Table 3. Glucose, insulin like growth factor I (IGF-I), free fatty acid (FFA) and β-hydroxybutyrate (BHB) concentrations in BALANCED and 

OTHERBAL metabolic cluster around 14 DIM (D14) and 35 DIM (D35). Data are presented as LSMEANS ± SEM.

D14 D35 P-values

BALANCED OTHERBAL BALANCED OTHERBAL Cluster Period Cluster*Period

Glucose (mM) 1 3.62 ± 0.05 a 3.28 ± 0.04
 
b 3.84 ± 0.05 a 3.49 ± 0.04

 
b < 0.0001 < 0.0001 NS

IGF-I (ng/mL) 1 121.66 ± 7.60 a 49.63 ± 2.55
 
b 152.93 ± 9.55 a 62.39 ± 3.24 b < 0.0001 < 0.0001 NS

FFA (mM) 2 0.52 ± 0.05 a 0.81 ± 0.06
 
b 0.29 ± 0.03 a 0.45 ± 0.03

 
b < 0.001 < 0.0001 NS

BHB (mM) 0.44 ± 0.03 a 0.71 ± 0.04
 
b 0.42 ± 0.03 a 0.69 ± 0.04

 
b < 0.0001 0.42 NS

BCS 3 2.75 ± 0.06 2.87 ± 0.05 2.71 ± 0.05 2.71 ± 0.05 0.43 < 0.0001 < 0.05

ab LSMEANS with different superscript within the same period differ (P < 0.05).

1 Period effect indicates an increase in glucose and IGF-I concentrations on D35 compared with D14 in both clusters.

2 Period effect indicates a decrease in FFA concentrations on D35 compared with D14 in both clusters.

3 Cluster * Period interaction effect indicates a decrease in BCS on D35 compared with D14 in OTHERBAL but not in BALANCED. 
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Table 4. Fat and protein corrected milk yield (FPCM), dry matter intake (DMI), body weight (BW) and energy balance (EBAL) in BALANCED 

and OTHERBAL metabolic cluster and the effect of day after calving (slope DIM) in the postpartum period.

Cluster P-values

BALANCED OTHERBAL DIM Cluster DIM*Cluster

FPCM (kg/d) LSMEANS ± SEM 38.42 ± 0.99 37.76 ± 0.80 < 0.05 0.60 NS

Slope DIM ± SEM 0.043 ± 0.018 0.043 ± 0.018

DMI (kg/d) LSMEANS ± SEM 22.12 ± 0.48 a 18.72 ± 0.39 b < 0.0001 < 0.01 < 0.01

Slope DIM ± SEM 0.11 ± 0.01 a 0.06 ± 0.01 b

BW (kg) LSMEANS ± SEM 647.97 ± 9.56 650.51 ± 7.66 < 0.0001 < 0.05 < 0.0001

Slope DIM ± SEM -0.34 ± 0.14 a -1.41 ± 0.11 b

EBAL (MCal/d) LSMEANS ± SEM -2.40 ± 0.71 a -7.59 ± 0.61 b < 0.0001 < 0.0001 NS

Slope DIM ± SEM 0.11 ± 0.01 0.11 ± 0.01

ab LSMEANS and slope with different superscript differ (P < 0.05).
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Table 5. Glucose, insulin like growth factor I (IGF-I), free fatty acid (FFA) and β-hydroxybutyrate (BHB) concentrations in IMBALANCED 

and OTHERIMBAL metabolic cluster around 14 DIM (D14) and 35 DIM (D35). Data are presented as LSMEANS ± SEM.

D14 D35 P-values

IMBALANCED OTHERIMBAL IMBALANCED OTHERIMBAL Cluster Period Cluster*Period

Glucose (mM) 1 3.19 ± 0.06 a 3.49 ± 0.04 b 3.38 ± 0.07 a 3.69 ± 0.04 b < 0.0001 < 0.0001 NS

IGF-I (ng/mL) 2 43.61 ± 5.53 a 78.56 ± 4.73 b 55.07 ± 6.98 a 99.21 ± 6.01 b < 0.0001 < 0.0001 NS

FFA (mM) 3 1.32 ± 0.17 a 0.56 ± 0.04 b 0.76 ± 0.10 a 0.32 ± 0.02 b < 0.0001 < 0.0001 NS

BHB (mM) 1.15 ± 0.09a 0.50 ± 0.02 b 1.11 ± 0.09 a 0.49 ± 0.02 b < 0.0001 0.39 NS

BCS 4 3.16 ± 0.09 a 2.75 ± 0.04 b 2.89 ± 0.09 a 2.66 ± 0.04 b < 0.0001 < 0.0001 < 0.001

ab LSMEANS with different superscript within the same period differ (P < 0.05).

1 Glucose concentrations were not different between periods for IMBALANCED and increased on D35 for OTHERIMBAL.

2 Period effect indicates an increase in IGF concentrations on D35 compared with D14 in both clusters.

3 Period effect indicates a decrease in FFA concentrations on D35 compared with D14 in both clusters.

4 Period effect indicates a decrease in BCS on D35 compared with D14 in both clusters. There was a more pronounced decrease in BCS from 

D14 to D35 in IMBAL compared with OTHERIMBAL.
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Table 6. Fat and protein corrected milk yield (FPCM), dry matter intake (DMI), body weight (BW) and energy balance (EBAL) in 

IMBALANCED and OTHERIMBAL metabolic cluster and the effect of day after calving (slope DIM) in the postpartum period.

