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Candida albicans causes life-threatening systemic infections in immunosuppressed
patients. These infections are commonly treated with fluconazole, an antifungal
agent targeting the ergosterol biosynthesis pathway. Current Antifungal Susceptibility
Testing (AFST) methods are time-consuming and are often subjective. Moreover,
they cannot reliably detect the tolerance phenomenon, a breeding ground for the
resistance. An alternative to the classical AFST methods could use Matrix-Assisted
Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass spectrometry (MS). This
tool, already used in clinical microbiology for microbial species identification, has already
offered promising results to detect antifungal resistance on non-azole tolerant yeasts.
Here, we propose a machine-learning approach, adapted to MALDI-TOF MS data,
to qualitatively detect fluconazole resistance in the azole tolerant species C. albicans.
MALDI-TOF MS spectra were acquired from 33 C. albicans clinical strains isolated
from 15 patients. Those strains were exposed for 3 h to 3 fluconazole concentrations
(256, 16, 0 µg/mL) and with (5 µg/mL) or without cyclosporin A, an azole tolerance
inhibitor, leading to six different experimental conditions. We then optimized a protein
extraction protocol allowing the acquisition of high-quality spectra, which were further
filtered through two quality controls. The first one consisted of discarding not identified
spectra and the second one selected only the most similar spectra among replicates.
Quality-controlled spectra were divided into six sets, following the sample preparation’s
protocols. Each set was then processed through an R based script using pre-defined
housekeeping peaks allowing peak spectra positioning. Finally, 32 machine-learning
algorithms applied on the six sets of spectra were compared, leading to 192 different
pipelines of analysis. We selected the most robust pipeline with the best accuracy.
This LDA model applied to the samples prepared in presence of tolerance inhibitor
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but in absence of fluconazole reached a specificity of 88.89% and a sensitivity of
83.33%, leading to an overall accuracy of 85.71%. Overall, this work demonstrated
that combining MALDI-TOF MS and machine-learning could represent an innovative
mycology diagnostic tool.

Keywords: machine learning, MALDI-TOF MS, Candida albicans, fluconazole resistance, diagnostic

INTRODUCTION

Candida albicans is one of the most common opportunistic
pathogens in humans (Naglik et al., 2011). Although C. albicans
superficial infection are not life threatening, systemic infections
can lead to a mortality up to 50% (Brown et al., 2012). In addition,
antifungal resistance frequency among C. albicans is increasing
worldwide (Pfaller et al., 2010; Castanheira et al., 2016). A recent
study, based on data collected in the United States, concluded
that even if it does not statistically improve patient outcome, an
appropriate antifungal stewardship allows a significant reduction
in antifungal use (Hart et al., 2019). Therefore, early detection
of antifungal susceptibility is required to improve antifungal
stewardship and to act against antifungal resistance rising. This
is particularly pertinent regarding the recent emergence of
the highly drugresistant C. auris (Spivak and Hanson, 2018;
Kordalewska and Perlin, 2019).

Even if drug-resistance displays a lower incidence in fungi
than in bacteria, it stays particularly worrying since the
armamentarium against fungi is very limited since they, as
eukaryotes, share quite a number of similar key biochemical
characteristics. Thus, nowadays, only four antifungals classes
are available: echinocandins, pyrimidine analog, polyenes and
azoles. The first type of antifungal inhibits the cell wall
biosynthesis, the second inhibits the fungal growth by nucleic
acid destabilization and the two last disrupt the cell membrane
integrity (Sanglard, 2016).

Azoles compounds are of particular concern since they are
the first line treatment against non-life threatening Candida
infections (Berkow and Lockhart, 2017). Indeed, although
intrinsic resistance almost inexistent in C. albicans, acquired
antifungal resistance can emerge, especially during long-term
treatment (Cleveland et al., 2012; Sanguinetti et al., 2015).

