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Abstract: A new Bornhuetter–Ferguson method is suggested herein. This is a variant of the traditional
chain ladder method. The actuary can adjust the relative ultimates using externally estimated
relative ultimates. These correspond to linear constraints on the Poisson likelihood underpinning
the chain ladder method. Adjusted cash flow estimates were obtained as constrained maximum
likelihood estimates. The statistical derivation of the new method is provided in the generalised linear
model framework. A related approach in the literature, combining unconstrained and constrained
maximum likelihood estimates, is presented in the same framework and compared theoretically.
A data illustration is described using a motor portfolio from a Greek insurer.

Keywords: chain ladder; Bornhuetter–Ferguson; maximum likelihood; exponential families;
canonical parameters; prior knowledge

1. Introduction

While high dimensional data and its validation is important for many machine learning
experiments, it is also true that many machine learning applications combine mathematical statistical
methods with prior knowledge. The difficulty is to include this prior knowledge to upgrade the
statistical analysis without violating the fundamental principles of mathematical statistics. These kinds
of applications are omnipresent in insurance reserving, which often cite the original paper of
Bornhuetter and Ferguson from 1972. This combination of prior knowledge and mathematical statistics
is the purpose of this paper, where we are able to make it while sticking to the classical maximum
likelihood technique of mathematical statistics.

The chain ladder method is the basic actuarial tool for reserving in general insurance. This method
is based on the paid run-off triangle and provides estimates for the ultimate reserve along with
development factors that are used for determining cash flow. In practice, the actuary usually adjusts
the ultimates using additionally available information. With the Bornhuetter et al. (1972) method
the chain ladder ultimates are adjusted using prior knowledge while the adjusted cash flow is
proportional to the original chain ladder cash flow. Mack (2000) gave a credibility interpretation
of the Bornhuetter–Ferguson method.

The adjustment of the ultimates can be done in two ways. Either by correcting the levels of the
ultimates or the relative levels of the ultimates. By this, we distinguish between the situation where the
actuary has an estimate for the ultimate for a given policy year and the situation where the actuary is
more comfortable with the forecast that the ultimate for a given policy year is 10% higher, say, than in
the previous year. Such an estimate could, for instance, come from chain ladder analysis of incurred
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data. Indeed, we provide an empirical illustration where this is the case. The levels approach is most
common in the literature; see for instance (Mack 2000, 2006), Taylor (2000), Verrall (2004), Wüthrich
and Merz (2008) and Heberle and Thomas (2016). The relative levels approach is more recent; see
(Martínez-Miranda et al. 2013, 2015).

There are potentially two concerns with the traditional Bornhuetter–Ferguson correction. It may
move the reserves too much, and the cash flow distribution is not adjusted in light of the external
information. Verrall (2004) addressed this in a Bayesian setup and Mack (2006) proposed an alternative
approach where new weights are computed by combining actual payments and the externally
estimated reserves.

Our proposal is related to that of Mack (2006), but with weights derived from a likelihood function.
Adjusting relative ultimates as opposed to level ultimates is natural when working with the likelihood
function in the same way as traditional chain ladder development factors are concerned with relative
effects. A feature of our approach is, therefore, that external information is linked directly to the
parameters of the underlying Poisson model and it is possible to express the Bornhuetter–Ferguson
adjustment in terms of adjustments to the development factors. Another feature of this approach is
that we can evaluate how much the adjustment moves the reserves and establish inequalities relating
our approach and the traditional Bornhuetter–Ferguson adjustments.

A fundamental interpretation of the Bornhuetter–Ferguson method arises when combining chain
ladder with credibility formulas. Credibility formulas have been investigated in reserving by, for
instance, de Vylder (1982), Mack (2000). and more recently, Bühlmann and Moriconi (2015). We have
been particularly influenced by Mack (2000), who gives a credibility formula showing that adjusting
the ultimates with prior knowledge yields a partial adjustment of the reserves. He then continues to
show that the iterations of the credibility formula leads to the Benktander (1976) approach. These ideas
are taken a step further by Gigante et al. (2013), whereas Taylor (2000) and Wüthrich and Merz (2008)
give general overviews of the Bornhuetter–Ferguson method. Our first contribution is to show that the
credibility formula also applies when adjusting the relative levels of the ultimates.

It is useful to recall that the chain ladder method has the nice interpretation as maximum likelihood
in a Poisson model. Kremer (1985) (see also Mack 1991) showed that the chain ladder forecasts are
maximum likelihood. These forecasts are the product of observed accident year row sums and functions
of the development factors; see (4). Renshaw and Verrall (1998) showed that the development factors
themselves are maximum likelihood estimators in a conditional Poisson model conditioning on row
sums, while Kuang et al. (2009) showed that they are also maximum likelihod in the unconditional
Poisson model. The maximum likelihood result means that it is possible to compute the chain ladder
estimates using generalised linear model methods. In practice the Poisson assumption is not realistic as
the paid data typically have considerable over-dispersion; see for instance England and Verrall (2002).
Nonetheless, the chain ladder method provides good reserve estimates that are, at least, anchored in a
quasi-likelihood.

The main idea of our approach is to impose the externally estimated relative ultimates on the
Poisson likelihood. Initially, it is useful to work with the standard parametrisation of the generalised
linear model as opposed to the development factors. We can then formulate the relative ultimates’
constraint as a linear constraint on the parameters and derive maximum likelihood estimators.
Subsequently, we translate these estimators into adjusted development factors.

The constrained maximum likelihood approach satisfies a monotonicity result. If, for instance,
all the relative ultimates are increased relative to the chain ladder ultimates, then it follows
that the reserves are increased. However, these new reserves increase less than the traditional
Bornhuetter–Ferguson reserves that would arise by combining the adjusted relative ultimates with the
chain ladder development factors.

In this paper we focus on classical mathematical statistics through the maximum likelihood
method. Recent work in reserving has emerged in the literature using modern machine learning
techniques. Kuo (2019) proposes deep neural networks to joint modelling paid data and total
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claims outstanding, claiming that no manual input is required during model updates or forecasting.
Additionally, using neural networks Gabrielli and Wüthrich (2018) develop a “stochastic simulation
machine” that generates individual claims histories of non-life insurance claims. Another individual
claims approach but based on the classification and regression trees is suggested by De Felice and
Moriconi (2019). Chukhrova and Johannssen (2017) describe a state space model for cumulative
payments (that extend the chain ladder method) in combination with the Kalman filter.

