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Abstract

The starting point of the thesis is the universality property of the Riemann Zeta-
function ζ(s) which was proved by Voronin in 1975:

Given a positive number ε > 0 and an analytic non-vanishing function f
defined on a compact subset K of the strip {s ∈ C : 1/2 < <s < 1} with connected
complement, there exists a real number τ such that

max
s∈K
|ζ(s+ iτ)− f(s)| < ε. (1)

In 1980, Reich proved a discrete analogue of Voronin’s theorem, also known as
discrete universality theorem for ζ(s):

If K, f and ε are as before, then

lim inf
N→∞

1

N
]

{
1 ≤ n ≤ N : max

s∈K
|ζ(s+ i∆n)− f(s)| < ε

}
> 0, (2)

where ∆ is an arbitrary but fixed positive number.
We aim at developing a theory which can be applied to prove the major-

ity of all so far existing discrete universality theorems in the case of Dirichlet
L-functions L(s, χ) and Hurwitz zeta-functions ζ(s;α), where χ is a Dirichlet
character and α ∈ (0, 1], respectively. Both of the aforementioned classes of
functions are generalizations of ζ(s), since ζ(s) = L(s, χ0) = ζ(s; 1), where χ0 is
the principal Dirichlet character mod 1.

Amongst others, we prove statement (2) where instead of ζ(s) we have L(s, χ)
for some Dirichlet character χ or ζ(s;α) for some transcendental or rational
number α ∈ (0, 1], and instead of (∆n)n∈N we can have:

1. Beatty sequences,

2. sequences of ordinates of c-points of zeta-functions from the Selberg class,

3. sequences which are generated by polynomials.

In all the preceding cases, the notion of uniformly distributed sequences plays
an important role and we draw attention to it wherever we can. Moreover, for
the case of polynomials, we employ more advanced techniques from Analytic
Number Theory such as bounds of exponential sums and zero-density estimates
for Dirichlet L-functions. This will allow us to prove the existence of discrete
second moments of L(s, χ) and ζ(s;α) on the left of the vertical line 1 + iR, with
respect to polynomials.
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In the case of the Hurwitz Zeta-function ζ(s;α), where α is transcendental
or rational but not equal to 1/2 or 1, the target function f in (1) or (2), where
ζ(·) is replaced by ζ(·;α), is also allowed to have zeros. Until recently there was
no result regarding the universality of ζ(s;α) in the literature whenever α is an
algebraic irrational. In the second half of the thesis, we prove that a weak version
of statement (1) for ζ(s;α) holds for all but finitely many algebraic irrational α
in [A, 1], where A ∈ (0, 1] is an arbitrary but fixed real number.

Lastly, we prove that the ordinary Dirichlet series ζ(s; f) =
∑

n≥1 f(n)n−s

and ζα(s) =
∑

n≥1bP (αn + β)c−s are hypertranscendental, where f : N → C
is a Besicovitch almost periodic arithmetical function, α, β > 0 are such that
bα + βc > 1 and P ∈ Z[X] is such that P (N) ⊆ N.

iv



Zusammenfassung

Der Ausgangspunkt dieser Dissertation ist die folgende Universalitätseigenschaft
der Riemannschen Zetafunktion ζ(s), die von Voronin 1975 nachgewiesen wurde:

Zu gegebenem ε > 0 und einer analytischen nullstellenfreien Funktion f ,
die auf einer kompakten Teilmenge K des Streifens {s ∈ C : 1/2 < <s < 1} mit
zusammenhängendem Komplement definiert ist, existiert eine reelle Zahl τ , so
dass

max
s∈K
|ζ(s+ iτ)− f(s)| < ε. (1)

Im Jahr 1980 bewies Reich folgendes diskrete Analogon des Voroninschen Satzes,
welches auch als diskretes Universalitätstheorem für ζ(s) bekannt ist:

Sind K, f und ε wie oben, so gilt

lim inf
N→∞

1

N
]

{
1 ≤ n ≤ N : max

s∈K
|ζ(s+ i∆n)− f(s)| < ε

}
> 0, (2)

wobei ∆ eine beliebige, aber fest gewählte positive reelle Zahl bezeichnet.
Unser Ziel ist die Entwicklung einer Theorie, welche die Mehrheit der bislang

bewiesenen diskreten Universalitätstheoreme im Fall Dirichletscher L-Funktionen
L(s, χ) und Hurwitzscher Zetafunktionen ζ(s;α) (wobei χ ein Dirichlet-Charakter
ist und α ∈ (0, 1]) umfasst. Beide genannten Funktionenklassen verallgemeinern
ζ(s), denn ζ(s) = L(s, χ0) = ζ(s; 1), wobei χ0 der Hauptcharakter modulo 1 ist.

Neben anderen Resultaten beweisen wir Aussage (2) mit L(s, χ) für einen be-
liebigen Dirichlet-Charakter χ bzw. ζ(s;α) für ein transzendentes oder rationales
α ∈ (0, 1] anstelle von ζ(s) sowie (∆n)n∈N ersetzt durch eine der nachstehenden
Folgen:

1. Beatty-Folgen,

2. Folgen von Imaginärteilen der c-Punkte einer beliebigen Zetafunktion der
Selbergklasse,

3. Folgen, die durch ein Polynom generiert werden.

In all diesen Fällen spielt der Begriff einer gleichverteilten Folge eine wichtige
Rolle, und wir schenken diesem Aspekt besondere Beachtung im Folgenden.
Speziell für den Fall der Polynome benutzen wir weitere fortgeschrittene Tech-
niken der Analytischen Zahlentheorie, wie besipielsweise Schranken für Expo-
nentialsummen und Nullstellen-Dichtigkeitsabschätzungen für Dirichletsche L-
Funktionen. Dies erlaubt uns, die Existenz gewisser diskreter quadratischer Mo-
mente für L(s, χ) und ζ(s;α) links der vertikalen Geraden 1+iR im Polynom-Fall
zu beweisen.
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Im Fall der Hurwitzschen Zetafunktion ζ(s;α), wobei α transzendent oder
rational, aber ungleich 1/2 oder 1 ist, kann die zu approximierende Funktion f
in (1) oder (2), wobei ζ(·) durch ζ(·;α) zu ersetzen ist, sogar Nullstellen besitzen.

Bis vor kurzem waren hinsichtlich der Universalität von ζ(s;α) in der Lit-
eratur für algebraisch-irrationale α keine Ergebnisse erzielt worden. Im zweiten
Teil der Dissertation beweisen wir eine schwache Version der Aussage (1) für
ζ(s;α) für alle algebraisch-irrationalen α ∈ [A, 1] bis auf höchstens endlich viele
Ausnahmen, wobei A ∈ (0, 1] eine beliebige, aber fest gewählte reelle Zahl ist.

Schließlich weisen wir die Hypertranszendenz der gewöhnlichen Dirichlet-
Reihen ζ(s; f) =

∑
n≥1 f(n)n−s und ζα(s) =

∑
n≥1bP (αn + β)c−s nach, wobei

f : N → C irgendeine Besicovitch-fastperiodische zahlentheoretische Funktion
ist, α, β > 0 der Ungleichung bα + βc > 1 genügt und P ∈ Z[X] die Bedingung
P (N) ⊆ N erfüllt.
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Notations

The Vinogradov symbols � and � have their usual meaning, and if the implied
constant depends on some parameter ε (say), then we write �ε. If we say that
some variable be fixed, then this usually entails that we drop such subscripts even
if the implied constant depends on said variable. The same comments apply to
the Landau symbols o(·) and O(·).

We indicate some of the notations and conventions used in this thesis. Some-
times we explain some of the notations listed below for convenience.

A , B, . . . usually denote finite sets.

A, B, . . . usually denote infinite sets.

1A denotes the characteristic function of a set A.

d | x means that d divides x.

e(x) = exp(2πix).

f(x) � g(x) means f(x)� g(x) and g(x)� f(x).

f(x) ∼ g(x) means f(x) = g(x)(1 + o(1)) as x→∞.

N, Z, Q, R, C are the sets of positive integers, integers, rational numbers,
real numbers and complex numbers, respectively.

N0 = N ∪ {0}.

A>0 = A ∩ (0,+∞) for A ⊆ R.

<z, =z denote the real part and imaginary part of z, respectively.

s = σ + it s is a complex number with <s = σ and =s = t.

D = {s ∈ C : 1/2 < σ < 1} .

p usually denotes a prime number unless stated otherwise.

φ(n) = ]{1 ≤ m ≤ n : m coprime to n}.

π(x) = ]{p ≤ x : p prime}.

]A denotes the cardinality of a set A .
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m(A) denotes the Lebesgue measure of a set A.

|z| is the absolute value of z ∈ C.

bxc is the largest integer less than or equal to x ∈ R.

{x} is x− bxc for x > 0.

‖x‖ = miny∈Z |x− y|.

z the conjugate of z ∈ C.
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Chapter 1

Introduction

We start with the definition of the Riemann Zeta-function and we refer to some of
its most significant properties. We state Voronin’s theorem about the universality
of ζ(s) and then give an exposition of results with respect to universality theorems
for large classes of zeta- and L- functions. In particular, we focus on Dirichlet L-
functions L(s, χ) and Hurwitz zeta-functions ζ(s;α) since their value-distribution
is the main scope of this thesis.

1.1 Preludé

1.1.1 The Riemann Zeta-Function ζ(s)

Zeta- and L- functions play a central role in analytic number theory. The Rie-
mann Zeta-function, defined for a complex variable s := σ + it by

ζ(s) =
∞∑
n=1

1

ns
=
∏

p prime

(
1− 1

ps

)−1
, σ > 1, (1.1)

may be regarded as the prototype. Both the Dirichlet series and the Euler
product which appear in the identity above, are absolutely convergent in the
half-plane σ > 1 and uniformly convergent in each compact subset of this half-
plane. The identity between them was discovered by Euler [17] and it may be
interpreted as an analytic version of the unique prime factorization of integers. It
was this simple observation that allowed Euler to prove the infinitude of primes,
a fact already known since Euclid’s elementary proof; however, Euler’s reasoning
was by means of analysis. Assuming that there were only finitely many primes,
the product in (1.1) is finite, and therefore convergent for s = 1, contradicting
the fact that the Dirichlet series in (1.1) reduces to the divergent harmonic series
as s→ 1+.

Riemann [73] was the first who treated ζ(s) as a function of a complex vari-
able. In his only paper on Number Theory he obtained a series of remarkable
results regarding ζ(s). He proved that ζ(s) can be continued analytically to the
whole complex plane except for a simple pole at s = 1. Moreover, he discovered
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and proved the functional equation

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s), (1.2)

for all complex numbers s, where Γ(s) denotes the Gamma-function.
It can be easily seen from (1.1) and (1.2) that the only zeros of ζ(s) in the

half-planes σ < 0 and σ > 1 are at the negative even integers −2n, n ∈ N.
Indeed, the absolute convergence in the half-plane σ > 1 of the Euler product in
(1.1) yields that ζ(s) is zero-free in this half-plane. Then the functional equation
(1.2) implies that ζ(s) has to have zeros in exactly those places where Γ(s/2) has
poles for σ < 0; namely, the points −2n, n ∈ N, which are also called the trivial
zeros of ζ(s). In addition, the reflection principle for ζ(s),

ζ(s) = ζ(s),

allows us to study ζ(s) in the upper half-plane.
In the same memoir, Riemann

1. outlined how a proof of the celebrated prime number theorem would follow
by establishing fundamental properties of ζ(s),

2. conjectured an asymptotic formula for the number of zeros of ζ(s) in the
region 0 ≤ σ ≤ 1, 0 < t ≤ T (counted according multiplicities);

3. conjectured that all non-trivial zeros of ζ(s), that is, complex zeros with
real part in the interval [0, 1], lie on the vertical line 1/2 + iR.

The prime number theorem states that

π(x) := ] {p ≤ x : p prime} ∼
x∫

2

du

log u
.

This formula was first conjectured by Gauss [23] and it was proved by Hadamard
[29] and de la Vallée-Poussin [92] (independently) who have built on ideas of
Riemann and showed that ζ(1 + it) 6= 0 for all real t 6= 0. This can be seen to
be equivalent to the prime number theorem. It also follows from the functional
equation that ζ(it) 6= 0 for real numbers t. Therefore, the non-trivial zeros of
ζ(s) lie inside the open strip 0 < σ < 1. This strip is also called the critical strip
of ζ(s) since it contains vital information with respect to the zero-distribution of
ζ(s).

Riemann’s conjecture on the asymptotic formula

N(T ) ∼ T

2π
log

T

2πe
,

where N(T ) := {ρ = β + iγ : 0 < β < 1, 0 < γ ≤ T, ζ(ρ) = 0} , was proved by
von Mangoldt [94, 95]. In particular, von Mangoldt proved more precisely that

N(T ) =
T

2π
log

T

2πe
+O(log T ), T ≥ 1.

2



Finally, Riemann’s conjecture on the non-trivial zeros of ζ(s) having all real
part σ = 1/2 is known as the Riemann Hypothesis (RH) and it remains un-
solved so far. There have been various attempts to prove this hypothesis by
several mathematicians over the last 160 years since Riemann posed his conjec-
ture and, although they were not successful, they provided new insights on the
zero-distribution of ζ(s). For example, Hardy [30] showed that infinitely many
zeros of ζ(s) lie on the vertical line 1/2 + iR, which is aso known as the critical
line, while Selberg [80] was the first to prove that a positive proportion of all
non-trivial zeros of ζ(s) have real part σ = 1/2.

In another direction there has been a lot of effort on proving zero-free regions
of ζ(s) in 0 < σ < 1 because they yield an asymptotic formula of π(x) with
a remainder term. The largest known zero-free region for ζ(s) was found by
Vinogradov [93] and Korobov [47] (independently) who proved that

ζ(s) 6= 0 for σ ≥ 1− (log |t|)−1/3(log log |t|)−2/3

as |t| → +∞. This non-vanishing implies

π(x) =

x∫
2

du

log u
+O

(
x exp

(
−C (log x)3/5

(log log x)1/5

))
,

as x→∞, where C is an absolute positive constant.
Von Koch [44] showed for fixed θ ∈ [1/2, 1) that

π(x) =

x∫
2

du

log u
+Oε(x

θ+ε) as x→∞ ⇔ ζ(s) 6= 0 for σ > θ.

Here RH would imply that one can take θ = 1/2. Moreover, with regard to
known zeros of ζ(s) on the critical line, it is obvious that θ can not be smaller
than 1/2. Thus, RH states that the prime numbers are as uniformly distributed
as possible.

This is only the “peak of the iceberg” with respect to the value-distribution
theory of ζ(s), especially inside the critical strip, and its applications in problems
arising in Number Theory. We refer to to the monographs of Ivić [38] and
Titchmarsh [90] for a detailed exposition of results regarding ζ(s).

1.1.2 Voronin’s Universality Theorem

In the 1910s Bohr developed methods to investigate the value-distribution of ζ(s)
inside the critical strip. In particular, his approach, inspired by concepts from
probability theory, led to important insights. At first [5] he obtained a theorem
for ζ(s) which nature is very similar to the Big Picard Theorem:

Theorem 1.1. In any strip 1 < σ < 1+ε, ζ(s) takes any non-zero value infinitely
often.

Later, in joint work with Courant [7], he proved

3



Theorem 1.2. Let σ ∈ (1/2, 1] be fixed. Then the set of {ζ(σ + it) : t ∈ R} is
dense in C.

Of course, this denseness cannot hold in the half-plane of absolute convergence of
the ζ(s) defining Dirichlet series; whether or not this is also true for the critical
line 1/2 + iR is still open (cf. [86]).

Bohr’s line of investigation appears to have been forsaken for some decades.
It was in 1972 when Voronin [98] proved a multi-dimensional version of Bohr’s
latter result:

Theorem 1.3. Given a positive number ε, a positive integer N and a vector
(a0, a1, . . . , aN) ∈ CN+1 satisfying a0 6= 0, there exists a positive integer n such
that

|ζ(j)(s+ in)− aj| < ε, j = 0, 1, . . . , N. (1.3)

Here s has to lie in the right half of the critical strip, i.e., 1/2 < Re s < 1 as in
Bohr’s theorem, and ζ(j)(s) denotes the j-th derivative of ζ(s) and ζ(0)(s) = ζ(s).

In view of this remarkable approximation property of ζ(s) and its derivatives
one might consider an application in order to approximate not a vector of complex
numbers but a a complex-valued function. Of course, Taylor expansion is the
tool to step from approximating numbers to approximation of a function. Indeed
this construction has been realized by Garunkštis et al. [21].

It is not clear whether Voronin had this idea in mind but while writing his
doctoral thesis in 1975 he succeeded in proving the following infinite-dimensional
analogue [99]:

Theorem 1.4. Given a positive number ε and an analytic non-vanishing func-
tion f defined somewhere on a disc with center 0 and radius r < 1/4, there exists
a real number τ such that

max
|s|≤r

∣∣∣∣ζ (s+
3

4
+ iτ

)
− f(s)

∣∣∣∣ < ε;

Since the set of target functions is almost unlimited, this phenomenon is called
universality. Voronin called his theorem the theorem about little discs. Reich
[69] and Bagchi [2] improved Voronin’s result significantly in replacing the disc
by an arbitrary compact set in the right half of the critical strip with connected
complement, and by giving a proof in the language of probability theory. The
strongest version of Voronin’s theorem has the form:

Theorem 1.5. Let K be a compact set in the right half of the critical strip
D := {s ∈ C : 1/2 < σ < 1} with connected complement, and let f(s) be a non-
vanishing continuous function defined on K which is analytic in the interior of
K. Then for every ε > 0

lim inf
T→∞

1

T
m

{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0. (1.4)

We may interpret the absolute value of an analytic function as an analytic
landscape over the complex plane. Then the universality theorem states that
any finite analytic landscape can be found (up to an arbitrarily small error) in
the analytic landscape of ζ(s).

4



1.2 Generalizations

1.2.1 Dirichlet L-Functions and Hurwitz Zeta-Functions

The Dirichlet L-functions were introduced by Dirichlet [14] in order to tackle the
problem of the distribution of primes in arithmetic progressions an + b, n ∈ N,
for coprime positive integers a and b.