Four main mechanisms of azole resistance have been
described (Vandeputte et al., 2012; Berkow and Lockhart, 2017)
relying on: (i) reduction of the fluconazole affinity with its
target Erg11, due to mutation in its binding site (Sanglard
et al., 1998); (ii) upregulation of ERG11 expression, via a gain-
of-function (GOF) mutation in the transcription factor (TF)
Upc2, counteracting the fluconazole effects (Flowers et al., 2012);
(iii) reduction of the drug concentration within the fungal cell
by increased expression of multidrug transporters, thanks to
GOF mutations in two TFs (Tac1 and/or Mrr1, respectively)
(Coste et al., 2006; Dunkel et al., 2008); and (iv) alterations
of the yeast metabolism (ex: a mutation in ERG3) (Martel
et al., 2010). Development of antifungal drug resistance in
C. albicans is a sequential process, via the acquisition of the
different mutations along time, leading to highly resistant isolates
(Coste et al., 2009). Resistance acquisition is probably favored

by the phenomenon of tolerance (Delarze and Sanglard, 2015;
Berkow and Lockhart, 2017). Indeed, azoles are fungistatic for
C. albicans, which implies that this species is able to survive
and to eventually grow at high fluconazole concentrations. As
a consequence, residual growth (or trailing growth) can be
observed at fluconazole concentrations higher than the minimum
inhibitory concentration (MIC) (Delarze and Sanglard, 2015).
Tolerance is dependent on the calcineurin pathway, as it can
be inhibited using calcineurin inhibitor such as cyclosporine
(Sanglard et al., 2003).

Although the genes involved in fluconazole resistance are
well-known, the extensive diversity of the mutations that can
occur makes difficult or even impossible to elaborate polymerase
chain reaction (PCR)-based methods assessing C. albicans azole
resistance (Morio et al., 2010; Ferrari et al., 2011; Vandeputte
et al., 2012). Therefore, fluconazole resistance needs to be assessed
in vitro by fastidious Antifungal Susceptibility Tests (AFST)
based on the determination of the MIC, whose main disadvantage
is its time to result of at least 24 h (Posteraro et al., 2013;
Sanguinetti and Posteraro, 2014).

During the last 10 years, antifungal resistance detection by
MALDI-TOF MS has been addressed (Marinach et al., 2009; De
Carolis et al., 2012; Vella et al., 2013, 2017; Vatanshenassan et al.,
2018). Marinach et al. (2009) have developed a method based
on the changes occurring in C. albicans spectra after exposure
to different concentrations of fluconazole. They determined
a new alternative to the MIC, the minimal profile change
concentration (MPCC). Based on the MPCC of several strains,
new breakpoint concentrations (BPC) could be established,
allowing the discrimination between resistant and susceptible
strains. This assay was later modified and simplified, comparing
only spectra obtained after 3 h of fungal exposure to three
different antifungal concentrations: none, BPC, and high
concentration (De Carolis et al., 2012; Vella et al., 2013,
2017). The Bruker company also developed recently a MALDI
BioTyper Antibiotic Susceptibility Test Rapid Assay (MBT-
ASTRA), that include antifungal resistance detection. MBT-
ASTRA estimates the cellular growth of a sample after 6 h-
exposure to an antifungal drug, based on the peaks’ intensities
of the MALDI-TOF MS spectra compared to an internal
standard as shown for C. glabrata (Sparbier et al., 2016;
Vatanshenassan et al., 2018).

However, none of those studies clearly showed reliable results
for detecting azole resistance in C. albicans. Indeed, for now, only
a study has shown that MALDI-TOF MS was able to separate
C. glabrata isolates according to their fluconazole susceptibility.
However, this discrimination was based on a clustering of
the spectra, and signature peaks have yet to be identified
(Dhieb et al., 2015). Indeed, the main difficulty in assessing
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C. albicans azole susceptibility is the presence of a trailing effect
due to the tolerance to azoles, which complicates AFST lecture.

Given these limitations, the aim of this study is to develop
a MALDI-TOF MS procedure using machine learning to
detect fluconazole resistance in C. albicans strains despite the
tolerance phenomenon.