The rest of the paper is organised as follows. In Section 2 we first describe the chain ladder
forecasts in terms of the development factors and certain weights. Using this formulation we describe
two Bornhuetter–Ferguson approaches in the literature: the interpretation offered by Mack (2000) that
uses levels of ultimates, and the approach of Martínez-Miranda et al. (2013) using relative ultimates.
From these two approaches the future cash flow is not influenced by the external information. We then
present our proposed Bornhuetter–Ferguson reserves which are determined by a Poisson likelihood
constrained by the external information. The formal derivation of our proposal is provided in Section 3
in the generalised, lineal model framework. Our proposal is derived as the solution of a constrained
maximum likelihood approach, where the constraint is given by the imposed external information.
Later, in Section 3.5 we show that the approach by Martínez-Miranda et al. (2013) is a mixed approach
which combines unconstrained and constrained maximum likelihood estimators. Reserve forecasts and
cash flow are described from our proposal, the mixed approach and the traditional chain ladder method.
Only our proposed cash flow is affect by the external information, which is explicitly shown in terms
of some pseudo development factors introduced in Section 3.6. In Section 4 we illustrate our proposal
using a motor portfolio from a Greek insurer. These data include both paid and incurred triangles.
In addition, an external estimate of the reserve is available so that this example nicely illustrates
the practical issues that lead to the use of the Bornhuetter–Ferguson method. Conclusions and final
remarks are provided in Section 5.

2. The Bornhuetter–Ferguson Problem

We present two standard Bornhuetter–Ferguson approaches. For now we will not formulate
a statistical model, but just use the standard chain ladder formulas.

2.1. Data Structure

Consider a standard run-off triangle of paid amounts. The dimension is denoted k and we use the
incremental form of the triangle. Each entry is denoted Yij so that i is the accident year index and j
is the development year index. The indices vary in the upper triangle with indices 1 ≤ i, j ≤ k and
i + j− 1 ≤ k. This is the area I in Figure 1. The objective is to forecast values of Yij in the lower triangle
with indices 1 ≤ i, j ≤ k and k + 1 ≤ i + j− 1 ≤ 2k− 1. This is the area J in Figure 1.

In the analysis we will be interested in row sums, column sums and rectangular sums

Ri =
k+1−i

∑
j=1

Yij, Cj =
k+1−j

∑
i=1

Yij, Sr =
r

∑
`=1

k−r

∑
j=1

Y`j, (1)

for 1 ≤ i, j ≤ k and 1 ≤ r ≤ k − 1. In practice the payments Yij may be negative. This is at odds
with the Poisson model interpretation of the chain ladder method which requires the payments to
be non-negative. With the Poisson formulation we need the further requirement that the rectangular
sums, the row sums and the column sums are positive Kuang et al. (2009) (Theorem 2); that is,

S1, . . . , Sk−1, R2, . . . , Rk, C2, . . . , Ck > 0. (2)

We will assume these constraints throughout the paper, while noting that constraints in (2) may be
satisfied even if some payments Yij are negative.
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Figure 1. Illustration of data layout.

2.2. Chain Ladder Method

The chain ladder method is computed from row sums or cumulative payments Ri as in (1) and
development factors

Fj =
∑

k+1−j
i=1 ∑

j
`=1 Yi`

∑
k+1−j
i=1 ∑

j−1
`=1 Yi`

for j = 2, . . . , k. (3)

The development factors are larger than one under the constraint (2) to Ri, Cj, Sr; see Theorem 2
in Kuang et al. (2009). The chain ladder forecasts of the amounts in the lower triangle are then

Ỹij = Ri(Fj − 1)
j−1

∏
`=k+2−i

F`. (4)

From this we compute the reserve for accident year i, for i = 2, . . . , k, as

Vi =
k

∑
j=k+2−i

Ỹij = Ri(Fprod
i − 1) where Fprod

i =
k

∏
`=k+2−i

F`, (5)

and the predicted ultimate payment as; see also Section 2.1.3 of England and Verrall (2002),

Ui = Ri + Vi = RiF
prod
i for i = 2, . . . , k. (6)

If we use the convention that empty products are unity, this matches with U1 = R1 and V1 = 0, so
that the in-sample prediction of the sum of the payments for accident year one equals the observation.
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It will be convenient to express the above formulas in terms of certain weights.
Thus, define weights, for i = 2, . . . , k, j = k + 2− i, . . . , k,

Wij = (Fj − 1)
∏

j−1
`=k+2−i F`

Fprod
i

=
Fj − 1

∏k
`=j F`

, (7)

Wi =
Fprod

i − 1

Fprod
i

=
k

∑
j=k+2−i

Wij. (8)

These are numbers between zero and unity when the development factors are larger than unity.
The weights Wi approach unity when the product of the development factors approaches infinity.
We can then write the forecasts for each cell and each row in the lower triangle as

Ỹij = UiWij, Vi = UiWi, i = 2, . . . , k. (9)

These formulas show how the reserve Vi can be found as a fraction of the predicted ultimate Ui, while
Yij indicates how the cash flow is distributed.

The chain ladder is maximum likelihood in a Poisson model that will be presented in Section 3.
A feature of the likelihood function (25) is that it is symmetrical in the indices for accident year i
and development year j. This observation leads to a new expression for the forecast of the reserve,
which will be proved in the Appendix A. Traditionally, we forecast by computing row sums Ri of the
data and multiplying by the column wise forward factors Fj as in (4). Alternatively, we can compute
columns sums Cj as in (1) and row-wise forward factors

Gi =
∑k+1−i

j=1 ∑i
`=1 Y`j

∑k+1−i
j=1 ∑i−1

`=1 Y`j
for i = 2, . . . , k (10)

and combine these to get the forecasts for the lower triangle, proved in the Appendix A,

Ỹij = Ri(Fj − 1)
j−1

∏
`=k+2−i

F` = Cj(Gi − 1)
i−1

∏
`=k+2−j

G`. (11)

2.3. Bornhuetter–Ferguson Using Levels of Ultimates

This section presents the Bornhuetter–Ferguson interpretation offered by Mack (2000); see also
England and Verrall (2002) and Alai et al. (2009).