If q is a positive integer, then a Dirichlet character mod q is a non-vanishning
group homomorphism from the group (Z/qZ)∗ of prime residue classes modulo
q to C. Therefore, the number of Dirichlet characters mod q is φ(q), where φ
is Euler’s totient function. The character which is identically one, is called the
principal character and is denoted usually by χ0. By setting χ(a) = 0 on the
non-prime residue classes, such a character extends via χ(n) = χ(a) for n ≡ a
mod q, to a completely multiplicative arithmetic function, that is

χ(mn) = χ(m)χ(n),

for any positive integers m and n. Then the Dirichlet L-function L(s, χ) attached
to a character χ mod q is given by

L(s, χ) :=
∞∑
n=1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1
, σ > 1.

This class of functions contains ζ(s), since ζ(s) = L(s, χ0), where χ0 is the
principal Dirichlet character mod 1. From here on L(s, χ) will always denote a
Dirichlet L-function associated with a Dirichlet character χ mod q.

It may happen that for values of n coprime with q, the character χ(n) may
have a period less than q. If that is the case, we say that χ is imprimitive, and
otherwise primitive; the princicipal character is not considered to be primitive.
It can be seen that any imprimitive character is induced by a primitive character.
Moreover, two characters are said to be non-equivalent if they are not induced by
the same primitive character. The characters to a common modulus are pairwise
non-equivalent.

Dirichlet L-functions share many properties with ζ(s). They also have a
meromorphic continuation to the whole complex plane, with the only difference
that L(s, χ) is regular at s = 1 for any non-principal Dirichlet character χ. One
can obtain a Riemann-von Mangoldt formula and similar zero-free regions as
for ζ(s). Furthermore, Dirichlet L-functions to primitive characters satisfy a
Riemann-type functional equation similar to (1.2). Using analogous techniques
as for ζ(s), one can prove that L(s, χ) 6= 0 for σ ≥ 1 and, therefore, obtain the
following prime number theorem for arithmetic progressions:

π(x; a mod q) := ] {p ≤ x : p ≡ a mod q, p prime} ∼ π(x)

φ(q)
.

Lastly, the analogue of RH exists also for Dirichlet L-functions; the so-called
Generalized Riemann Hypothesis (GRH) states that

L(s, χ) 6= 0 for all σ >
1

2
and χ.

5



Yet another generalization of ζ(s) is the Hurwitz Zeta-function which is de-
fined by

ζ(s;α) =
∞∑
n=0

1

(n+ α)s
, σ > 1.

Here α is a real parameter from the interval (0, 1] and for α = 1 we obtain
ζ(s). Hurwitz [37] himself treated only Hurwitz zeta-functions with a rational
parameter. In his investigations on Dirichlet’s analytic class number formula, he
studied Dirichlet series of the form ∑

n≡a mod m

1

ns

which can be rewritten as m−sζ(s; a/m).
It can be seen that ζ(s;α) can be analytically continued to the whole complex

plane except for a simple pole at s = 1 and it satisfies a Riemann-type functional
equation; however, on the other side of such equation does not appear ζ(1−s;α)
but L(1− s;α, 1), where L(s;λ, α) is the Lerch Zeta-function defined by

L(s;λ, α) :=
∞∑
n=0

e(λn)

(n+ α)s
, σ > 1,

with parameters λ ∈ R and α ∈ (0, 1]. For a survey on the Lerch Zeta-function
we refer to [52].

There exists a very convenient connection between L(s, χ) and ζ(s;α) with
rational parameter α, which can be described by the following two identities:

L(s, χ) =
1

qs

q−1∑
r=1

χ(r)ζ

(
s;
r

q

)
(1.5)

and if q and r are positive integers such that 0 < r < q and (r, q) = 1, then

ζ

(
s;
r

q

)
=

qs

ϕ(q)

∑
χ

χ(r)L(s, χ), (1.6)

both valid for all s ∈ C, where the summation runs over all Dirichlet characters
χ mod q.

It appears that switching from a rational to an irrational parameter does
not affect analytic continuation, functional identities and the order of growth,
however, the zero-distribution definitely depends and the general distribution of
values might depend on the diophantine nature of the parameter.

A major difference between ζ(s;α) for α 6= 1/2, 1 and ζ(s) or L(s, χ) is
the absence of an Euler product representation in the half-plane σ > 1. This
already differentiates the zero-distribution of ζ(s;α) from L(s, χ). It has been
proved by Davenport and Heilbronn [13] and Cassels [12] that ζ(s;α) has zeros
for α 6= 1/2, 1 in the half-plane σ > 1.
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In the succeeding chapters we will need the following formula for ζ(s;α) which
holds for all 0 < α ≤ 1, 0 < σ0 ≤ σ ≤ 2 and πx ≥ t ≥ t0 > 0:

ζ(s;α) =
∑

0≤n≤x

1

(n+ α)s
+
x1−s

1− s
+Oσ0 (xσ) . (1.7)

For a proof we refer to [43, Chapter III,§2,Theorem 1]. Such a formula is usually
called an approximate functional equation and has been proven firstly for ζ(s).

1.2.2 Universality Theorems and Applications of Them

The first who proved universality theorems for Dirichlet L-functions were Voronin
[97], Gonek [24] and Bagchi [2] (independently):

Theorem 1.6. Let χ1, . . . , χJ be pairwise non-equivalent Dirichlet characters,
K1, . . . ,KJ be disjoint compact sets of the strip D with connected complements.
Further, for each 1 ≤ k ≤ J , let fk(s) be a continuous non-vanishing function
on Kk which is analytic in the interior of Kk. Then, for any ε > 0

lim inf
T→∞

m

{
τ ∈ [0, T ] : max

1≤k≤J
max
s∈Kk
|L(s+ iτ, χk)− fk(s)| < ε

}
> 0.

Observe that the latter universality theorem is proved for a family of L-functions
and not just a single L-function. For that reason it is also called joint univer-
sality theorem and in order to be proved, some sort of “independence” has to be
posed upon the L-functions which appear in the theorem. Here the orthogonality
relation of Dirichlet characters plays that role:∑

amod q

χ(a) =

{
φ(q), if χ = χ0,
0, otherwise.

Gonek [24] and Bagchi [2] in their respective theses proved, additionally to
the aforementioned theorem, that ζ(s;α) is universal whenever α is not algebraic
irrational. In fact, with the additional assumption of α 6= 1/2, 1 they showed:

Theorem 1.7. Let α ∈ (0, 1] be a transcendental number or a rational number
different from 1/2 and 1. Let also K be a compact set of the strip D with con-
nected complement, and let f(s) be a continuous function defined on K which is
analytic in the interior of K. Then, for any ε > 0

lim inf
T→∞

1

T
m

{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ ;α)− f(s)| < ε

}
> 0.

For the proof of the aforementioned theorem when α is transcendental, it is
crucial that the numbers

logα, log(1 + α), log(2 + α), . . .

are linearly independent over Q. On the other hand, when α is rational but not
1/2 or 1, then the theorem follows almost directly from the joint universality
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theorem of Dirichlet L-functions and relation (1.6). Unfortunately, when α is
algebraic irrational, both of the previous methods fail. We will return to this
discussion in Chapter 4.

It is quite remarkable that the target function f in the preceding theorem
is allowed to have zeros. When such a universality statement holds without
the assumption of f being non-vanishing, we call it strong universality theorem.
Strong universality has an important application to the distribution of zeros. Let
a < σ1 < σ2 < b and let

N(t;σ1, σ2;L) := ] {ρ ∈ C : σ1 ≤ <ρ ≤ σ2, 0 ≤ =ρ ≤ t, L(ρ) = 0}

for some function L. If a strong universality theorem can be proved for L in the
strip a < σ < b, then

N(T ;σ1, σ2;L)� T, T ≥ 1.

The proof is straightforward and we mention it here briefly. The strong univer-
sality theorem implies that there is τ > 0 such that L(s + iτ) is ε-close to a
function f having a zero in a disc inside the strip a < σ < b, where ε is equal to
the minimum of f on the disc. Then Rouché’s theorem yields that also L(s+ iτ)
has a zero in that disc and from the positive lower density of the set of τ given
in the strong universality theorem, the claim follows. This also explains why
the strong universality theorem can not be true for ζ(s;α) when α = 1/2 or 1.
For, otherwise, ζ(s; 1/2) = (2s − 1)ζ(s) or ζ(s; 1) = ζ(s) and, thus, the strong
universality theorem would be true for ζ(s). But from the above discussion, it
would follow for some fixed ε > 0 that

N

(
T ;

1

2
+ ε, 1; ζ

)
� T,

which contradicts known zero-density estimates for ζ(s) in the strip D.
We conclude this section by discussing one more type of universality. The

first discrete universality theorem is due to Reich [71] for Dedekind zeta-functions.
Let K be an algebraic number field (i.e., a finite extension of Q) of degree dK =
[K : Q]. Then the associated Dedekind zeta-function is for σ > 1 defined by

ζK(s) =
∑
a

1

N(a)s
=
∏
p

(
1− 1

N(p)s

)−1
, σ > 1;

here the sum is taken over all non-zero integral ideals, the product is taken over
all prime ideals of the ring of integers of K and N(a) denotes the norm of the
ideal a. Reich proved the following:

Theorem 1.8. Let K be a compact set of
{
s ∈ C : 1−max {2, dK}−1 < σ < 1

}
with connected complement, and f be a non-vanishing continuous function on K
that is analytic in its interior. Then, for any h, ε > 0,

lim inf
N→∞

1

N
]

{
1 ≤ n ≤ N : max

s∈K
|ζK(s+ ihn)− f(s)| < ε

}
> 0. (1.8)
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Observe that the case of ζ(s) is also included in the latter theorem since ζ(s) =
ζQ(s) and dQ = 1. Also, if the degree dK is large, then the vertical strip where
we have universality gets thinner and its width depends on dK. However, in case
of abelian fields K, the strip of universality can be extended to the whole strip
D independently of the degree dK, as Gonek [24] showed.

Bagchi [2] obtained the joint discrete universality of Dirichlet L-functions.
Based on his work, Sander and Steuding [76] obtained a discrete joint universality
theorem for Hurwitz zeta-functions. There exists a rich literature on discrete
universality results for zeta-functions and there are at least twice as many as
the current ones for the continuous universality. The reason is that in such
theorems we can also ask what other sequences could replace the arithmetic
progressions (hn)n∈N in (1.8). It is apparent that discrete universality provides
more information regarding the value-distribution of the zeta- or L-function we
wish to study, since we can examine this function’s behaviour over a prescribed
(discrete) set.

For more results on (discrete) universality theorems and more references we
suggest to the interested reader the book of Laurinčikas [50], the survey of Mat-
sumoto [56] and the monograph of Steuding [86].

The most spectacular application of universality is Riemann’s hypothesis. It
has been discovered by Bagchi [3] that RH is equivalent to the property that
ζ(s) can approximate itself in the sense of Voronin’s theorem (1.4). Indeed, if
there are zeros to the right of the critical line, then the approximation property in
combination with Rouché’s theorem would imply the existence of infinitely many
complex zeros in a domain where there should not be any zero at all; a classical
zero-density estimate for the number of hypothetical zeros off the critical line and
the positive lower density for the approximating shifts conclude the reasoning in
the same way we described above.

Another consequence of universality for a zeta- or an L- function is the
functional independence of the corresponding function. We say that the func-
tions f1(s), . . . , fm(s) are functionally independent if for any continuous functions
F0, F1, . . . , FN : Cm → C, not all identically vanishing, the function

N∑
k=0

skFk(f1(s), . . . , fm(s))

is non-zero for some values of s. It was Voronin [96] who first proved that Dirichlet
L-functions are functionally independent by applying his universality theorem
(in fact, it may have been his original aim until he discovered the universality
property of ζ(s)). We give here a general statement of Voronin’s theorem and a
proof can be found in [86, Theorem 10.3].

Theorem 1.9. Assume that L is a function satisfying the universality prop-
erty (1.4) in place of ζ(s), z = (z0, z1, . . . , zm−1) ∈ Cm and suppose that F0(z),
F1(z), . . . , Fn(z) are given continuous functions, not all identically zero. Then
there is s ∈ C such that

N∑
k=0

skFk
(
L(s), L′(s), . . . , L(m−1)(s)

)
6= 0

9



1.3 Outline of the Thesis

We aim at a deeper understanding of the value-distribution of Dirichlet L-
functions and Hurwitz zeta-functions inside the strip D.

In Chapter 2 we obtain discrete second moments for the aforementioned zeta-
and L-functions with respect to polynomials. We prove by elementary methods
that if σ > 1 and d ∈ N, then for almost all vectors (a1, . . . , ad) ∈ [0,+∞)d

lim
N→∞

1

N

N∑
n=1

|ζ
(
σ + i

(
a1n+ · · ·+ adn

d
)

;α
)
|2 = ζ(2σ;α)

and

lim
N→∞

1

N

N∑
n=1

|L
(
σ + i

(
a1n+ · · ·+ adn

d
)
, χ
)
|2 = L(2σ, χ0).

Moreover, we obtain the same result on the left of the vertical line 1 + iR by
using more advanced tools from Analytic Number Theory, such as estimates for
Weyl sums and order estimates of L(s, χ) and ζ(s;α) near the line 1 + iR.

In Chapter 3 we prove a series of discrete universality criteria for L(s;χ) and
ζ(s;α) with respect to uniformly distributed sequences (xn)n∈N without posing
growth conditions on xn as it is usually done in such theorems. These criteria
were motivated by our previous work [53, 83, 84]. To justify our results we give
three examples of such sequences that will satisfy our universality criteria. They
all have less structure than an arithmetic progression (hn)n∈N which is the most
attractive (but easy) candidate for discrete universality theorems. The example
on the c-points that will be mentioned further ahead is the outcome of joint work
with Jörn Steuding and Teerapat Srichan. Building on results from Chapter 2
and using basic zero-density estimates for L(s;χ), we prove in the final part of
this chapter a discrete universality theorem by using the logarithms of L(s, χ).

In Chapter 4 we tackle the open question of whether ζ(s;α) with algebraic
irrational has the universality property or not. This is joint work with Jörn
Steuding and we give partially an affirmative answer. We also obtain effective
universality results.

In Chapter 5, we prove by elementary means, a weak version of the functional
independence property for Dirichlet series for which is not known yet whether
they are universal or not. The statements can also be found in [82]. This series
are generated by almost periodic arithmetical functions and Beatty sets. Beyond
the scope of this thesis, we have also proved analytic continuation [85] of such
series.

10



Chapter 2

Discrete Moments with respect
to Polynomials

In this chapter we obtain discrete second moments for ζ(σ+it;α) and L(σ+it, χ)
in the half-plane σ > 1/2 with respect to shifts of the imaginary argument t. In
particular, we generalize some results regarding the Riemann Zeta-function and
we study the case when these vertical shifts are generated by a polynomial of
arbitrary degree. In the last section we recall the Lindelöf Hypothesis and state
a conditional result.

2.1 In the Half-Plane σ > 1

From here on a, b, . . . will always denote a vector of [0,+∞)d while Pa(x) :=
a1x + · · · + adx

d define a real-valued polynomial. Since ζ(s;α) and L(s, χ) are
absolutely convergent in the half-plane σ > 1, computing their discrete second
moments with respect to Pa(x) is quite easy if one is willing to omit a negligible
set of [0,+∞)d. This set can be written explicitly:

L(d, α) :=
⋂
r∈Qd

∞⋂
k,`=0

k 6=`

{
a ∈ [0,+∞)d : ai log

k + α

`+ α
6= 2πri, 1 ≤ i ≤ d

}
.

We can prove now the following theorem:

Theorem 2.1. Let d ≥ 1 be an integer, α ∈ (0, 1] and σ > 1. Then, for any
a ∈ L(d, α) and any b ∈ L(d, 1), we have

lim
N→∞

1

N

N∑
n=1

|ζ(σ + iPa(n);α)|2 = ζ(2σ;α)

and

lim
N→∞

1

N

N∑
n=1

|L(σ + iPb(n), χ)|2 = L(2σ, χ0).
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Proof. We have

lim
N→∞

1

N

N∑
n=1

|ζ(σ + iPa(n);α)|2 = lim
N→∞

1

N

N∑
n=1

∞∑
k,`=0

(k + α)−σ

(`+ α)σ

(
k + α

`+ α

)iPa(n)

=
∞∑

k,`=0

(k + α)−σ

(`+ α)σ
lim
N→∞

1

N

N∑
n=1

(
k + α

`+ α

)iPa(n)
=: A,

where interchanging summation and the limit operator is valid by the absolute
convergence of the double series

∑
k,` ((k + α)(`+ α))−σ. If we split now the

latter double sum in sums of diagonal and non-diagonal terms, we get

A = ζ(2σ;α) +
∞∑

k,`=0

k 6=`

1

(k + α)σ(`+ α)σ
lim
N→∞

1

N

N∑
n=1

e

(
Pa(n)

2π
log

k + α

`+ α

)
.

Observe that for any pair (k, `) with k 6= `, log ((k + α)/(`+ α))Pa(x)/2π is a
polynomial with at least one irrational coefficient as can be seen from our choice
of the vector a. Therefore, Theorems A.3 and A.4 yield

lim
N→∞

1

N

N∑
n=1

e

(
Pa(n)

2π
log

k + α

`+ α

)
= 0

for any pair (k, `) with k 6= `, and the first part of the theorem follows.
The case of L(s, χ) is similar. Indeed, since b ∈ L(d, 1), we obtain that

lim
N→∞

1

N

N∑
n=1

|L(σ + iPb(n), χ)|2 = lim
N→∞

1

N

N∑
n=1

∞∑
k,`=1

χ(k)χ(`)

kσ`σ

(
k

`

)iPb(n)
=

∞∑
k=1

|χ(k)|2

k2σ
+

+
∞∑

k,`=1

k 6=`

χ(k)χ(`)

kσ`σ
lim
N→∞

1

N

N∑
n=1

e

(
Pb(n)

2π
log

k

`

)

=L(2σ, χ0).

We do not discuss the case of a ∈ [0,+∞)d \ L(d, α), mainly because the
primary results of this chapter, which are given in the next section, are also of
metric nature. We state here, however, the case of d = 1 for L(s, χ), which was
proved by Reich [70]. Before that we need to introduce the finite Euler products

LM (s, χ) :=
∏
p∈M

(
1− χ(p)

ps

)−1
, σ > 0,

where M is a finite set of primes and χ a Dirichlet character mod q.
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Theorem 2.2. Let A =
{

2πm (log(k/`))−1 : k, `,m ∈ N with k 6= `
}

.

i. For 0 < a1 /∈ A and σ > 1/2,

lim
N→∞

1

N

N∑
n=1

|L(σ + ia1n, χ)|2 = lim
T→∞

1

T

T∫
0

|L(σ + ia1t, χ)|2dt.

ii. For 0 < a1 ∈ A and σ > 1/2, there exists a finite set of prime numbers
M , independently from L and σ, such that

lim
N→∞

1

N

N∑
n=1

|L(σ + ia1n, χ)|2 = lim
N→∞

1

N

N∑
n=1

|LM (σ + ia1n, χ)|2×

× lim
T→∞

1

T

T∫
0

∣∣∣∣ LLM
(σ + ia1t, χ)

∣∣∣∣2 dt.

