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ABSTRACT
Recent improvements in deep learning techniques applied to images allow the detection of people with a high success rate. How-
ever, other types of sensors, such as laser rangefinders, are still useful due to their wide field of vision and their ability to operate
in different environments and lighting conditions. In this work we use an interesting computational intelligence technique such
as the deep learning method to detect people in images taken by a mobile robot. The masks of the people in the images are used
to automatically label a set of samples formed by 2D laser range data that will allow us to detect the legs of people present in the
scene. The samples are geometric characteristics of the clusters built from the laser data. The machine learning algorithms are
used to learn a classifier that is capable of detecting people from only 2D laser range data. Our people detector is compared to
a state-of-the-art classifier. Our proposal achieves a higher value of F1 in the test set using an unbalanced dataset. To improve
accuracy, the final classifier has been generated from a balanced training set. This final classifier has also been evaluated using
a test set in which we have obtained very high accuracy values in each class. The contribution of this work is 2-fold. On the one
hand, our proposal performs an automatic labeling of the samples so that the dataset can be collected under real operating con-
ditions. On the other hand, the robot can detect people in a wider field of view than if we only used a camera, and in this way
can help build more robust behaviors.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

In mobile robots, interaction with humans is a very relevant aspect
that needs to be improved. Detecting people using robots is a key
aspect that makes human–robot interaction (HRI) more natural
and flexible. In recent years several proposals have been made to
resolve the detection of people and different sensors have been used.
It is evident that the ideas for solving the problem of detecting peo-
ple depend on the robot’s sensor system and the features present in
the working environment.

In indoor environments, sensors are mainly cameras and laser
rangefinders (LRFs). Vision-based approaches to detecting people
are very popular and several types of vision devices have been used
to solve this task. Mono, stereo, and RGB-depth (Red, Green, Blue
plus depth) cameras are some of the vision devices used. Stereo
and RGB-depth devices provide color and depth information. For
example, Ref. [1] proposes a fuzzy algorithm for detecting and
tracking people in the vicinity of a robot using stereoscopic vision.
Kinect sensor [2] is used in Ref. [3] to propose people detectors that
make use of the data provided by depth sensors and red-green-blue
images to deal with the characteristics of HRI scenarios. In addi-
tion, skeleton-based approaches using RGB depth have been pro-

posed, see Refs. [4] and [5]. However, vision-only approaches are
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not the perfect solution for all work situations and environments.
Light conditions can affect these methods, depth information is not
always reliable and false positives (FPs) in skeleton detection meth-
ods are possible.

As for laser-based approaches, some approaches are based onmove-
ment features [6], but these methods fail when people do not move,
for example, standing or sitting. Such situations can be detected by
approaches based on geometric characteristics. In Ref. [7] a set of 14
geometric features is used for leg detection. An AdaBoost learning
algorithm is then used for feature selection and to train a classifier.
The legs are detected individually and some problems arise when
one leg is partially occluded by the other. In Ref. [8] the authors
propose schemes for detecting and tracking human legs using fewer
features than in Ref. [7]. In Ref. [9], the authors propose a human
detection method that uses only a single laser range scanner to
detect the waist of the target person. Also, a human-following algo-
rithm is proposed and tested in a two-wheel mobile robot. Ref. [10]
proposes an algorithm for people detection, tracking and follow-
ing from laser data. The authors apply their approach to manage an
intelligent power wheelchair. The considered state of the art is the
work of Spinello and Siegwart [11] that uses geometric character-
istics and an AdaBoost classifier that combines 50 weak classifiers.
On these previous works, some authors take the laser data from sce-
narios with or without people, while other authors label manually
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the clusters obtained from the laser range data. In our proposal laser
data are automatically labelled.

Some conclusions can be drawn from these works. Compared to
purely vision-based approaches, the use of a LRF is an advantage,
as they are robust against lighting changes and tracking algorithms
are faster and more efficient. In addition, the fields of view of LRFs
are usually wider than the fields of view of cameras, giving the robot
the possibility to detect the presence of people earlier.