MATERIALS AND METHODS

Sample Preparation
Strains
In this study, we used 12 pairs and 3 triplets of related
C. albicans isolates (Table 1). The isolates from a given pair
or triplet were isolated from the same patients while treated
with antifungals. Related strains were documented by MultiLocus
Sequence Typing (Sanglard et al., 1995; White et al., 1997;
Coste et al., 2004, 2007, 2009; Dunkel et al., 2008; Posteraro
et al., 2009; Lohberger et al., 2014). The fluconazole susceptibility
status was defined using the EUCAST breakpoints using thebroth
microdilution method (Sanglard et al., 1995; White et al., 1997;
Coste et al., 2004, 2007, 2009; Dunkel et al., 2008; Posteraro et al.,
2009; Lohberger et al., 2014; EUCAST, 2018).

Sample Preparation
The sample preparation procedure and the protein extraction
protocol are described in Supplementary Data Sheet S1 –
Sample preparation. All samples were prepared at least in pair
of biological replicates.

MALDI-TOF MS Analysis
MALDI-TOF MS Settings
The MALDI-TOF MS spectra were acquired on a Bruker Daltonic
Microflex LT mass spectrometer device in technical duplicates,
as described in Supplementary Data Sheet S1 – MALDI-
TOF MS settings. MALDI-TOF MS settings are presented in
Supplementary Table S1. Therefore, for each strain, we obtained
spectra from two biological replicate, each in technical duplicate.

Quality Controls
A first quality control was based on the C. albicans identification
log(scores)obtained with the MALDI Biotyper Compass explorer
software (v.4.1, Bruker). The raw spectra were imported in the
software and automatically compared to all the spectra available
in the database 2017. Only the spectra with a logarithmic score
[log(score)] equal or higher than 1.70 for C. albicans were
conserved for the following steps (for review, see Bader, 2017).

A second quality control was performed using CCI matrices
(QC2) generated with the CCI tool of the MALDI Biotyper
Compass explorer software. It uses a cross-correlation method
to analyze the relationship between different spectra (Arnold
and Reilly, 1998). It was performed on each pair or triplet
of clinical strains treated in the same conditions. First, the
variability between the replicates was evaluated by calculating
the CCI scores obtained between the spectra of each technical
duplicate. If the CCI score was below 0.75, the spectra of the
corresponding technical duplicate were removed. Secondly, the
biological variability was assessed by calculating the mean of CCI

scores obtained between biological replicates. If the mean of CCI
scores was below 0.5, the replicate was removed. It has to be noted
that the thresholds were arbitrary set following our preliminary
observation (data not shown). The parameters of the CCI tool
are the same than in De Carolis et al. (2012).

R Version
The spectra processing and analyses were performed in the R
environment (v. 3.6.1) with R studio (v. 1.1.453) (RStudio Team,
2016; R Core Team, 2019).

Spectra Processing
Housekeeping Peaks
A list of peaks, called C. albicans “housekeeping peaks” because
they are presents in all the spectra originated from C. albicans,
were used for the spectra processing. To obtain them, we
extracted the peaks list of the 30 C. albicans’ superspectra from
the Bruker 8 database (2019). Then, peaks present in at least 70%
of the superspectra by using a tolerance of position of ± 3 m/z
were assessed as C. albicans housekeeping peaks (Table 2).

Spectra Processing
The spectra were treated with an R script based on the
MALDIquant package [version (v.) 1.18] created by Gibb and
Strimmer (2012). The spectra were imported in R with the
MALDIquantForeign package (v. 0.11.5; Gibb and Franceschi,
2018) and treated separately, depending on the condition
in which they were acquired (MAX-CYCLO, BPC-CYCLO,
NULL-CYCLO, MAX-NoCYCLO, BPC-NoCYCLO, and NULL-
NoCYCLO). The peaks intensities were exported under the form
of a different intensity matrix for each condition, which contains
the intensities for all the peaks in each spectrum. The description
of the spectra processing is described Figure 1 in Supplementary
Data Sheet S1 – Spectra processing.