We expect similar statements to hold also for d ≥ 2, as well as for ζ(s;α),
although there is no Euler product for α 6= 1/2, 1.

2.2 Inside the Strip 1/2 < σ ≤ 1

Our aim is to obtain similar discrete second moments like in the previous section
inside D = {s ∈ C : 1/2 < σ ≤ 1}. As we mentioned earlier, the case of linear
polynomials Pa1(x) has been resolved by Reich [70] for L(s, χ). In subsection
2.2.1 we sketch a proof also in the case of ζ(s;α).

The situation of higher degree polynomials is much more difficult. At first,
we have to use an approximate functional equation for ζ(s;α) or L(s, χ). Of
course, the length of the Dirichlet polynomial in any such equation is depending
on t. Therefore, when the degree of Pa(x) is large, the known approximate
functional equations contain rather long Dirichlet polynomials. In subsection
2.2.2 we provide a method to control the length of those Dirichlet polynomials,
by taking its summands running up to a small power µ of t. The repercussion
of this approach is that we are forced to narrow the strip where we can prove an
asymptotic formula for the discrete moments. The left abscissa of this strip can
be computed explicitly, depends on the degree of Pa(x) and is less than one.

The second and major difficulty is that one is led to estimate finite expo-
nential sums

∑
n e (Pa(n)) which are known as Weyl sums. In the case of linear

polynomials the latter sum is a geometric series and can be estimated rather
efficiently. It is worth mentioning the ingenious work of Good [25], who proved
an asymptotic formula for the discrete fourth monents of ζ(s) in D by estimating
such sums. His approach can easily be adapted for the discrete second moments
of ζ(s;α) and L(s, χ), when someone wishes to have an explicit error term as N
tends to infinity. On the other hand, for higher degree polynomials the known
estimates for such sums rely heavily on the rational approximations of the co-
efficients of Pa(x) and the corresponding length of the sum. At this point lies
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the main difference with the case of the continuous moments, where exponen-
tial integrals

∫ b
a

e (Pa(x)) dx, have to be estimated and they are much easier to
handle than the Weyl sums (see for example [38, Chapter 2]). At the expense
of a negligible set of vectors a, we will be able to overcome such difficulties in
subsection 2.2.3 by making use of known mean value estimates for Weyl sums.

2.2.1 The Case of Linear Polynomials

In order to obtain discrete second moments for ζ(s;α) with respect to linear poly-
nomials, we will employ basic properties of Besicovitch almost-periodic functions,
as well as the so-called Gallagher’s lemma. We refer to [78, Chapter VI] for a
treatment of almost-periodic arithmetical functions or Section A.5. We state here
Gallagher’s lemma, which is proven to be extremely useful in analytic number
theory.

Lemma 2.1 (Gallagher’s Lemma). Let T0 > 0, T ≥ δ > 0 and B be a fi-
nite subset of ⊆ [T0 + δ/2, T + T0 − δ/2]. Define also Nδ(x) :=

∑
t∈B,|t−x|<δ 1

and assume that f(x) is a complex-valued continuous function on [T0, T + T0]
continuously differentiable on (T0, T + T0). Then

∑
t∈B

N−1δ (t)|f(t)|2 ≤ 1

δ

T+T0∫
T0

|f(x)|2dx+

 T+T0∫
T0

|f(x)|2dx
T+T0∫
T0

|f ′(x)|2dx

1/2

.

Proof. For a proof see [59, Lemma 1.4].

Before stating the next theorem, we define the following Dirichlet polynomials

(s, α) 7−→ ζQ (s, α) :=

Q−1∑
n=0

1

(n+ α)s
, (2.1)

for every (s, α) ∈ C× (0, 1].

Theorem 2.3. Let α ∈ (0, 1], a1 ∈ L(1, α) and σ > 1/2. Then

lim
N→∞

1

N

N∑
n=1

|ζ (σ + ia1n;α)|2 = ζ(2σ;α).

Proof. If we set fQ(t) := ζ(σ+it;α)−ζQ(σ+it;α), for any t > 0 and Q ∈ N, then
Lemma 2.1 implies that, for any integer N ≥ max{Q,Q/a1}, T0 = a1(N − 1/2),
T = a1N , δ = a1 and B = {a1n : N ≤ n ≤ 2N},

2N∑
n=N

|ζ (σ + ia1n;α)− ζQ (σ + ia1n;α)|2

≤ 1

a1

2a1N∫
a1(N−1/2)

|fQ(t)|2 dt+

 2a1N∫
a1(N−1/2)

|fQ(t)|2dt
2a1N∫

a1(N−1/2)

|f ′Q(t)|2dt


1/2

.

(2.2)
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The definition (2.1) of ζQ(s;α) and the approximate functional equation (1.7)
for ζ(s;α) imply that

fQ(t) =
∑
Q≤n≤t

1

(n+ α)σ+it
+O(t−σ)

for any 0 < a1N ≤ t ≤ 2a1N . Therefore,

2a1N∫
a1(N−1/2)

|fQ(t)|2 dt�
2a1N∫

a1(N−1/2)

∣∣∣∣∣ ∑
Q≤n≤t

1

(n+ α)σ+it

∣∣∣∣∣
2

dt+

2a1N∫
a1(N−1/2)

t−2σdt. (2.3)

The second term in the right-hand side of (2.3) is Oa1 (N1−2σ). We also have

2a1N∫
a1(N−1/2)

∣∣∣∣∣ ∑
Q≤n≤t

1

(n+ α)σ+it

∣∣∣∣∣
2

dt

�a1 N
∑

Q≤k≤2a1N

1

(k + α)2σ
+

+
∑

Q≤k 6=`≤2a1N

1

(k + α)σ(`+ α)σ

2a1N∫
max{k,`,a1(N−1/2)}

(
k + α

`+ α

)it
dt

�a1 NQ
1−2σ +

∑
0≤`<k≤2a1N

1

(k + α)σ(`+ α)σ

(
log

k + α

`+ α

)−1
�a1,αNQ

1−2σ +N2−2σ(logN)2,

(2.4)

where the square of the logarithm appears for the case of σ = 1. Hence, relations
(2.3) and (2.4) yield that

2a1N∫
a1(N−1/2)

|fQ(t)|2 dt�a1,αNQ
1−2σ +N2−2σ(logN)2. (2.5)

We can prove in the same manner that

2a1N∫
a1(N−1/2)

∣∣f ′Q(t)
∣∣2 dt�a1,α NQ

1−2σ +N2−2σ(logN)3, (2.6)

where

f ′Q(t) =
∑
Q≤n≤t

− log(n+ α)

(n+ α)σ+it
+O(t−σ)

for any 0 < a1N ≤ t ≤ 2a1N . We deduce now from relations (2.2), (2.5) and
(2.6) that

lim sup
N→∞

1

N

N∑
n=1

|ζ (σ + ia1n;α)− ζQ (σ + ia1n;α)|2 �a1,α Q
1−2σ.
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Since the functions
R 3 t 7−→ ζQ(σ + ia1t;α),

Q ∈ N, are elements of the set A := spanC {t 7−→ e(βt) : β ∈ [0, 1)}, the latter
relation implies that the function

N 3 n 7−→ ζ(σ + ia1n;α)

is a B2-almost periodic arithmetical function (see Section A.5), its mean value
exists and, from Theorem A.24 it follows that

lim
N→∞

1

N

N∑
n=1

|ζ (σ + ia1n;α)|

= lim
Q→∞

lim
N→∞

1

N

N∑
n=1

|ζQ (σ + ia1n;α)|2

= lim
Q→∞

[
Q−1∑
k=0

1

(k + α)2σ
+

+
∑

0≤k 6=`≤Q−1

lim
N→∞

1

N

N∑
n=1

(k + α)−σ

(`+ α)σ
e

(
a1n

2π
log

k + α

`+ α

)]
= ζ(2σ;α).

2.2.2 An Approximate Functional Equation

We start with another approximate functional equation for ζ(s;α) and L(s, χ),
respectively. All constants appearing in this subsection, implicit or not, are
effectively computable unless stated otherwise.

Theorem 2.4. For every µ > 0, there exists a positive number ν = ν(µ, σ0),
such that

ζ(s;α) =
∑

0≤n≤tµ

1

(n+ α)s
+Oµ,σ0

(
t−ν
)
, t ≥ t1 > 1,

and

L(s, χ) =
∑

n≤q(tµ+1)

χ(n)

ns
+Oµ,σ0

(
t−ν
)
, t ≥ t1 > 1,

uniformly in A(µ) < σ0 ≤ σ ≤ 1 and 0 < α ≤ 1, where

A(µ) :=


1− µ−1, if µ ≥ 1,

min

{
1

2µ
, 1− θµ2

}
, if 0 < µ < 1,

(2.7)

θ = 4/(27η2) and η = 4.45. Moreover, if µ ≥ 1 or A(µ) = 1−θµ2 for 0 < µ < 1,
the approximate functional equations hold uniformly in A(µ) < σ0 ≤ σ ≤ 2 and
0 < α ≤ 1.
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We will prove the theorem only in the case of ζ(s;α), since we can obtain
the above approximate functional for L(s, χ) directly from its expression (1.5) as
a linear combination of finitely many Hurwitz zeta-functions. The proof of the
theorem is based on some well-known order estimates and approximate functional
equations for ζ(s;α), as well as Perron’s formula.

Lemma 2.2. If ε ∈ (0, 1), then

ζ1(s;α) := ζ(s;α)− α−s �ε |t|ε, |t| ≥ t0 > 0,

uniformly in 1− ε ≤ σ ≤ 2 and 0 < α ≤ 1.

Proof. For a proof see [1, Theorem 12.23].

The next lemma has its origins in the work of Vinogradov and Korobov re-
garding zero-free regions of the Riemann Zeta-function. It has undergone through
the decades many generalizations and improvements. We present here the latest
version due to Ford [18, Theorem 1]:

Lemma 2.3. The following bound

ζ1(s;α)� |t|η(1−σ)3/2 log2/3 |t|, |t| ≥ t1 > 1, (2.8)

holds uniformly in 1/2 ≤ σ ≤ 1 and 0 < α ≤ 1.

Proof of Theorem 2.4. The case of µ ≥ 1 follows immediately from the approxi-
mate functional equation (1.7) for ζ(s;α):

ζ(s;α) =
∑

0≤n≤x

1

(n+ α)s
+
x1−s

1− s
+Oσ0(x

−σ), t ≥ t0 > 0,

where 0 < σ0 ≤ σ ≤ 2 and πx ≥ t. We only need to set x = tµ.
If now 0 < µ < 1, then we see that

A(µ) :=


1

2µ
, if µ0 < µ < 1,

1− θµ2, if 0 < µ ≤ µ0,

where µ0 ∈ [1/2, 3/4] is the unique real root of the polynomial Q(x) = 2θx3 −
2θx+ 1 in the interval [0, 1].

Let µ0 < µ < 1. We consider the approximate functional equation for ζ(s;α)
due to Miyagawa [58, Theorem 2], which is a generalization of the approximate
functional equation for ζ(s) due to Hardy and Littlewood [31, Theorem 1]:

ζ(s;α) =
∑

0≤n≤x

1

(n+ α)s
+O

(
x−σ + |t|1/2−σyσ−1

)
+

+
Γ(1− s)
(2π)1−s

[
e

(
1− s

4

)∑
n≤y

e ((1− α)n)

n1−s + e

(
s− 1

4

)∑
n≤y

e (αn)

n1−s

]
,
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where 0 ≤ σ ≤ 1 and x ≥ 1, y ≥ 1 are such that 2πxy = |t|. If we set x = tµ,
then Stirling’s formula (see Theorem A.8) yields for t ≥ t0 > 0 and 0 ≤ σ ≤ 1
that

ζ(s;α)−
∑

0≤n≤tµ

1

(n+ α)s
�µ t

1/2−σ
∑

n≤t1−µ/(2π)

1

n1−σ + t−σµ + t1/2−σ+(σ−1)(1−µ)

�µ t
1/2−σ+(1−µ)σ + t−σµ + t−σµ+µ−1/2

�µ t
1/2−σµ + t−1/2−σµ+µ,

where the exponent of t in the latter relation is negative for

1

2µ
< σ ≤ 1.

Lastly, let 0 < µ ≤ µ0. If we set c = 1 + b, where b = b(µ) ∈ (0, 1] will be
determined later on, and x = m+ 1/2, m ∈ N, then the absolute convergence of
ζ1(s;α) in the half-plane σ > 1 and Perron’s formula (see Theorem A.9) imply
that

1

2πi

c+iT∫
c−iT

ζ1(s+ z;α)
(x+ α)z

z
dz =

m∑
n=1

1

(n+ α)s
+

+Oσ0

(
1

T

∞∑
n=1

(
x+ α

n+ α

)c ∣∣∣∣log
x+ α

n+ α

∣∣∣∣−1
)
,

(2.9)

uniformly in σ ≥ σ0 > 0 and 0 < α ≤ 1. We estimate the sum in the error term.
Observe that∑

n<x
2

+
∑
n>2x


(
x+ α

n+ α

)c ∣∣∣∣log
x+ α

n+ α

∣∣∣∣−1 � xc

∑
n<x

2

+
∑
n>2x

 max{x, n}+ α

nc|x− n|

� xc
∞∑
n=1

1

nc

� xc

b
,

(2.10)

while if we set q = m − n for x/2 ≤ n < x and r = n −m for x < n ≤ 2x, we
have∑

x
2
≤n≤2x

(
x+ α

n+ α

)c ∣∣∣∣log
x+ α

n+ α

∣∣∣∣−1 � ∑
x
2
≤n≤2x

xc

nc
max{x, n}
|x− n|

� x

 ∑
0≤q≤x−1

2

1

q + 1
2

+
∑

r≤ 2x+1
2

1

r − 1
2


� x log x

(2.11)

18



Hence, we deduce from (2.9)-(2.11) that

1

2πi

c+iT∫
c−iT

ζ1(s+ z;α)
(x+ α)z

z
dz =

m∑
n=1

1

(n+ α)s
+Oσ0

(
xc

bT
+
x log x

T

)
, (2.12)

uniformly in σ ≥ σ0 > 0 and 0 < α ≤ 1.
Let 1− κ ≤ σ ≤ 2 be arbitrary, where κ = κ(µ) ∈ [0, 1/2] will be determined

later on. Let also T ≥ t and consider the rectangleR with vertices 1−3κ−σ±iT ,
c± iT . By the calculus of residues we get

1

2πi

∫
R
ζ1(s+ z;α)

(x+ α)z

z
dz = ζ1(s) +

(x+ α)1−s

1− s
= ζ1(s;α) +O

(
x1−σt−1

)
.

(2.13)

Observe that Lemma 2.2 implies that
c−iT∫

1−3κ−σ−iT

+

1−3κ−σ+iT∫
c+iT

 ζ1(s+ z;α)
(x+ α)z

z
dz �κ

xcT 3κ

T
, (2.14)

while Lemma 2.3 yields

1−3κ−σ−iT∫
1−3κ−σ+iT

ζ1(s+ z;α)
(x+ α)z

z
dz � x1−3κ−σ

T∫
−T

|ζ1 (1− 3κ+ i(t+ u))|
|1− 3κ+ iu|

du

�κ x
−2κT (3κ)3/2η (log T )2 .

(2.15)

From relations (2.12)-(2.15) we deduce

ζ1(s;α) =
m∑
n=1

1

(n+ α)s
+Oσ0

(
xc

bT
+
x log x

T

)
+O

(
x1−σt−1

)
+

+Oκ

(
xcT−1+3κ + x−2κT (3κ)3/2η (log T )2

)
.

If we set m = btµc, then the last three terms in the latter relation are bounded
above by

C(σ0, κ, b)
(
t(1+b)µ−1b−1 + tµ(1−σ)−1 + t(1+b)µ+3κ−1 + tκ(−2µ+33/2κ1/2η) (log t)2

)
,

where C(σ0, κ, b) > 0 is a constant. It is clear now that for κ = 4µ2/(27η2) and
b�µ 1 sufficiently small, the theorem follows also for 0 < µ ≤ µ0 < 3/4.

2.2.3 Estimates of Exponential Sums

Bounds for exponential sums, especially in the case of Weyl sums, lie at the
heart of analytic number theory. There is a vast literature regarding methods to
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estimate them as well as their numerous applications. We refer to [38], [39] and
[77] for an exposition of such results.

In our case we focus on mean value estimates for Weyl sums, that is, on upper
bounds for the quantity

Jh,d(N) :=

∫
[0,1]d

∣∣∣∣∣
N∑
n=1

e
(
a1n+ · · ·+ adn

d
)∣∣∣∣∣

2h

da1 . . . dad,

where h, d and N are positive integers. Observe that Jh,d(N) denotes the number
of integral solutions of the system

X1 + . . . + Xh = Xh+1 + . . . + X2h

X2
1 + . . . + X2

h = X2
h+1 + . . . + X2

2h
...

...
...

Xd
1 + . . . + Xd

h = Xd
h+1 + . . . + Xd

2h

with 1 ≤ X1, . . . , X2h ≤ N . Recently, Bourgain, Demeter and Guth [9] proved
the so-called main conjecture in Vinogradov’s Mean Value Theorem:

Theorem 2.5. For any integers h ≥ 1 and d,N ≥ 2,

Jh,d(N)�h,d,ε N
h+ε +N2h−d(d+1)/2+ε

It should be mentioned here that the case of d = 2 follows from elementary
estimates for the divisor function, while the case of d = 3 was first solved by
Wooley [101]. We use the latter theorem to obtain a rather useful metric result.