With the intention of merging the strengths of cameras and LRFs,
some multisensorial solutions have been proposed within the area
of mobile robots. The idea is to use data fusion techniques to mix
the information supplied by the vision system and the laser device.
In Ref. [12], the authors propose a ROS-based multimodal people
detection and tracking framework. Their proposal is applied to a
mildly humanized robot platform equipped with an array of RGB-
D, stereo, and 2D laser range sensors. Ref. [13] combines three types
of devices, Kinect, laser, and a thermal sensor to perform the detec-
tion of people. In these systems, the authors state that multisensory
approaches show that the combination of different sensory cues
increases the reliability of their people detection and tracking sys-
tems.

In this paper, we focus our attention on the role of LRF in detect-
ing people. These algorithms will be useful both when the per-
son is within and outside the camera’s range of vision. Thanks to
the 2D LRF, the robot can scan a wide range of the environment
and obtain valuable information about the angle and distance of
detected objects with good accuracy. In addition, the computa-
tional demand for LRF is low due to the relatively low amount of
data to be processed. Normally, LRFs are located on the robot close
to the ground, so the scan plane allows the robot to detect peo-
ple’s legs. First, a Kinect camera [2] is located near the robot’s LRF
and both are calibrated and synchronized to capture videos and
perform laser scans of people and backgrounds in indoor environ-
ments. The videos and scans are stored on a disk while the robot
navigates through office-like environments and traverses different
types of offices, corridors, and hallways. Second, this dataset will
not be manually labelled, but will be labelled with the new method
proposed in this paper. This new method uses the power of a com-
putational intelligence technique such as neural networks applied
to computer vision to detect and locate the position of people in
the images in the dataset. For this purpose, various techniques and
models of deep learning about images in our own dataset are stud-
ied and evaluated. People’s positions in the images are used to auto-
matically label the samples taken by the laser scan. The correspond-
ing coordinate transformation has been carried out to correctly link
both sensors. The laser measurements are analyzed and clustered
using the jumping distance algorithm. A process of feature extrac-
tion of each cluster is carried out taking into account the geomet-
ric information. Again computational intelligence is applied. In this
phase, the machine learning is used to classify the clusters in people
legs or background. Thus, the set of features of each cluster and the
corresponding label are used as input to various methods of super-
vised machine learning in order to identify the machine learning
algorithm that is most interesting. Thirdly, our proposal is com-
pared with the work of Spinello and Siegwart [11], considered state-
of-the-art classifier in the field of 2D detection from simple frames
of laser data. Since the set of samples is very unbalanced, the score of
F1 is the most appropriate measure of comparison between the two

classifiers.With the same data, our proposal obtains a value score of
F1 higher than that of Spinello’s work. Finally, a new dataset is con-
structed from the saved data to generate a balanced set of leg and
background samples. The new dataset increases our method’s abil-
ity to detect people’s legs. The final classifier is obtained again using
machine learning and is evaluated in a test set formed by range data
not previously considered by the learning algorithm and obtaining
high precision values of around 96%.

analyzes different deep learning techniques for detecting people in
images and shows the experimental comparative study conducted
on our own dataset. Section 4.1 explains the new approach to leg
detection proposed in this paper and the comparisonwith Spinello’s
work. In Section 4.2 the final classifier for the detection of people
is obtained and evaluated on the test set. Finally, some conclusions
and ideas on future works are shown in the Section 5.

