

Edinburgh Research Explorer

LB3D: A Parallel Implementation of the Lattice-Boltzmann
Method for Simulation of Interacting Amphiphilic Fluids

Citation for published version:
Schmieschek, S, Shamardin, L, Frijters, S, Krüger, T, Schiller, UD, Harting, J & Coveney, PV 2017, 'LB3D:
A Parallel Implementation of the Lattice-Boltzmann Method for Simulation of Interacting Amphiphilic Fluids',
Computer Physics Communications, vol. 217, pp. 149-161. https://doi.org/10.1016/j.cpc.2017.03.013

Digital Object Identifier (DOI):
10.1016/j.cpc.2017.03.013

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computer Physics Communications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Jan. 2020

https://doi.org/10.1016/j.cpc.2017.03.013
https://doi.org/10.1016/j.cpc.2017.03.013
https://www.research.ed.ac.uk/portal/en/publications/lb3d-a-parallel-implementation-of-the-latticeboltzmann-method-for-simulation-of-interacting-amphiphilic-fluids(de75e9ad-545d-4d63-be5a-d21e193c3517).html

LB3D: A Parallel Implementation of the Lattice-Boltzmann Method for
Simulation of Interacting Amphiphilic Fluids

S. Schmiescheka, L. Shamardinb,a, S. Frijtersc, T. Krügerd,a, U. D. Schillere,a, J. Hartingf, P. V. Coveneya,∗

aCentre for Computational Sciences, Department of Chemistry, University College London, 20 Gordon St., London, WC1H 0AJ, United Kingdom
bGoogle UK Ltd, Belgrave House, 76 Buckingham Palace Road, London SW1W 9TQ, United Kingdom

cDepartment of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
dSchool of Engineering, University of Edinburgh, The King’s Buildings, Mayfield Road, EH9 3JL Edinburgh, Scotland, United Kingdom

eDepartment of Materials Science and Engineering, Clemson University, 161 Sirrine Hall, Clemson, SC 29634, USA
fForschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen-Nürnberg, IEK-11 Abt. Modellierung dünner Filme, Fürther Strae 248, 90429

Nürnberg, Germany

Abstract

We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and supporting tools
which have enabled research utilising high performance computing resources for more than 16 years, LB3D version
7 provides a subset of the research code functionality as an open source project. Here, we describe the theoretical
basis of the algorithm as well as computational aspects of the implementation. The software package is validated
against simulations of meso-phases resulting from self-assembly in ternary fluid mixtures comprising immiscible and
amphiphilic components such as water-oil-surfactant systems. The impact of the surfactant species on the dynamics
of spinodal decomposition are tested and quantitative measurement of the permeability of a body centred cubic (BCC)
model porous medium for a simple binary mixure is reported. Single-core performance and scaling behaviour of the
code are reported for simulations on current supercomputer architectures.

Keywords: Lattice-Boltzmann method; high performance computing; multiphase flow; LBM; LB3D

PROGRAM SUMMARY Program Title: LB3D
Licensing provisions: BSD 3-clause
Programming language: FORTRAN90, Python, C
Nature of problem:
Solution of the hydrodynamics of single phase, binary immiscible and ternary amphiphilic fluids. Simulation of fluid mixtures
comprising miscible and immiscible fluid components as well as amphiphilic species on the mesoscopic scale. Observeable phe-
nomena include self-organisation of mesoscopic complex fluid phases and fluid transport in porous media.
Solution method:
Lattice-Boltzmann (lattice-Bhatnagar-Gross-Krook, LBGK) [1, 2, 3] method describing fluid dynamics in terms of the single par-
ticle velocity distribution function on a 3-dimensional discretised phase space (D3Q19) [4, 5, 6]. Multiphase interactions are
modelled using a phenomenological pseudo-potential approach [7, 8] with amphiphilic interactions utilising an additional dipole
field [9, 10]. Solid boundaries are modelled using simple bounce-back boundary conditions and additional pseudo-potential wet-
ting interactions [11].
Additional comments including Restrictions and Unusual features:
The purpose of the release is the provision of a refactored minimal version of LB3D suitable as a starting point for the integration
of additional features building on the parallel computation and IO functionality.

[1] S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford University Press, 2001.
[2] B. Dünweg, A. Ladd, Lattice {B}oltzmann simulations of soft matter systems, in: Advanced Computer Simulation Approaches for Soft Matter

Sciences III, 2009, pp. 89.
[3] C. K. Aidun, J. R. Clausen, Lattice-Boltzmann Method for Complex Flows, Annual Review of Fluid Mechanics 42 (2010) 439.
[4] X. He, L.-S. Luo, A priori derivation of the lattice-Boltzmann equation, Physical Review E 55 (1997) R6333.
[5] X. He, L.-S. Luo, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Physical Review

E 56.

∗Corresponding author
E-mail address: p.v.coveney@ucl.ac.uk

Preprint submitted to Computer Physics Communications October 25, 2016

[6] Y. H. Qian, D. D’Humiéres, P. Lallemand, Lattice BGK Models for Navier-Stokes Equation, Europhysics Letters 17 (1992) 479.
[7] X. Shan, H. Chen, Lattice-Boltzmann model for simulating flows with multiple phases and components, Physical Review E 47 (1993) 1815.
[8] X. Shan, G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, Journal of Statistical Physics 81 (1995) 379.
[9] H. Chen, B. Boghosian, P. Coveney, M. Nekovee, A ternary lattice-Boltzmann model for amphiphilic fluids, Proceedings of the Royal Society

of London A 456 (2000) 2043.
[10] M. Nekovee, P. V. Coveney, H. Chen, B. M. Boghosian, Lattice-Boltzmann model for interacting amphiphilic fluids, Physical Review E 62

(2000) 8282.
[11] N. S. Martys, H. Chen, Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice-Boltzmann method,

Phys. Rev. E 53 (1996) 743.

1. Introduction

Since its advent almost 30 years ago, the lattice-Boltzmann method (LBM) has gained increasing popularity as
a means for the simulation of fluid dynamics. Driving factors for this development are the relative simplicity and
locality of the lattice-Boltzmann algorithm. The latter allows for straightforward parallelisation of the method and
its application in high performance computing. Today, a wide range of LBM implementations is available ranging
from specialised academic packages such as Ludwig for the simulation of complex fluids [12] and HemeLB for the
simulation of flow in blood vessels [13] to very versatile open-source projects such as OpenLB [14] and Palabos [15]
as well as commercial applications such as PowerFlow [16] and XFlow [17].

The lattice-Boltzmann (LB) code LB3D provides a number of algorithms and scripts designed for the simulation
of binary and ternary amphiphilic complex fluid mixtures in bulk and complex geometries using high performance
computing environments. As in the case of Ludwig, LB3D focuses on the simulation of complex fluids. While Ludwig
implements a top-down model where a free energy has to be provided by the user, LB3D is a bottom-up code in which
interactions are specfied between particles. LB3D is the only package which handles amphiphilic fluids in such a
manner. Originally implemented in 1999, LB3D has since been in constant use and development. This document
starts out with an overview of the history of the development and scientific applications of the code. Following this,
the paper considers LB3D in version 7.1, the latest release of a re-factored open-source instance of the program which
is development since 2013 and available in this version under the BSD 3-Clause license.

Following work on lattice-gas models [18, 19], the development of LB3D started out in the group of Coveney as a
summer project of then third year University of Oxford undergraduate student Chin who implemented the amphiphilic
fluid model with assistance of Boghosian and Nekovee [20, 9]. During the first decade of development and application,
the amphiphilic fluid model was employed for extensive research on the properties of complex fluids. Publications
on computational science developments in this period report aspects of distributed computing as an integral part of
the design, including real time visualisation and computational steering [21, 22, 23, 24, 25]. Scientific contributions
included the study of the spinodal decomposition and emulsion formation of binary fluid mixtures [26, 27, 28, 29] as
well as the self-organisation of mesoscopic phases in general and the cubic gyroid phase in particular [30, 31, 32].
Flow of complex fluids in porous media and under shear was investigated [33]. The utilisation of substantial resources
like the US TeraGrid and UK HPC facilities in ground breaking federation of national grid infrastructures [22, 23, 24]
and the highest performance class of national supercomputers for capability computing [34, 35], allowed scientists
working with LB3D large-scale numerical investigation of rheological properties of the gyroid phase [36, 37, 38, 39].
Later work explored the parameters of ternary amphiphilic fluids and their flow properties in detail [40, 41, 42, 43, 44].