Lemma 2.4. Let d ≥ 2 be an integer, α ∈ (0, 1] and ε, µ > 0. Then, there exists
a set F (d, α, µ, ε) ⊆ [0,+∞)d of full Lebesgue measure with elements satisfying
the following property:

If a ∈ F (d, α, µ, ε) is a vector of real numbers which coefficients are bounded
by an Ma ∈ N, then there exists Ka ∈ N such that∣∣∣∣∣

N∑
n=1

(
k + α

`+ α

)iPa(n)∣∣∣∣∣
d(d+1)

�d,ε


⌊
Ma

2π
log k+α

`+α

⌋
+ 1

log k+α
`+α

d

Nd(d+1)/2+1+2µd+3ε (2.16)

for every integer N ≥ Ka and any integers 0 ≤ ` < k ≤ (dMaN
d)µ.

Proof. For any positive integers M,N, k, any integer 0 ≤ ` < k and for h :=
d(d+ 1)/2, Theorem 2.5 yields that∫

[0,M ]d

∣∣∣∣∣
N∑
n=1

(
k + α

`+ α

)iPa(n)∣∣∣∣∣
2h

da =

(
2π

log k+α
`+α

)d ∫
[0,M2π log k+α

`+α ]
d

∣∣∣∣∣
N∑
n=1

e (Pa(n))

∣∣∣∣∣
2h

da

≤

(
2π
(⌊

M
2π

log k+α
`+α

⌋
+ 1
)

log k+α
`+α

)d

Jh,d(N)

≤ C(d, ε)

(⌊
M
2π

log k+α
`+α

⌋
+ 1

log k+α
`+α

)d

Nh+ε,
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where C(d, ε) > 0 is a constant. Therefore, the set E(d, α, µ, ε,M,N, k, `) of
those a ∈ [0,M ]d satisfying∣∣∣∣∣

N∑
n=1

(
k + α

`+ α

)iPa(n)∣∣∣∣∣
d(d+1)

≥ C(d, ε)

(⌊
M
2π

log k+α
`+α

⌋
+ 1

log k+α
`+α

)d

Nd(d+1)/2+1+2µd+3ε,

has Lebesgue measure m (E(d, α, µ, ε,M,N, k, `)) ≤ N−(1+2µd+ε). Hence, the set

G(d, α, µ, ε,M,K) :=
∞⋃

N=K

⋃
1≤`<k≤(dMNd)

µ

E(d, α, µ, ε,M,N, k, `)

has Lebesgue measure m(G(d, α, µ, ε,M,K)) �d,µ,ε,M K−ε, for every positive
integers M and K, and, thus, the set

F (d, α, µ, ε) := [0,+∞)d \

(
∞⋃

M=1

∞⋂
K=1

G(d, α, µ, ε,M,K)

)
, (2.17)

is of full Lebesgue measure.

2.2.4 A Metric Result

Here we prove the main theorems of this chapter, that is, discrete second moments
for ζ(s;α) and L(s, χ) on the left of the vertical line 1 + iR. But before that we
need to introduce the quantities

B(d, µ) :=
1

2µd

(
1

2
− 2µ

d+ 1
− 1

d(d+ 1)

)
(2.18)

and

S(d) := min
0<µ< d2+d−2

4d

max {A(µ), 1−B(d, µ)} ∈ (0, 1), (2.19)

where d ≥ 2 is integer, µ > 0 and A(µ) is as in (2.7). It will become apparent
from the subsequent proofs how we came up with these numbers.

Theorem 2.6. For every integer d ≥ 2, any α ∈ (0, 1] and any σ0 ∈ (S(d), 1],
there are effectively computable positive numbers µ = µ(d), ε = ε(d, σ0) and
ν = ν(d, σ0) such that, for any a ∈ F (d, α, µ, ε)

1

N

N∑
n=1

|ζ (σ + iPa(n);α)|2 = ζ(2σ;α) +Od,σ0,a,α

(
N−ν

)
, N ≥ 1,

uniformly in σ0 ≤ σ ≤ 1. Moreover, for α = 1 and any a ∈ F (d, 1, µ, ε)

1

N

N∑
n=1

|L (σ + iPa(n), χ)|2 = L(2σ, χ0) +Od,σ0,a

(
N−ν

)
, N ≥ 1,

uniformly in σ0 ≤ σ ≤ 1.
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Proof of Theorem 2.6. Let a = (a1, . . . , ad) ∈ F (d, α, µ, ε) \ {0} be such that
|ai| ≤Ma for some Ma ∈ N and every i = 1, . . . , d. The numbers µ and ε will be
suitably chosen later on.

Let Na > Ka be such that Pa(Na) ≥ 2. Notice here that all polynomials we
consider are striclty increasing functions in [0,+∞). Using the approximate func-
tional equation for ζ(s;α) from Theorem 2.4 and applying the Cauchy-Schwarz
inequality we obtain for every N ≥ Na that

N∑
n=1

|ζ (σ + iPa(n);α)|2

= Oa(1) +
N∑

n=Na

∣∣∣∣∣∣
∑

0≤k≤Pµa (n)

1

(k + α)σ+iPa(n)
+Oµ,σ0

(
P−νa (n)

)∣∣∣∣∣∣
2

= SN +Oa

(
1 + TN + (SNTN)1/2

)
,

(2.20)

where ν = ν(µ, σ0) > 0 is as in Theorem 2.4, and

TN :=
N∑

n=Na

∣∣Oµ,σ0

(
P−νa (n)

)∣∣2 �µ,σ0,a

N∑
n=Na

n−2dν �µ,σ0,a 1 +N1−2dν (2.21)

and

SN :=
N∑

n=Na

∑
0≤`,k≤Pµa (n)

1

(k + α)σ(`+ α)σ

(
k + α

`+ α

)iPa(n)
.

Splitting SN into sum of diagonal and non-diagonal terms yields

SN =
N∑

n=Na

[
ζ(2σ;α) +O

(
(P µ

a (n))1−2σ
)]

+

+
N∑

n=Na

∑
0≤` 6=k≤Pµa (n)

1

(k + α)σ(`+ α)σ

(
k + α

`+ α

)iPa(n)

= (N −Na)ζ(2σ;α) +Oµ,σ0,a

 N∑
n=Na

ndµ(1−2σ)

+RN

=Nζ(2σ;α) +Oµ,σ0,a

(
N1+dµ(1−2σ))+RN ,

(2.22)

with

RN :=
∑

0≤ 6̀=k≤Pµa (N)

1

(k + α)σ(`+ α)σ

∑
n∈A (N,a,k,`,α)

(
k + α

`+ α

)iPa(n)
and

A (N, a, k, `, α) :=
{
Na ≤ n ≤ N : Pa(n) ≥ max

{
(k + α)1/µ, (`+ α)1/µ

}}
= {N1, . . . , N} .
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Observe that

RN �
∑

0≤`<k≤Pµa (N)

(k + α)−σ

(`+ α)σ

[∣∣∣∣∣
N∑
n=1

(
k + α

`+ α

)iPa(n)∣∣∣∣∣+

∣∣∣∣∣
N1−1∑
n=1

(
k + α

`+ α

)iPa(n)∣∣∣∣∣
]
.

(2.23)

By our choice of the vector a and Lemma 2.4, it follows that∣∣∣∣∣
N∑
n=1

(
k + α

`+ α

)iPa(n)∣∣∣∣∣�ε


⌊
Ma

2π
log k+α

`+α

⌋
+ 1

log k+α
`+α

1/(d+1)

N1/2+2µ/(d+1)+1/(d(d+1))+ε

for every N ≥ Ka and any 0 ≤ ` < k ≤
(
dMaN

d
)µ

. Implementing the latter
bound to (2.23), we obtain

RN �ε N
1−2µdB(d,µ)+εR̃N , (2.24)

where

B(d, µ) =
1

2µd

(
1

2
− 2µ

d+ 1
− 1

d(d+ 1)

)
(2.25)

and

R̃N := M1/(d+1)
a

∑
0≤`<k≤Pµa (N)

(k + α)−σ

(`+ α)σ


⌊
Ma

2π
log k+α

`+α

⌋
+ 1

Ma

2π
log k+α

`+α

1/(d+1)

�d,a

∑
0≤`<k≤Pµa (N)

log k+α
`+α

> 2π
Ma

(k + α)−σ

(`+ α)σ
+

∑
0≤`<k≤Pµa (N)

log k+α
`+α
≤ 2π
Ma

(k + α)σ

(`+ α)σ

(
log

k + α

`+ α

)−1

�d,a,α

(
P µ
a (N)

)(2−2σ)
(logN)2

�d,µ,σ0,a,α N
(2−2σ)µd(logN)2

(2.26)

for every N ≥ Ka. The square for the logarithm results with respect to the case
of σ = 1.

Gathering up the terms and estimates from (2.20)-(2.26), we deduce that

1

N

N∑
n=1

|ζ (σ + iPa(n);α)|2 − ζ(2σ;α)�d,µ,σ0,a,α,εN
dµ(1−2σ)/2 +N−1/2 +N−2dν+

+N−µd(B(d,µ)+σ−1)+ε

(2.27)

for every N ≥ Na, where σ ≤ 1 and µ > 0 are such that B(d, µ) + σ − 1 is
positive. Notice that this is possible only when B(d, µ) > 0, or equivalently from
(2.25), when

0 < µ <
d2 + d− 2

4d
.
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It remains to choose µ = µ(d) in such a way that we can obtain the wider
strip possible containing its right boundary 1+ iR, bound to the method we have
used. In view of (2.7), (2.25) and the preceding discussion, the abscissa of the
left boundary of the wider strip is given by

S(d) = min
0<µ< d2+d−2

4d

max {A(µ), 1−B(d, µ)}

and the desired µ is the one for which the aforementioned well-defined minimum
is attained. Now the first part of the theorem follows from (2.27) and for an
arbitrary 0 < ε < µd(σ0 − S(d))/2.

The proof for the discrete moments of L(s, χ) follows the same reasoning as
above with slight changes. This time we use the second approximate functional
equation from Lemma 2.4, the sum of the diagonal terms of the corresponding
SN gives the main term L(2σ, χ0), while the sum of the non-diagonal terms is
treated in the same way as in (2.23)-(2.26) by applying once more Lemma 2.5
for α = 1.

2.2.5 Discrete Moments with respect to Monomials

Of particular interest, especially regarding the next chapter, is the special case
of Pa(x) = axd. It is clear from the previous section that as soon as we have
estimates for

Mh,d(N) :=

1∫
0

∣∣∣∣∣
N∑
n=1

e
(
and
)∣∣∣∣∣

2h

da

analogous to the one of Theorem 2.5, we can obtain similar results as before. Ob-
serve that Md,h(N) denotes the number of (2h)-tuples (X1, . . . , X2h) of positive
integers not exceeding N for which

Xd
1 + · · ·+Xd

h = Xd
h+1 + · · ·+Xd

2h.

In that direction, Salberger and Wooley [75] proved the following theorem:

Theorem 2.7. Suppose that d and h are positive integers with d ≥ 2h − 1 ≥
3. Let also Th(N) denote the number of (2h)-tuples (X1, . . . , X2h) of positive
integers not exceeding N for which the h-tuple (X1, . . . , Xh) is a permutation of
(Xh+1, . . . , X2h). Then

Mh,d(N)− Th(N)�h,ε N
h+λ(d,h)+ε,

where

λ(d, h) :=


−2 + 2/

√
3 + κ(d, h− 1, 2h− 2), if d ≥ 2h− 1,

−1 + κ(d, h− 1, 2h− 2), if d ≥ (2h− 1)2,

−1

2
, if d ≥ (2h)4h,

(2.28)
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and

κ(d, k,m) :=
m∑

r=k+1

(r + 1)/
r
√
d,

for any positive integers d, k and m with k < m.

By definition Th(N) ∼ h!Nh. Therefore,

Mh,d(N)�h,ε N
h +Nh+λ(d,h)+ε,

and we can prove a lemma similar to Lemma 2.4. We omit its proof.

Lemma 2.5. Suppose that d and h are positive integers with d ≥ 2h − 1 ≥ 3,
α ∈ (0, 1] and ε, µ > 0. Then, there exists a set Fmo(d, α, µ, ε) ⊆ [0,+∞) of full
Lebesgue measure with elements satisfying the following property:

If a ∈ Fmo(d, α, µ, ε) is a real number bounded by an Ma ∈ N, then there
exists Ka ∈ N such that∣∣∣∣∣

N∑
n=1

(
k + α

`+ α

)iand∣∣∣∣∣
2h

�h,ε

⌊
Ma

2π
log k+α

`+α

⌋
+ 1

log k+α
`+α

Nh+λ(d,h)+1+2µd+3ε

for every integer N ≥ Ka and any integers 0 ≤ ` < k ≤ (dMaN
d)µ.

Now in order to obtain a theorem for the monomials Pa(x), similar to Theorem
2.6, we need to choose 2 ≤ h ≤ (d+1)/2 and µ > 0 in such way that the number

Bmo(d, µ, h) :=
1

2µd

(
1

2
− λ(d, h) + 1 + 2µd

2h

)
is positive. The argumentation of how we come up with the quantity Bmo(d, µ, h)
is the same as in the proof of Theorem 2.6. From definition (2.28) of λ(d, h) we
know that for any d ≥ 3 and h = 2

1

2
− λ(d, 2) + 1

4
> 0.

Hence, there is 2 ≤ hmo ≤ (d+ 1)/2 such that

emo :=
1

2
− λ(d, hmo) + 1

2hmo
= max

2≤h≤ d+1
2

1

2
− λ(d, h) + 1

2h
> 0.

If we set now

Smo(d) := min
0<µ<emo/(2d)

max {A(µ), 1−Bmo(d, µ, hmo)} , (2.29)

then we can prove the following theorem in the same way as Theorem 2.6.
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Theorem 2.8. For every integer d ≥ 2, any α ∈ (0, 1] and any σ0 ∈ (Smo(d), 1],
there are effectively computable positive numbers µ = µ(d), ε = ε(d, σ0) and
ν = ν(d, σ0) such that, for any a ∈ Fmo(d, α, µ, ε)

1

N

N∑
n=1

∣∣ζ (σ + iand;α
)∣∣2 = ζ(2σ;α) +Od,σ0,a,α

(
N−ν

)
, N ≥ 1,

uniformly in σ0 ≤ σ ≤ 1. Moreover, for α = 1 and any a ∈ Fmo(d, 1, µ, ε)

1

N

N∑
n=1

∣∣L (σ + iand, χ
)∣∣2 =

∞∑
n=1

|χ(n)|2

n2σ
+Od,σ0,a

(
N−ν

)
, N ≥ 1,

uniformly in σ0 ≤ σ ≤ 1.

Notice that in the latter theorem we consider also d = 2. In order to treat
this case, our starting point is a classical estimate due to Hua [36]:

1∫
0

∣∣∣∣∣
N∑
n=1

e
(
an2
)∣∣∣∣∣

4

da�ε N
2+ε,

We can then argue as before to compute the corresponding quantity Smo(2).

2.3 The Lindelöf Hypothesis

As we have already mentioned in the beginning of the previous section, in our
attempt to control the length of the Dirichlet polynomials appearing in the ap-
proximate functional equations of Lemma 2.4, we are forced to narrow the strip
inside D for which we can prove discrete second moments. Indeed, one could
argue that there is some σ1 with 1/2 < σ1 < 1 such that S(dk) ≤ σ1 for infinitely
many integers dk ≥ 2, k ∈ N. But that would require at first

max {A(µk), 1−B(dk, µk)} ≤ σ1

for all k ∈ N and some 0 < µk < (d2k + dk − 2)/(4dk), or, equivalently,

A(µk) ≤ σ1 and µk ≤
d2k + dk − 2

4d2k ((1− σ1)(dk + 1) + 1)

for all k ∈ N. Then we would have lim
k→∞

µk = 0 and, by the definition (2.7) of

A(µ), that 1 = lim
k→∞

A(µk) ≤ σ1, which contradicts our assumption about σ1.

Hence, S(d) tends to 1 from the left as d tends to infinity. The same holds true
for Smo(d).

Of course, it would be desirable to prove S(d) = Smo(d) = 1/2, for any d ≥ 2.
The definitions (2.19) and (2.22) already give us a hint of how that could be
achieved. It would suffice if we were able to take A(µ) = 1/2 for any 0 < µ < 1,
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since lim
µ→0+

B(d, µ) = lim
µ→0+

Bmo(d, µ, hmo) = +∞. This is where the Lindelöf

hypothesis (LH) for ζ(s;α) and L(s, χ) can be used:

ζ

(
1

2
+ it;α

)
�ε |t|ε and L

(
1

2
+ it, χ

)
�ε |t|ε, |t| ≥ t0 > 0.

In fact, the truth of the Lindelöf hypothesis for all L(s, χ) is also known as the
Generalized Lindelöf Hypothesis (GLH). For a discussion on the LH for the
Riemann zeta-function we refer to [43] and [90]. All results presented there can
be seen to hold true for L(s, χ) as well, the most notable being that the GRH
implies the GLH. Naturally, such an implication has no meaning in the case of
ζ(s;α) when α 6= 1/2, 1. Garunkštis and Steuding [22] study the LH for the
Lerch zeta-function which is a generalization of ζ(s;α).

In our case a classical result for ζ(s) (see for example Theorem 13.3 in [90])
was the inspiration for our Lemma 2.4, where the number A(µ) first appears:

If the LH for ζ(s) is true, then for any σ > 1/2 and any 0 < µ < 1, there is
an ν = ν(σ, µ) such that

ζ(s) =
∑
n≤tµ

1

ns
+O(t−ν), t ≥ t0 > 0.

It is then quite straightforward to prove the following conditional results:

Lemma 2.6. Under LH for ζ(s;α) and GLH, the approximate functional equa-
tions of Lemma 2.4 hold true with A(µ) = 1/2 for any 0 < µ < 1.

Theorem 2.9. Under LH for ζ(s;α) and GLH, Theorem 2.6 and Theorem 2.8
hold true with S(d) = Smo(d) = 1/2, for any integer d ≥ 2.
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Chapter 3

Discrete Universality Theorems

We continue with the study of the value-distribution of L(s, χ) and ζ(s;α). In
particular, we begin with developing two sufficient criteria to prove discrete uni-
versality theorems. We then provide examples of sequences satisfying these cri-
teria, such as Beatty sequences, ordinates of c-points of zeta-functions, and se-
quences generated by polynomials.