Machine-Learning Approach
Data Preparation
For each condition (MAX-CYCLO, BPC-CYCLO,
NULL-CYCLO, MAX-NoCYCLO, BPC-NoCYCLO, and
NULL-NoCYCLO), the intensity matrix was randomly split
by strains in three data sets: a training set, containing spectra
corresponding to 50% of the strains, a testing set (25%) and a
validation set (25%). To ensure than the number of fluconazole
resistant and fluconazole susceptible strains were balanced
in each set, the ratio of the number of fluconazole resistant
strains versus the number of susceptible strains was forced
between 0.667 and 1.5.

Peaks Selection
The peaks were ranked by their associated Mean Decrease in Gini
index obtained after performing a Random Forest (RF) classifier
with the randomForest function (randomForest package v. 4.6-14,
Cutler et al., 2018) on the training set. Three values of number of
trees to grow (ntree) were tested (500, 1000, and 2000). The other
default parameters of the randomForest function were conserved.
Four subsets of peaks were selected for each condition and each
ntree value, depending of their rank: all the peaks (Mean Decrease
in Gini index equal of above 0, iThr = 0) and peaks associated to
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TABLE 1 | Candida albicans strains used in the project.

Patient Set ID MIC FLC CDR1/CDR2 MDR1 TAC1 ERG11 MRR1 UPC2 Source

1 TT 2321 0.25 ∗ Coste et al., 2007

TT 2322 16 X X X

V 2323 32 X X X X

2 TT 731 0.25 Coste et al., 2007

TT 732 16 X X

V 735 64 X X

6 TT 2243 1 X Coste et al., 2009

V 2242 8 X X X

10 TT 741 0.25 Posteraro et al., 2009

V 742 16 X X

12 V 2284 0.25 Dunkel et al., 2008

TT 2285 16 X X X X

19 TT 290 0.5 Sanglard et al., 1995

TT 292 128 X X ∗

20 V 294 0.25 Coste et al., 2004

TT 296 128 X X X

21 V 347 0.25 Coste et al., 2009

TT 288 0.5 X Sanglard et al., 1995

TT 289 128 X X X

22 TT 3534 0.5 White et al., 1997

TT 3548 128 X X X X X

4 V 750 16 X ∗ Posteraro et al., 2009

TT 2250 1 X

5 V 757 2 ∗ Coste et al., 2009

TT 758 16 X X ∗

9 TT 482 8 ∗ Coste et al., 2009

TT 488 16 X X X

13 TT 520 32 X X Coste et al., 2009

TT 522 128 X X X

15 TT 2250 1 X Coste et al., 2009

TT 2251 16 X X X

18 TT 281 1 ∗ Coste et al., 2009

TT 284 32 X X X

The strains with the same patient number were isolated from the same patient along fluconazole treatment time. The fluconazole (FLC) Minimum Inhibitory Concentration
(MIC) is given in µg/mL. The fluconazole-susceptible strains are highlighted by a light green background and the resistant strains by a white one. A cross represents a
homozygous mutation whereas a star represents a heterozygous mutation. All the strains are DSY strains. TT means that the strain was part of the training or the testing
set of the final model and the V means that the strain was part of the validation set of the final model.

a Mean Decrease in Gini index equal of above 0.3, 0.4, and 0.5,
respectively (iThr = 0.3, iThr = 0.4, and iThr = 0.5).

Models Testing
For each condition (MAX-CYCLO, BPC-CYCLO,
NULL-CYCLO, MAX-NoCYCLO, BPC-NoCYCLO, and
NULL-NoCYCLO), the prediction accuracy of the RF classifier
(randomForest function, randomForest package v. 4.6-14, Cutler
et al., 2018), the logistic regression (glm function, R v. 3.6.1.)
and the Linear Discriminant Analysis (LDA, lda function, MASS
package v. 7.3-51.4,Ripley et al., 2019) was tested. Each method
was performed on the subsets of peaks created in 2.5.2 (iThr = 0,
0.3, 0.4, and 0.5), leading to a total of 32 models by condition,
meaning 192 pipelines of analysis from sample preparation to
resistance prediction. The prediction accuracy of each pipeline
was stored. For RF, the default parameters of the randomForest
function were conserved except for the ntree where three values

were tested (500, 1000, and 2000). For the logistic regression,
the family parameter of the glm function was set on “binomial”
and the other default parameters were conserved. Finally, for the
LDA, the default parameters of the lda function were conserved.