Subsequent research with version 6 of LB3D, which remains unreleased, has focused on fluid surface interaction
and coupling of particle models. Version 7.1 of LB3D, however, which is released in conjunction with this paper,
includes the amphiphilic fluid model and has been restructured and optimised to ease future development. First steps
have been taken to support hybrid parallel programming models in order to ensure compatibility with projected next
generation supercomputer architectures on the path to the exascale.

A newly integrated Python interface for the configuration of initial conditions and interactive execution improves
ease of use. Moreover, improved in-code documentation and extension of the user manual are intended to encourage
new users and developers to harness the potential of LB3D as well to as enhance it further.

The paper has the following structure. In section 2 we describe the lattice-Boltzmann method (LBM) used. We
do not provide the derivation of this model, but show the key points necessary for understanding the implementation;
references are provided to the relevant original papers. In section 3 we discuss implementation details such as memory
organisation, communication and scripting capabilities. In section 4 we discuss tests used to verify and validate the

2

implementation. We also provide performance benchmarks for the code and compare performance and scaling with
other LBM codes. The section closes with a conclusion and outlook on future development directions.

2. Method

In this section we give an overview of the single phase lattice-Boltzmann method as well as its multiphase exten-
sion and boundary conditions as implemented in LB3D.

2.1. Single phase lattice-Boltzmann
The lattice-Boltzmann equation is a popular method to simulate flows and hydrodynamic interactions in incom-

pressible fluids [1, 2, 3]. It is a mesoscopic approach where the fluid is represented by populations that evolve accord-
ing to a fully discrete analogue of the Boltzmann kinetic equation [4, 5]. We write the lattice-Boltzmann equation in
the following form

f ∗σ,i(x, t) = fσ,i(x, t) −
h
τσ

[
fσ,i(x, t) − f eq

i

(
nσ(x, t),u(x, t) +

τσ
mσnσ

Fσ(x, t)
)]

(1)

where the pre-collisional populations fσ,i and post-collisional populations f ∗σ,i are related through the streaming step

fσ,i(x, t) = f ∗σ,i(x − hci, t − h). (2)

Equation (1) describes a collision step and neglects terms of order O(h2/τ) compared to the more common second-
order accurate LBE [4, 5, 45, 46], however, this does not affect the density and flow field which are of primary
interest. The populations fσ,i(x, t) and f ∗σ,i(x, t) represent number densities of a fluid species σ at discrete grid points
x and discrete time t, moving with discrete velocities ci. LB3D uses the so-called D3Q19 lattice, a three-dimensional
Cartesian lattice with 19 velocities [6] obtained from a projected face centred hyper-cubic (FCHC) lattice. The lattice
velocities ci can be derived systematically as the abscissae of a Gauss-Hermite quadrature in velocity space [45, 47,
48]. The D3Q19 lattice is illustrated in figure 1 along with the (arbitrary) numbering of the velocities ci implemented
in LB3D.

Equation (1) describes the lattice-Bhatnagar-Gross-Krook (LBGK) collision model where the populations relax
towards equilibrium on a single time scale τσ [49, 6]. The equilibrium distribution f eq

i (n,u) is a Hermite expansion
of the Maxwell-Boltzmann distribution [4, 50]. Here we choose an expansion including cubic terms in the velocity

f eq
i (n,u) = win

(
1 +

ciαuα
c2

s
+

Qiαβuαuβ
2c4

s
+

Wiαβγuαuβuγ
6c6

s

)
, (3)

where cs denotes the speed of sound, wi are lattice weights, and Qiαβ and Wiαβγ are the second and third rank isotropic
tensors

Qiαβ = ciαciβ − c2
sδαβ (4)

Wiαβγ = ciαciβciγ − c2
sciαδβγ − c2

sciβδγα − c2
sciγδαβ. (5)

Note that the Einstein convention for summation over Greek indices is implied. For the D3Q19 lattice, the speed of
sound is cs = 1/

√
3 and the lattice weights wi are [6]

wi = 1/3, |ci| = 0,
wi = 1/18, |ci| = 1,

wi = 1/36, |ci| =
√

2.

(6)

Hydrodynamic fields are obtained from the populations by calculating velocity moments, e.g., density and mo-
mentum density are given by

ρσ(x, t) = mσ

∑
i

f ∗σ,i(x, t), (7)

p̃σ(x, t) = mσ

∑
i

f ∗σ,i(x, t)ci, (8)

(9)

3

x

y
z

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

c17

c18

c19

Figure 1: The geometry of D3Q19 lattice vectors ci.

where mσ is the molecular mass. In the presence of a force density Fσ(x, t), the lattice momentum density p̃σ(x, t) has
to be corrected for a discretisation effect, such that the hydrodynamic momentum density of the fluid is [46, 2, 51, 45]

pσ(x, t) = p̃σ(x, t) −
h
2

Fσ(x, t). (10)

Here the sign stems from the fact that we calculate the moments from the post-collisional distributions. Finally, the
hydrodynamic flow field is

u(x, t) =
pσ(x, t)
ρσ(x, t)

(11)

which is used in the lattice-Boltzmann equation (1).
Generally the force density Fσ(x, t) may accommodate any kind of contribution. In particular, Fσ(x, t) may include

both inter-molecular forces (Shan-Chen forces in our model, cf. section 2.2) and external forces such as gravity or an
artificial Kolmogorov scaled force [52].

2.2. Shan-Chen multiphase model

The Shan-Chen approach [8] provides a straightforward way to model multi-component (e.g. water and oil) and/or
multi-phase fluids (e.g. water and water vapour). The single phase model is extended by the so-called pseudo-potential
method to include multiphase interactions [7, 10]. Each fluid component σ is governed by the lattice-Boltzmann
equation (1).

The total fluid density is simply
ρ(x, t) =

∑
σ

ρσ(x, t) (12)

4

It is assumed that there is a common velocity ũ for all components. In the absence of forces, it can be shown that total
momentum is conserved if the common velocity is chosen to be [8]

ũ(x, t) =

∑
σ p̃σ(x, t)/τσ∑
σ ρσ(x, t)/τσ

. (13)

Note that the common velocity ũ(x, t) implies an effective momentum exchange between the species even when no
explicit forces are prescribed.

In addition, each fluid component may be subject to an explicit force density Fσ(x, t). Similar to the single phase
case, we need to redefine the hydrodynamic momentum to account for discretisation effects. The hydrodynamic flow
field for the multiphase fluid is then given by [8]

u(x, t) =
1

ρ(x, t)

∑
σ

(
p̃σ(x, t) −

h
2

Fσ(x, t)
)
. (14)

If the fluid as a whole is subject to a force density F(x, t), it has to be distributed to each fluid component proportionally
to the mass fraction [11]:

Fσ(x, t) =
ρσ(x, t)
ρ(x, t)

F(x, t). (15)

Equation (15) ensures that the total force density obeys F(x, t) =
∑
σ Fσ(x, t) and that the acceleration for each com-

ponent is identical: aσ(x, t) = a(x, t) = F(x, t)/ρ(x, t).
The basic idea of the Shan-Chen approach for multiphase fluids is to introduce coupling forces

Fint
σ (x, t) = −ψσ(x, t)

∑
x′

∑
σ′

Gσσ′ (x, x′)ψσ′ (x′, t)
(
x′ − x

)
(16)

which are non-local and depend on density gradients. Here, ψσ(x, t) represents an effective mass of component σ
which is realised as a function of component density ρσ(x, t) [8]

ψσ(x, t) = ψ(ρσ(x, t)) = ρ0
[
1 − exp (−ρσ(x, t)/ρ0)

]
, (17)

where ρ0 is a reference density. The Green’s function Gσσ′ (x, x′) must be symmetric in σ and x to ensure global
momentum conservation

Gσσ′ (x, x′) = Gσ′σ(x, x′) = Gσσ′ (x′, x). (18)

We choose Gσσ′ (x, x′) to be short-ranged and allow interaction only between neighbouring lattice sites [11]

Gσσ′ (x, x′) =


2gσσ′ if |x′ − x| = 1,
gσσ′ if |x′ − x| =

√
2,

0 otherwise.
(19)

We can now rewrite equation (16) as

Fint
σ (x, t) = −ψ(ρσ(x, t))

∑
i

∑
σ′

Gσσ′,iψ(ρσ′ (x + ci, t))ci (20)

and equation (19) as

Gσσ′,i =


0 |ci| = 0
2gσσ′ , |ci| = 1,
gσσ′ |ci| =

√
2.