2. SYSTEM DESCRIPTION

Our hardware system is composed by a PeopleBot mobile robot
[14] equipped with a LRF SICK LMS200 [15] and a Kinect sen-
sor [2] version 1. The LRF has a 180° field of view and it operates
at 75 Hz. In the current operation mode the maximum range of
distance is 8 m. The systematic error given by the manufacturer is
±15 mm at range 1–8 m. Please do notice that the range of error
is low and the measures can be considered accurate enough for the
usual tasks of mobile robots. The LRF is mounted at a height of 30
cm above the floor and the Kinect device is located above the LRF.
Kinect sensor has both a colour and depth camera [16]. In both
cases the resolution of images is 640 × 480 pixels at 30 fps. The stan-
dard range of distances of the depth camera is from a minimum of
800 mm to a maximum of 4000 mm although there exists a near
mode to allow distances from 400 mm to 3000 mm. In this work
the standard mode was chosen. Because it uses infrared technology
for the depth camera, Kinect does not work under direct sunlight,
for example, outdoors. In Ref. [17] a detailed analysis of Kinect can
be found. The robot has an embedded board computer but it is not
very powerful thus a laptop is used to run the part of the system
which performs the video processing. This laptop is wired linked
to the onboard computer and features an Intel Core i5 with 8 GB
DDR3 RAM. The laser data are sent by the onboard computer to
the laptop to be collected while the Kinect sensor is connected to
the USB port of the laptop. Figure 1 shows the robot with the LRF
and the vision system.

Regarding the software architecture of our system, this has been
implemented using c++ and the resources of the libraries of the
robot manufacturer on linux (Ubuntu distribution). The manufac-
turer supplies this robot with the Aria and ArNetworking libraries.
The former is used to execute the program within the robot and
the latter to execute the client-server-based program. In order to
execute our approach in the laptop, the resources of ArNetworking
library have been used. A new servermodule has been implemented
to supply new services to the control programused in thiswork. The
new service allows the client program to obtain the raw data of the
sensor laser. Also a newmodule has been implemented in the client
side to receive the laser data using multi-thread programming. So
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The rest of this paper is organized as follows. Section 2 describes
the hardware, some software components, and the methods for cal-
ibrating both the camera and the laser. From there, the Section 3
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Figure 1 Peoplebot robot equipped with laser rangefinder SICK
LMS200 and a Kinect camera.

the laser data are supplied to the laptop at 10 ms frequency. As we
mentioned earlier the Kinect camera is connected to the laptop and
it is managed using the OpenCV and OpenNI libraries. OpenNI
allows to obtain the BGR color image and the corresponding depth
image. Figure 2 shows the architecture of our system.

The camera has been calibrated using the Robust Automatic Detec-
tion of Calibration Chessboards approach [18]. This method allows
us to obtain the intrinsic parameters of the camera. Using these
parameters and an own method by the authors, similar to the
Robust Automatic Detection in Laser of Calibration Chessboards
(RADLOCC) approach [19], the laser has been extrinsically cali-
brated to the camera. Thus, a point detected in the plane of the
laser can be translated to the 3D coordinates of the camera and pro-
jected on the color image. Results of the calibration process can be
shown in Figure 3. The red points are the laser measures translated
to image coordinates.

Figure 2 Architecture of our system.

Figure 3 Results of camera-laser calibration.

3. DEEP LEARNING TECHNIQUES FOR
PEOPLE DETECTION ON IMAGES

In order to detect people in images, different deep learning-based
techniques have been proposed in the specialized literature. In
particular, Faster R-CNN, Region-based Fully Convolutional Net-
works (R-FCNs), Single Shot Multibox Detector (SSD), and Mask
R-CNN have been analysed to be used in this work. In regards to
the deep learning frameworks, we have used both TensorFlow and
Caffe2, which implement these detectors.

3.1. Faster Region–Based CNN

Before Faster R-CNN networks, external region proposal algo-
rithms were used by the detectors to hypothesise objects locations.
However, these algorithms produced a bottleneck that increased thePdf_Folio:3
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running time. To solve this, in Ref. [20], it is proposed a fully con-
volutional network called Region Proposal Network (RPN), end to
end trainable. Thus, Faster R-CNN is composed by two modules: a
RPN that proposes regions and a Fast R-CNN that classifies them
into categories.