Selection of the Most Accurate Pipelines
Once all the above described pipelines were generated, the 15%
models with the highest accuracies were selected. If the machine-
learning models differed only by the ntree or the iThr parameter
applied, only the pipeline associated to the best accuracy was
conserved for the following step.

Assessment of the Models’ Robustness
To test the robustness of the 15% most accurate pipelines, the
training and testing set of the intensity matrix associated to each
pipeline were merged and the strains associated were randomly
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TABLE 2 | Housekeeping peaks and their associated frequency in the Bruker
C. albicans superspectra.

Hkpeak Frequency

3489.66 0.852

3511.72 0.818

4381.44 0.7912

6060.56 0.915

6111.43 0.829

6364.35 0.812

6465.88 0.837

6617.99 0.969

6906 0.7064

6980.82 0.967

7022.92 0.882

8761.14 0.812

split (ratio 2:1) in new training and testing sets. Balancing of the
data was ensured as in 2.5.1.

The corresponding model was then trained on the new
training set and the accuracy of the susceptibility level prediction
on the testing set was stored. This process was iteratively
repeated 100 times.

The pipeline associated with the highest accuracy and
the lowest variance accuracy was extracted and trained on
the training and testing set merged together. The pipeline’s
parameters were stored for validation.

Pipeline Validation
The final pipeline of analysis was applied to predict the
fluconazole susceptibility level on the validation set [predict
function, stats package v. 3.6.1 (R Core Team, 2019)]. The
predictions were challenged with the known fluconazole
susceptibility levels of the strains and the accuracy, specificity,
and sensitivity were calculated.

Data Storage
Intensity matrices datasets are available on FigShare (doi: 10.
6084/m9.figshare.9900896).

Script and final model can be found on GitHub1.

RESULTS

Optimization of Sample Preparation and
Spectra Acquisition
The first step of the analysis is the acquisition of good quality
spectra, evaluated by the accuracy of C. albicans identification
[identification log(scores)]. This constitute the first quality
control (QC1- Supplementary Figure S1A). In this end, the
protocol implemented by De Carolis et al. (2012), using a formic
acid (FA)-based protein extraction, was compared to a protocol
using a mechanical glass bead-based extraction, on a subset of two
related strains (DSY290/DSY292). In each case, different volumes
of fungal suspension (FS) and FA were tested.

1https://github.com/mDelavy/MALDIresistance-PAPER

Independently of the FS and FA volumes used, the bead-
based extraction allowed the acquisition of better-quality spectra
(Welch two sample t-test: p-value = 3.0 × 10−11), with 87.10% of
the spectra being correctly identified as belonging to C. albicans,
against only 49.62% for the FA-based extraction (Supplementary
Figure S2A). Between the spectra obtained with the bead-
based extraction protocols, better log(scores) were obtained for
the ones treated with the 10 µl of FA (Two-Way Crossed
ANOVA, p-value = 10.0 × 10−10), with 94.44% of accurate
identification against 76.92% for the bead-based extractions using
only 2 µL of FA (Supplementary Figure S2B). This shows the
importance of thoroughly break the yeast cell wall by mechanical
extraction in order to obtain a higher number of mass profiles, in
contrast to bacteria.

As a final protocol option, we chose the bead-based extraction
protocol using 10 µL of FA and 0.5 mL of FS. Indeed, although
there were no significant differences of log(scores) with the bead-
based protocol using 10 µL of FA and 1 mL of FS, all the spectra
acquired after using the chosen protocol were correctly identify
as belonging to C. albicans, whereas only 88.89% of the spectra
were correctly identified with the protocol using 1 mL of FS
(Supplementary Figure S2C).

The second step, also called quality control 2 (QC2 –
Supplementary Figure S1B) was to ensure the spectra’s technical
and biological reproducibility. It was performed using CCI
matrices, generated for each pair or triplet of clinical strains
treated in the same conditions.

The systematic application of these two QCs (Supplementary
Figure S1) will ensure that the spectra are of similar quality and
can be compared.