(21)

Note that gσσ′ is the coupling strength of components σ and σ′. The number of components is not limited by the Shan-
Chen model. Also note that non-zero values of gσσ allow for self-interaction of component σ. The pseudo-potential
forces introduce a density-gradient-dependent term into the equation of states which ensures phase separation for
a given critical coupling strength and overall density. Masses are determined up to a constant allowing the use of
unit mass where convenient. Mass contrasts of components imply a contrast in dynamic viscosity and warrant the
introduction of the effective common equilibrium velocity (13). No differences in mass have been used so far in our
published work while, in the low Mach number limit, the common velocity equals the single component bulk velocity.

5

2.3. Amphiphilic fluid components
LB3D supports fluid mixtures of up to three components, one of which is amphiphilic (oil or red, water or blue

and surfactant or green). Amphiphilic properties of the surfactant component are modelled by introduction of a dipole
field d(x, t) representing the average molecule orientation at each lattice site [9]. The orientation of the dipole vector
d is allowed to vary continuously. It is advected with the fluid and thus propagates according to

nσ(x, t + h)d(x, t + h) =
∑

i

f ∗σ,i(x − hci, t)d∗(x − hci, t), (22)

where d∗ denotes the post-collisional dipole vector which is relaxed through a BGK process on a single timescale

d∗(x, t) = d(x, t) −
1
τd

[
d(x, t) − deq(x, t)

]
. (23)

The equilibrium orientation is derived from a mean field approach. The mean dipole field in the surrounding fluid can
be written as

b(x, t) = bα(x, t) + bσ(x, t), (24)

where the contribution from ordinary species is

bσ(x, t) =
∑
σ

qσ
∑

i

fσ,i(x, t)ci. (25)

Here qσ is a colour charge for the ordinary species. The contribution from the amphiphilic species can be written as

bα(x, t) =
∑
α

∑
i,0

fα,i(x + hci, t)D j · d(x + hc j, t) + fα,i(x, t)d(x, t)

 , (26)

where the traceless second rank tensor Di is given by

Diαβ = δαβ − 3
ciαciβ

c2
i

. (27)

The equilibrium dipole configuration can then be derived from a Boltzmann distribution which gives

deq = d0

[
coth(βb) −

1
βb

]
b̂, (28)

where b = |b(x, t)| and b̂ = b(x, t)/b, β the inverse temperature, and a parameter d0 representing the intrinsic dipole
strength of the amphiphiles.

With an amphiphilic species present, additional force components are introduced between the species. In addition
to the density dependence of the binary model, the resulting forces do not only depend on the fluid densities alone,
but on the dipole moment (the relative orientation to boundaries and neighbouring dipoles) as well. The force on oil
and water components σ is now

Fσ(x, t) = Fint
σ (x, t) + Fσα(x, t), (29)

where Fint
σ is given in equation (20), and the additional force due to the amphiphiles is

Fσα (x, t) = −2gασψα (x, t)
∑
i,0

d (x + cih, t) · Diψ
σ (x + cih, t) . (30)

Similarly, the force on the amphiphilic components is

Fα(x, t) = Fασ(x, t) + Fαα(x, t), (31)

where Fασ is the reaction force to Fσα and has the form

Fασ (x, t) = 2ψσ (x, t) d (x, t) ·
∑
α

gασ
∑
i,0

Diψ
α (x + cih, t) . (32)

6

Finally, the force acting between surfactant components on neighbouring sites is given by

Fαα (x, t) = −
12
c2 ψ

α (x, t) gαα
∑
i,0

ψα (x + cih, t) ·

·
(
d (x + cih, t) · Did (x, t) ci +

[
d (x + cih, t) d (x, t) + d (x, t) d (x + cih, t)

]
· ci

)
. (33)

The parameters gασ, gσα, and gαα in equations (30), (32), and (33) are the coupling strength between water and oil
components σ and amphiphilic component α, respectively. Details on the derivation of the force terms can be found
in [9, 10]. These forces are added in the algorithm in a manner analogous to the pseudo-potential force inducing the
phase transition in the binary multi-component system.

2.4. Boundary conditions

In the present lattice-Boltzmann model, each lattice site contains either fluid components or an obstacle, e.g., a
boundary wall. LB3D v7.1 supports a number of different boundary closures for the unknown pre-collisional pop-
ulations on fluid nodes that are adjacent to one or more boundary node. In the following we describe the simple
bounce-back rule and on-site rules for Dirichlet and Neumann boundary conditions that enable inlet and outlet bound-
ary conditions. Furthermore, we describe wetting boundary conditions for surfaces that have specific affinities with
respect to different fluid species.

2.4.1. Bounce-back boundary conditions
The bounce-back boundary condition was originally introduced for lattice-gas models and poses a simple way to

implement a no-slip boundary condition located approximately half way between a boundary node and adjacent fluid
site [53, 54, 55]. Simple mid-grid boundary conditions achieve zero velocity on a link connecting fluid and an obstacle
by inverting the velocity of the impinging populations. This reflection can be written as a modified streaming step, cf.
equation 2,

fσ,i(x, t) = f ∗
σ,ī(x, t − h), (34)

where x + hci is a solid site, and the index ī indicates the inverse velocity of i, i.e., cī = −ci. For the simple bounce
back rule, the effective location of the no-slip boundary condition is approximately halfway between fluid and solid.
A detailed analysis shows that the exact location depends on the employed collision model, and for the LBGK model
the location is viscosity dependent [56, 57, 58].

2.4.2. On-site velocity boundary conditions
It is often desirable to specify the exact position where Dirichlet or Neumann boundary conditions are to be

satisfied independently of other simulation parameters. To this end, on-site boundary conditions allow to specify the
velocity or fluxes on the boundary and lead to a fully local closure relation. This approach was originally suggested
by Zou and He [59] for D2Q9 and D3Q15 models, and later extended to D3Q19 lattices [60, 61, 62].

For on-site Neumann (or pressure) boundary conditions, one uses equations (7) and (8) to calculate the unknown
velocity component on the boundary from the two known ones and a specified density ρ0. Similarly, for on-site
Dirichlet (or flux) boundary conditions, one can calculate the density ρ from the two known velocity components and
the third specified component. In order to determine the unknown populations, one applies the bounce back condition
to the non-equilibrium part of the populations, e.g., for a boundary normal to the xy-plane,

fσ,5 − f eq
5 = fσ,6 − f eq

6 (35)

which leads to an expression for the unknown population

fσ,5 = fσ,6 + f eq
5 − f eq

6 = fσ,6 +
2w1a
c2

sh
nσuσ,z + O(u3) (36)

The equation system for the remaining unknown populations is over-determined, which can be remedied by introduc-
ing additional transverse momentum corrections that reflect the stresses introduced by the boundary conditions. The

7

py_bridge_init

py_bridge

lb3d_init

lb3d_time_loop

lb3d_finalize

py_bridge_finalize

ex
ec

u
ti
on

Figure 2: Overview of the subroutine calls in the program LB3D. Principal algorithm execution is divided into three phases, initialisation, main
time loop and finalisation. Initialisation comprises the py bridge portion of the code, which is implemented in C and allows definition of LB3D
initialisation parameters via a Python interface. Colour online.

equation system for the remaining populations then reads

fσ,9 = fσ,14 +
2w2a
c2

sh
nσ

(
uσ,z + uσ,x

)
− Nzx

σ , (37)

fσ,13 = fσ,10 +
2w2a
c2

sh
nσ

(
uσ,z − uσ,x

)
+ Nzx

σ , (38)

fσ,15 = fσ,18 +
2w2a
c2

sh
nσ

(
uσ,z + uσ,y

)
− Nzy

σ , (39)

fσ,17 = fσ,16 +
2w2a
c2

sh
nσ

(
uσ,z − uσ,y

)
+ Nzy

σ , (40)

where the transverse momentum corrections are given by

Nzx
σ =

1
2

[
fσ,1 + fσ,7 + fσ,8 − fσ,2 − fσ,11 − fσ,12

]
−

4w2a
c2

sh
nσuσ,x, (41)

Nzy
σ =

1
2

[
fσ,3 + fσ,7 + fσ,11 − fσ,4 − fσ,8 − fσ,12

]
−

4w2a
c2

sh
nσuσ,y. (42)

These expressions close the boundary equations. More details and the generalisation to arbitrary flow directions can
be found in [62].