3.1 Criteria for Discrete Universality

From the first proof of the continuous universality for ζ(s) due to Voronin until
today, the tools used to prove such theorems have been refined by numerous
mathematicians. The setting, however, is essentially the one initiated by Voronin.
One may say that there is indeed a “silver bullet” to prove universality theorems
for most of the zeta- and L- functions known so far. The probabilistic approach
introduced by Bagchi is based, in fact, on the same three components. The
first one consists of a denseness theorem regarding twisted Euler products and
Dirichlet polynomials in some suitable Hilbert space of analytic functions. The
second amounts to none other than the theory of uniformly distributed sequences,
while the last one involves the approximation in the discrete mean square of
our selected zeta- or L- function by a sequence of Dirichlet polynomials. In the
following subsections we try to make perceivable how these notions “manufacture
the silver bullet” that leads to discrete universality for L(s, χ) and ζ(s;α). We
favor Voronin’s approach over Bagchi’s, since it seems to us more natural.

A second way to prove universality theorems is straightforward and rather
efficient. One needs only to find a representation of the zeta- or L- function as
a linear combination or a product representation of jointly universal functions.
This argument is the only way so far to prove that ζ(s;α) with α 6= 1/2, 1 rational
is universal and it was shown by Gonek [24] and Bagchi [2] (independently). This
is also why we discuss discrete joint universality of Dirichlet L-functions.

Lastly, there is a third way to prove universality due to Good [26]. As a
matter of fact Good’s method yields in some cases quantitative results for the
value-distibution of ζ(s) inside D. However, it is quite technical and it has been
adapted by very few researchers, such as for example Garunkštis [21] and Gonek
[24]. We will return to this discussion in Chapter 4.
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3.1.1 The case of Dirichlet L-Functions

If χ is a Dirichlet character mod q and M is a finite set of primes, we define the
truncated and twisted Euler product

(s, ω) 7−→ LM (s, χ, ω) :=
∏
p∈M

(
1− χ(p)e(−ωp)

ps

)−1
,

for every (s, ω) ∈ {s ∈ C : σ > 0} × RP. We also set LM (s, χ) := L(s, χ, 0) for
brevity. Lastly, we say that an open set R ⊆ C is admissible if for every positive
number ε the set

Rε := {w ∈ C : there is s ∈ R such that |s− w| < ε}

has connected complement.
The first lemma establishes a denseness theorem for the aforementioned Euler

products in the space of analytic functions which are defined in the strip D.

Lemma 3.1. Let R be a bounded admissible set together with its closure R
contained in the vertical strip 1/2 < σ < 1. Let χ1, . . . , χJ be pairwise non-
equivalent Dirichlet characters and let f1, . . . , fJ be arbitrary functions which are
non-vanishing continuous on R and analytic in the interior. Then there exists a
sequence of real numbers ω0 = (ω0p)p∈P depending only on χ1, . . . , χJ , such that
for every ε > 0 and arbitrary 0 < z < y, there exists a finite set of primes M
containing all primes z < p < y but no primes p ≤ z with

max
1≤j≤J

max
s∈R
|LM (s, χj, ω0)− f(s)| < ε.

Proof. For a proof see [41, Lemma 7].

The next lemma points out where the theory of uniformly distributed se-
quences is applied in order to prove discrete universality theorems.

Lemma 3.2. Let (xn)n∈N be a sequence of real numbers such that the sequence
of vectors ((

xn
log p

2π

)
p∈M

)
, n ∈ N,

is uniformly distributed mod 1 for every finite set of primes M . Then for any
pairwise non-equivalent Dirichlet characters χ1, . . . , χJ , any z > 0, any real num-
bers ξp, p ≤ z, any compact set K ⊆ D with connected complement, any functions
f1, . . . , fJ continuous non-vanishing on K and analytic in its interior, and any
ε > 0, there exist positive numbers c and v such that

lim inf
N→∞

1

N
]

1≤ n≤N :

max
1≤j≤J

max
s∈K

∣∣L{p∈P : z<p≤u}(s+ ixn, χj)− fj(s)
∣∣< ε

max
p≤z

∥∥∥∥xn log p

2π
− ξp

∥∥∥∥ < ε

 > c

for every u ≥ v.
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Proof. By Mergelyan’s theorem (see Theorem A.21), we may assume without
loss of generality that f1, . . . , fJ are polynomials which are non-vanishing in K.
Therefore, we can find a bounded admissable set R satisfying K ⊆ R ⊆ R ⊆ D
where f1, . . . , fJ are non-vanishing.

Lemma 3.1 yields the existence of a sequence of real numbers ω0 = (ω0p)p∈P
such that, for every y with 0 < z < y, there is a finite set of primes My containing
all primes z < p ≤ y but no primes p ≤ z with

max
1≤j≤J

max
s∈R

∣∣LMy (s, χj, ω0)− fj(s)
∣∣ < ε

4
. (3.1)

Let u > 0 be such that Nu := {p ∈ P : z < p ≤ u} ⊇My. By continuity it follows
that there is a δ > 0 such that, for every φ := (φp)p≤u belonging to the closed
and Jordan measurable set

L :=

(φp)p≤u ∈ [0, 1]π(u) :
max
p∈My

‖φp − ω0p‖ ≤ δ

max
p≤z
‖φp − ξp‖ < ε

 ,

we have

max
1≤j≤J

max
s∈R

∣∣∣LMy

(
s, χj, (φp)p∈My

)
− LMy

(
s, χj, (ω0p)p∈My

)∣∣∣ < ε

4
.

It then follows from inequality (3.1) that

max
1≤j≤J

max
s∈R

∣∣∣LMy

(
s, χj, (φp)p∈My

)
− fj(s)

∣∣∣ < ε

2
. (3.2)

Now by assumption we know that the sequence

xn :=

(
xn

log p

2π

)
p≤u

, n ∈ N,

is uniformly distributed mod 1 in Rπ(u). Thus, by definition

lim
N→∞

1

N

N∑
n=1
{xn}∈L

1 = lim
N→∞

1

N
] {1 ≤ n ≤ N : {xn} ∈ L} = m(L), (3.3)

which in this case coincides with the Jordan measure on Rπ(u). In addition, if we
define for every j = 1, . . . , J and s ∈ R the Riemann integrable and 1-periodic
function

Fj,s
(
φ
)

:=
∣∣∣LMy

(
s, χj, (φp)p∈My

)(
LNu\My

(
s, χj, (φp)p∈Nu\My

)
− 1
)∣∣∣2 ,

whenever
{
φ
}
∈ L and 0 otherwise, then

N∑
n=1
{xn}∈L

∣∣LNu (s+ ixn, χj, 0)− LMy (s+ ixn, χj, 0)
∣∣2 =

N∑
n=1

Fj,s (xn) .
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In view of Theorem A.7 and relation (3.2) we have that

lim
N→∞

1

N

N∑
n=1

Fj,s (xn) =

∫
L
Fj,s(x)dx

≤
(

max
s∈R
|fj(s)|+

ε

2

)2

m(L)×

×
1∫

0

· · ·
1∫

0

∣∣∣LNu\My

(
s, χj, (φp)p∈Nu\My

)
− 1
∣∣∣2 ∏
p∈Nu\My

dφp,

(3.4)

uniformly for j = 1, . . . , J and s ∈ R, since the family of functions{
Fj,s : L→ C : 1 ≤ j ≤ J, s ∈ R

}
is uniformly bounded and equicontinuous.

The set Nu \My contains only primes greater than y. Therefore, in view of
(3.4) we can choose y > 0 sufficiently large such that

lim
N→∞

1

N

N∑
n=1
{xn}∈L

∫∫
R

∣∣(LNu − LMy

)
(s+ ixn, χj)

∣∣2 dσdt <
π (d(∂R, K))2 m(L)ε2

8J
.

Then it follows from Theorem A.16 that

lim sup
N→∞

1

N

N∑
n=1
{xn}∈L

(
max
s∈K

∣∣(LNu − LMy

)
(s+ ixn, χj)

∣∣)2

<
m(L)ε2

8J

for every j = 1, . . . , J . Taking also into account relation (3.3), we deduce that

lim inf
N→∞

1

N
]

{
1 ≤ n ≤ N :

max
1≤j≤J

max
s∈K

∣∣(LNu − LMy

)
(s+ ixn, χj)

∣∣ < ε

2
{xn} ∈ L

}
>

m(L)

2
.

(3.5)

Now the lemma follows from (3.2) and (3.5) if we set v = max{p : p ∈My} and
c = m(L)/2. As a last remark we notice that for fixed v the number c is the
same for all u ≥ v.

We conclude with the first criterion to obtain discrete joint universality for
Dirichlet L-functions with respect to a given sequence of real numbers (xn)n∈N.
In fact, our theorem is the discrete analogue of [41, Theorem 3].

Theorem 3.1 (Discrete Joint Universality Criterion for L(s,χ)). Let
χ1, . . . , χJ be pairwise non-equivalent Dirichlet characters. Let also (xn)n∈N be a
sequence of real numbers such that the sequence of vectors((

xn
log p

2π

)
p∈M

)
, n ∈ N,
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is uniformly distributed mod 1 for every finite set of primes M , AND

lim
w→∞

lim sup
N→∞

1

N + 1

2N∑
n=N

∣∣L(s+ ixn, χj)− L{p∈P : p≤w}(s+ ixn, χj)
∣∣2 = 0,

j = 1, . . . , J , uniformly in compact subsets of Dσm := {s ∈ C : σm < σ < 1},
where σm ∈ [1/2, 1). Then for any compact set K ⊆ Dσm with connected comple-
ment, any z > 0, any real numbers ξp, p ≤ z, any functions f1, . . . , fJ continuous
non-vanishing on K and analytic in its interior, and any ε > 0,

lim inf
N→∞

1

N
]

1 ≤ n ≤ N :

max
1≤j≤J

max
s∈K
|L (s+ ixn, χj)− fj(s)| < ε

max
p≤z

∥∥∥∥xn log p

2π
− ξp

∥∥∥∥ < ε

 > 0.

Proof. Let ε̃ be a suitable positive number which will be determined later on.
Define the functions

f̃j(s) := fj(s)
∏
p≤z

(
1− χj(p)e(−ξp)

ps

)
,

for every s ∈ K and j = 1, . . . , J . By the assumption on the uniform distribution
of (xn)n∈N and Lemma 3.2 there exist positive numbers c and v, both depending
on ε̃, such that

lim inf
N→∞

1

N
]

1≤ n≤N :

max
1≤j≤J

max
s∈K

∣∣∣L{p∈P : z<p≤u}(s+ ixn, χj)− f̃j(s)
∣∣∣< ε̃

max
p≤z

∥∥∥∥xn log p

2π
− ξp

∥∥∥∥ < ε̃

 > c

(3.6)

for every u ≥ v. If 1 ≤ n ≤ N is an element of the preceding set, then, for every
s ∈ K and j = 1, . . . , J ,∣∣L{p∈P : p≤u} (s+ ixn, χj)− fj(s)

∣∣
=
∏
p≤z

∣∣∣∣1− χj(p)

ps+ixn

∣∣∣∣−1
∣∣∣∣∣L{p∈P : z<p≤u} (s+ ixn, χj)− fj(s)

∏
p≤z

(
1− χj(p)

ps+ixn

)∣∣∣∣∣
≤ max

s∈K

∏
p≤z

(
1− 1

pσ

)−1(
ε̃+

∣∣∣∣∣f̃j(s)− fj(s)∏
p≤z

(
1− χj(p)

ps+ixn

)∣∣∣∣∣
)

≤ 2π(z)/2

[
ε̃+ max

s∈K
|fj(s)|

∣∣∣∣∣∏
p≤z

(
1− χj(p)e(−ξp)

ps

)
−
∏
p≤z

(
1− χj(p)

ps+ixn

)∣∣∣∣∣
]
.

(3.7)

Observe that the functions(
s, (ωp)p≤z

)
7−→

∏
p≤z

(
1− χj(p)e(ωp)

ps

)
, j = 1, . . . , J,
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defined for fixed z > 0 and any
(
s, (ωp)p≤z

)
∈ K×Rπ(z), are uniformly continu-

ous. Hence, if we take ε̃ = ε̃(z,K, f1, . . . , fJ , ε) to be a sufficiently small positive
number, then for the positive integers n ≤ N it follows from relations (3.7) and

max
p≤z

∥∥∥∥xn log p

2π
− ξp

∥∥∥∥ < ε̃ ≤ ε

that

max
1≤j≤J

max
s∈K

∣∣L{p∈P : p≤u} (s+ ixn, χj)− fj(s)
∣∣ < ε

2
.

Hence, the latter inequlaties hold true for any positive integer n ≤ N from (3.6).
Therefore, if

A (u,N) :=

1 ≤ n ≤ N :

max
1≤j≤J

max
s∈K

∣∣L{p∈P : p≤u} (s+ ixn, χj)− fj(s)
∣∣ < ε

2

max
p≤z

∥∥∥∥xn log p

2π
− ξp

∥∥∥∥ < ε

 ,

then

lim inf
N→∞

]A (u,N)

N
> c

for every u ≥ v.
Now let R be a bounded admissable set such that K ⊆ R ⊆ R ⊆ Dσm .

Then the second assertion of the theorem implies that for every δ > 0 there is
w = w(δ) > 0 such that

lim sup
N→∞

1

N + 1

2N∑
n=N

∫∫
R

∣∣(L− L{p∈P : p≤u}
)

(s+ ixn, χj)
∣∣2 dσdt < δ2

for every u ≥ w and j = 1, . . . , J . In view of Theorem A.16 and since any interval
(and, therefore, any sum), can be divided in a dyadic manner

[1, N ] ⊆
J⋃
j=0

[
N

2j+1
,
N

2j

]
, J =

⌊
logN

log 2

⌋
,

we obtain

lim sup
N→∞

1

N

N∑
n=1

(
max
s∈K

∣∣(L− L{p∈P : p≤u}
)

(s+ ixn, χj)
∣∣)2

dσdt�R,K δ2

for every u ≥ w and j = 1, . . . , J . The dependence of the implicit constant on
R is in fact on σm. It is clear from the latter relation that for any sufficiently
small positive number δ = δ(σm,K, J), if

B(u, δ,N) :=

{
1 ≤ n ≤ N : max

1≤j≤J
max
s∈K

∣∣(L− L{p∈P:p≤u}) (s+ ixn, χj)
∣∣ < δ

}
,
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then

lim inf
N→∞

]B(u, δ,N)

N
> 1− δ

for every u ≥ w.
If we take δ sufficiently small such that δ < max{c, ε/2} and u = max{v, w},

then

lim inf
N→∞

] (A (u,N) ∩B(u, δ,N))

N
≥ lim inf

N→∞

]A (u,N)

N
+ lim inf

N→∞

]B(u, δ,N)

N
− 1

> c+ 1− δ − 1

> 0.

(3.8)

The theorem follows now from (3.8) and an application of the triangle inequality.

As it is stated, the theorem supersedes a previous result due to Macaitienė
[55], where she proved a similar criterion for ζ(s). The significance of our theorem
does not lie only on the fact that it is a generalization of the aforementioned
result to the more general setting of Dirichlet L-functions, and even more a
joint universality theorem, but also to the fact that it is stronger in the sense
of relaxing the conditions which were set in [55] for the sequence (xn)n∈N to
satisfy. In particular, the sequence (αxn)n∈N should be uniformly distributed
mod 1 for every irrational α, xn � n as n → +∞ and, for any integers 1 ≤
n 6= m ≤ N , |xn − xm| ≥ 1/yN , where (yn)n∈N is a sequence of real numbers
satisfying xnyn � n as n → +∞. It can be seen that the last two conditions
are sufficient to prove the second assertion in our theorem with σm = 1/2, as
it would follow by an application of Gallagher’s Lemma (Lemma 2.1) and a
classical result due to Bohr [6] on the approximation of ζ(s) by truncated Euler
products ζM (s) in the mean-square. However, these conditions are not necessary
as we will show in the next chapter when we consider sequences of polynomials
Pa(x) = anx

n + · · ·+ a1x+ a0. In this case it is obvious that Pa(n) = O(n) does
not hold for polynomials of degree greater than one.

A last remark about the number σm, which appears only in the second con-
dition for the discrete mean-square. We do not expect that σm can be smaller
than 1/2, because it is the least possible number provided by Lemma 3.1.

3.1.2 The case of Hurwitz Zeta-Functions

The succeeding results are similar to the ones of the previous subsection, but in
the case of ζ(s;α) the target function f does not need to be non-vanishing. Ac-
tually, this is the first time in the literature where applying Voronin’s approach is
used to prove discrete universality for ζ(s;α) instead of applying Bagchi’s prob-
abilistic treatment. There is an extensive literature regarding the probabilistic
model and we encourage the interested reader to study the bibliographies in [56]
and [86].
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The following lemma is a special case of Lemma 2.2 in Gonek’s thesis [24]
for Λ := {log(n+ α) : n ∈ N0} and α ∈ (0, 1]. It should be mentioned that its
proof is, in principle, different from the one of Lemma 3.1, which depends on
a theorem of Pechersky [63]. Basically, Pechersky’s theorem is an extension of
Riemann’s theorem on rearrangements of conditionally convergent series of real
numbers to Hilbert space. Gonek derives his lemma by incorporating techniques
introduced by Good [26].

Lemma 3.3. Let K be a compact set with connected complement in a strip
1/2 < σ1 < σ < σ2 < 1 and f be continuous on K and analytic in its interior.
Then, for any α ∈ (0, 1] and any R ∈ N, there exists an ineffectively computable
positive number Q0 = Q0(σ1, σ2,K, α, f, R) such that for any integer Q ≥ Q0,
there are real numbers θk, k = R, . . . , Q− 1, for which

max
s∈K

∣∣∣∣∣f(s)−
Q−1∑
k=R

e(θk)

(k + α)s

∣∣∣∣∣�σ1,σ2,K,α R
−1/2.

Note that the condition of f being non-vanishing has already been dropped.
Using the latter lemma we prove

Lemma 3.4. Let K be a compact set with connected complement in a strip
1/2 < σ1 < σ < σ2 < 1 and f be continuous on K and analytic in its interior.
Then, for any A ∈ (0, 1] and any R ∈ N, there exists an ineffectively computable
positive number Q0 = Q0(σ1, σ2, K,A, f,R), such that for any integer Q ≥ Q0

and any real number α ∈ [A, 1], there are real numbers θk, k = R, . . . , Q− 1, for
which

max
s∈K

∣∣∣∣∣f(s)−
R−1∑
k=0

1

(k + α)s
−

Q−1∑
k=R

e(θk)

(k + α)s

∣∣∣∣∣�σ1,σ2,K,A R
−1/2.