RPN networks take an image and generate a set of rectangular
regions with an objectness score using a sequence of convolution
layers which are shared with the next module. Several models, such
as ZFNet or VGGNet, have been studied to obtain the optimal fea-
ture map. To generate the proposed region, a sliding window with
different sizes (anchors) is slid over this feature map (last convolu-
tional layer output). Finally, each proposed region feeds a fully con-
nected layer, a box regression, and a box classification layer which
refine and classify it.

Although nowadays there are models that have improved Faster R-
CNN speed, few models improve its accuracy being Faster R-CNN
with Resnet one of the most accurate object detection models.

3.2. Region-Based Fully Convolutional
Networks

Firstly, a fully convolutional network (typically convolutional layers
of a ResNet) is used as backbone to obtain a features map. Secondly,
a set of proposal regions (Region Of Interest, RoI) is extracted with
a RPN. This subnetwork is also fully connected and share weights
with the next module. After that, each RoI is passed to a range of
convolutional layers and finally to a layer made up from a bank of
maps called “position-sensitive scores maps.” This bank consist of
k2 (C + 1)maps where k is the spatial grid size which describes rel-
ative positions andC is the number of classes (+1 background). The
model ends with a position-sensitive RoI pooling layer. This layer
aggregates the outputs of the previous layer and generates the score
for each RoI.

This model is able to reduce the computational time and reaches
similar accuracy thanks to the convolutional layers and the
position-sensitive score maps.

3.3. Single Shot Multibox Detector

SSD [22] uses only one deep neural network for object detection. It
is based on a feed-forward convolutional network which output is a
set of default bounding boxes associated with each feature map and
scores for object detection. At prediction time, bounding boxes are
refined to adjust them with the shape of the object. Moreover, this
model is easy to train because the region proposal is removed.

The first part of the network, called base network, consists of a stan-
dard architecture (such as VGG16) used for image classification.
Then, it is added a set of extra convolutional layers (features map)

whose size decreases progressively and allows to predict detections
at multiple scales. After that, default bounding boxes are associ-
ated with each feature map to compute offsets relative to the default
box and scores regarding the presence of objects. A lot of bound-
ing boxes are generated and compared to other and it may be very
likely that they do not contain any object. To improve results, SDD
uses nonmaximum suppression to eliminate overlap boxes and hard
negative mining to balance classes during training.

SSD is not very different to other models since it only skips the
region proposal step. The prediction of the bounding box and the
classification is done in “one shot.” Because of that, SSD is one of
the fastest detectors.

3.4. Mask R-CNN

Mask R-CNN [23] is a simple and flexible model which is able to
efficiently detect objects and generate a segmentation mask in one
image. It is an R-CNN extension that use a new branch to predict
objects masks in parallel with the Faster R-CNN for object detec-
tion.

Mask R-CNN performance is described as follows: Faster R-CNN
generates a class label and a bounding box offset for each candidate
object, then a new branch outputs the object mask. However, seg-
mentation task requires a much finer extraction of the spatial lay-
out. This is possible thanks to several techniques such as pixel to
pixel alignment.

In the same way as Faster R-CNN, segmentation branch generates
a binary mask for each RoI proposed by the RPN. Specifically, a
m × mmask is predicted for each RoI using a fully connected net-
work. Moreover, pixel precision requires a good alignment to pre-
serve spatial correspondence. To do this, a RoIAlign layer is used in
this model.

3.5. Experimental Comparative Study

In order to choose a deep learning technique for our system, dif-
ferent models and architectures have been tested. To evaluate each
case, we have used an own dataset that consist of 624 images
(312 positives and 312 negatives) that have both people and back-
grounds. These images have been collected navigating with the
robot at our office-like environment. These samples have been
manually labelled indicating the region of the image where people
are located. Furthermore, a sample is labelled as positive if some
person is shown in the image and negative if no one is shown.