2.4.3. Wetting boundary conditions
Specific surface interactions can be realised by introducing a pseudo-density ψW at obstacle sites x′, which is used

to calculate a pseudo-potential interaction between the fluid and components and the surface

Fint
σ (x, t) = −ψσ(x, t)

∑
x′∈W

Gσ,wall(x, x′)ψW (43)

This strategy was first introduced by Martys and Chen [11]. The wetting boundary conditions are usually augmented
with bounce-back or on-site boundary conditions.

3. Implementation

The core of the lattice-Boltzmann code LB3D is written in FORTRAN 90/95. In addition, version 7.1 provides
conduits written in C to facilitate a Python interface that supports scripting during the initialisation stage. The core
code is parallelised using MPI-2 for distributed memory and OpenMP for shared memory. It can be compiled and run
using arbitrary combinations of MPI and OpenMP threads. LB3D makes use of several external libraries including
Python, MPI, OpenMP, HDF5, and XDR. The testing framework and supplementary tools are written in Python.

The execution flow of LB3D is structured in self-contained initialisation, simulation, and finalisation stages. The
corresponding subroutine call structure is illustrated in figure 2. In the initialisation stage, the code reads an input

8

component = 1 .. 3

z = 1

z = nz

(.).
.

y = 1

y = ny

(.).
.

x = 1

x = nx

(.).
.

c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

x = 1

x = nx

(.).
.

c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

y = 1

y = ny

(.).
.

x = 1

x = nx

(.).
.

c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

x = 1

x = nx

(.).
.

c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19

Figure 3: Illustration of the layout of the 5-dimensional column major order FORTRAN array storing lattice information per component. Lattice
index i changes fastest, and component index slowest.

file describing the simulation setup (number of components, initial conditions, simulation time, output options) as
well as the physical parameters such as τσ, gσσ′ , etc. The input file can also specify Python scripts to be executed
during initialisation in order to introduce boundary conditions and to modify the initial fluid state (cf. section 3.7).
The simulation stage evaluates the lattice-Boltzmann equation until the specified simulation time is reached. Each
time step involves several sub-steps for the lattice-Boltzmann algorithm, data caching, parallel communication, and
file I/O. After completion of the simulation stage, the finalisation stage shuts down the MPI environment, de-allocates
memory, and polls and prints the execution timers before the program terminates successfully.

We now outline the essential elements of the implementation in more detail which serves to provide a development
guide for future extensions.

3.1. Data structures

The core data structure of the implementation is a five-dimensional array of fluid populations fσ,i(x, y, z) for the
current time step with index order i, x, y, z and σ. The layout is illustrated in figure 3. FORTRAN column major
order implies indices varying fastest from left to right. We evaluated different memory layouts for the populations
array and found this order to be most effective for the present algorithm implementation. A five-dimensional array
is used to store forces Fσ(x, y, z, t) with index order α, x, y, z, σ (α denoting the vector component). Information on
solid boundary conditions is stored in a three-dimensional array of obstacle flags with indices x, y, z. In addition, a
four-dimensional array for cached fluid densities nσ(x, y, z) with indices x, y, z and σ is used.

3.2. System initialisation

System initialisation can be performed either from scratch using a set of input options or by re-initialisation from
checkpoint files in HDF5 format. The initialisation subroutine first reads any command line arguments including
the path to a set of input files. The parameter input file is expected in .ini file format and processed by the module
fini parser. It is structured in sections for the simulation environment, common simulation parameters, physics param-
eters and output properties. Settings for special boundary conditions and checkpoints are given in separate sections. A
unique feature of LB3D is the ability to adjust the system initialisation by providing a Python script which can modify
density values for the respective fluid components as well as boundary geometries and wetting interaction parameters.
Example input files are given in figure 4 and 5. Detailed explanations of all available input parameters can be found
in the LB3D user manual.

During initialisation, the MPI parallel environment is set up, MPI and HDF5 data structures are instantiated, the
random number generators are seeded, and general variable defaults are set. The simulation parameters are then set

9

[boundary conditions]

condition = periodic

[checkpoint]

format = hdf

n = 1000

num_files = 1

safe = T

[output]

folder= ./output

cpfolder = .

sci_rock = 10000

sci_od = 1000

sci_wd = 1000

sci_int = 1000

sci_arrows = 1000

sci_flo = 1000

[common]

n_spec = 2

iterations = 20000

nz = 64

nx = 64

ny = 64

py_ic_module = geometry.py

seed = 0

[simulation]

initial_conditions = random

[physics]

gravity = 0, 0, 1e-5

g_min_int = 0, 0, 0

g_max_int = 64, 64, 64

g_br = 0.01

g_wr = 0.0

Figure 4: Example input file for LB3D v7.1. The file geometry.py is part of the example porous found in the examples directory. Details of the input
parameters as well as a complete list of options is provided in the user manual. This setup is used for the evaluation of permeability in section 4.1.2.

10

to the values specified in the input file, where a set of compatibility checks is executed to catch conflicting options
and parametrisations. Subsequently, the lattice data structures are allocated and initialised with a velocity field and
obstacle site distribution, where the LB3D Python interface is invoked to execute the specified scripts. Moreover,
additional properties such as specific interaction forces as well as in- and outflow boundary conditions are initialised.
If restoration from a checkpoint is requested, simulation parameters and lattice data are read from the specified HDF5
files. Once the lattice data has been initialised, any derived properties are computed and an initial MPI communication
is performed. The initialisation concludes by writing data output for time step zero and performing a sanity check, i.e.
validating the numerical stability of the physical properties of the system.

3.3. Algorithmic subroutines
In order to evaluate the lattice-Boltzmann equation (1), the following sequence of subroutine calls is implemented

1. Streaming step: Propagate populations according to equation (2) and apply bounce-back boundary conditions;
2. Compute the pre-collisional conserved density ρσ via equation (7) and momenta pσ via equation (8) for use in

influx boundaries, collision calculation and output routines;
3. Calculations for influx and outflux boundary conditions;
4. Compute external and intermolecular (Shan-Chen) forces used in collision calculation and output routines;
5. Collision step: Evaluate equation (1),

The execution of these steps is performed in the main time loop subroutine of LB3D as illustrated in figure 6.
The computation steps are interspersed with communication steps as required by the parallelisation, cf. section 7.
In addition, optional steps can be executed for input/output, checkpointing, and sanity checks. In contrast to other
lattice Boltzmann implementations, the algorithm starts by performing communication followed by an advection
step. Subsequently, calculation and caching of data is required by boundary conditions and interaction forces and is
performed before the collision step.

In the current implementation the algorithm performs between 5 and 6 complete spatial loops - one for each
advection and collision process, one for the calculation of pseudo-potential forces and two more to pre-calculate and
cache momentum and forces. A last optional loop is required for the calculation of dipolar interactions in the ternary
model. Dividing the algorithm in this fashion provides a clear structure for the integration of future features. Here the
focus is not on optimal performance but rather on readability and extensibility.

3.4. Parallelisation
Simulations are run on a three-dimensional rectangular lattice of size tnx × tny × tnz with periodic boundary

conditions as default. In order to run parallel jobs, the lattice slab is divided on program start-up into blocks of equal
size nx × ny × nz. The exact lattice subdivision may be either specified by the user or chosen automatically by the
MPI implementation. The number of lattice sites along each axis must be divisible by the number of processes used
along that axis.

The spatial dimensions nx, ny, nz of all arrays on each CPU are extended by a halo region which contains copies
of lattice blocks from neighbouring CPUs. The algorithms implemented in the current code require a halo depth of
one lattice site, but it can be set to any value for more complicated algorithms. MPI-2 array data types are instantiated
for the halo regions such that a single pair of MPI send and receive calls can be used for communication between MPI
processes.

Shared memory parallelisation using OpenMP is enabled by wrapping the various spatial loops responsible for the
calculation of the respective algorithm steps. Advection is performed using a single lattice buffering adjacent lattice
site information for one z-layer at the time. Creation of the buffer is multi-threaded separately from the subsequent
advection calculation.