Proof. Let A ∈ (0, 1] and R ∈ N. If

0 < ρ� R−1/2

ζ(1 + σ1;A)
(3.9)

is sufficiently small, we divide the interval [A, 1] into finitely many disjoint subin-
tervals of length at most ρ, say Lm, m = 1, . . . ,M , and we choose one number
from each such interval αm ∈ Lm. Then, for every m = 1, . . . ,M , Lemma 3.3
yields the existence of a positive number Qm = Qm(σ1, σ2,K, αm, f, R) such that
for any integer Q ≥ Qm there are real numbers θmk with

max
s∈K

∣∣∣∣∣f(s)−
R−1∑
k=0

1

(k + αm)s
−

Q−1∑
k=R

e(θmk)

(k + αm)s

∣∣∣∣∣� R−1/2, (3.10)

where the implicit constant depends on σ1, σ2,K and αm. We set

Q0 := max {Qm : m = 1, . . . ,M}
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and assume that Q ≥ Q0 is an integer and α ∈ [A, 1]. Then α ∈ Lm for some
m = 1, . . . ,M and, if we set θk := θmk, for all k = R, . . . , Q− 1, we deduce from
(3.10) and the triangle inequality that

max
s∈K

∣∣∣∣∣f(s)−
R−1∑
k=0

1

(k + α)s
−

Q−1∑
k=R

e(θk)

(k + α)s

∣∣∣∣∣
� σ1,σ2,Kmax

s∈K

∣∣∣∣∣
R−1∑
k=0

(
1

(k + α)s
− 1

(k + αm)s

)
+

Q−1∑
k=R

(
e(θk)

(k + α)s
− e(θmk)

(k + αm)s

)∣∣∣∣∣
+R−1/2

�σ1,σ2,K max
s∈K
|s|

Q−1∑
k=0

∣∣∣∣∫ αm

α

1

(k + u)s+1

∣∣∣∣+R−1/2

�σ1,σ2,K |α− αm|
Q−1∑
k=0

1

(k + A)1+σ1
+R−1/2

�σ1,σ2,K,αm R
−1/2.

Since the choice of αm depends only on A, the lemma follows.

The proof of the succeeding lemma is almost the same as the one for Lemma
3.2. In fact, in some points it is even simpler. Nevertheless, we give a detailed
proof. Before proceeding we furthermore need to define the following Dirichlet
polynomials

(s, θ, α) 7−→ ζQ (s, θ, α) :=

Q−1∑
k=0

e(θk)

(k + α)s
, (3.11)

for every (s, θ, α) ∈ C×RN× (0, 1]. We also set ζQ(s;α) := ζ(s, 0, α) for brevity.

Lemma 3.5. Assume that α ∈ (0, 1] is a transcendental number. Let (xn)n∈N be
a sequence of real numbers such that the sequence of vectors((

xn
log(k + α)

2π

)
0≤k≤Q−1

)
, n ∈ N,

is uniformly distributed mod 1 for any positive integer Q. Then, for any compact
set K ⊆ D with connected complement, any function f continuous on K and
analytic in its interior, and any ε > 0, there exist positive numbers c and Q0

such that

lim inf
N→∞

1

N
]

{
1 ≤ n ≤ N : max

s∈K
|ζQ (s+ ixn;α)− f(s)| < ε

}
> 0

for every integer Q > Q0.
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Proof. Let R be a bounded admissable set satisfying the relation K ⊆ R ⊆ R ⊆
D. If R is a positive integer such that R� (ε/2)−1/2, then Lemma 3.4 yields the
existence of a positive integer Q0 and real numbers θk, k = 0, . . . , Q0 − 1, with

max
s∈R

∣∣∣ζQ0

(
s, (θk)0≤n≤Q0−1 , α

)
− f(s)

∣∣∣ < ε

4
. (3.12)

There is δ > 0 such that, for any integer Q > Q0 and any

φ ∈ L :=

{
(φk)0≤k≤Q−1 ∈ [0, 1]Q : max

0≤k≤Q0−1
‖φk − θk‖ ≤ δ

}
,

we have

max
s∈R

∣∣∣ζQ0

(
s, (φk)0≤k≤Q0−1 , α

)
− ζQ0

(
s, (θk)0≤k≤Q0−1 , α

)∣∣∣ < ε

4
.

It then follows from relation (3.12) that

max
s∈R

∣∣∣ζQ0

(
s, (φk)0≤k≤Q0−1 , α

)
− f(s)

∣∣∣ < ε

2
. (3.13)

Since the sequence

xn :=

(
xn

log(k + α)

2π

)
0≤k≤Q−1

, n ∈ N,

is uniformly distributed mod 1 in RQ, we have

lim
N→∞

1

N

N∑
n=1
{xn}∈L

1 = lim
N→∞

1

N
] {1 ≤ n ≤ N : {xn} ∈ L} = m(L). (3.14)

If we define for every s ∈ R the Riemann integrable and 1-periodic function

Fs
(
φ
)

:=
∣∣∣ζQ (s,− (φk)0≤k≤Q−1 , α

)
− ζQ0

(
s,− (φk)0≤n≤Q0−1 , α

)∣∣∣2 ,
whenever

{
φ
}
∈ L and 0 otherwise, then Theorem A.7 yields

lim
N→∞

1

N

N∑
n=1
{xn}∈L

|ζQ (s+ ixn, 0, α)− ζQ0 (s+ ixn, 0, α)|2

= lim
N→∞

1

N

N∑
n=1

Fs({xn})

=

∫
L
Fs(x)dx

=m(L)

1∫
0

· · ·
1∫

0

∣∣∣∣∣
Q−1∑
k=Q0

e(−φk)
(k + α)s

∣∣∣∣∣
2 Q−1∏
k=Q0

dφk

=m(L)

Q−1∑
k=Q0

1

(k + α)2σ
,

(3.15)
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uniformly for s ∈ R, since the family of functions{
Fs : L→ C : s ∈ R

}
is uniformly bounded and equicontinuous.

In view of (3.15) we can choose a sufficiently large positive integer Q0 such
that

lim
N→∞

1

N

N∑
n=1
{xn}∈L

∫∫
R
|(ζQ − ζQ0) (s+ ixn;α)|2 dσdt <

π (d(∂R, K))2 m(L)ε2

8
.

It then follows from Theorem A.16 that

lim sup
N→∞

1

N

N∑
n=1
{xn}∈L

(
max
s∈K
|(ζQ − ζQ0) (s+ ixn;α)|

)2

<
m(L)ε2

8
.

Taking also into account relation (3.14) we deduce that

lim inf
N→∞

1

N
]

{
n ∈ N :

max
s∈K
|(ζQ − ζQ0) (s+ ixn;α)| < ε

2
{xn} ∈ L

}
>

m(L)

2
. (3.16)

Now the lemma follows from (3.13) and (3.16) if we set c = m(L)/2, which
is the same for fixed Q0 and any integer Q > Q0.

One could consider α in Lemma 3.5 to be a rational or an algebraic irrational
number in (0, 1], without any changes in the proof. Let us assume for the time
being that α is a rational or an algebraic irrational in (0, 1]. According to the
lemma, we would have to prove that the sequence((

xn
log(k + α)

2π

)
0≤k≤Q−1

)
, n ∈ N,

is uniformly distributed mod 1 for any positive integer Q, or equivalently, that
for any positive integer Q and any lattice point h = (hk)0≤k≤Q−1 ∈ ZQ, h 6= 0,
the sequence (

xn
2π

Q−1∑
k=0

hk log(k + α)

)
n∈N

(3.17)

is uniformly distributed mod 1. However, the numbers log(k+α), 0 ≤ k ≤ Q−1,
could be linearly dependent over Q for some Q and, thus, for a suitable lattice
point h 6= 0, the latter sum could be zero. But then the sequence in (3.17)
could never be uniformly distributed mod 1 for any sequence (xn)n∈N and the
lemma would have no meaning to begin with. That is why we assume that α
is a transcendental number, in which case the numbers log(k + α), k ∈ N0, are
linearly independent over Q.

Now arguing similarly as in the proof of Theorem 3.1, we obtain
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Theorem 3.2 (Discrete Universality Criterion for ζ(s;α)). Assume that
α ∈ (0, 1] is a transcendental number. Let (xn)n∈N be a sequence of real numbers
such that the sequence of vectors((

xn
log(k + α)

2π

)
0≤k≤Q−1

)
, n ∈ N,

is uniformly distributed mod 1 for any positive integer Q, AND

lim
Q→∞

lim sup
N→∞

1

N + 1

2N∑
n=N

|ζ(s+ ixn;α)− ζQ(s+ ixn;α)|2 = 0,

uniformly in compact subsets of Dσm, where σm ∈ [1/2, 1). Then, for any compact
set K ⊆ Dσm with connected complement, any function f continuous on K and
analytic in its interior, and any ε > 0,

lim inf
N→∞

1

N
]

{
1 ≤ n ≤ N : max

s∈K
|ζ (s+ ixn;α)− f(s)| < ε

}
> 0.

Proof. From the assumption on the uniform distribution of (xn)n∈N and Lemma
3.5 we know that there are positive numbers c and Q0, both depending on ε,
such that, if

A (Q,N) :=

{
1 ≤ n ≤ N : max

s∈K
|ζQ (s+ ixn;α)− f(s)| < ε

}
,

then

lim inf
N→∞

]A (Q,N)

N
> c (3.18)

for every Q > Q0.
If R is a bounded admissable set such that K ⊆ R ⊆ R ⊆ Dσm , then the

second assertion of the theorem implies that, for every δ > 0, there is a positive
integer Q1 = Q1(δ) such that

lim sup
N→∞

1

N + 1

2N∑
n=N

∫∫
R
|(ζ − ζQ) (s+ ixn;α)|2 dσdt < δ2

or

lim sup
N→∞

1

N

N∑
n=1

(
max
s∈K
|(ζ − ζQ) (s+ ixn;α)|

)2

dσdt�σm,K δ
2

for every Q ≥ Q0. Hence, for any sufficiently small positive number δ = δ(σm,K),
if

B(Q, δ,N) :=

{
1 ≤ n ≤ N : max

s∈K
|(ζ − ζQ) (s+ ixn;α)| < δ

}
,
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then

lim inf
N→∞

]B(Q, δ,N)

N
> 1− δ

for every Q ≥ Q1.
If now δ is sufficiently small such that δ < max{c, ε/2} andQ = max{Q0, Q1},

then

lim inf
N→∞

] (A (Q,N) ∩B(Q, δ,N))

N
> c− δ > 0

and the theorem follows.

Although we can not obtain directly by the same methods discrete univer-
sality theorems for ζ(s;α) when α is a rational number in (0, 1], the expression
of such Hurwitz Zeta-function as a linear combination of Dirichlet L-functions
(1.6) and Theorem 3.1 yield the following theorem. The proof has no significant
differences with the one given in [24, Theorem 4.1], but we will provide one for
the sake of completeness regarding our discrete universality criteria.

Theorem 3.3 (Discrete Universality Criterion for ζ (s; r/q)). Let r, q ≥ 1
be integers such that (r, q) = 1. Let also (xn)n∈N satisfy the conditions of Theorem
3.1 for all Dirichlet characters mod q. Then, for any compact set K ⊆ Dσm with
connected complement, any function f continuous on K, analytic in its interior
and non-vanishing when q = 1 or 2, and any ε > 0,

lim inf
N→∞

1

N
]

{
1 ≤ n ≤ N : max

s∈K

∣∣∣∣ζ (s+ ixn;
r

q

)
− f(s)

∣∣∣∣ < ε

}
> 0.

Proof. If q = 1, then ζ(s; 1) = ζ(s) = L(s, χ0), χ0 being the unique Dirichlet
character mod 1, and the Theorem 3.1 yields the the result.

If q = 2, then ζ(s; 1/2) = 2sL(s, χ0), χ0 being the unique Dirichlet character
mod 2. We apply Theorem 3.1 for z = 2, ξ2 = 0, f̃(s) := 2−sf(s), s ∈ K, and a
sufficiently small ε̃. Then the set of integers n > 0 such that

max
s∈K

∣∣∣L (s+ ixn, χ0)− f̃(s)
∣∣∣ < ε̃

and ∥∥∥∥xn log 2

2π

∥∥∥∥ < ε̃, (3.19)

has positive lower density. But for those integers n we also have that, for every
s ∈ K ∣∣∣∣ζ (s+ ixn;

1

2

)
− f(s)

∣∣∣∣ = |2s+ixn|
∣∣L (s+ ixn, χ0)− 2−s−ixnf(s)

∣∣
≤ 2

(
ε̃+

∣∣∣f̃(s)− 2−s−ixnf(s)
∣∣∣)

≤ 2

(
ε̃+ max

s∈K
|2−sf(s)|

∣∣1− 2−ixn
∣∣) ,
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which can be made arbitrarily small by choosing sufficiently small ε̃, as follows
by the uniform continuity of θ 7−→ 2iθ, θ ∈ R, and relation (3.19). Therefore, the
same set of integers, which has positive lower density, can be used for ζ(s; 1/2).

Lastly, for q ≥ 3, let χ1, . . . , χϕ(q), be the pairwise non-equivalent Dirichlet
characters mod q and f a function which can also have zeros in K. If we fix a
positive number c such that

c >
max
s∈K
|f(s)q−s|

ϕ(q)− 1
,

then the functions s 7−→ f(s)q−s + c and s 7−→ f(s)q−s − c(ϕ(q)− 1), s ∈ K, do
not vanish in K. Therefore, the functions

s 7−→ fj(s) :=


χ1(r) (f(s)q−s − c(ϕ(q)− 1)) , j = 1,

χj (f(s)q−s + c) , j = 2, . . . , ϕ(q),

are continuous non-vanishing on K, analytic in its interior and

f(s) =
qs

ϕ(q)

ϕ(q)∑
j=1

χj(r)fj(s)

for every s ∈ K. We apply Theorem 3.1 with z = q, ξp = 0, p ≤ z, and sufficiently
small ε̃. Then the set of positive integers n such that

max
1≤j≤ϕ(q)

max
s∈K
|L(s+ ixn, χj)− fj(s)| < ε̃

and ∥∥∥∥xn log q

2π

∥∥∥∥� max
p|q

∥∥∥∥xn log p

2π

∥∥∥∥� max
p≤q

∥∥∥∥xn log p

2π

∥∥∥∥� ε̃, (3.20)

has positive lower density. But for those integers n we also have that, for every
s ∈ K,∣∣∣∣ζ (s+ ixn;

r

q

)
− f(s)

∣∣∣∣ =

∣∣∣∣ qsϕ(q)

∣∣∣∣
∣∣∣∣∣∣
ϕ(q)∑
j=1

χj(r)(q
ixnL(s+ ixn, χj)− fj(s))

∣∣∣∣∣∣
≤ q

ϕ(q)

ϕ(q)∑
j=1

∣∣qixnL(s+ ixn, χj)− fj(s)
∣∣

≤ q

ϕ(q)

ϕ(q)∑
j=1

[
ε̃+ max

s∈K
|fj(s)|

∣∣qixn − 1
∣∣] ,

which can be made arbitrarily small by choosing sufficiently small ε̃, as follows
from the uniform continuity of θ 7−→ qiθ, θ ∈ R, and relation (3.20). There-
fore, the same set of integers, which has positive lower density, can be used for
ζ(s; r/q).

We do not treat the case of algebraic irrational α ∈ (0, 1] here. In fact, it is
still an open problem whether ζ(s;α) for such an α is universal or not! We will
return to this topic in the next chapter which is devoted completely to this case
and where we give a partial answer to this problem.
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3.2 Sequences leading to Universality

This section is dedicated, as already implied by the title, to sequences which
satisfy the criteria we proved in the previous section. The usual candidates are
arithmetic progressions (an)n∈N, for fixed a > 0, since they behave quite well
and the proofs for discrete universality are much alike the ones for continuous
universality. An interesting and open question is whether continuous universality
implies the discrete one or vice versa. If that is the case, then one has to consider
with respect to which sequences the discrete universality is equivalent to the
continuous one. Is it with respect to any sequence or just, for example, arithmetic
progressions?

It is apparent that discrete universality provides more information regarding
the value-distribution of the zeta- or L-function we wish to study, since we can
examine this function’s behaviour over a prescribed (discrete) set. We give three
examples of such sets which are generated by sequences with less structure than
the one of arithmetic progressions. We start with Beatty sequences (banc)n∈N,
which behave almost like arithmetic progressions, then we present a discrete
universality result with respect to ordinates of c-points of a suitable zeta-function.
Lastly, we treat the most difficult case of polynomial sequences (Pa(n))n∈N.

For the sake of simplicity we say that a sequence (xn)n∈N is U(ζ, α, σm)-
universal, if it satisfies the conditions of Theorems 3.2 and 3.3 inside a strip
1/2 ≤ σm < σ < 1. Respectively, a sequence (xn)n∈N is U(L, σm)-universal,
if it satisfies the conditions of Theorem 3.1 for any finite collection L(s, χj),
j = 1, . . . , J , inside a strip 1/2 ≤ σm < σ < 1, where χ1, . . . , χJ , are assumed to
be pairwise non-equivalent Dirchlet characters. In addition, since a sequence is
U(ζ, α, σm)-universal for rational α ∈ (0, 1] if it is U(L, σm)-universal with respect
to all Dirichlet characters mod q by Theorem 3.3, we will not mention this case
furthermore.

3.2.1 Beatty Sequences

If a is a positive real number, then (banc)n∈N is called a Beatty sequence. We
present here only our principal result regarding such sequences, since we mainly
wish to highlight the discrete universality criteria of the previous chapter. More-
over, we will give a more detailed introduction and description of Beatty se-
quences in the last chapter. Lastly, we only consider the case when a > 1,
for, otherwise, the Beatty sequence contains the sequence of all positive integers
and this case has been studied already in the literature with respect to discrete
universality theorems.

Theorem 3.4. Let α ∈ (0, 1] be a transcendental number. Then for almost all
a > 1 the sequence (banc)n∈N is U(ζ, α, 1/2)- and U(L, 1/2)-universal.

Proof. We start by defining the sets

L1(α) :=
∞⋂
Q=2

⋂
(m1,...,mQ)∈ZQ\{0}

{
a > 1 :

m1

a
+m2 +

Q−2∑
k=0

mk+2 log(k + α)

2π
/∈ Z

}
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and

L2 :=
⋂

r∈Q+\{1}

⋂
(m1,m2,m3)∈Z3\{0}

{
a > 1 :

m1

a
+m2 +m3

log r

2π
/∈ Z
}
.