The main pitfall of the fluconazole resistance measurement
for C. albicans is the trailing phenomenon due to fluconazole
tolerance. In this regard, we compared samples exposed to
cyclosporin A (CYCLO, 5 µg/mL), a calcineurin inhibitor, to
untreated samples (NoCYCLO). In each case, three fluconazole
concentrations were tested: a maximum concentration (MAX,
256 µg/mL), which was superior to the maximal concentration
usually used to determine the MIC, a null concentration
(NULL, 0 µg/mL) and a breakpoint concentration, known to
allow discrimination of susceptible and resistant strains spectra
by CCI matrix (BPC, 16 µg/mL, Elena De Carolis, personal
communication, De Carolis et al., 2012). This led to six final
conditions: MAX-CYCLO, BPC-CYCLO, NULL-CYCLO, MAX-
NoCYCLO, BPC-NoCYCLO, and NULL-NoCYCLO.

Using optimized protocol, we acquired 1366 spectra with
at least two biological replicates for each strain passing both
QCs. First, 1363 out of 1366 (97,2%) passed QC1, showing the
efficiency of the glass beads sample’s preparation protocol to
acquire high quality spectra. Then only 953 spectra out of 1363
passed QC2 (69,2%) with 422 acquired from fluconazole resistant
strains and 431 from fluconazole susceptible strains.

MALDI-TOF MS Database
Implementation
To assign and quantify peaks for each MALDI-TOF MS spectra,
R scripts were developed based on the MALDIquant package
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created by Gibb and Strimmer (2012). The 953 quality-controlled
spectra were separated by condition (77 for MAX-CYCLO, 82 for
BPC-CYCLO, 83 for NULL-CYCLO, 127 for MAX-NoCYCLO,
92 for BPC-NoCYCLO and 97 for NULL-NoCYCLO) and
processed as described in Section “Machine-Learning Approach.”

We thus obtained a database constituted of six subsets
or six intensity matrices (one by fluconazole and cyclosporin
condition). Each subset contained the filename, the strain and
the fluconazole susceptibility level (resistant or susceptible) of
the analyzed samples, in additions of the intensities of each
peak. This corresponded to 364 peaks for 82 average spectra
for BPC-CYCLO, 336 peaks for 77 average spectra for MAX-
CYCLO, 354 peaks for 84 average spectra for NULL-CYCLO, 369
peaks for 92 average spectra for BPC-NoCYCLO, 404 peaks for
127 average spectra for MAX-NoCYCLO, and 382 peaks for 97
average spectra for NULL-NoCYCLO.

Fluconazole Resistance Detection by
Machine-Learning Approach
In order to determine which machine-learning approach would
be more appropriate to detect fluconazole resistance on MALDI-
TOF MS spectra, we compared three algorithms: RF, logistic
regression and LDA. These algorithms were either tested
onon complete intensity matrices or on 3 reduced ones, each
containing a selection of important peaks. These relevant
peaks were selected by a first RF round (see Sections “Data
Preparation,” “Peaks Selection,” and “Models Testing” Figure 2).
This led to 32 models to be tested on the 6 subsets (MAX-
CYCLO, BPC-CYCLO, NULL-CYCLO, MAX-NoCYCLO, BPC-
NoCYCLO, and NULL-NoCYCLO), leading to 192 pipelines of
analysis from sample preparation to spectra analysis.

Then, the accuracies of all the 192 pipelines tested, were
compared and the 15% pipelines associated to the highest
accuracies were selected (Figure 2C). If pipelines differed only be
the ntree or the iThr parameter applied, only the model associated
to the best accuracy was conserved for the following step. At
this point, 12 pipelines were selected. As illustrated in Figure 3,
most of the selected pipelines correspond to samples treated
with cyclosporin.