Table 1 shows the list of models that have been checked using our
own test set. The “Network name” consists of the nameof themodel,
the standard or base architecture used to generate features maps,
and the standard dataset that was used to train each model. A code
has been included to link this table with Table 2 which shows the
results of each model on our own dataset.

In order to evaluate the different deep learning techniques, we have
used the typical measures of binary classification. Those are, num-
ber of true positive (TP), number of FP, number of true negative
(TN), number of false negative (FN). Also the computation time
by image is taken into account. In this work, these measures are
defined in the following manner:

Pdf_Folio:4

R-FCNs [21] is a simple but accurate and efficient model for object
detection. The main goal is to share as much as possible the com-
putational cost. To achieve this, it is necessary to use fully convo-
lutional layers. R-FCN uses the same object detection strategy that
Faster R-CNN (Faster Region-Based Convolutional Neural Net-
works), meaning that it is also based on two stages: A subnetwork
propose regions and the next one classifies them.
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Table 1 List of models, including the identification code, deep learning
architecture, and standard dataset.

Code Network Name: Model + Architecture + Dataset
TensorFlow

1 ssd_mobilenet_coco
2 ssd_mobilenet_coco
3 ssd_mobilenet_coco
4 ssd_inception_v2_coco
5 ssd_inception_coco
6 ssd_inception_v2_coco
7 rfcn_resnet101_coco
8 rfcn_resnet101_coco
9 rfcn_resnet101_coco
10 faster_rcnn_resnet101_coco
11 faster_rcnn_resnet101_coco
12 faster_rcnn_resnet101_coco
13 faster_rcnn_inception_resnet_v2_coco
14 faster_rcnn_inception_resnet_v2_coco
15 faster_rcnn_inception_resnet_v2_coco

Caffe2
16 mask_rcnn_resnet101_coco (detectron)
17 mask_rcnn_resnet101_coco (detectron)
18 mask_rcnn_resnet101_coco (detectron)

Table 2 Results of detectors listed in Table 1.

Code P Acc Sens Spec Time
TensorFlow

1 0.3 0.955 0.955 0.955 0.081
2 0.5 0.91 0.833 0.987 0.127
3 0.7 0.721 0.442 1 0.07
4 0.3 0.957 0.974 0.93 0.088
5 0.5 0.926 0.865 0.987 0.09
6 0.7 0.697 0.394 1 0.09
7 0.3 0.918 0.981 0.856 0.142
8 0.5 0.943 0.981 0.907 0.141
9 0.7 0.958 0.977 0.939 0.143
10 0.3 0.99 0.785 0.785 0.182
11 0.5 0.926 0.987 0.865 0.195
12 0.7 0.947 0.987 0.907 0.175
13 0.3 0.945 0.987 0.904 0.452
14 0.5 0.962 0.987 0.936 0.44
15 0.7 0.976 0.987 0.965 0.488

Caffe2
16 0.3 0.95 0.974 0.926 0.117
17 0.5 0.96 0.978 0.962 0.118
18 0.7 0.982 0.99 0.974 0.118
Acc, Accuracy; Sens, Sensitivity; Spec, Specificity. The model chosen for our proposal is
listed in bold type.

• TP. For positive images, if the greater detection exceeds a
certain overlap threshold IoU and a certain probability
threshold P.

• FN. For positive images, if the greater detection does not
exceed both thresholds IoU and P.

• TN. For negative images, if no one is detected with a
probability greater than the threshold P.

• FP. For negative images, if a person is detected with a
probability greater than the threshold P.

Using these measures, the Accuracy (Acc), Sensitivity (Sens), or TP
rate, the Specificity (Spec) or TN rate are defined by Eq. (1), Eq. (2),
and Eq. (3) respectively.

Acc = TP + TN
TP + FP + FN + TN (1)

Sens = TP
TP + FN (2)

Spec = TN
TN + FP (3)

The overlap threshold IoU has been established in 0.65 and the
results have been obtained with different probability thresholds P
as it is shown in Table 2.