England and Verrall present the Bornhuetter–Ferguson idea as follows. Suppose we replace the
chain ladder ultimate Ui by an externally estimated reserve Ulevel

i in the Formula (9). Then we get the
level-based Bornhuetter–Ferguson reserve

VBF,level
i = Ulevel

i Wi for i = 2, . . . , k.. (12)

Thus, the Bornhuetter–Ferguson reserve is the proportion Wi of the externally estimated level of
the ultimate. In a similar fashion the Bornhuetter–Ferguson cash flow is given by

ỸBF,level
ij = Ulevel

i Wij for i = 2, . . . , k, j = k + 2− i, . . . , k.. (13)

The predicted ultimate payout turns out to be a convex combination of the chain ladder reserve
Ui and the externally generated number Ulevel

i . To see this, use the Formulas (6) and (8) to write the

cumulated payments as Ri = Ui/Fprod
i = Ui(1−Wi). It then follows that

UBF,level
i = Ri + VBF,level

i = Ui(1−Wi) + Ulevel
i Wi. (14)
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Mack (2000) refers to this a credibility formula and traces it back to Benktander (1976). He points
out that it can be iterated by replacing Ulevel

i by UBF,level
i . Another consequence is the following

ordering, assuming 0 < Wi < 1,

Ui < Ulevel
i ⇒ Ui < UBF,level

i < Ulevel
i . (15)

2.4. Bornhuetter–Ferguson Using Relative Ultimates

This section presents the Bornhuetter–Ferguson approach of Martínez-Miranda et al. (2013).
The idea is now to replace the relative ultimates rather than levels of ultimates. We then rewrite (9) as

Vi = R1
Ui
U1

Wi for i = 2, . . . , k, (16)

recalling that U1 = R1. We now replace Ui/U1 by some external measure Urel
i /Urel

1 , which only
provides information about the relative ultimates, such as the figure for year i being 10% higher than
that for year i− 1. This results in the relative level-based Bornhuetter–Ferguson reserve

VBF,rel
i = R1

Urel
i

Urel
1

Wi for i = 2, . . . , k. (17)

The corresponding cash flow is then

ỸBF,rel
ij = R1

Urel
i

Urel
1

Wij for i = 2, . . . , k, j = k + 2− i, . . . , k. (18)

The relative Bornhuetter–Ferguson reserve also satisfies an actuarial credibility formula. To see
this define U1 = R1, write Ri = R1(Ri/U1) and combine it with Ri = Ui(1−Wi) as before, to get

UBF,rel
i = Ri + VBF,rel

i = R1

{
Ui
U1

(1−Wi) +
Urel

i

Urel
1

Wi

}
. (19)

Once again, we have the ordering, for i = 2, . . . k and assuming 0 < Wi < 1,

Ui
U1

<
Urel

i

Urel
1

⇒ Ui < UBF,rel
i . (20)

Martínez-Miranda et al. (2013) suggested that the relative external numbers could be computed
from an incurred triangle. They extended this further to allow for reporting delays using
a double chain ladder method. However, in the present paper we focus on the consequences of
a Bornhuetter–Ferguson correction rather than how the external numbers are generated.

2.5. Proposed Bornhuetter–Ferguson Reserves

With the above approaches the future cash flow is determined by the chain ladder method through
the weights Wij and not influenced by the external information. As argued by Verrall (2004) and Mack
(2006) it may be desirable that the cash flow is also influenced by the external information. Our
proposal allows the cash flow to be determined by a Poisson likelihood, constrained by the external
information. Before we give the derivation it is useful to give a brief overview of the results.

The proposed Bornhuetter–Ferguson approach evolves around the chain ladder reserving Formula
(11) involving column sums Cj and row-wise forward factors Gi. Suppose we have externally given
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relative ultimates Urel
i /Urel

1 for i = 2, . . . , k, with the convention that Urel
i /Urel

1 = 1 for i = 1. We then
construct Bornhuetter–Ferguson row-wise forward factors

Γrel
i =

∑i
`=1(U

rel
` /Urel

1 )

∑i−1
`=1(U

rel
` /Urel

1 )
for i = 2, . . . , k. (21)

In Section 3.3 we show that Γrel
i naturally comes from a constrained likelihood. For now,

the intuition is that the traditional development factors Fj, and Gi, are relative effects computed
as ratios of sums over data rectangles of different sizes. This compensates for the fact that the data are
only available in triangular form, so that column and row lengths are unbalanced. Once we impose
the relative ultimates, which are relative row effects, then the unbalanced row lengths are essentially
eliminated and we can capture relative row effects in a simpler fashion, as shown in (21).

The Bornhuetter–Ferguson forecasts of individual payments and of reserves are, then,

Ỹij = Cj(Γrel
i − 1)

i−1

∏
`=k+2−j

Γrel
` , Vrel

i =
k

∑
j=k+2−i

Ỹij. (22)

3. Generalised Linear Model Framework

We present a Generalised Linear Model framework for Bornhuetter–Ferguson analysis. The usual
chain ladder estimators are maximum likelihood in a Poisson model; see Kremer (1985). In practice,
reserving data have considerable over-dispersion; see England and Verrall (2002), so that Poisson
likelihood becomes a quasi likelihood. In the present paper this distinction is not so important as
we will only be concerned with point forecasts. Now, if we maximise the likelihood while imposing
constraints from external relative levels of ultimates, we get a closed form cash flow forecast that
adapts to both data and the imposed constraints.

Next we describe the unconstrained and constrained Poisson likelihood. The first one provides
the chain ladder forecasts without external information in Section 3.2, and the second one provides our
proposed forecasts in Section 3.3. The approach of Martínez-Miranda et al. (2013) is shown in Section
3.5 as a mixed approach that combines constrained and unconstrained maximum likelihood estimates.
Our proposed forecasts have an equivalent expression involving new column-wise development
factors provided in Section 3.6. These development factors will be different for different accident years.
For this reason we refer to them as pseudo development factors. This kind of formulation is also
possible for the mixed approach, but with the standard chain ladder development factors, as we show
in Section 3.7. A monotonicity result provided in Section 3.8 gives some insight about the effect that
the imposed external information has on our proposed forecasts and those from the mixed approach.

3.1. Statistical Model

We assume that the incremental observations Yij are independent Poissons with log expectation
EYij = exp(µij), where the predictor is given by

µij = αi + β j + δ. (23)

Here αi is the level of the accident year effect, β j is the level of the development year effect and
δ is an overall level. The parametrisation presented in (23) does not identify the distribution, so we
switch to the invariant parametrisation of Kuang et al. (2009); that is,

µij = µ11 +
i

∑
`=2

∆α` +
j

∑
`=2

∆β`, (24)
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with the convention that empty sums are zero. Here ∆αi = αi − αi−1 is the relative accident year effect
and ∆β j = β j − β j−1 is the relative development year effect, while the overall level is determined by
µ11. The Poisson log likelihood function is

`(µ11, ∆αi, ∆β j) = ∑
1≤i,j,i+j−1≤k

{µijYij − exp(µij)− log(Yij!)}. (25)

This is a regular exponential family with canonical parameters µ11, ∆αi, ∆β j.