Observe that both sets L1(α) and L2 are of full Lebesgue measure. In addition,
if a is an element of L1(α) or L2, then the numbers

1, a, a
logα

2π
, . . . , a

log(Q− 1 + α)

2π

are linearly independent over Q for any positive integer Q, or the numbers

1, a,

(
a

log p

2π

)
p∈M

are linearly independent over Q for any finite set of primes M , respectively. In
view of Corollary A.2 and Theorem A.4, this implies that, if a is an element of
L1(α) or L2, then the sequence(

banc log(k + α)

2π

)
0≤k≤Q−1

, n ∈ N,

is uniformly distributed mod 1 for any positive integer Q, or the sequence(
banc log p

2π

)
p∈M

, n ∈ N,

is uniformly distributed mod 1 for any finite set of primes M , respectively.
Therefore, the first condition of Theorems 3.1 and 3.2 on uniformly distributed
sequences is satisfied.

It is left to show that the second condition of Theorems 3.1 and 3.2 regarding
the discrete mean-squares also holds. To this end, let a ∈ L1(α), H > 0,
1/2 < σ2 < σ1 < 1 and set

fQ(σ, h, t) := ζ(σ + ih+ it;α)− ζQ(σ + ih+ it;α),

for any σ2 ≤ σ ≤ σ1, any |h| ≤ H, any t > 0, and any Q ∈ N. Then Gallagher’s
lemma (Lemma 2.1) implies that, for any N �Q,H 1 sufficiently large integer,
T0 = aN − (a+ 1)/2, T = a(N + 1), δ = a− 1 and B = {banc : N ≤ n ≤ 2N},

2N∑
n=N

|ζ (σ + ih+ ibanc;α)− ζQ (σ + ih+ ibanc;α)|2

≤ 1

a− 1

2aN+(a−1)/2+H∫
aN−(a+1)/2−H

|fQ(σ, 0, t)|2 dt+

+

 2aN+(a−1)/2+H∫
aN−(a+1)/2−H

|fQ(σ, 0, t)|2dt
2aN+(a−1)/2+H∫
aN−(a+1)/2−H

|f ′Q(σ, 0, t)|2dt


1/2

(3.21)
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whenever σ2 ≤ σ ≤ σ1, |h| ≤ H and Q ∈ N. Since the interval

[aN − (a+ 1)/2−H, 2aN + (a− 1)/2 +H]

is a subset of[
a

(
N

2
− 1

2

)
, aN

]
∪
[
a

(
N − 1

2

)
, 2aN

]
∪
[
a

(
2N − 1

2

)
, 4aN

]
,

for sufficienlty large integer N �Q,H 1, we deduce from relations (2.5) and (2.6)
of the previous chapter, and relation (3.21), that

lim sup
N→∞

1

N + 1

2N∑
n=N

|ζ (σ + ih+ ibanc;α)− ζQ (σ + ih+ ibanc;α)|2 �a,α Q
1−2σ1 .

Hence,

lim
Q→∞

lim sup
N→∞

1

N + 1

2N∑
n=N

|ζ (σ + ih+ ibanc;α)− ζQ (σ + ih+ ibanc;α)|2 = 0,

uniformly in σ2 ≤ σ ≤ σ1 and |h| ≤ H. Thus, the second condition of Theorem
3.2 is also satisfied and we deduce that the sequence (banc)n∈N is U(ζ, α, 1/2)-
universal.

To prove now that (banc)n∈N is U(L, 1/2)- universal for any a ∈ L2, we only
need to show that for any Dirichlet character χ

lim
w→∞

lim sup
N→∞

1

N + 1

2N∑
n=N

∣∣(L− L{p∈P : p≤w}
)

(σ + ih+ ibanc, χ)
∣∣2 = 0,

uniformly in σ2 ≤ σ ≤ σ1 and |h| ≤ H. This will follow, in the same manner as
in the case of ζ(s;α), by applying Gallagher’s lemma to

fQ(σ, h, t) := L(σ + ih+ it, χ)− L{p∈P : p≤w}(σ + ih+ it, χ)

and using the identities

lim
w→∞

lim sup
T→∞

1

T

T∫
0

∣∣(L− L{p∈P : p≤w}
)

(s+ it, χ)
∣∣2 dt = 0

and

lim
w→∞

lim sup
T→∞

1

T

T∫
0

∣∣∣(L− L{p∈P : p≤w}
)′

(s+ it, χ)
∣∣∣2 dt = 0,

which hold uniformly in compact sets of the critical strip D. The first identity
was proved by Bohr [6, Hilfssatz 2] for ζ(s) and it is straightforward to prove it
also for L(s, χ). The second identity follows from the first one and an application
of Cauchy’s integral formula, that is,(

L− L{p∈P : p≤w}
)′

(s+ it, χ) =
1

2πi

∫
|s−z|=ε

(
L− L{p∈P : p≤w}

)
(z + it, χ)

(z − s)2
dz,

where ε is a sufficienlty small and fixed positive number. This concludes the
proof of the theorem.
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3.2.2 c-points of Zeta-Functions from the Selberg Class

Given a complex number c and a suitable zeta-function L(s), the roots of the
equation

L(s) = c

are called c-points of L(s) and will be denoted by ρc = βc + iγc. Here and in the
sequel the c-points are counted according to multiplicities. Moreover, we restrict
ourselves to the upper half-plane of C and we assume that a sequence of c-points
(ρc,n)n∈N, is taken in such a way that, if n ≤ m, then 0 ≤ γc,n ≤ γc,m.

Garunkštis, Laurinčikas and Macaitienė [20] have proved that the sequence
(γ0,n)n∈N, which corresponds to the non-trivial zeros of ζ(s), is U(ζ, 1, 1/2)-
universal under assumption of what they call a weak Montgomery conjecture
on the spacing of the imaginary parts of the non-trivial zeros (as it would follow
from the pair correlation conjecture of Montgomery [60]). Later, Garunkštis and
Laurinčikas [19] obtained the same universality theorem assuming RH.

In this subsection we give an unconditional proof of the aforementioned result
in the more general setting of this thesis, as well as in the more general context
of c-points of zeta-functions L(s) from the Selberg class. This class, which is
usually denoted by S , was introduced by Selberg [81] and consists of Dirichlet
series

L(s) :=
∞∑
n=1

a(n)

ns
,

satisfying the following hypotheses:

i. Ramanujan hypothesis. a(n)�ε n
ε

ii. Analytic continuation. There exists a non-negative integer k such that
(s− 1)kL(s) is an entire function of finite order, that is,

(s− 1)kL(s)� exp
(
rA
)
, |s| = r →∞

for some positive number A.

iii. Functional equation. L(s) satisfies a functional equation of type

ΛL(s) = ωΛL(1− s),

where

ΛL(s) := L(s)Qs

J∏
j=1

Γ (λjs+ µj)

with positive real numbers Q, λj, and complex numbers µj, ω with <µj ≥ 0
and |ω| = 1.

iv. Euler product. L(s) has a product representation

L(s) =
∏
p

Lp(s),
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where

Lp(s) = exp

(
∞∑
k=1

b(pk)

pks

)

with suitable coefficients b(pk) satisfying b(pk)� pkθ for some θ < 1/2.

Axioms (i) and (ii) imply that a function L(s) from S is a Dirichlet series which
is absolutely convergent for σ > 1 and it has an analytic continuation to the
whole complex plane except for a possible pole at s = 1. From axiom (iii) one
can obtain the quantity

dL := 2
J∑
j=1

λj,

which is called the degree of L(s) and, although the data from the functional
equation is not unique, dL is well-defined. Axiom (iv) implies that if L ∈ S
and it is not the zero function, then a(1) = 1. Moreover, one can prove that if
dL ∈ [0, 1), then dL = 0 and L ≡ 1, which is the only constant function in S (see
[86, Theorem 6.1]).

For a survey on the Selberg class and the value-distribution of its functions we
refer to Kaczorowski and Perelli [42], Perelli [64] and Steuding [86]. The simplest
examples of functions belonging to S are, to name a few, shifts L(s + iθ), χ)
of Dirichlet L-functions attached to primitive characters χ with θ ∈ R, and
Dedekind zeta-functions to number fields K. The first family is of degree one
while the second one has degree equal to the degree of the field extension K/Q.

Steuding [87] proved that if c is a complex number and (ρc,n)n∈N, is the
sequence of non-trivial c-points of ζ(s), then the sequence (aγc,n)n∈N, is uniformly
distributed mod 1 for every real number a 6= 0. The adjective non-trivial means
that the c-points in question are not located in the neighbourhood of a trivial
zero of ζ(s). Jakhlouti, Mazhouda and Steuding [40] proved a similar result for c-
points of zeta-functions from S by assuming the truth of the Lindelöf hypothesis.
Such sequences are seemingly good canditates for our universality theorems since
they already behave, or it is assumed that they should behave, as uniformly
distributed sequences. However, the second condition on discrete mean-squares
is still unknown unconditionally even for the simplest examples of zeta-functions.
This explains why in [19] and [20], assumptions which have not yet proven to be
true are considered.

Our approach is rather elementary and arises from the fact that, in general,
there are about T log T c-points of L(s) with T < γc ≤ 2T (see [86, Corollary
7.4]). So we just need to find a subsequence of the original sequence (γc,n)n∈N, say
(γc,nk)k∈N, such that the sequence (aγc,nk)k∈N, is uniformly distributed mod 1 for
every real number a 6= 0, but it also satisfies the second condition for the discrete
mean-squares in Theorems 3.1 and 3.2. This becomes possible by making use of
a classical order result for functions from S and by generalizing a result due to
Littlewood [54] regarding ζ(s).
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Lemma 3.6. Let L ∈ S. Then

L(σ + it) � |t|(1/2−σ)dL |L(1− σ + it), |t| ≥ t0 > 0,

uniformly in any strip σ1 ≤ σ ≤ σ2.

Proof. For a proof see [86, Theorem 6.8].

Lemma 3.7. Let L ∈ S \ {1} and c be a complex number. Then there exists a
positive number A = A(c) such that for every T ≥ exp(3) one can find a c-point
βc + iγc of L(s) satisfying

|γc − T | <
A

log log log T
.

Proof. Let n0 > 1 be the first positive integer n such that the n-th coefficient of
the Dirichlet series represantation of L(s), a(n), is non-zero. We know that such
a number exists, because L(s) differs from the only constant function in S . This
also implies that dL ≥ 1. In the sequel we make use of the notation an := a(n),
for all n ∈ N.

Now we define the function

g(s) :=



|an0|ns0
an0

(L(s)− 1), if c = 1,

L(s)− c, if <c < 1,

c− L(s), if <c > 1,

−i (L(s)− c) , if <c = 1 and =c > 0,

i (L(s)− c) , if <c = 1 and =c < 0,

for every s ∈ C \ {1} . Then there exists σ0 = σ0(c) > 1 such that

g(s) � <(g(s)) � 1, (3.22)

uniformly in the half-plane σ ≥ σ0− 1. Indeed, the absolute convergence of L(s)
in the half-plane σ > 1 implies that

<(g(s)) ≤ |g(s)| � 1,

uniformly in any half-plane σ ≥ σ1 > 1. On the other hand, for σ > 1,

<(g(s)) =



|an0|+
∑
n>n0

(n0/n)σ E(n, t), c = 1,

<c− 1 +
∑
n≥n0

n−σF (n, t), <c < 1,

1−<c−
∑
n≥n0

n−σF (n, t), <c > 1,

=c+
∑
n≥n0

n−σG(n, t), <c = 1 and =c > 0,

−=c−
∑
n≥n0

n−σG(n, t), <c = 1 and =c < 0,
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where

E(n, t) := |an0 |−1
[
< (an0an) cos

(
t log n0

n

)
−= (an0an) sin

(
t log

n0

n

)]
,

F (n, t) := <an cos (t log n) + =an sin (t log n) ,

G(n, t) := =an cos (t log n)−<an sin (t log n) .

Thus, for sufficiently large σ0 we have

|g(s)| ≥ <(g(z))� 1,

uniformly in σ ≥ σ0 − 1. Moreover, by arguing similarly, we can take σ0 large
enough such that also

|L(s)| � 1, (3.23)

uniformly in σ ≥ σ0 − 1.
Lastly, we define for every s ∈ C \ {1} the function f(s) := log g(s), where

the logarithm takes its principal value for σ ≥ σ0 − 1, and for other points s we
define f(s) to be the value obtained from f(σ0) by continuous variation along
the line segments [σ0, σ0 + it] and [σ0 + it, σ + it], provided that the path does
not cross a zero or a pole of g(s); if it does, then we take f(s) = f(s+ 0). From
the latter definition and (3.22) it follows that

f(s)� 1, (3.24)

uniformly in σ ≥ σ0 − 1.
For the second part of the proof we employ a technique used by Titchmarsh

(see [90, Theorem 9.12]). In the sequel A1, . . . , A5 denote positive constants,
which may depend on dL, c and some suitable positive numbers σ0 and ε. Since
these quantities are considered to be fixed here, we do not indicate this depen-
dence in any of the implicit constants in the sequel of the proof.

It suffices to show that for every sufficiently large positive number T , if there
is no c-point of L(s) such that |γc−T | ≤ δ < 1/2, then δ � (log log log T )−1. To
this end, let T be a large positive number and assume that L(s) has no c-point
such that |γc − T | ≤ δ < 1/2. Then, the function f(s), as it was defined above
is regular in the rectangle

R := {s ∈ C : −(σ0 + 1) ≤ σ ≤ σ0 + 1, |t− T | ≤ δ} .

We set

N :=

⌊
8σ0
δ

⌋
+ 1, (3.25)

and we consider the circles

Km,n :=

{
s ∈ C :

∣∣∣∣s− (σ0 − nδ

4
+ iT

)∣∣∣∣ =
mδ

4

}
;
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we define the maximum value of f on them by

Mm,n := max
s∈Km,n

|f(s)|

for every n = 0, . . . , N and m = 1, 2, 3, 4. Observe that all circles Km,n lie inside
the strip −(σ0 + 1) ≤ σ ≤ σ0 + 1 and, in particular, in R.

The absolute convergence of L(s) in the half-plane σ > 1 implies that

L(s)�ε |t|ε, |t| ≥ t0 > 0,

uniformly in σ ≥ σ0 > 1. This and Lemma 3.6 yield that

L(s)�ε |t|(3/2+σ0)dL+ε, |t| ≥ t0 > 0,

uniformly in the strip −(σ0 + 1) ≤ σ ≤ σ0 + 1. We then deduce that

<(f(s)) = log |g(s)| ≤ A1 log T, (3.26)

uniformly in R whenever T � 1 is sufficiently large. If we apply now the Borel-
Carathéodory inequality (Theorem A.20) to f(s) on the circles K3,0 and K4,0,
then

M3,0 ≤
3
2
δ

δ − 3
4
δ

max
s∈K4,0

<(f(s)) +
δ + 3

4
δ

δ − 3
4
δ
|f (σ0 + iT )|

and it follows from relations (3.24) and (3.26) that

M3,0 ≤ 7A1 log T + A2. (3.27)

It is easy to see that σ0− δ/4+ iT lies inside the bounded component of C\K3,0.
Hence, an application of the Borel-Carathéodory inequality to f(s) on the circles
K3,1 and K4,1, the maximum modulus principle and relations (3.26) and (3.27)
yield

M3,1 ≤
3
2
δ

δ − 3
4
δ

max
s∈K4,1

<(f(s)) +
δ + 3

4
δ

δ − 3
4
δ
|f (σ0 − δ/4 + iT )|

≤ 7(A1 log T + M3,0)

≤
(
7 + 72

)
A1 log T + 72A2.

Continuing this way we deduce that

M3,n ≤ (7 + · · ·+ 7n)A1 log T + 7n+1A2 ≤ 7nA3 log T (3.28)

for every n = 0, . . . , N .
Next we apply Hadamard’s three-circles theorem (Theorem A.19) to f(s) on

the circles K1,n, K2,n and K3,n, that is,

M2,n ≤Ma
1,nM

b
3,n

for every n = 0, . . . , N , where a = log(3/2)/ log 3 and b = log 2/ log 3. Observe
also that K1,n lies inside the bounded component of C\K2,n−1 and, therefore, the
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maximum modulus principle implies that M1,n ≤M2,n−1 for every n = 1, . . . , N .
Hence,

M2,n ≤Ma
1,nM

b
3,n ≤Ma

2,n−1M
b
3,n

for every n = 1, . . . , N . We then have that

M2,1 ≤Ma
2,0M

b
3,1, M2,2 ≤Ma

2,1M
b
3,2 ≤Ma2

2,0M
ab
3,1M

b
3,2, . . .

and, eventually,
M2,N ≤MaN

2,0M
aN−1b
3,1 MaN−2b

3,2 . . .Mb
3,N ,

or, by (3.28),

M2,N ≤MaN

2,07a
N−1b+2aN−2b+···+Nb (A3 log T )a

N−1b+aN−2b+···+b . (3.29)

Since a, b > 0 and a+ b = 1, it follows that

aN−1b+ 2aN−2b+ · · ·+Nb ≤ N2

and
aN−1b+ aN−2b+ · · ·+ b = b(1− aN)/(1− a) = 1− aN .

Moreover, in view of relation (3.24),

MaN

2,0 ≤M2,0 � 1.

Thus, relation (3.29) becomes

M2,N ≤ A47
N2

(log T )1−a
N

. (3.30)

Now observe that relation (3.23) and Lemma 3.6 imply that

L(s)� |t|(1/2+σ0)dL , |t| ≥ t0 > 0,

uniformly in the strip −(σ0 + 1) ≤ σ ≤ −σ0 and, since −(σ0 + 1) ≤ σ0−Nδ/4 ≤
−σ0, it follows that

M2,N ≥
∣∣∣∣f (σ0 − Nδ

4
+ iT

)∣∣∣∣ ≥ A5 log T,

where T � 1 is sufficiently large. Taking into account relation (3.30), we obtain
that

A5(log T )a
N ≤ A47

N2

or

log log T ≤
(

1

a

)N (
log

A4

A5

+N2 log 7

)
.

Taking once more the logarithm yields that

log log log T � N

and, by the definition (3.25) of N , the lemma follows.
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Corollary 3.1. Let L ∈ S \ {1}, b > 0 be a real number and c a complex
number. Then there exists a subsequence of c-points (ρc,nk)k∈N, of L(s), such
that γc,nk = bk + o(1), as k → ∞, and the sequence (aγc,nkm )k∈N, is uniformly
distributed mod 1 for every real number a /∈ b−1Q and every positive integer m.