3.5. Data output
LB3D writes physical properties of fluids to output files at specified time intervals. The writeable properties

include the densities of components and the flow velocity, and the frequency at which data is written can be specified
in the input file. Generally, no outputs are written until time step n sci start, after which data is written every
n sci OUTPUT time steps, where OUTPUT stands for a specific property. A value of n sci OUTPUT = 0 disables the

11

You can load XDRF files like this:

lb3d.geometry_from_xdrf("wettingWall.wall.xdr")

lb3d.geometry_add_box(0, 0, 0,

lb3d.params.tnx-1, lb3d.params.tny-1, lb3d.params.tnz-1)

offset = lb3d.params.tnx / 4

lb3d.geometry_add_box(offset, offset, offset,

lb3d.params.tnx-offset, lb3d.params.tny-offset, lb3d.params.tnz-offset)

lb3d.geometry_fill_region(offset, offset, lb3d.params.tnz-offset,

lb3d.params.tnx-offset, lb3d.params.tny-offset, lb3d.params.tnz-offset,

clear=True)

lb3d.geometry_add_ellipse(lb3d.params.tnx/2, lb3d.params.tny/2, lb3d.params.tnz/2,

lb3d.params.tnx/4, lb3d.params.tny/5, lb3d.params.tnz/6)

import random

tnx = lb3d.params.tnx-1

tny = lb3d.params.tny-1

tnz = lb3d.params.tnz-1

mx = (lb3d.params.tnx-1)/2

my = (lb3d.params.tny-1)/2

mz = (lb3d.params.tnz-1)/2

scale = (mx+my+mz)/3/5

offset = 0

radius = 28

period = 32

a = radius

b = radius

c = radius

for x in range(0,tnx,period):

for y in range(0,tny,period):

for z in range(0,tnz,period):

if (x%(2*period)==0) and (y%(2*period)==0) and (z%(2*period)==0):

lb3d.geom_ellipsoid(x,y,z,a,b,c, lb3d.rock_set)

lb3d.geom_ellipsoid(x,y,z,a,b,c, lb3d.fluid_clear)

elif (x%(2*period)!=0) and (y%(2*period)!=0) and (z%(2*period)!=0):

lb3d.geom_ellipsoid(x,y,z,a,b,c, lb3d.rock_set)

lb3d.geom_ellipsoid(x,y,z,a,b,c, lb3d.fluid_clear)

Figure 5: Example use of the Python bindings for generation of a system setup. The file geometry.py is part of the example porous found in the
examples directory. The functions rock set and fluid clear manipulate the obstacle and density field of the system directly in the LB3D domain.
The function lb3d.geom ellipsoid executes respective calls in an ellipsoid volume with centre {x, y, z} and axes {a, b, c}. Algorithm development
around atomic get and set functions can make use of the regular Python environment.

12

MPI communication
complete_halo_exchange()

Advection step
lb3d_advection()

Precalculation of local properties
lb3d_precompute_momentum()

Handle boundary condition
optional, lbe_invade()

Caching of (coupling) forces
lb3d_calculate_forces()

Collision step
lb3d_collision()

"Sanity check"
optional, lb3d_sanity_check()

Write scientific output
optional, lb3d_io_write_data()

Write checkpoints
optional, lb3d_io_write_checkpoint()

MPI communication
complete_halo_exchange()

Communication steps Lattice-Boltzmann steps Caching steps Optional steps

T
im

e

Figure 6: Algorithm execution in the main time loop of LB3D. As the initialisation step includes a first collision calculation to enforce well-
formed initial distributions, the time-loop starts with a communication step and executes advection first. To avoid re-calculation of frequently used
properties locally conserved density and momentum as well as interaction forces are cached. Symmetry in the interaction forces allows to halve the
computed force components. Every time step or interval can be configured to include checks of system stability and validity termed sanity checks
as well as scientific and checkpoint output.

output of the respective property. The output file format is the Hierarchical Data Format (HDF) [63] which facilitates
portable, platform–independent data. HDF provides the possibility to add meta data to the raw data files and LB3D
makes use of this feature by adding specific gravity information as detailed in the manual [64].

LB3D can be instructed to produce checkpoint files at specified time intervals. These files can be used to restart
the simulation from a given configuration. When the simulation is being restarted from a checkpoint, it is possible to
override any of the simulation parameters and even re-apply initialisation scripts. Therefore checkpoints may be used
to create non-trivial initial conditions and ad-hoc steering of simulations. Both output and checkpoint files are written
in HDF5 [65].

3.6. Installation
LB3D version 7.1 supports most Linux environments including Gnu, Cray or Intel compatible compilers.

• MPI ≥ 2.0,

• HDF5 ≥ 1.8.0 (compiled against MPI with –enable-parallel –enable-fortran),

• Python ≥ 2.6,

• Jinja2.

Configuration of the package should include explicit specification of the HDF5 compiler wrapper h5pcc as well as
the LB3D Python bindings via the options

$./configure --with-hdf5=/PATH/TO/h5pcc --with-lb3d-py-path=/PATH/TO/lb3d/py

$ make

By default LB3D builds the binary lb3d in the /lb3d/src directory. Evoking make install by default installs
to /usr/local/lb3d. If configure is provided with an install prefix, the binary is copied to /PREFIX/bin/lb3d

and Python bindings to /PREFIX/share/lb3d/py. More details on the installation process can be found in the user
manual [64].

13

Figure 7: Illustration of the subarray structure and communication pattern in one dimension for a halo extent of 2. The simulation domain extends
from coordinate index 1 to nx. The boundary layers of the domain are replicated as halo layers on the neighbouring processes where data is
exchanged through MPI communication. Sending and receiving of data is facilitated by MPI subarray types for the halo extent. Periodic boundary
conditions are implied by the MPI neighbourhood. Colour online.

3.7. Workflow

In order to illustrate the typical workflow of a LB3D simulation, we use the porous media example, the results
of which are presented in section 4. The input file is listed in figure 4 and the Python script generating the geometry
is listed in figure 5. The input file specifies simulation parameters like the number of fluid species, system size, and
number of time steps to simulate. Further initial parameters can be included through Python bindings. The Python
script contains functions to set and unset obstacle and fluid parameters on individual lattice sites or specific geometries.
It is also possible to load information from an XDR file which defines applicable boundary conditions for each lattice
site (details can be found in the user manual [64]).

All files paths are specified relative to the current execution directory. The actual simulation is started by invoking

mpirun -n NUMBER_OF_CORES ./lb3d -f input.in

where the mpirun command is dependent on the specific system configuration and MPI library. By default LB3D
writes output to the directory ./output/ relative to the execution directory. Data analysis can be performed using
a range of available HDF5 tools for different languages including Python, C/C++, and FORTRAN. For example, the
package h5utils provides a number of converters, inter alia, to ASCII and VTK formats for visualisation. More details
on the available configuration and evaluation options can be found in the user manual [64].

4. Case studies

The development of LB3D version 7.1 involved substantial refactoring of an earlier version of the code. Besides
integrating new features and cleaning up the input/output routines, the parallelisation structure was extended to make
use of shared memory strategies within nodes that comprise more and more cores. In this section we report the
results of physics validation as well as performance benchmarks. This is done to confirm the accuracy of the added
and altered functionality and probe the parametrisation of the hybrid parallel approach on the current UK National
Supercomputer ARCHER.

4.1. Validation

To ensure that the re-factoring has preserved all model properties, exemplary mesophase simulations originally
performed with prior versions of LB3D have been reproduced. Due to the deterministic nature of the lattice Boltzmann
method and the absence of random initial and boundary conditions the obtained results reproduce values calculated by
earlier versions exactly. Here we describe simulation parametrisation and results for three test cases. For the spinodal
decomposition of an amphiphilic mixture we report the time behaviour of the average fluid domain size as a function
of time and evaluate the power law observed. In a second test case we make use of the Python bindings and measure
permeability in a model porous medium. Finally we investigate the qualitative formation of amphiphilic mesophases.

14

4.1.1. Spinodal decomposition of an amphiphilic mixture
Spinodal decomposition is the process of rapid demixing of immiscible fluids, e.g. water and oil. The phase

separation is governed by surface tension effects and characteristically exhibits an exponential increase in domain
volumes of the demixing components [66, 26]. The addition of an amphiphilic component reduces the surface tension
between the component and slows the spinodal decomposition process down. The resulting process still behaves
exponential, but the exponent of the observed dynamics of the domain sizes is reduced [67, 68, 30, 69].