3.2. The Chain Ladder

The chain ladder arises by maximising the unconstrained likelihood. Theorem 3 in Kuang et al.
(2009) shows that the maximum likelihood estimators are

∆α̂i = ∆ log Ri + log Fk+2−i for i = 2, . . . k, (26)

∆β̂ j = ∆ log Cj + log Gk+2−j for j = 2, . . . k, (27)

µ̂11 = log R1 −
k

∑
j=2

log Fj. (28)

When inserting these estimators into Equation (23) we get estimators µ̂ij. In turn, the relative
ultimates are estimated by

Ui
U1

=
∑k

j=1 exp(µ̂ij)

∑k
j=1 exp(µ̂1j)

= exp(
i

∑
`=2

∆α̂`) for i = 2, . . . k, (29)

which are the relative ultimates entering in Equation (16). It is convenient to define U1 = R1, as this
says that the ultimate for first accident year equals the claims observed. With this definition, we find
that R1 = U1 is the maximum likelihood estimator for the expected ultimates ER1 for the first accident
year. In turn, the maximum likelihood estimators for the ultimate levels satisfy

Ui = U1
Ui
U1

= U1 exp(
i

∑
`=2

∆α̂`) for i = 2, . . . k. (30)

Now, insert the expression for ∆α̂i in (26) to get

Ui = U1

i

∏
`=2

(
R`

R`−1
Fk+2−`) = U1

Ri
R1

i

∏
`=2

Fk+2−` = Ri

k

∏
`=k+2−i

F`, (31)

which are the ultimates in (6). Thus, in both cases the ultimate formulas are closely linked to the
estimated relative accident year effects ∆α̂i.

An additional result from Theorem 3 in Kuang et al. (2009) is that the forward factors Fj and Gi
can be viewed as maximum likelihood estimators for certain combinations of the canonical parameters
∆β j and ∆αi, respectively. These combinations are, for i, j = 2, . . . , k,

Φj =
∑

j
`=1 exp(∑`

h=2 ∆βh)

∑
j−1
`=1 exp(∑`

h=2 ∆βh)
, Γi =

∑i
`=1 exp(∑`

h=2 ∆αh)

∑i−1
`=1 exp(∑`

h=2 ∆αh)
, (32)

with the convention that empty sums are zero. The development factors are the corresponding
maximum likelihood estimators; that is, Fj = Φ̂j and Gi = Γ̂i.
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3.3. Imposing External Information on the Relative Ultimates

Suppose some external values are available for the relative ultimates, Urel
i /Urel

1 .
Equivalently, we have external values for the relative accident year effects ∆α†

i ; that is,

∆α†
i = log(Urel

i /Urel
i−1). (33)

We could impose these as a constraint on the likelihood (25). The constraint is linear and the
likelihood remains that of a regular exponential family.

The constrained maximum likelihood estimators have a simple analytical form. In line with the
parameters Γi defined in (32), define

Γ†
i =

∑i
`=1 exp(∑`

h=2 ∆α†
h)

∑i−1
`=1 exp(∑`

h=2 ∆α†
h)

. (34)

We then have the following result, which is proven in the Appendix A.

Theorem 1. Consider the Poisson likelihood (25) with known ∆αi = ∆α†
i for i = 2, . . . , k and define Γ†

i as
(32), computed using ∆α†

i . The constrained maximum likelihood estimator is unique if and only if Cj > 0 for all
j = 1, . . . k and given by

∆β̂†
j = ∆log Cj + log Γ†

k+2−j for j = 2, . . . , k, (35)

µ̂†
11 = log C1 − log{1 +

k

∑
i=2

exp(
i

∑
`=2

∆α†
` )}= log C1 −

k

∑
`=2

log Γ†
` . (36)

As a consequence, the out-of-sample forecast from the constrained chain ladder has a simple
explicit form, as shown in the following result, which is proven in the Appendix A. The result resembles
the forecast in the unrestricted chain ladder computed from column sums and row-wise development
factors as described in (11).

Theorem 2. Consider the setup in Theorem 1. Point forecasts for the lower triangle are given by

Ỹ†
ij = Cj(Γ†

i − 1)
i−1

∏
`=k+2−j

Γ†
` . (37)

We can now compute a Bornhuetter–Ferguson reserve based on Theorem 2. For each accident
year we get

V†
i =

k

∑
j=k+2−i

Ỹ†
ij . (38)

In the case where we impose external relative ultimates, the above expressions reduce to those
presented previously in (22). In the above expression the notation reflects that the external information
is concerned with the relative accident year parameters ∆α†

i . Now, suppose the relative ultimates
Urel

i /Urel
1 are taken as given. We then apply the Formula (30) to get cumulated relative accident

parameters exp(∑i
`=2 ∆α†

` ) = Urel
i /Urel

1 . Inserting this in the expression (34) for Γ†
i in (34) gives

Γ†
i =

∑i
`=1 exp(∑`

h=2 ∆α†
h)

∑i−1
`=1 exp(∑`

h=2 ∆α†
h)

=
∑i
`=1 Urel

` /Urel
1

∑i−1
`=1 Urel

` /Urel
1

= Γrel
i , (39)

which is the expression for Γrel
i in (21). Since Γ†

i = Γrel
i we see that the point forecast Ỹ†

ij in (37) equals

the point forecast Ỹij in (22). In turn the reserve V†
i in (38) equals the reserve Vrel

i in (22).
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3.4. Implementation in GLM Software

The constrained model can also be estimated using ready-made algorithms for generalised linear
models. The analysis presented above shows that the constrained model is a regular exponential
family so the algorithms should perform well.

For the implementation we organise the triangle Y as a vector Y, say, of dimension k(k + 1)/2.
A design matrix X can be constructed from the formula (24). It has dimension {k(k + 1)/2} × (2k− 1)
and the row corresponding to entry i, j is given by

X′ij = {1, 1(2≤i), . . . , 1(k≤i), 1(2≤j), . . . , 1(k≤j)}, (40)

where the indicator function 1(m≤i) takes the value unity if m ≤ i and zero otherwise. The unrestricted
model is then estimated through a generalised linear model regression of Y on X using the Poisson
distribution with a log-link function.

In the constrained model the parameters θknown = (∆α†
2, . . . , ∆α†

k)
′ are known. Deleting the

corresponding columns from X gives a design matrix Xreduced with k columns. The deleted columns
are collected as Xknown, say. The model is then estimated as a generalised linear model regression of Y
on Xreduced using the Poisson distribution with a log-link function and offset given by Xknownθknown.

3.5. A Mixed Approach

By now we have two maximum likelihood approaches: the classical chain ladder and the restricted
maximum likelihood approach derived above. These give different point forecasts for the lower
triangle. A third type of point forecast arises from the Bornhuetter–Ferguson double chain ladder
(BDCL) method in Martínez-Miranda et al. (2013). In the following it is shown how the three are
connected.

Let us first summarise the results we obtained so far in terms of the log likelihood. In the classical
chain ladder approach, we maximise the unrestricted likelihood in (25), which leads to the unrestricted
estimator

ξ̂ = max
ξ

`(ξ) = (µ̂11, ∆α̂i, ∆β̂ j)
′. (41)

The restricted likelihood from Section 3.3 with restriction ∆αi = ∆α†
i has a restricted likelihood

maximum likelihood estimator given by

ξ̂† = max
ξ :∆α=∆α†

`(ξ) = (µ̂†
11, ∆α†

i , ∆β̂†
j )
′. (42)

Notice, that if ∆α†
i = ∆α̂i, then µ̂†

11 = µ̂11 and ∆β̂†
j = ∆β̂ j.