Cluster P-values

IMBALANCED OTHERIMBAL DIM Cluster DIM*Cluster

FPCM (kg/d) LSMEANS ± SEM 41.14 ± 1.47 a 37.29 ± 0.66 b < 0.01 < 0.05 NS

Slope DIM ± SEM 0.049 ± 0.018 0.049 ± 0.018

DMI (kg/d) LSMEANS ± SEM 18.56 ± 0.77 a 20.51 ± 0.35 b < 0.0001 0.37 0.05

Slope DIM ± SEM 0.05 ± 0.02 a 0.10 ± 0.01 b

BW (kg) LSMEANS ± SEM 1 672.29 ± 14.12 642.73 ± 6.42 < 0.0001 < 0.01 < 0.001

Slope DIM ± SEM -1.69 ± 0.22 a -0.80 ± 0.10 b

EBAL (MCal/d) LSMEANS ± SEM -11.14 ± 1.25 a -4.32 ± 0.50 b < 0.0001 < 0.0001 NS

Slope DIM ± SEM 0.11 ± 0.01 0.11 ± 0.01

ab LSMEANS and slope with different superscript differ (P < 0.05).

1 Trend for a difference between IMBALANCED and OTHERIMBAL (P = 0.06).
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Table 7. Prediction accuracy within each run and summary for different classification models to predict BALANCED cows on 14 DIM (D14) and 

35 DIM (D35), or D14, or D35.

Milk biomarker predictor set Class Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10 Mean Min Max CV
D14 and D35 70% 74% 63% 70% 64% 67% 58% 60% 70% 64% 66% 58% 74% 8%

D14 69% 59% 68% 54% 68% 63% 62% 65% 57% 61% 63% 54% 69% 8%
Metabolites and enzymes

D35 60% 74% 60% 61% 58% 61% 71% 56% 65% 47% 61% 47% 74% 12%

D14 and D35 68% 63% 70% 71% 71% 72% 58% 72% 80% 71% 69% 58% 80% 9%
D14 67% 59% 66% 72% 65% 65% 59% 71% 65% 64% 65% 59% 72% 7%

+ DIM & Parity

D35 69% 64% 71% 63% 59% 60% 67% 59% 60% 60% 63% 59% 71% 7%

D14 and D35 63% 70% 61% 72% 67% 73% 61% 65% 51% 70% 65% 51% 73% 10%
D14 57% 60% 75% 68% 70% 59% 66% 67% 60% 65% 65% 57% 75% 9%

+ DIM & Parity
+ Milk yield features

D35 73% 68% 72% 64% 64% 58% 55% 59% 57% 68% 64% 55% 73% 10%

D14 and D35 67% 52% 66% 59% 57% 56% 68% 73% 53% 58% 61% 52% 73% 12%
D14 43% 43% 47% 50% 52% 43% 45% 39% 42% 50% 45% 39% 52% 9%

IgG Glycans

D35 68% 58% 66% 58% 58% 47% 52% 67% 58% 66% 60% 47% 68% 12%

D14 and D35 63% 53% 73% 58% 63% 61% 61% 64% 55% 51% 60% 51% 73% 11%
D14 50% 62% 49% 52% 51% 40% 41% 62% 58% 42% 51% 40% 62% 16%

+ DIM & Parity

D35 55% 59% 57% 47% 57% 61% 63% 62% 55% 62% 58% 47% 63% 8%

D14 and D35 69% 64% 57% 62% 60% 62% 67% 50% 65% 63% 62% 50% 69% 9%
D14 45% 55% 37% 56% 42% 52% 45% 58% 56% 55% 50% 37% 58% 15%

+ DIM & Parity
+ Milk yield features

D35 37% 65% 54% 56% 60% 66% 63% 64% 65% 60% 59% 37% 66% 15%

D14 and D35 67% 76% 72% 70% 77% 73% 78% 78% 68% 75% 73% 67% 78% 5%
D14 70% 68% 68% 64% 71% 70% 73% 68% 63% 67% 68% 63% 73% 5%

FT-MIR spectra

D35 65% 71% 63% 62% 64% 65% 66% 80% 69% 66% 67% 62% 80% 8%

D14 and D35 76% 77% 70% 78% 77% 74% 78% 78% 78% 74% 76% 70% 78% 4%
D14 68% 70% 59% 67% 61% 79% 71% 70% 74% 70% 69% 59% 79% 8%

+ DIM & Parity

D35 68% 67% 71% 69% 47% 63% 63% 65% 70% 64% 65% 47% 71% 10%

D14 and D35 76% 76% 69% 65% 79% 76% 69% 73% 72% 74% 73% 65% 79% 6%
D14 71% 67% 72% 74% 63% 66% 66% 65% 71% 61% 68% 61% 74% 6%

+ DIM & Parity
+ Milk yield features

D35 61% 57% 63% 56% 64% 67% 65% 66% 65% 76% 64% 56% 76% 9%
1 color code: green indicates better (i.e. lower CV or higher mean, min, max accuracy), red indicates worse (i.e. higher CV, lower mean, min, 

max accuracy)
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Table 8. Prediction accuracy within each run and summary for different classification models to predict IMBALANCED cows on 14 DIM (D14) 

and 35 DIM (D35), or D14, or D35.