In order to evaluate the dynamics of the ternary model implemented in LB3D, we validate simulation results
published by some of us previously [30, 69]. Keeping the overall fluid density constant at ρtot = 0.8 m/a3 overall, the
density of the amphiphilic component is increased in steps of ∆ρα = 0.05 m/a3 from ρα = 0.0 m/a3 to ρα = 0.30 m/a3.
Simulations are performed on a lattice of 256 × 256 × 256 sites. The coupling between immiscible components is
gbr = 0.08 m/(ah2), between immiscible components and surfactant is gbs = −0.06 m/(ah)2 and between surfactant
components gss = −0.03 m/(ah)2.

Figure 4.1.1 shows the dependence on time of the average lateral domain size for varying amphiphilic concen-
tration. The exponent of the decomposition dynamics is determined by fitting an exponential to the relevant portion
of the curves (portions linear in the log-log view). Initial non-exponential behaviour is due to the homogenous ini-
tialisation of the fluids and discretisation on the lattice, respectively. The right part of the figure shows the resulting
time exponents as a function of amphiphilic concentration. The impact of added surfactant becomes more pronounced
approaching the critical micelle concentration at approximately 22%.

4.1.2. Permeability in a model porous medium
Another area of application of LB3D is the modelling of the flow of fluid mixtures over solid surfaces and in

porous media. A phenomenological property to classify porous media is the permeability κ which quantifies the
relation of a pressure gradient applied on a medium and the resulting flow through it. For a regular lattice of spheres
the permeability is semi-analytical accessible [70, 71] and has been found to follow

κ =
R2

6πχh
, (44)

where R is the sphere radius, χ is the ratio between radius and separation, assumed to equal one in our case as
spheres created by the initialisation algorithm do touch. Finally h is a dimensionless drag coefficient which can be
approximated by a series expansion in χ. With an approximate value of χ · h ≈ 160.0 the theoretical permeability in
lattice units for our system is κ ≈ 0.075. Using the input file shown in figure 4, a system of 64 × 64 × 64 lattice sites
is initialised with the default red and blue concentrations ρr = ρb = 1.0 m/a3. The coupling gbr = 0.01 m/(ah)2 keeps
the liquids miscible. A gravity force of 10 ·−5 m/(ah)2 equivalent to a homogeneous pressure gradient is applied in
the z-direction. In order to measure the permeability, we evaluate the average velocity 〈u〉 and density 〈ρ〉 as well as
the mean pressure gradient 〈∇P〉, and calculate

κ = −ρν
〈u〉
〈∇P〉

. (45)

Figure 10 shows the error of permeability measurements as a function of the simulated fluid viscosity. The
deviation is a well known artefact of LBGK models when combined with bounce-back boundary conditions. The
effect can be reduced by increasing the resolution as it is directly proportional to the surface to volume ratio of the
simulation. Another way to correct the error is the integration of a multi-relaxation time collision scheme as is planned
for an update in the near future.

4.1.3. Formation of amphiphilic mesophases
The ternary fluid model implemented in LB3D can be applied to investigate the self-assembly of amphiphilic

mesophases [30, 31, 32, 40, 41, 42, 43, 44]. Table 1 gives an overview of the parametrisation for simulations of self-
assembly of mesophases using LB3D v7.1. Simulations were performed on a lattice of 256x256x256 sites. Simulation
domains are initialised with fluid of homogeneous densities of ρr,b for the two (im)miscible components and a density
ρs for the amphiphilic component respectively. The subsequent self-assembly of the mesophases is driven by the
coupling forces, cf. equation (16).

15

1000 10000

Time steps (lattice units)

10

100

A
v

er
a

g
e

d
o

m
a

in
 s

iz
e

(l
a

tt
ic

e
u

n
it

s)

c
α
 = 0.00 %

c
α
 = 6.25 %

c
α
 = 12.50 %

c
α
 = 18.75 %

c
α
 = 25.00 %

c
α
 = 31.25 %

0 10 20 30 40

Amphiphilic concentration [%]

0.2

0.4

0.6

0.8

1

F
it

te
d

 e
x
p

o
n

en
t

Figure 8: Log-log plot of the dynamics of the average lateral domain size as a function of amphiphilic fluid concentration. Exponents of the fitted
curves are plotted as function of the amphiphilic fluid concentration on the right. When exceeding a concentration of approximately 35 %, the
critical micelle concentration, spinodal decomposition is arrested. The impact of added surfactant concentration increases significantly towards the
critical concentration.

16

Figure 9: Volume rendering of the model porous geometry as generated by the geometry.py listed in section 3. The geometry is used here in the
simulations for permeability measurements. Spheres of a radius of 15 lattice sites are positioned on a body centered cubic lattice. The presented
system has 64 × 64 × 64 lattice sites

0 0.1 0.2 0.3 0.4 0.5

Kinematic viscosity υ

0.9

1

1.1

R
el

a
ti

v
e

er
ro

r
o

f
p

er
m

ea
b

il
it

y

κ
/κ

0

Figure 10: Relative error of permeability measured in the simulation domain as compared to the theoretical results. For LBGK models exist magical
relaxation parameters minimizing the error. Other ways to decrease deviation include simulate at higher resolutions and use more accurate collision
models such as multi-relaxation time collision schemes.

17

mesophase ρr ρb ρs gbr gbs gss

Primitive 0.3 0.3 0.9 0.01 -0.006 -0.0005
Hexagonal 0.3 0.3 0.9 0.01 -0.006 -0.001
Diamond 0.05 0.05 0.7 0.01 -0.006 0.00035
Gyroid 0.7 0.7 0.9 0.08 -0.006 -0.003

Table 1: Simulation parameters for the self-assembly of representative primitive, hexagonal, diamond and gyroid mesophases used in the validation
simulations. The character of the phase is determined by the densities ρr,b of two partially miscible or immiscible fluid components and the density
ρs of the amphiphilic component as well as the parameters defining the coupling strength between the immiscible components, gbr, the (im)miscible
and amphiphilic components gbs and the amphiphilic self-interaction gss. See text for further details.

Figure 11: Volume rendering of simulation snapshots of zero order parameter iso-surfaces of the respective mesophases obtained in simulation.
Simulation were run in a volume of 323 lattice sites for 30,000 time steps. The order parameter is given by the difference of local densities of
immiscible components. The states found are 1. The density and interaction parameters control the pressure in the model (see [41]).

In pressure jump experiments the density of the fluid components is increased, which is equivalent to increase
in overall system pressure. We observe the formation of primitive and hexagonal mesophases, respectively, for
a reduction in the surfactant self-interaction strength. In our simulations the parameter was changed from gss =

−0.0005 m/(ah)2 to gss = −0.001 m/(ah)2. Systems at lower and higher pressure exhibit cubic diamond and gyroid
mesophases, respectively. Figure 11 shows a volume rendering of the observed morphologies. The images display the
zero isosurface of the order parameter defining the boundary of immiscible components (cf. [41] for more details).

4.2. Performance

During the refactoring of LB3D, we have focused on creating more clearly structured and well documented code.
Moreover, the new implementation exhibits a significantly improved single core performance. While OpenMP shared
memory parallelisation has been implemented in addition to the prior MPI parallelisation, we focus here on the single
core performance and scaling of the MPI based parallelisation. Tests of a hybrid parallelisation approach, naı̈vely
introducing OpenMP wrappers around the main loops result in loss of performance in all cases. More sophisticated
strategies introducing nested loops and explicit OpenMP parameterisation allow for performance gains of the order
of 10 percent compared to simple MPI. We have, however, found the successful parameterisations to not only vary
with the machine, but to depend on the chosen problem as well. While this may change for explicit shared memory
machines and future heterogeneous exa-scale configurations, in the current publication the systematic investigation of
hybrid parallel performance has been omitted.

Table 2 compares the single core performance of LB3D v7.1 against LB3D v7.0 as measured for simulations of
domains of 256×256×256 lattice sites on 22 nodes of ARCHER comprised of two 12-core CPUs each. The speedup
observed between the versions measured in millions of lattice site updates per second (MSUPs) per core is approxi-
mately three-fold. Acceleration of computation has been achieved by optimising communication, memory structure
and algorithms throughout the code. Most prominently, component information has been separated in memory. Pre-
calculation and caching steps have reduced redundant calculations. The change in memory layout has furthermore
faciltated optimised MPI array definitions and communication pattern.