A third estimator is achieved by mixing the above estimators. This combines the unrestricted
estimators for µ11 and β j with the given ∆α†

i , such that

ξ̂‡ = (µ̂11, ∆α†
i , ∆β̂ j)

′. (43)

In the following, parameters resulting from this mixed approach will be marked with the index
“‡,” just as parameters resulting from the constrained method will be marked with “†.” The forecast
for future payments computed from ξ̂‡ is

Ỹ‡
ij = exp(µ̂11 +

i

∑
h=2

∆α†
h +

j

∑
h=2

∆β̂h). (44)
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In the Appendix A we prove the identities

Ỹ‡
ij = Ỹij

exp(∑i
h=2 ∆α†

h)

exp(∑i
h=2 ∆α̂h)

= Ỹ†
ij

∑
k+1−j
`=2 exp(∑`

h=2 ∆α†
h)

∑
k+1−j
`=2 exp(∑`

h=2 ∆α̂h)
. (45)

In the case when the known accident parameters are derived by applying chain ladder on
the incurred data, such that ∆α†

i = ∆α̂inc
i , this method gives exactly the same results as the

Bornhuetter–Ferguson double chain ladder (BDCL) method in Martínez-Miranda et al. (2013).
The log likelihood function evaluated in the three points satisfies

`(ξ̂) ≥ `(ξ̂†) ≥ `(ξ̂‡).

The first inequality holds since ξ̂ is maximum likelihood, while ξ̂† is restricted maximum
likelihood. The second inequality holds since ξ̂‡ satisfies the restriction, but it is not
maximum likelihood.

3.6. Pseudo Development Factors

It is common practice to think about the classical chain ladder method in terms of row sums Ri
and column wise development factors Fj given in (1) and (3). For the restricted maximum likelihood
approach there are no natural development factors in a maximum likelihood sense. Since development
factors are important in daily actuarial work it is of interest to develop pseudo-development factors
that keep the chain ladder pattern.

In the classical chain ladder, the forecasts for the lower triangle are computed using the
Formula (11) by forwarding the row sums Ri using the factors Fj. However, in this classical setting
the predicted value for the row sum equals the row sum. In the likelihood analysis, this stems from a
likelihood equation of the type Ri = E(Ri); see Equation (20) in Kuang et al. (2009). Thus, we can also
interpret the chain ladder forecast as forwarding the predicted row sums.

Once we have imposed external information on the relative ultimates, then the forecast changes
and we break the link to the original row sums and development factors. We can, however, construct
pseudo forecasts of the row sums and pseudo forward factors that satisfy a relationship like (11) but
with the new forecasts.

Under the constraint that ∆α = ∆α† we compute estimates µ̂†
11 and ∆β̂†

j using (35) and (36) in
Theorem 1. From these we compute pseudo forward factors from (32); that is,

F†
j =

∑
j
`=1 exp(∑`

h=2 ∆β̂†
h)

∑
j−1
`=1 exp(∑`

h=2 ∆β̂†
h)

, (46)

and a pseudo first row sum from (28) as

log R†
1 = µ̂†

11 +
k

∑
j=2

log F†
j , (47)

and then the remaining pseudo row sums from (26) as

∆ log R†
i = ∆α†

i − log F†
k+2−i. (48)

We show in the Appendix A that the forecast from (37) can be computed as

Ỹ†
ij = R†

i (F†
j − 1)

j−1

∏
`=k+2−i

F†
` . (49)
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The above formulas for predicted reserve and the cash flow can also be written in the credibility
format we saw in (17) and (18). To see this introduce the weights

W†
ij = (F†

j − 1)
∏

j−1
`=k+2−i F†

`

Fprod†
i

, W†
i =

Fprod†
i − 1

Fprod†
i

,

where, as before, Fprod†
i = ∏k

`=k+2−i F†
` . Introducing the ultimates and relative ultimates

U†
i = R†

i Fprod†
i ,

U†
i

U†
i−1

=
R†

i
R†

i−1
F†

k+2−i = exp(∆α†
i )

we can then write the predicted reserve and cash flow as

Ỹ†
ij = U†

i W†
ij, V†

i = U†
i W†

i .

3.7. Chain Ladder Forecasts with the Mixed Approach

In the mixed approach we follow a similar procedure to satisfy a relationship like (11) in order to
obtain the new forecasts. The difference to the constrained method is that we can keep the forward
factors from the unconstrained chain ladder model, Fj. However, we need to construct pseudo row

sums R‡
i as follows.

We fix the pseudo first row sum as

log R‡
1 = log R1, (50)

and then compute the remaining pseudo row sums from (26) as

∆ log R‡
i = ∆α†

i − log Fk+2−i. (51)

We show in the Appendix A that the forecast from (44) can be computed as

Ỹ‡
ij = R‡

i (Fj − 1)
j−1

∏
`=k+2−i

F`. (52)

The forecast can be written in terms of weights, as before. Since the cash flow is derived from the
chain ladder development factors, the weights are as defined in (7) and (8). In particular we have the
ultimates and relative ultimates

U‡
i = R‡

i Fprod
i ,

U‡
i

U‡
i−1

=
R‡

i

R‡
i−1

Fk+2−i = exp(∆α†
i ).

We can then write the forecast of future payments and the cash flow as

Ỹ‡
ij = U‡

i Wij, V‡
i = U‡

i Wi. (53)

3.8. Monotonicity

The idea of the Bornhuetter–Ferguson approach is to first compute the chain ladder, and then
adjust it by imposing values for the ultimates. This is a quite complicated approach and it is not
immediately clear what the effect is. However, when all adjustments are in the same direction it is
actually possible to show a monotonicity result for the effect of the Bornhuetter–Ferguson adjustment.

Let us consider the case when the known accident parameters, ∆α†
i , are bigger than the accident

parameters we obtain from the chain ladder method on paid data, ∆α̂i. The following theorem, proved
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in the Appendix A, shows monotonicity results regarding the remaining parameters given in Theorem
1, and the resulting forecasts we obtain from the constrained approach in Section 3.3, Ỹ†

ij , and the mixed

approach in Section 3.5, Ỹ‡
ij .