Depending on the task, there should be a compromise between time
and precision. In general, the best result has been obtained using a
Mask-RCNN with ResNet101 and trained with COCO. Moreover,
we have to take into account that thismodel not only detects objects
but also generates theirmasks. Themasks of the detected people are
useful for us since they will allow to properly label the laser data,
therefore the model number 18 is chosen for our proposal. Details
on the network architecture of this model can be seen in Ref. [24].

4. PEOPLE DETECTION IN THE LASER
SCANS

4.1. Leg Detection

Previous approaches for people detection based on 2D laser mea-
sures, process the laser data in a similar way using the algo-
rithm of jump distance to generate clusters which will be classified
depending on certain geometrical features. The problem of such
approaches is how to properly label the laser data to identify the
scans corresponding to people legs or to some object of the envi-
ronment or that are part of the background. The samples are usu-
ally manually labelled with the help of videos recorded while the
laser was gathering the data. This manual method could gener-
ate samples with the wrong labels that could affect the supervised
machine learning. And therefore, we could obtain biased classifiers
and with a poor behaviour in the real world. In our proposal, we use
the masks of people in the images to automatically label the clus-
ters obtained from the laser data. These masks are generated by the
Mask-RCNNmodel which has obtained good results in the study of
subsection 3.5. This automatic process to label the samples allows to
collect the data in a more natural way. Thus the robot can navigate
by the environment recording laser data and images while the peo-
ple are moving or stay static. Thereafter both laser data and images
are processed to generate the dataset needed to train the machine
learning algorithms or to test the learned classifiers. Below our pro-
posal for people detection is explained in detail.

First, as it was mentioned above, color and depth images from
Kinect and 2D laser range data are recorded while people are freely
walking at the proximity of the robot and when it is navigating by
the environment. Second, the laser data are translated to camera
coordinates using the extrinsic calibration data. Thereafter, laser
data are clustered using a jump distance algorithm, a minimum
number of points and a maximum length for the cluster. Third, the
Mask-RCNN is used on this frame to obtain themasks of the people
present in the frame (see Figure 4). Fourth, every cluster is analysed
to test whether their points, translated to image coordinates, are on
the legs of some people.

In order to do this, please note that depth information has to be
used, that is, both laser and pixel points have to be translated to
3D coordinates of the camera to compute the real distance betweenPdf_Folio:5
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Figure 4 Mask of people obtained fromMask-RCNN.

them. If the points of a cluster are on a leg of the mask, then the
cluster is labelled as leg. If the people are walking fast it is possi-
ble that the situation of laser points in the legs were not perfect, so
that a threshold of distance is taken into account. If the cluster is
not on any leg in the image, then the cluster is labelled as no-leg.
Figure 5 summarizes the process for automatic labelling of the 2D
laser measures.

Figure 5 Process for automatic labelling of the 2D laser data.

Figure 6 shows the result of the automatic labelling process. The
blue and red points are laser data clustered in different clusters. The
green points are laser points which have not been assigned to any
cluster. Finally, the yelow color is used for laser points that are con-
sidered near the legs thus those clusters will be labelled as legs.

Figure 6 Automatic labelling of the clusters using the mask.

The clusters will be classified by supervised machine learning algo-
rithms. Previously it is needed to compute some geometrical prop-
erties to represent such clusters. Different possibilities exist in the
specialized literature to compute the geometrical properties. In our
proposal we use as geometrical features: the contour of the neigh-
bour points in a cluster from P1 to Pn, the width defined as the
distance from P1 to Pn, and the depth as the maximum distance
between a point Pi and the line P1Pn.

These attributes have also been used in Ref. [8] with good results.
An important difference with our approach it is that in Ref. [8] the
samples of legs are taken in a controlled environment placing one
leg in front of a vertical board in various leg configurations in order
to be scanned by the LRF. These geometrical properties are shown
by Figure 7.