18

Application # of lattice sites Discretisation Architecture # of cores MSUPs/core
LB3D v7.0 1-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 0.369
LB3D v7.0 2-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 0.203
LB3D v7.0 3-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 0.098
new LB3D v7.1 1-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 1.360
new LB3D v7.1 2-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 0.648
new LB3D v7.1 3-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 0.277

Table 2: Comparison of performance between LB3D version 7.0 and the new LB3D version 7.1. The performance measured in millions of lattice
site updates per second (MSUPs) per core shows significant improvement.

6144 12288 24576 49152

of cores

1

10

S
p

ee
d

u
p

Single fluid

Binary mixture

Ternary mixture

Ideal

Figure 12: Strong scaling behaviour of single component, binary immiscible and ternary amphiphilic fluid mixtures in simulations domains of
1024× 1024× 1536 lattice sites. Data was obtained from runs of 10,000 time steps performed on ARCHER. The scaling remains close to linear for
many tens of thousands of cores and only just starts to deteriorate on 49152 cores. The single core performance is here comparable to the values
given in table 2.

Figure 12 illustrates the strong scaling behaviour for geometries of size 1024 × 1024 × 1536 lattice sites and
calculations considering single phase flow, binary mixtures or amphiphilic fluid mixtures. Simulating a system of
pure fluid (mixture) for 10,000 time steps on 256, 512, 1024 and 2048 nodes of ARCHER, we observe excellent
strong scaling behaviour close to ideal speedup. This is especially true for the more computationally demanding
multi-component cases. CPU counts are multiples of 24 corresponding to the ARCHER node size. The scaling
remains close to linear for many tens of thousands of cores and for the selected system domain size only just starts to
deteriorate on 49152 cores. The single core performance is here comparable to the values given in table 2.

5. Summary

The LB3D simulation code has enabled a substantial amount of scientific research in diverse contexts. Starting
from the investigation of ternary amphiphilic fluid mixtures the code has been extended to facilitate to include a va-
riety of boundary effects and coupled models. Cleaning and refactoring of the code have led to improved readability
and extensibility. To ensure scientific accuracy and model applicability of the refactored version, we have reproduced
earlier findings of ternary amphiphilic mixtures on the current UK National Supercomputer. While maintaining flex-
ibility and extensibility, the single-core performance has more than doubled. Exploiting the excellent parallelisation

19

behaviour of the lattice-Boltzmann algorithm, the strong scaling behaviour of the code remains close to linear. With
LB3D version 7.1, we release an open source version of the code that provides functionality for simulation of am-
phiphilic mixtures in complex geometries. The documentation and new Python scripting options enhance the ease of
use of existing features, while at the same time facilitating continued development and extension. By releasing this
code under a BSD 3-clause license, we hope to inspire independent developers to contribute new features to LB3D.

Acknowledgements

Support is acknowledged from Fujitsu Laboratories Europe, from the UK Consortium on Mesoscale Engineering
Sciences (UKCOMES) under EPSRC Grant No. EP/L00030X/1 and the EU H2020 ComPat project No. 223979. Our
work also made use of the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).

[1] S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford University Press, 2001.
[2] B. Dnweg, A. Ladd, Lattice {B}oltzmann simulations of soft matter systems, in: Advanced Computer Simulation Approaches for Soft Matter

Sciences III, 2009, pp. 89–166.
[3] C. K. Aidun, J. R. Clausen, Lattice-{B}oltzmann Method for Complex Flows, Annual Review of Fluid Mechanics 42 (1) (2010) 439–472.
[4] X. He, L.-S. Luo, A priori derivation of the lattice-{B}oltzmann equation, Physical Review E 55 (6) (1997) R6333–R6336.
[5] X. He, L.-S. Luo, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Physical Review

E 56.
[6] Y. H. Qian, D. D’Humires, P. Lallemand, Lattice BGK Models for Navier-Stokes Equation, Europhysics Letters 17 (6) (1992) 479.
[7] X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Physical Review E 47 (3) (1993)

1815–1819.
[8] X. Shan, G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, Journal of Statistical Physics 81 (112) (1995)

379.
[9] H. Chen, B. Boghosian, P. Coveney, M. Nekovee, A ternary lattice-Boltzmann model for amphiphilic fluids, Proceedings of the Royal Society

of London A 456 (2000) 2043.
[10] M. Nekovee, P. V. Coveney, H. Chen, B. M. Boghosian, Lattice-Boltzmann model for interacting amphiphilic fluids, Physical Review E 62 (6)

(2000) 8282–8294.
[11] N. S. Martys, H. Chen, Simulation of multicomponent fluids in complex three-dimensional geometries by the Lattice Boltzmann method,

Phys. Rev. E 53 (1) (1996) 743.
[12] J. Desplat, I. Pagonabarraga, P. Bladon, {LUDWIG}: A parallel Lattice-{B}oltzmann code for complex fluids, Computer Physics Communi-

cations 134 (2001) 273.
[13] M. D. Mazzeo, P. V. Coveney, HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries,

Computer Physics Communications 178 (12) (2008) 894–914.
[14] OpenLB - Open Source Lattice Boltzmann Code.
[15] Palabos - CFD Complex Physics.
[16] Exa Simulation Software Solutions | Exa Corporation.
[17] XFlow is a next generation CFD software system from Next Limit Technologies that uses a proprietary, particle-based, meshless approach

which can easily handle traditionally complex problems.
[18] B. M. Boghosian, P. V. Coveney, P. J. Love, A three dimensional lattice-gas model for amphiphilic fluid dynamics, Proceedings of the Royal

Society of London A 456 (2000) 1431.
[19] P. J. Love, J. B. Maillet, P. V. Coveney, Three-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic

flow through porous media, Phys. Rev. E 64 (061302).
[20] J. Chin, P. V. Coveney, Lattice Boltzmann study of spinodal decomposition in two dimensions, Physical Review E 66 (1) (2002) 016303.
[21] J. Chin, J. Harting, S. Jha, P. V. Coveney, A. R. Porter, S. M. Pickles, Steering in computational science: Mesoscale modelling and simulation,

Contemporary Physics 44 (5) (2003) 417–434.
[22] J. Chin, P. V. Coveney, J. Harting, The TeraGyroid project collaborative steering and visualization in an HPC grid for modelling complex

fluids, in: Proceedings of the UK e-Science All Hands Meeting, 2004.
[23] S. M. Pickles, R. J. Blake, B. M. Boghosian, J. M. Brooke, J. Chin, P. E. L. Clarke, P. V. Coveney, N. Gonzlez-Segredo, R. Haines, J. Harting,

M. Harvey, S. Jha, M. A. S. Jones, M. McKeown, R. K. Pinning, A. R. Porter, K. Roy, M. Riding, The TeraGyroid experiment, Proceedings
of the Workshop on Case Studies on Grid Applications at GGF 10.

[24] R. J. Blake, P. V. Coveney, P. Clarke, S. M. Pickles, The teragyroid experimentsupercomputing 2003, Scientific Programming 13 (1) (2005)
1–17.

[25] J. Harting, J. Chin, M. Venturoli, P. V. Coveney, Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of
computational grids, Philosophical Transactions of the Royal Society of London A 363 (2005) 1895.

[26] N. Gonzlez-Segredo, M. Nekovee, P. V. Coveney, Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in
binary immiscible fluids, Physical Review E 67 (4) (2003) 046304.

[27] N. J. Gonzlez Segredo, P. V. Coveney, Lattice-Boltzmann and lattice-gas simulations of binary immiscible and ternary amphiphilic fluids in
two and three dimensions.

[28] J. Harting, G. Giupponi, P. V. Coveney, Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemul-
sions, Physical Review E 75 (2007) 041504

[29] J. Harting, G. Giupponi, Lattice Boltzmann simulations of microemulsions and binary immiscible fluids under shear, High Performance
Computing in Science and Engineering ’07 (2008) 457.

20

[30] N. Gonzlez-Segredo, P. V. Coveney, Coarsening dynamics of ternary amphiphilic fluids and the self-assembly of the gyroid and sponge
mesophases: Lattice-Boltzmann simulations, Physical Review E 69 (6) (2004) 061501.