Theorem 3. Suppose ∆α†
i > ∆α̂i for all 2 ≤ i ≤ k. Then,

(a) Γ†
i > Gi for all 2 ≤ i ≤ k;

(b) ∆β̂†
j > ∆β̂ j for all 2 ≤ j ≤ k;

(c) µ̂†
11 < µ̂11;

(d) Ỹ‡
ij > Ỹ†

ij > Ỹij for all i, j so that k < i + j− 1 < 2k;

(e) F†
j > Fj for all 2 ≤ j ≤ k;

( f ) R‡
i > R†

i for all 2 ≤ i ≤ k;

(g) R‡
i > Ri for all 2 ≤ i ≤ k.

To interpret this, suppose all imposed relative ultimates Urel
i /Urel

i−1 = exp(∆α†
i ) are larger than the

chain ladder forecasts of the relative ultimates Ui/Ui−1 = exp(∆α̂i). Suppose also that the imposed
relative ultimates are taken from incurred estimates as in the Bornhuetter–Ferguson double chain
ladder (BDCL) method in Martínez-Miranda et al. (2013). We then get that the point forecasts for the
lower triangle are ordered so that the Bornhuetter–Ferguson double chain ladder forecast Ỹ‡

ij is larger

than the Bornhuetter–Ferguson-restricted maximum likelihood forecast Ỹ†
ij , which is larger than the

chain ladder forecast Ỹij. This will be the situation in the empirical illustration in Section 4.

4. Empirical Illustration

We illustrate the new methods by an example where the external knowledge comes from incurred
payments. In practice, the external knowledge may also come from incurred counts, from other
business lines or from other sources.

We used data from a Greek non-life insurer for motor third party liability, aggregated over bodily
injury and property damage. The data are presented as cumulative run-off triangles for accident years
from 2005 to 2013. Table 1 shows payments, while Table 2 shows incurred amounts.

Table 1. Payments in Euros.

2005 34,492,471 47,124,007 55,244,404 59,817,460 62,550,940 66,042,036 69,311,560 70,992,659 72,265,079
2006 39,467,733 54,003,286 61,349,336 69,986,825 76,412,887 81,768,759 86,684,598 90,726,054
2007 38,928,855 57,087,550 65,905,902 77,128,507 84,158,380 92,436,441 97,838,371
2008 34,202,332 50,932,726 60,560,484 68,566,905 76,409,739 82,082,804
2009 35,657,409 52,397,264 59,849,582 66,698,806 72,724,524
2010 25,404,394 37,040,589 42,371,049 50,709,319
2011 21,268,516 31,311,410 35,973,015
2012 17,404,447 27,786,399
2013 17,676,374
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Table 2. Incurred amounts in Euros.

2005 54,018,141 56,699,807 60,273,204 61,112,600 63,729,660 67,142,341 69,733,859 71,980,196 72,738,376
2006 68,706,483 70,534,436 70,254,136 75,919,965 77,900,147 83,401,774 88,690,144 92,171,660
2007 64,613,205 72,600,950 76,163,387 82,388,057 87,424,383 96,246,891 102,854,340
2008 58,071,632 66,701,421 69,420,629 75,280,537 81,978,240 89,923,269
2009 60,368,719 67,868,349 72,528,239 80,726,223 85,339,588
2010 47,282,519 56,488,940 60,896,832 65,900,623
2011 49,905,225 54,801,141 60,026,903
2012 48,425,940 52,652,928
2013 47,449,977

Table 3 shows parameter estimates for the paid data computed using the chain ladder and the
Bornhuetter–Ferguson constrained model. For the moment we focus on the canonical parameters ∆αi
for the relative accident year effect, ∆β j for the relative development year effect and µ11 for the overall
level. First, the chain ladder estimates are reported as ∆α̂i, ∆β̂ j and ∆µ̂11. Second, for the constrained
model we first applied chain ladder to the incurred data. The estimates for the relative accident year
effect are reported as ∆α†

i . The estimates ∆β̂†
j and ∆µ̂†

11 were then computed from the paid data using

Theorem 1. We note that the ordering ∆α†
i > ∆α̂i applies for these data for all i = 2, ..., k = 9. Thus, the

monotonicity results from Theorem 3 apply. In particular, we see that ∆β̂†
j > ∆β̂ j for all j = 2, ..., k = 9

and µ̂†
11 < µ̂11 in Table 3.

Table 3. Estimates.

∆α̂i ∆α†
i ∆β̂j ∆β̂†

j

0.24526809 0.247261682 −0.80044252 −0.76965582
0.11149938 0.145178053 −0.68857388 −0.65777806
−0.12057425 −0.077312634 0.02370846 0.06137844
−0.04769497 0.027019249 −0.32208939 −0.29855013
−0.27637689 −0.204202408 −0.05908884 −0.03399479
−0.21412347 −0.018592530 −0.22363447 −0.20684905
−0.11353717 −0.078902778 −0.37786842 −0.36440835
−0.08135422 −0.005083078 −0.68021278 −0.67909386

µ̂11 = 17.18463300 µ̂†
11 = 17.00538277

A third approach is to use the mixed approach outlined in Section 3.5. Here we use the external
estimate ∆α†

i for the relative accident year effects along with the chain ladder estimates ∆β̂ j and
∆µ̂11. When the external estimate is based on the incurred data, as in here, this is the same as the
Bornhuetter–Ferguson double chain ladder (BDCL) approach of Martínez-Miranda et al. (2013).

Table 4 presents the estimated (pseudo) forward factors and the (pseudo) row sums. For the chain
ladder, we have the observed row sums Ri and the traditional forward factors Fj computed by (1)
and (3). For the Bornhuetter–Ferguson constrained model we have the pseudo row sums R†

i and the
pseudo forward factors F†

j computed by (46)–(48). For the mixed approach we have the pseudo row

sums R‡
i computed by (50) and (51) and the traditional forward factors Fj. Once again we see that the

monotonicity results from Theorem 3 apply so that R‡
i > R†

i and F†
j > Fj.
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Table 4. Row sums and forward factors.

i,j Ri R†
i R‡

i Fj F†
j

1 72,265,079 63,989,145 72,265,079
2 90,726,054 80,309,654 90,907,105 1.449130 1.463172
3 97,838,371 80,309,654 101,391,484 1.155676 1.163975
4 82,082,804 77,559,430 88,824,492 1.137937 1.149793
5 72,724,524 73,428,364 84,802,647 1.087838 1.096652
6 50,709,319 54,589,726 63,556,691 1.076112 1.085188
7 35,973,015 46,603,309 54,823,701 1.056555 1.063832
8 27,786,399 37,000,367 43,839,471 1.036684 1.041678
9 17,676,374 25,159,556 30,098,881 1.017923 1.020288

Table 5 shows the reserves resulting from the classical chain ladder method, ∑k
i=2 Vi from (5);

the constrained approach, ∑k
i=2 V†

i from (38); and the mixed approach, ∑k
i=2 V‡

i from (53). We see
that the ordering from Theorem 3 applies. For comparison we note that this portfolio was evaluated
at 137 million by an external actuary, with the comment that this figure may be slightly too low.
This valuation is based on the information that since 2009, the case reserves incurred were gradually
increased, but the gap between incurred and paid reserves was not fully closed as of 2014. In light of
this, the Bornhuetter–Ferguson constrained method appears to apply rather well in this situation.