Next, the robustness of these 12 pipelines were tested (see
Section “Assessment of the Models’ Robustness”). At this point,
the pipeline 4 (CYCLO-BP, RF, ntree = 2000 and iThr = 0.3)
and 6 (CYCLO-NULL, LDA, iThr = 0) presented similar success
of prediction. Pipeline 4 displayed an accuracy of 77.0 ± 8.7%
and pipeline 6 an accuracy of 76.3 ± 8.3%. We selected the
pipeline 6 as all the peaks of the spectra were considered by
the LDA analysis.

Finally, the pipeline 6 parameters were extracted after training
on all the strains spectra, except the initially excluded validation
set one, in order to compensate the relative few numbers of
spectra available and thus increase the robustness of the model.

Validation
To validate the pipeline 6, we imported the initially
determined validation set to predict the fluconazole
susceptibility of each replicate. Ten out of 12 fluconazole

resistant replicates and 8 out of 9 fluconazole-susceptible
replicates were correctly categorized, leading to an
overall accuracy of 85.71%, a specificity of 88.89% and a
sensitivity of 83.33%.

DISCUSSION

During this project, we first optimized a protein extraction
protocol that allowed the acquisition of MALDI-TOF MS
high quality spectra and implemented two quality controls
to assess the spectra quality. In a second part of the project,
we conceived an R pipeline based on Gibb’s work (Gibb
and Strimmer, 2012) to treat the spectra acquired with
MALDI-TOF MS and to allow their comparison. Finally,
we compared the accuracy of 192 pipelines of analysis,
using machine-learning algorithms, to detect fluconazole
resistance in C. albicans. We ended up with a final pipeline,
which could be completed in less than 4 h. Samples were
treated for 3 h with cyclosporin A in absence of fluconazole
and acquired spectra were analyzed by an LDA algorithm
on all the peaks. This model reached a specificity of
88.89% and a sensitivity of 83.33%, leading to an overall
accuracy of 85.71%.

Surprisingly, the selected model is based on cyclosporin
A treatment alone. On one hand, cyclosporin A treatment
is crucial as reduction of the incubation time led to spectra
which were systematically assigned as resistant by our
model (data not shown). Therefore, a minimal incubation
time, probably affecting proteins synthesis, is required to
discriminate resistant from susceptible isolates. This confirms
that cyclosporin A, that acts through the calcineurin pathway,
induces differential protein expression between susceptible
and resistant strains. Previous studies effectively shown
that calcineurin is involved in tolerance but also resistance
through the Pkc1 and TOR pathways (Cowen et al., 2006;
LaFayette et al., 2010; Robbins et al., 2010). Transcriptional
profiling data performed either on strains in the presence
or absence of calcineurin or carried out on azole-susceptible
or -resistant isolates, highlighted the differential expression
of heat-shock or ribosomal encoding genes (Coste et al.,
2004; Karababa et al., 2004, 2006). These gene products are
the main proteins detected by MALDI-TOF MS analysis
(Croxatto et al., 2012). On the other hand, fluconazole treatment
appeared to be unnecessary. Hoehamer et al. (2009) previously
showed that azole susceptible and resistant isolates could
be differentiated by protein expressions in absence of any
treatment. Those discriminating proteins were identified
by 2D gels electrophoresis and MALDI-TOF MS analysis.
Hoehamer et al. (2009) also showed that the discriminating
proteins were specific to the underlying azole resistance
mechanisms. However, they used a higher range of m/z than
used in routine and in this study (Hoehamer et al., 2009).
Nevertheless, we also attempted to discriminate strains based
on their underlying resistance mechanisms but without success
(data not shown). Indeed, the limited numbers of isolates
available for each mechanism impaired the machine-learning
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FIGURE 1 | Spectra processing pipeline. The parameters used for each step are indicated in italics. (A) Raw spectrum. (B) Raw spectrum’s variance is transformed.
(C) The spectrum is smoothed and the baseline (red line) is estimated. (D) The baseline is removed. (E) The spectrum’s intensities are calibrated. (F) The spectra of
the technical replicates are merged in a single average spectrum. (G) The peaks (red crosses) are detected and warped on the housekeeping peaks, which allow a
stable alignment. A zoom of a single peak shows the changes expected in the alignment of a housekeeping peak after the warping. (H) The peaks are binned by
merging together the peaks closer than 3 m/z. (I) An intensity matrix is generated with the intensities of each peak, for each spectrum.

analysis, which required high number of samples to be
efficiently trained.