Milk biomarker predictor set Class Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10 Mean Min Max CV
D14 and D35 81% 82% 84% 77% 71% 79% 80% 81% 83% 79% 80% 71% 84% 5%

D14 79% 82% 80% 79% 81% 77% 81% 80% 80% 81% 80% 77% 82% 2%
Metabolites and enzymes

D35 85% 85% 75% 85% 76% 71% 81% 82% 79% 83% 80% 71% 85% 6%

D14 and D35 81% 87% 76% 80% 87% 88% 77% 76% 76% 78% 81% 76% 88% 6%
D14 81% 80% 84% 75% 80% 84% 76% 78% 79% 83% 80% 75% 84% 4%

+ DIM & Parity

D35 83% 83% 76% 76% 77% 76% 81% 80% 81% 79% 79% 76% 83% 4%

D14 and D35 87% 78% 82% 79% 79% 82% 79% 79% 80% 80% 80% 78% 87% 3%
D14 84% 83% 76% 78% 82% 86% 79% 82% 83% 72% 81% 72% 86% 5%

+ DIM & Parity
+ Milk yields features

D35 81% 88% 79% 87% 80% 78% 87% 77% 80% 81% 82% 77% 88% 5%

D14 and D35 81% 78% 83% 80% 80% 81% 82% 84% 70% 80% 80% 70% 84% 5%
D14 73% 71% 84% 75% 77% 71% 81% 74% 80% 78% 76% 71% 84% 6%

IgG Glycans

D35 76% 73% 79% 74% 73% 71% 80% 73% 74% 80% 75% 71% 80% 4%

D14 and D35 81% 82% 78% 79% 82% 79% 74% 77% 81% 80% 79% 74% 82% 3%
D14 80% 77% 75% 81% 72% 77% 79% 79% 72% 81% 77% 72% 81% 4%

+ DIM & Parity

D35 75% 75% 73% 72% 75% 76% 77% 80% 77% 77% 76% 72% 80% 3%

D14 and D35 81% 79% 76% 80% 81% 76% 68% 76% 78% 79% 77% 68% 81% 5%
D14 76% 82% 79% 78% 77% 81% 82% 76% 82% 79% 79% 76% 82% 3%

+ DIM & Parity
+ Milk yields features

D35 63% 72% 69% 74% 71% 76% 74% 68% 70% 78% 72% 63% 78% 6%

D14 and D35 84% 81% 78% 79% 76% 87% 76% 81% 83% 79% 80% 76% 87% 4%
D14 77% 84% 83% 81% 86% 84% 76% 86% 87% 79% 82% 76% 87% 5%

FT-MIR Spectra

D35 69% 72% 79% 76% 73% 75% 76% 85% 72% 78% 76% 69% 85% 6%

D14 and D35 78% 78% 73% 74% 77% 81% 73% 82% 80% 78% 77% 73% 82% 4%
D14 85% 87% 86% 80% 82% 84% 86% 80% 87% 85% 84% 80% 87% 3%

+ DIM & Parity

D35 73% 74% 77% 79% 76% 76% 73% 74% 79% 80% 76% 73% 80% 3%

D14 and D35 80% 77% 71% 75% 73% 87% 86% 82% 84% 79% 79% 71% 87% 7%
D14 86% 87% 84% 80% 87% 83% 81% 87% 85% 85% 84% 80% 87% 3%

+ DIM & Parity
+ Milk yields features

D35 69% 70% 73% 76% 78% 77% 73% 80% 73% 76% 74% 69% 80% 5%
1 color code: green indicates better (i.e. lower CV or higher mean, min, max accuracy), red indicates worse (i.e. higher CV, lower mean, min, 
max accuracy)
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616 FIGURES

Figure 1. Statistical prediction methodology for metabolic clustering in dairy cows.

Page 36 of 38

ScholarOne support: (434) 964 4100

Journal of Dairy Science



For Peer ReviewFigure 2. Fat and protein corrected milk yield (FPCM, A), dry matter intake (DMI, B), body 

weight (BW, C) and energy balance (EBAL, D) in BALANCED (green, continuous line) and 

OTHERBAL (orange, dashed line) metabolic clusters. Lines represent the LSMEANS of the 

models and the colored area represent the 95% confidence limits.
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For Peer ReviewFigure 3. Fat and protein corrected milk yield (FPCM, A), dry matter intake (DMI, B), body 

weight (BW, C) and energy balance (EBAL, D) in IMBALANCED (red, continuous line) 

and OTHERIMBAL (blue, dashed line) metabolic clusters. Lines represent the LSMEANS of 

the models and the colored area represent the 95% confidence limits.
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