Table 5. Reserves in million Euros.

∑k
i=1 Vi External Valuation ∑k

i=1 V†
i ∑k

i=1 V‡
i

110.1 137 149.1 156.6

5. Conclusions

The paper introduces a Bornhuetter–Ferguson approach that replaces the relative ultimates rather
than levels of ultimates. This approach has been suggested in the Bornhuetter–Ferguson double
chain ladder (BDCL) method in Martínez-Miranda et al. (2013). The traditional Bornhuetter–Ferguson
method uses chain ladder weights, whereas we have estimated weights.

We made use of the fact that the chain ladder method has a nice interpretation as maximum
likelihood in a Poisson model, and we formulated the relative ultimates constraint as a linear constraint
on the parameters and derived maximum likelihood estimators. Furthermore, we followed this
approach to reproduce the results of the BDCL method in a mixed approach, combining the constrained
method with the classical chain ladder.

Monotonicity results compare the constrained method, the mixed approach and the original chain
ladder results. An example illustrates the mentioned results with data from a Greek general insurer.
The example shows that, when comparing all methods mentioned above, including chain ladder, the
reserve given by the constrained method is in fact the closest estimate to the number given by an
external expert.

Our proposal incorporates prior knowledge in a transparent way, keeping the standard principles
of maximum likelihood and its well known mathematical properties. In this sense we recommend our
approach over traditional Bornuetter-Ferguson adjustments as a formal statistical method for the same
purpose, which keeps the simplicity and the intuition of traditional reserving. This is further shown
in the convenient formulation of the forecasts in terms of the pseudo development factors provided
above. Apart from this, one would also benefit from the practical advantages of using maximum
likelihood that include standard inference and distribution forecasting. This cannot be done with such
a level of formality in the classical approach, while for the BDCL method it has been done using intense
bootstrap techniques. Another advantage of our approach is that it can, unlike the BDCL method,
be applied using only one triangle, usually the payments triangle. On the other hand, this has the
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disadvantage of not being able to distinguish between IBNR and RBNS reserves as the BDCL method
does. Another limitation of our proposal is that it cannot handle negative cells, as it is sometimes the
case in the payments triangle. Further refinements are required to deal with this problem.

An outstanding problem is to provide distribution forecasts of Bornhuetter–Ferguson adjusted
reserves. In practice the data will have considerable over-dispersion. By modelling that we could
complement the point forecasts with distribution forecasts. Recently, Harnau and Nielsen (2018)
developed an asymptotic distribution theory for the chain ladder within an over-dispersed Poisson
framework. The present situation is a special case of their setup so it could potentially be extended
with Bornhuetter–Ferguson adjustments. That was beyond the scope of this paper though.

Finally, because there is a full statistical model specification incorporating prior knowledge,
one could implement the same type of cash-flow data validation as in Agbeko et al. (2014), based on
back-testing (see also De Felice and Moriconi 2019). However, this approach has several drawbacks,
more so for small datasets. Controversy also exits about which error criteria should be considered. We
did not consider empirical validation in this paper and focused on theoretical statistical properties when
comparing reserving methods under the generalised linear models framework. A recent discussion on
empirical validation methods in reserving can be found in Matinek (2019). These can be potentially
used in the context of this paper.
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Appendix A. Proofs of Theorems

Proof of Equation (11). Consider the Poisson model. The predictor is given in (24) and has the form
µij = µ11 + ∑i

`=2 ∆α` + ∑
j
`=2 ∆β`, while the log likelihood is as in (25). This results in maximum

likelihood estimators ∆α̂i, ∆β̂ j and µ̂11 presented in (26)–(28), and in turn, the development factor Fj is
maximum likelihood estimator for Φj given in (32). When combining these we get the chain ladder

forecast Ỹij = Ri(Fj − 1)∏
j−1
`=k+2−i F` in (11).

The derivations sketched above are symmetric in row and column. Suppose we transpose the
data triangle by swapping rows and columns, so that i, j become j, i and Ri, Cj become Cj, Ri, while
∆αi, ∆β j become ∆β j, ∆αi. Correspondingly, ∆α̂i, ∆β̂ j and Gi, Fj become ∆β̂ j, ∆α̂i and Fj, Gi; and then,
second expression for the chain ladder forecast arises; that is, Ỹij = Cj(Gi − 1)∏i−1

`=k+2−j G`.

Proof of Theorem 1. The likelihood. When the ∆α†
i s are known the likelihood is

`(µ11, ∆β) = µ11

k

∑
j=1

Cj +
k

∑
j=2

∆β j

k

∑
`=j

Cj − κ(µ11, ∆β) + h(data),

where h is a function of the data, not depending on the unknown parameters, while

κ(µ11, ∆β) =
k

∑
i=1

k+1−i

∑
j=1

exp(µij) =
k

∑
i=1

k+1−i

∑
j=1

exp(µ11 +
i

∑
`=2

∆α†
` +

j

∑
`=2

∆β`),

is the cumulant generating function. Empty sums are zero.
Uniqueness of the estimator. For a full exponential family the likelihood has a maximum if and only

if the natural statistic is interior to its convex support, and then the maximum likelihood estimator
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is unique Barndorff-Nielsen (1978) (Theorem 9.13). The natural statistic T†
k = ∑i,j∈I (Yij, C2, . . . , Ck)

′

arises through a bijective, linear mapping of (C1, . . . , Ck)
′. Since Yij ≥ 0 by the Poisson assumption,

Cj ≥ 0, with Cj = 0 as a possible outcome. Since C1, . . . , Ck are based on unrelated observations, the
interior of the convex support is given by the condition that Cj > 0 for all j = 1, . . . , k.

Likelihood equations. Since the exponential family is regular, the k likelihood equations are T†
k =

ET†
k Barndorff-Nielsen (1978) (Corollary 9.6). Since ∑k

i=1 ∑k+1−i
j=1 Yij = ∑k

j=1 Cj, this in turn implies
the equations

Cj = ECj, for j = 1, . . . k. (A1)

Estimating the level. The expression for µ̂†
11 arises from the first likelihood equation

C1 = EC1 = exp(µ11)
k

∑
i=1

exp(αi − α1),

since the parameters αi − α1 = ∑i
`=2 ∆α` are known.

Estimating the development parameters. The expression for ∆β̂†
j arises by combining the (j− 1)th

and jth likelihood equations

Cj

Cj−1
=

ECj

ECj−1
=

exp(µ11 + β j − β1)∑
k+1−j
i=1 exp(αi − α1)

exp(µ11 + β j−1 − β1)∑
k+2−j
i=1 exp(αi − α1)

.