In this regard, our approach presents two main pitfalls. The
first is the efficiency of the peaks positioning. This positioning
relies on the warping. The 12 housekeeping peaks used to warp
the spectra are a relatively low number to ensure a stable peaks
positioning. This step is however crucial since it guarantees
a satisfactory recovery of the peaks then used by the LDA
algorithm. To assess the efficiency of this warping step, 6 averaged
spectra acquired independently of the ones used to build the

pipeline were subsequently aligned with the database spectra and
processed. On all of them, the peaks positioning was efficient
and 5 out of 6 were efficiently classified despite not having
been trimmed by QC2 (data not shown). Indeed, by allowing
a peak position’s tolerance of 3 m/z, we overcame the small
spectra variations.

Second, we acquired spectra from a relatively small number
of strains, which is not optimal for a machine-learning training
step. To get around this issue, the robustness step was introduced
to further validate the machine-learning models. Ideally, the
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FIGURE 2 | Fluconazole resistance detection by machine-learning approach. (A) Peaks’ ranking by importance to discriminate resistant and susceptible strains.
A model based on the Random Forest (RF) classifier was trained on the training set and tested on the testing set to separate the fluconazole-resistant strains from
the fluconazole-susceptible ones depending on the peaks’ intensities. Three values of number of trees to grow (ntree) were tested. The peaks were ranked by their
associated Mean Decrease in Gini index (I) and four Decrease in Gini index thresholds (iThr = 0, 0.3, 0.4, 0.5) were arbitrarily set to extract a list of discriminating
peaks (RF Peaks). (B) Models testing. The intensity matrix was reduced to the RF peaks and RF, logistic regression and LDA models were trained and tested to
separate the fluconazole-resistant strains from the fluconazole-susceptible ones depending on the peaks’ intensities. In total, 32 models were tested on each of the
6 subsets, for a total of 192 pipelines of analysis from sample preparation to resistance prediction, each associated to a specific accuracy. (C) Selection of the most
accurate pipelines. The 15% pipelines corresponding to the highest accuracies were selected. (D) Verification of the pipelines’ robustness. The training and testing
set associated to each of the 15% best accurate pipelines were merged and randomly split (ratio 2:1) in new training and testing sets. The model was trained on the
new training set and the accuracy of the susceptibility level prediction on the testing set was stored. This process was iteratively repeated 100 times to generated as
many different training/testing set combinations. The pipeline associated with a high median of accuracies and a low variance of accuracies was selected for
validation.
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FIGURE 3 | Summary of the pipelines selected with the machine-learning approach. (A) 15% pipelines with the highest accuracy. Each line of the table described
the sample’s preparation conditions (Cyclo and FLC), the algorithm (Test), the Mean Decrease in Gini index threshold (iThr) and number of trees (ntree) parameters
used in the pipeline and the accuracy associated to it. (B) Pipelines’ robustness. Graph of the accuracies obtained by each 15% best pipelines during the 100
rounds they were submitted to, and summary of the associated median and variances of accuracies. The red box represents accuracy below 50%, the yellow box,
the accuracies between 50 and 70% and the green box, the accuracies above 70%. (C) Description of final selected pipeline’s parameter and its associated
accuracy, specificity, and sensitivity.

databases should be enriched to further train the selected
LDA model. This is indeed the main principle of machine-
learning approaches (Jordan and Mitchell, 2015). One step
further, this increase of database size with well-characterize

strains would allow to train models to discriminate between
the different possible azole resistance mechanisms, since, as
mentioned before, spectra changed upon their occurrence
(Hoehamer et al., 2009).
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Altogether, this study acts as a proof-of-principle in the
mycology field. This machine-learning approach could be applied
to predict resistance from MALDI-TOF MS data on other fungi-
antifungals associations. This offers a new qualitative diagnostic
tool with same-day results delay. This allows a better patient care
and a reduced amount of antifungal MIC determination, focusing
only on the few predicted resistant strains.
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