[31] N. Gonzlez-Segredo, P. V. Coveney, Self-assembly of the gyroid cubic mesophase: lattice-Boltzmann simulations, EPL (Europhysics Letters)
65 (6) (2004) 795.

[32] N. Gonzalez-Segredo, P. V. Coveney, Structured and complex fluids-Coarsening dynamics of ternary amphiphilic fluids and the self-assembly
of the gyroid and sponge mesophases: Lattice-Boltzmann simulations, Physical Review-Section E-Statistical Nonlinear and Soft Matter
Physics 69 (6) (2004) 61501–61501.

[33] J. Harting, M. Venturoli, P. V. Coveney, Large-scale grid-enabled lattice Boltzmann simulations of complex fluid flow in porous media and
under shear, Philosophical Transactions of the Royal Society of London A 362 (2004) 1703–1722.

[34] R. S. Saksena, B. Boghosian, L. Fazendeiro, O. A. Kenway, S. Manos, M. D. Mazzeo, S. K. Sadiq, J. L. Suter, D. Wright, P. V. Coveney, Real
science at the petascale, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
367 (1897) (2009) 2557–2571.

[35] D. Groen, O. Henrich, F. Janoschek, P. V. Coveney, J. Harting, Lattice-Boltzmann Methods in Fluid Dynamics: Turbulence and Complex
Colloidal Fluids, in: W. F. Bernd Mohr (Ed.), Jlich Blue Gene/P Extreme Scaling Workshop 2011, Jlich Supercomputing Centre, 52425 Jlich,
Germany, 2011, fZJ-JSC-IB-2011-02; http://www2.fz-juelich.de/jsc/docs/autoren2011/mohr1/.

[36] J. Harting, M. J. Harvey, J. Chin, P. V. Coveney, Detection and tracking of defects in the gyroid mesophase, Computer physics communications
165 (2) (2005) 97–109.

[37] J. Chin, P. V. Coveney, Chirality and domain growth in the gyroid mesophase, Philosophical Transactions of the Royal Society of London A
462 (3575-3600).

[38] G. Giupponi, P. V. Coveney, Non-Newtonian behaviour of the gyroid mesophase: a lattice-Boltzmann study, Mathematics and Computers in
Simulation 72 (2) (2006) 124–127.

[39] N. Gonzlez-Segredo, J. Harting, G. Giupponi, P. V. Coveney, Stress response and structural transitions in sheared gyroidal and lamellar
amphiphilic mesophases: lattice-Boltzmann simulations, Physical Review E 73 (3) (2006) 031503.

[40] R. S. Saksena, P. V. Coveney, Parallel Lattice-Boltzmann Simulations for the Investigation of Cubic Phase Rheology at the Petascale.
[41] R. S. Saksena, P. V. Coveney, Self-Assembly of Ternary Cubic, Hexagonal, and Lamellar Mesophases Using the Lattice-Boltzmann Kinetic

Method, The Journal of Physical Chemistry B 112 (10) (2008) 2950–2957.
[42] R. S. Saksena, P. V. Coveney, Rheological response and dynamics of the amphiphilic diamond phase from kinetic latticeBoltzmann simula-

tions, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 465 (2106) (2009) 1977–2002.
[43] R. S. Saksena, P. V. Coveney, Shear rheology of amphiphilic cubic liquid crystals from large-scale kinetic latticeBoltzmann simulations, Soft

Matter 5 (22) (2009) 4446–4463.
[44] P. V. Coveney, R. S. Saksena, Mesoscale simulations of the rheology of periodic cubic and smectic mesophases in ternary amphiphilic

mixtures, Abstracts of Papers of the American Chemical Society 239.
[45] X. He, X. Shan, G. D. Doolen, Discrete Boltzmann equation model for nonideal gases, Physical Review E 57 (1) (1998) R13–R16.
[46] A. J. C. Ladd, R. Verberg, Lattice-Boltzmann simulations of particle-fluid suspensions, Journal of Statistical Physics 104 (5/6) (2001) 1197–

1251.
[47] X. Shan, X. He, Discretization of the Velocity Space in the Solution of the Boltzmann Equation, Physical Review Letters 80 (1) (1998) 65–68.
[48] X. Shan, X.-F. Yuan, H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation, Journal

of Fluid Mechanics 550 (2006) 413–441.
[49] P. L. Bhatnagar, E. P. Gross, M. Krook, A Model for Collision Processes in Gases. {I. S}mall Amplitude Processes in Charged and Neutral

One-Component Systems, Physical Review 94 (3) (1954) 511–525.
[50] D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and lattice Boltzmann models, Springer, 2000.
[51] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E 65 (4) (2002)

046308.
[52] A. Chekhlov, V. Yakhot, Kolmogorov turbulence in a random-force-driven Burgers equation, Physical Review E 51 (4) (1995) R2739–R2742.
[53] R. Cornubert, D. d’Humires, D. Levermore, A {K}nudsen layer theory for lattice gases, Physica D 47 (1-2) (1991) 241–259.
[54] P. Lavalle, J. P. Boon, A. Noullez, Boundaries in lattice gas flows, Physica D 47 (1-2) (1991) 233–240.
[55] D. P. Ziegler, Boundary conditions for lattice Boltzmann simulations, Journal of Statistical Physics 71 (5-6) (1993) 1171–1177.
[56] X. He, Q. Zou, L.-S. Luo, M. Dembo, Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann

BGK model, Journal of Statistical Physics 87 (1-2) (1997) 115–136.
[57] I. Ginzburg, D. D’Humires, Multireflection boundary conditions for lattice Boltzmann models, Physical Review E 68 (6) (2003) 066614.
[58] B. Chun, A. J. C. Ladd, Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps, Physical Review E 75 (6)

(2007) 066705–12.
[59] Q. Zou, X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Physics of Fluids 9 (6) (1997) 1591–

1598.
[60] M. E. Kutay, A. H. Aydilek, E. Masad, Laboratory validation of lattice {B}oltzmann method for modeling pore-scale flow in granular materials,

Computers and Geotechnics 33 (8) (2006) 381–395.
[61] K. Mattila, J. Hyvluoma, T. Rossi, Mass-flux-based outlet boundary conditions for the lattice Boltzmann method, Journal of Statistical

Mechanics: Theory and Experiment 2009 (06) (2009) P06015.
[62] M. Hecht, J. Harting, Implementation of on-site velocity boundary conditions for D3q19 lattice Boltzmann, Journal of Statistical Mechanics:

Theory and Experiment 13 (2010) 1.
[63] The HDF Group, Hierarchical data format version 5 (2000-2010).
[64] E. Breitmoser, J. Chin, C. Dan, F. Dörfler, S. Frijters, G. Giupponi, N. González-Segredo, F. Günther, J. Harting, M. Harvey, M. Hecht,

S. Jha, F. Janoschek, F. Jansen, C. Kunert, M. Lujan, I. Murray, A. Narváez, M. Nekovee, A. Porter, F. Raischel, R. Saksena, S. Schmieschek,
D. Sinz, M. Venturoli, T. Zauner, LB3D user manual, UCL.

[65] M. Folk, G. Heber, Q. Koziol, E. Pourmal, D. Robinson, An Overview of the HDF5 Technology Suite and Its Applications, in: Proceedings

21

of the EDBT/ICDT 2011 Workshop on Array Databases, AD ’11, ACM, New York, NY, USA, 2011 36–47.
[66] J. W. Cahn, On spinodal decomposition, Acta Metallurgica 9 (9) (1961) 795–801.
[67] J. W. Cahn, On spinodal decomposition in cubic crystals, Acta Metallurgica 10 (3) (1962) 179–183.
[68] P. G. d. Gennes, Dynamics of fluctuations and spinodal decomposition in polymer blends, The Journal of Chemical Physics 72 (9) (1980)

4756–4763.
[69] S. Schmieschek, A. Narvez, J. Harting, Multi relaxation time lattice boltzmann simulations of multiple component fluid flows in porous

media, in: High Performance Computing in Science and Engineering 12, Springer Berlin Heidelberg, 2013, 39–49.
[70] H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres,

Journal of Fluid Mechanics 5 (2) (1959) 317–328.
[71] A. Sangani, A. Acrivos, Slow flow through a periodic array of spheres, International Journal of Muliphase Flow 8 (4) (1982) 343–360.

22