Recalling the expression for Γi in (10) this reduces to

Cj

Cj−1
=

exp (∆β j)

Γk+2−j
,

which has the desired solution.

Proof of Theorem 2. Use the expressions from Theorem 1 to get

Ỹ†
ij = exp(µ̂†

11 + α†
i − α†

1 + β̂†
j − β̂†

1)

=
C1

∏k
`=2 Γ†

`

(Γ†
i − 1)

(
i−1

∏
`=2

Γ†
`

)
Cj

C1

j

∏
`=2

Γ†
k+2−` = Cj(Γ†

i − 1)
∏k

`=k+2−j Γ†
`

∏k
`=i Γ†

`

.

We get the desired result by simplifying the last fraction using i > k + 2− j.

Proof of Equation (45). First identity. Combine the forecasts; see (44).

Ỹ‡
ij = exp(µ̂11 +

i

∑
h=2

∆α†
h +

j

∑
h=2

∆β̂h), Ỹij = exp(µ̂11 +
i

∑
h=2

∆α̂h +
j

∑
h=2

∆β̂h).

Second identity. From (11) we have Ỹij = Cj(Gi − 1)∏i−1
`=k+2−j G`. Write Gi = N̂i/N̂i−1 where N̂i =

∑i
`=1 exp(∑`

h=2 ∆α̂h) and N̂i − N̂i−1 = exp(∑i
h=2 ∆α̂h). Then, we get

Ỹij = Cj
N̂i − N̂i−1

N̂i−1

i−1

∏
`=k+2−j

N̂`

N̂`−1
= Cj

N̂i − N̂i−1

N̂k+1−j
= Cj

exp(∑i
h=2 ∆α̂h)

∑
k+1−j
`=1 exp(∑`

h=2 ∆α̂h)
.

Correspondingly, we get from (37), that

Ỹ†
ij = Cj

exp(∑i
h=2 ∆α†

h)

∑
k+1−j
`=1 exp(∑`

h=2 ∆α†
h)

.
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Then, combine the expressions for Ỹ†
ij and Ỹ†

ij .

Proof of Equation (49). The point forecast is Ỹ†
ij = exp(µ̂†

11 + ∑i
h=2 ∆α†

h + ∑
j
h=2 ∆β̂†

h). Insert the

expression for µ̂†
11 from (47), for ∆α†

i from (48) and exp(∑
j
h=2 ∆β̂†

h) = (F†
j − 1)∏

j−1
`=2 F†

` , which follows
from (46), to get

Ỹ†
ij =

R†
1

∏k
`=2 F†

`

(
R†

i
R†

1

i

∏
`=2

F†
k+2−`

)
(F†

j − 1)
j−1

∏
`=2

F†
` .

Equation (49) follows by reducing common factors and noting that j > k + 2− i.

Proof of Equation (52). The point forecast is Ỹ‡
ij = exp(µ̂11 + ∑i

h=2 ∆α†
h + ∑

j
h=2 ∆β̂h), as given in

(44). Insert the expression for µ̂11 from (28), the expression for ∆α†
i from (51) and exp(∑

j
h=2 ∆β̂h) =

(Fj − 1)∏
j−1
`=2 F`, which follows from (32) noting that Fj = Φ̂j, to get

Ỹ‡
ij =

R1

∏k
`=2 F`

(
R‡

i
R1

i

∏
`=2

Fk+2−`

)
(Fj − 1)

j−1

∏
`=2

F`.

Equation (52) follows by reducing common factors and noting that j > k + 2− i.

Proof of Theorem 3. (a) We show that Γi defined in (32) increases in the ∆αi’s. Write Γi = Ni/Ni−1
where Ni = ∑i

`=1 exp(∑`
h=2 ∆αh). Thus, we must show that the derivative of Γi with respect to ∆αn

is positive for all n ≤ i and zero otherwise. It suffices to consider the numerator of that derivative,
which is Ṅi Ni−1 − Ni Ṅi−1. Now,

Ṅi =
∂Ni

∂∆αn
=

i

∑
`=n

exp(
`

∑
h=2

∆αh) = Ni − Nn−1,

for n ≤ i and zero otherwise. This implies Ṅi Ni−1 − Ni Ṅi−1 = Nn−1(Ni − Ni−1), noting that the cases
where n < i and n = i have to be checked separately. The desired result now follows by noting that
Nn−1 and Ni − Ni−1 are both positive.

(b) Using (35) and (a) we get

∆β̂†
j = ∆ log Cj + log Γ†

k+2−j > ∆ log Cj + log Gk+2−j = ∆β̂ j,

where the last equality is of a similar type as (35) and comes from Theorem 3 in Kuang et al. (2009).
(c) Using (36) and (a) we get

µ̂†
11 = log C1 −

k

∑
`=2

log Γ†
` < log C1 −

k

∑
`=2

log G` = µ̂11,

where the last equality comes from from Theorem 3 in Kuang et al. (2009).
(d) First, we compare the new reserve Ỹ†

ij with ∆α†
i known to the old reserve Ỹij from CL. Since

1 ≤ Gi < Γ†
i for 2 ≤ i ≤ k, by (11), (a) and (37),

Ỹij = Cj(Gi − 1)
i−1

∏
`=k+2−j

G` < Cj(Γ†
i − 1)

i−1

∏
`=k+2−j

Γ†
` = Ỹ†

ij .
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Second, we compare the new reserve Ỹ†
ij , using ∆α†

i , µ̂†
11 and ∆β̂†

j , to the mixed reserve Ỹ‡
ij , using

∆α†
i , µ̂11 and ∆β̂ j. From (45) we have

Ỹ‡
ij = Ỹ†

ij
∑

k+1−j
`=2 exp(∑`

h=2 ∆α†
h)

∑
k+1−j
`=2 exp(∑`

h=2 ∆α̂h)
.

Since ∆α†
i > ∆α̂i, for all 2 ≤ i ≤ k it follows that Ỹ‡

ij > Ỹ†
ij .

(e) Similar to the argument in (a), but using the ordering for ∆β̂ derived in (b).
( f ) Equations (49) and (52) applied for any k + 2− i ≤ j ≤ k show that

R‡
i

R†
i
=

Y‡
ij

Y†
ij

(F†
j − 1)∏

j−1
`=k+2−i F†

`

(Fj − 1)∏
j−1
`=k+2−i F`

.

Then, apply the orderings Ỹ‡
ij > Ỹ†

ij and F†
j > Fj from (d), (e).

(g) Use (32), (52) to get R‡
i /Rij = Ỹ‡

i /Ỹij for all k + 2− i ≤ j ≤ k. Apply ( f ).
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