Figure 7 Geometrical properties used in the clusters feature
extraction.

Pdf_Folio:6
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Once the clusters are represented by the three geometrical proper-
ties, this information along with the label of the class, leg or no leg,
is supplied to the machine learning algorithms. This is a problem
of binary classification with unbalanced classes because the num-
ber of samples of no legs is greater than the samples of legs. This
is because in every scan, LRF scans with an angle of 180° and the
number of people in every frame, at the same time, is one or two so
most of the clusters for every frame correspond to the background
or other objects of the environment. The labelled dataset of geo-
metrical properties is divided into training and test sets. A sample
is considered positive if its label is leg and negative on the contrary.
The training set contains 2100 positive and 19337 negative samples.
Test set contains 696 positive and 7554 negative samples. To train
several machine learning algorithms, the machine learning plat-
formWeka [25] was used. The experiments are done 10 times and a
10-fold cross validation is carried out. The algorithms checked are
PART which is a rule-based algorithm, J48 which uses a decision
tree C4.5, a Multilayer perceptron of neural networks, and Random
Forest algorithm which is based on a forest of random trees. The
results of average accuracy for each algorithm in the training set are
shown by Table 3, taking into account the accuracy as the percent-
age of correctly classified instances (both positives and negatives).

Table 3 Accuracy average of several machine learning algorithms using a
10-fold cross validation.

PART J48 Multilayer Perceptron Random Forest
95.40 96.34 90.20 96.75

The algorithm with the best result in this experiment was the Ran-
dom Forest so that this algorithm is chosen to build a classifier
which can be assessed in the test set. Furthermore another inter-
esting measures have been computed to check the behaviour of
this algorithm in the training and test sets. In this sense, due that
the training and test sets are unbalanced, additional measures as
Precision, Recall, and F1 scoremust be analysed. Let TP, TN, FP, FN
the number of TP, TN, FP, and FN classified instances respectively
then Precision, Recall, and F1 score are defined by Eq. (4), Eq. (5),
and Eq. (6), respectively.

Precision = TP
TP + FP (4)

Recall = TP
TP + FN (5)

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(6)

Results of the RandomForest algorithmon the training and test sets
are shown by Table 4.

Table 4 Results of the random forest algorithm on the training and
test sets.

Set Accuracy Precision Recall
Training 0.968 0.967 0.968 0.967
Test 0.933 0.947 0.933 0.939

The results of Random Forest are good enough both on the training
and test sets therefore this algorithm is chosen to classify the clus-

classifier from the automatically labelled clusters.

Figure 8 Process to obtain the classifier from the automatically
labelled clusters.

To compare our approach with the state-of-the-art classifier, the

ple2D.html. The approach of Spinello takes as input every scan of
the LRF as coordinates x, y of the sensed point and a label indicat-
ing if the point belongs to people or to the background. Thereafter
the points are segmented in clusters and several features are com-
puted to classify the clusters by an AdaBoost classifier which
combines 50 weak classifiers. In this comparison, the dataset is the
same used to train the Random Forest algorithm establishing the
same training and test sets for both approaches. To measure the
quality of the evaluation for both classifiers we are going to use the
same evaluation measure of Ref. [11]. This measure is computed by
using the precision-recall curve, generated by the variation of the
AdaBoost classification threshold 𝜃. The curve can be summarized
in a single quality measure for the classifier C using the maximum
F1 score over the detector’s AdaBoost threshold 𝜃 as it is computed
by Eq. (7).

Pdf_Folio:7

open source implementation of Spinello [11] has been down-
load from http://www2.informatik.uni-freiburg.de/ spinello/peo-~

ters in our proposal. Figure summarizes the process to obtain the8
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max
𝜃

F1 = max
𝜃

2 ⋅ Precision C (𝜃) ⋅ Recall C (𝜃)
Precision C (𝜃) + Recall C (𝜃) (7)

To test the approach of Spinello in our test set, first we train the
detector of Spinello using the dataset which is available for training
in the web page of this classifier. Thus a trained classifier is obtained
and it is evaluated on our test set giving the results shown in
Figure 9. In this first case, the maximum value for max𝜃 F1 is 0.776

.
It is because Precision and Recall are not high at the same time.
That is, when Precision is high then Recall achieves only on 0.64
since there are a high value of FNs. This result is reasonable since
the detector has been trained with the original data.

After that, the detector is trained on our training set and the
obtained classifier is evaluated on our test set giving the results
shown by Figure 10.

In this second case, the maximum value for max𝜃 F1 is 0.908

.
This result is good due that the detector has been trained on our
dataset which contains data taken from our kind of environment
and therefore it is better fitted for the test set. Comparing against

Figure 9 Precision-recall curve for the Spinello’s classifier trained
on the original dataset and applied to our test set.

Figure 10 Precision-recall curve for the Spinello’s classifier
trained on our dataset and applied to our test set.

our approach, as it is shown on Table 4, our proposal gives for
F1 = 0.939, which overcomes the results of the state-of-art classi-
fier in our test set.

4.2. Results Using Balanced Training
and Test Sets

Once our proposal has been explained and compared to the
Spinello’s classifier, the idea is to improve theAccuracy of our detec-
tor. To achieve this, a new dataset is taken from the laser and images
recorded by the robot. In this case, the clusters are chosen by remov-
ing clusters with very similar features in order to obtain a bal-
anced dataset. Thus, in order to generate a final classifier, a balanced
dataset containing both positive (2068) and negative (2068) sam-
ples is used for training. Also a balanced test set is generated with
701 positive and 701 negative samples, not previously used by the
machine learning algorithm. The results on the test set are shown
by Table 5.

Table 5 Results of random forest algorithm using a balanced test set.

Set Accuracy Precision Recall
Test 0.96 0.96 0.96 0.96

In order to check the values of accuracy in each class, Table 6 shows
the contingency table for the test set where it can be seen that both
classes are properly classified.

Table 6 Contingency table of random forest algorithm on the test set.

Observation Class
Positive (%) Negative (%)

Predicted class Positive 96.7 3.3
Negative 4.7 95.3

5. CONCLUSIONS

In this paper a LRF-based system using a mobile robot in order
to detect people has been proposed. The approach tries to use
the strengths of LRF sensors and the advances in people detec-
tion obtained by the deep learning models. A comparative study
of different models and architectures of deep learning techniques
has been carried out in order to obtain a model capable to detect
the masks of people in the images. By using the masks of people,
and matching them with the laser data, we can automatically label
numerous samples of clusters relative to people legs. The clusters
are described by certain geometric features. Thereafter several clas-
sifiers are trained using Weka in order to choose the best classifier.
The results of the developed classifier are good not only in the train-
ing set but also in the test set. The approach has been compared
to the considered state-of-the-art classifier using the measure F1
score, due that the classes are unbalanced, obtaining our approach
a higher value of F1 score. Finally, the accuracy of our classifier can
be improved using a balanced dataset achieving high rates of clas-
sification for every class.

Pdf_Folio:8
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The contribution of this work is double, on one hand, we show how
a tool based on computational intelligence, such as people detec-
tors based on deep learning, can be used to automatically label a set
of samples formed by 2D laser range data. In this work, this idea
has been applied to people detection but other interesting objects of
the environment, or behaviours of pedestrians, could be character-
ized using our approach. On the other hand, by using our detector,
mobile robots can detect people in a wider field of view than only by
using the camera, since the learn classifier is only based on 2D laser
range data. This can be interesting to avoid collisions with people
that is out of the field of view of the camera, or to be aware of human
presence, or to complement the visual information in people follow-
ing task or other kinds of HRIs obtaining more robust behaviours.

As future work, this approach can be used to analyse the way the
people walk to detect possible problems in the elderly people, which
can be very useful for a service robot.
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