Proof. Let (ρc,n)n∈N be the sequence of c-points of L(s). Then, for every k ≥
k′ := bexp(3)/bc, Lemma 3.7 yields the existence of a positive integer nk such
that γc,nk = bk + O ((log log log(bk))−1) = bk + o(1), as k → ∞. We also set
γc,nk = γc,nk′ for every positive integer k < k′. Now, if a /∈ b−1Q is a real number
and m a positive integer, then the sequence (abkm)k∈N, is uniformly distributed
mod 1 (see Theorem A.4) and limk→∞ (abkm − aγc,nkm ) = 0. Hence, Theorem
A.1 implies that the sequence (aγc,nkm )k∈N is uniformly distributed mod 1.

We can now show how the preceding corollary generates infinitely manygood
sequences of ordinates of c-points of a given function from the Selberg class which
satisfy the conditions of our universality theorems.

Theorem 3.5. Let L ∈ S \ {1}, α ∈ (0, 1] be transcendental and c be a complex
number. Then there exists a subsequence of c-points (ρc,nk)k∈N, of L(s), such that
(γc,nk)k∈N is U(ζ, α, 1/2)- and U(L, 1/2)-universal.

Proof. From Corollary 3.1 there exists exists a subsequence of c-points (ρc,nk)k∈N,
of L(s), such that γc,nk = 2πk + o(1), as k → ∞, and the sequence (aγc,nk)k∈N,
is uniformly distributed mod 1 for any positive number a /∈ (2π)−1Q. This, the
linear independence of the sets {log p : p ∈ P} and {log(m + α) : m ∈ N} over
Q, respectively, and Corollary A.2 yield that the sequences((

γc,nk
log p

2π

)
p∈M

)
and

((
γc,nk

log(m+ α)

2π

)
0≤m≤Q−1

)
, k ∈ N,

are uniformly distributed mod 1 for any finite set of primes M and any positive
integer Q.

Now let H > 0, 1/2 < σ2 < σ1 < 1 and set

fQ(σ, h, t) := ζ(σ + ih+ it;α)− ζQ(σ + ih+ it;α)

for any σ2 ≤ σ ≤ σ1, any |h| ≤ H, any t > 0 and any Q ∈ N. Then Lemma 2.1
implies that, for any sufficiently large integer N �Q,H 1 with |γc,nk − 2πk| < 1/2
for k ≥ N , T0 = 2πN − 1/4, T = 2πN + 1, B = {γc,nk : N ≤ k ≤ 2N} and

δ =
1

2
< min

N≤m 6=k≤2N
|γc,nm − γc,nk |,

the following inequality holds:

2N∑
k=N

|fQ(σ, h, γc,nk)|
2 ≤2

4πN+3/4+H∫
2πN−1/4−H

|fQ(σ, 0, t)|2 dt+

+

 4πN+3/4+H∫
2πN−1/4−H

|fQ(σ, 0, t)|2dt
4πN+3/4+H∫

2πN−1/4−H

|f ′Q(σ, 0, t)|2dt


1/2

(3.31)
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for any σ2 ≤ σ ≤ σ1, any |h| ≤ H and any Q ∈ N. Since the interval
[2πN − 1/4−H, 4πN + 3/4 +H] is a subset of[

2π

(
N

2
− 1

2

)
, 2πN

]
∪
[
2π

(
N − 1

2

)
, 4πN

]
∪
[
2π

(
2N − 1

2

)
, 8πN

]
,

for sufficiently large integer N �Q,H 1, we deduce from relations (2.5) and (2.6)
of the previous chapter, and relation (3.31) that

lim sup
N→∞

1

N + 1

2N∑
k=N

|ζ (σ + ih+ iγc,nk ;α)− ζQ (σ + ih+ iγc,nk ;α)|2 �α Q
1−2σ1

or

lim
Q→∞

lim sup
N→∞

1

N + 1

2N∑
k=N

|ζ (σ + ih+ iγc,nk ;α)− ζQ (σ + ih+ iγc,nk ;α)|2 = 0,

uniformly in σ2 ≤ σ ≤ σ1 and |h| ≤ H. Therefore, the second condition of
Theorem 3.2 is also satisfied and, thus, we deduce that the sequence (γc,nk)k∈N
is U(ζ, α, 1/2)-universal.

To prove that (γc,nk)k∈N, is U(L, 1/2)-universal we argue similarly as above
and as we did in the case of Beatty sequences, by making suitable changes wher-
ever needed.

3.2.3 Polynomials and Monomials

In the last part of this section, we give an example regarding universality theo-
rems with respect to sequences of numbers which are generated by polynomials
of degree larger than one. In this case, the usual method of using Gallagher’s
lemma in order to estimate discrete mean-squares, the second condition of our
universality theorems, through continuous ones, is not applicable anymore. In-
stead, we employ our approach from Chapter 2. The only drawback is we are not
able to prove discrete universality theorems to the whole strip D, but to a thinner
one having a width depending on the degree of the polynomial in discussion.

Theorem 3.6. Let α ∈ (0, 1] be a transcendental number and d ≥ 2 be an integer.
Then for almost all a, b ∈ [0,+∞)d, the sequences (Pa(n))n∈N and (Pb(n))n∈N are
U(ζ, α,S(d))- and U(L,S(d))-universal, respectively, where Pa(x) = a1x + · · · +
adx

d and S(d) is defined by (2.19).

We break down the proof by showing, essentially, the two conditions of The-
orems 3.1 and 3.2 in two seperate lemmas.

Lemma 3.8. Let α ∈ (0, 1] be a transcendental number and d ≥ 2 be an integer.
For almost all a, b ∈ [0,+∞)d, the sequences((

Pa(n)
log(k + α)

2π

)
0≤k≤Q−1

)
and

((
Pb(n)

log p

2π

)
p∈M

)
, n ∈ N,

are uniformly distributed mod 1 for any finite set of primes M and any positive
integer Q, respectively.
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Proof. Let

a∈L(α) := [0,+∞)d\


(
Q−1∑
k=0

mk log(k + α)

2πq

)−1
: q ∈Z, Q∈N, m∈ZQ \{0}


d

and

b ∈ L := [0,+∞)d \
{

2πq

log r
: (q, r) ∈ N0 × (Q>0 \ {1})

}d
.

It is not difficult to see that L and L(α) are of full Lebesgue measure and, in
order to prove that the sequences in the lemma are uniformly distributed modulo
1, it suffices to show that, for any lattice points e = (ek)0≤k≤Q−1 ∈ ZQ \ {0}, and
h = (hp)p∈M ∈ Z]M \ {0}, the sequences(

Pa(n)

2π

Q−1∑
k=0

ek log(k + α)

)
n∈N

and

(
Pb(n)

2π

∑
p∈M

hp log p

)
n∈N

are uniformly distributed mod 1 (see Corollary A.2). But this follows from our
choice of a and b and Theorem A.4.

We recall here briefly the setting from Subsection 2.2.4. Let

S(d) = min
0<µ< d2+d−2

4d

max {A(µ), 1−B(d, µ)} ∈ (0, 1),

be as in (2.19), µ be the number in the interval (0, (d2 +d− 2)/4d) for which the
latter minimun is attained, σ0 ∈ (S(d), 1], ε ∈ (0, µd(σ0 − S(d)/2) arbitrary but
fixed, and F (d, α, µ, ε) as in (2.17).

Lemma 3.9. Let α ∈ (0, 1] be a transcendental number, d ≥ 2 be an integer,
σ0 ∈ (S(d), 1] and H > 0. Then, for all a ∈ F (d, α, µ, ε),

lim
Q→∞

lim sup
N→∞

N

2N

N∑
n=1

|(ζ − ζQ) (σ + i(Pa(n) + h);α)|2 = 0,

uniformly in S(d) < σ0 ≤ σ ≤ 1 and |h| ≤ H. Moreover, for α = 1 and any
b ∈ F (d, 1, µ, ε),

lim
w→∞

lim sup
N→∞

1

N

2N∑
n=N

∣∣(L− L{p∈P:p≤w}) (σ + i(Pb(n) + h), χ)
∣∣2 = 0,

uniformly in S(d) < σ0 ≤ σ ≤ 1 and |h| ≤ H.

Proof. Let a = (a1, . . . , ad) ∈ F (d, α, µ, ε)\{0}. Then, there is Ka ∈ N such that

a ∈
[
0, 2dMa +H

]d \ G(d, α, µ, ε, 2dMa +H,Ka).
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Using the approximate functional equation for ζ(s;α) from Theorem 2.4, we
deduce that

(ζ − ζQ)(σ + it;α) =
∑

Q≤n≤tµ

1

nσ+it
+Oµ,σ0

(
t−ν
)
,

for any σ0 ≤ σ ≤ 1 and t ≥ Q1/µ. Then, for any sufficiently large N �a,H

max
{
Q1/µ, Kα

}
and tn,h := Pa(n) + h�a,H n, n ≥ N , we have that

2N∑
n=N

|(ζ − ζQ) (σ + i(Pa(n) + h);α)|2 =
2N∑
n=N

∣∣∣∣∣∣
∑
k≤tµn,h

1

(k + α)σ+itn,h
+Oµ,σ0

(
t−νn,h
)∣∣∣∣∣∣

2

�µ,σ0,a,H S ′N +R′N +N1−2ν + 1,

(3.32)

where

S ′N :=
2N∑
n=N

∑
k≤tµn,h

1

(k + α)2σ
≤

2N∑
n=N

∑
k≥Q

1

(k + α)2σ
� NQ1−2σ0 , (3.33)

R′N :=
2N∑
n=N

∑
1≤ 6̀=k≤tµn,h

1

((k + α)(`+ α))σ

(
k + α

`+ α

)itn,h

�
∑

1≤ 6̀=k≤(Pa(2N)+h)µ

1

((k + α)(`+ α))σ

∣∣∣∣∣∣
∑

n∈B(N,a,h,k,`)

(
k + α

`+ α

)iPa(n)∣∣∣∣∣∣
(3.34)

and

B(N, a, h, k, `) :=
{
N ≤ n ≤ 2N : Pa(n) ≥ max

{
(k + α)1/µ, (`+ α)1/µ

}
− h
}

⊆ {N, . . . , 2N} .

We may argue similarly as in (2.23)-(2.26) to prove that R∗N = o(N) as N →∞,
where the implicit constant depends only on d, σ0 and a. Therefore, we obtain
from (3.32)-(3.34) that

lim sup
N→∞

1

N

2N∑
n=N

|(ζ − ζQ) (σ + i(Pa(n) + h);α)|2 �d,σ0,α,H Q1−2σ0 (3.35)

and, thus,

lim
Q→∞

lim sup
N→∞

1

N

N∑
n=1

|(ζ − ζQ) (σ + i(Pa(n) + h);α)|2 = 0,

uniformly in σ0 ≤ σ ≤ 1 and |h| ≤ H.
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Now let b ∈ F (d, 1, µ, ε) and ε > 0 be arbitrary. Then, the absolute conver-
gence of L{p∈P:p≤w}(s) in the half-plane σ > 0 implies that for every w > 0 there
is Tw > 0 with

L{p∈P:p≤w}(σ + it, χ) =
∑
n≤tµ

p|n⇒p≤w

χ(n)

nσ+it
+Oσ0(ε)

for any σ0 ≤ σ ≤ 1 and t ≥ Tw. Hence, using the approximate functional
equation for L(s, χ) from Theorem 2.4, we deduce that

(L− L{p∈P:p≤w})(σ + it, χ) =
∑
n≤tµ

∗ χ(n)

nσ+it
+Od,σ0

(
ε+ t−ν

)
for any σ0 ≤ σ ≤ 1 and t ≥ Tw, where

∑∗ runs over the positive integers n
satisfying p - n for all primes p ≤ w.

The remaining part of the proof follows the same reasoning as for ζ(s;α) with
appropriate changes where needed. After the required calculations, we have that

lim
w→∞

lim sup
N→∞

1

N

N∑
n=1

∣∣(L− L{p∈P:p≤w}) (σ + i(Pb(n) + h), χ)
∣∣2 �d,σ0,b,H ε2,

uniformly in σ0 ≤ σ ≤ 1 and |h| ≤ H. Since ε was arbitrarily chosen, the lemma
follows.

Proof of Theorem 3.6. The sets L(α)∩F (d, α, µ, σ0, ε) and L∩F (d, 1, µ, σ0, ε) as
they were defined in the previous lemmas, are of full Lebesgue measure. More-
over, if a ∈ L(α) ∩ F (d, α, µ, σ0, ε) and b ∈ L ∩ F (d, 1, µ, σ0, ε), then the se-
quences (Pa(n))

n∈N and (Pb(n))
n∈N satisfy the assumptions of Theorems 3.1 and

3.2, respectively. Thus, (Pa(n))
n∈N is U(ζ, α,S(d))- universal, while (Pb(n))

n∈N
is U(L,S(d))-universal.

We can prove with the same machinery the analogous result for monomials:

Theorem 3.7. Let α ∈ (0, 1] be a transcendental number and d ≥ 2 be an integer.
Then, for almost all a ∈ [0,+∞), the sequence (Pa(n))n∈N is U(ζ, α,Smo(d))- and
U(L,Smo(d))-universal, where Pa(x) = axd and Smo(d) is defined by (2.29).

The restriction on the strip of universality, which is characterized by the left
abscissae S(d) and Smo(d), depending on which case we are working on, occurs
in Lemma 3.9 (and the corresponding lemma when it is about monomials). The
reason behind is that we are forced to use approximate functional equations
for ζ(s;α) and L(s, χ) which contain Dirichlet polynomials of short length but
for which it is not known yet whether they hold for the whole strip D. It is
apparent that if we could widen the strip in Lemma 3.9, then it would follow
immediately that we could widen the strip of universality, since Lemma 3.8 has
no restrictions on that matter. Therefore, as we did in Section 2.3, we could give
some conditional results, with respect to the Lindelöf hypothesis, which are now
easy to prove, because we established the necessary background.

Theorem 3.8. Under LH for ζ(s;α) and GLH, Theorem 3.6 and Theorem 3.7
hold true with S(d) = Smo(d) = 1/2, for any integer d ≥ 2.
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3.3 A Shortcut via Euler Products

The main difference between L(s, χ) and ζ(s;α) when α 6= 1/2, 1, is that L(s, χ)
can be expressed as an Euler product in the half-plane of absolute convergence of
its Dirichlet series representation, that is, in the half-plane σ > 1. This already
implies that any L(s, χ) is zero-free in the half-plane σ > 1, on the contrary to
ζ(s;α) when α 6= 1/2, 1 for which it has been proved by Davenport and Heilbronn
[13] and Cassels [12] that it has zeros in the aforementioned half-plane.

In our case, the existence of an Euler product allows a degree of flexibility
when dealing with universality theorems, because one may use the logarithm of
L(s, χ), that is,

logL(s, χ) = −
∑
p

log

(
1− χ(p)

ps

)
=
∑
p

∞∑
k=1

1

k

(
χ(p)

ps

)k
=
∞∑
k=1

Λ(n)χ(n)

ns log n

(3.36)

for every s ∈ C with σ > 1, where we chose the single-valued analytic branch of
logL(s, χ) on the half-plane σ > 1 such that

lim
σ→+∞

logL(s, χ) = 0.

Here Λ : N→ C is the von Mangoldt-function

Λ(n) :=

{
log p, if n = pk for some p ∈ P and k ∈ N,
0, otherwise.

The expression (3.36) is impractical when we wish to study the behaviour of
L(s, χ) in D. Nevertheless, one can extend the definition of logL(s, χ) inside D
in the following way: for each zero β+ iγ of L(s, χ) with β > 1/2, we remove the
segment [1/2 + iγ, β + iγ] from the half-plane σ > 1/2, as well as the segment
(1/2, 1]. We call the resulting slit half-plane Hχ and for every s with 1/2 < σ ≤ 1
we define logL(s, χ) to be the value obtained from logL(2, χ) by continuous
variation along the line segments [2, 2 + it] and [2 + it, σ + it].

Of course the preceding process would be superfluous under GRH, but we are
trying to avoid conditional results, which means that our knowledge regarding
the distribution of the zeros of L(s, χ) inside D is rather poor. Still it is suffi-
cient enough, with respect to zero-density estimates, to obtain an approximate
functional equation for logL(s, χ):

Theorem 3.9. Let δ > 0 be fixed and χ be a Dirichlet character mod q. Let also
y be a function on T > 0 such that y → +∞ and y = o

(
T δ/2

)
as T → +∞.

Then, for all sufficiently large T �δ 1, there exists a set J (T ) ⊆ [T, 2T ] of
measure m(J (T ))�q T

1−δy(log T )14 such that

logL(s+ iτ, χ) =
∑
n≤y

Λ(n)χ(n)

ns+iτ log n
+Oq

(
(log y)2 log t

yδ/2

)
for all s ∈ R(δ, y) := {s ∈ C : 1/2 + 2δ < σ ≤ 1, |t| ≤ y} and τ ∈ [T, 2T ]\J (T ).
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This is a generalization of a lemma due to Lamzouri et al. [49, Lemma 4.1]
who proved it for ζ(s) whenever s lies in a disc with center 3/4 + it0 and radius
r < 1/4. We will prove our theorem in the same manner as they did for ζ(s)
by applying a result due to Granville and Soundararajan [27, Lemma 8.2] and a
weak version of a theorem due to Montgomery [59, Theorem 12.1].

Lemma 3.10. Let χ be a Dirichlet character mod q and s = σ+ it be a complex
number with σ > 1/2 and t ≥ 4. Let also y and σ0 be real numbers satisfying
2 ≤ y ≤ t − 2 and 1/2 ≤ σ0 < σ. If L(z, χ) is zero-free in the rectangle
{z ∈ C : σ0 ≤ <z ≤ 1, |=z − t| ≤ y + 3}, then

logL(s, χ) =
∑

2≤n≤y

Λ(n)χ(n)

ns log n
+Oq

(
yσ1−σ log t

(σ1 − σ0)2

)
,

where σ1 := min {(σ + σ0)/2, σ0 + 1/ log y} .

Proof. The proof follows in the same way as in [27, Lemma 8.2]. The additional
assumption on y allows to avoid the possible pole of L(s, χ) at s = 1 in case
χ = χ0 is the principal character mod q.

Lemma 3.11. Let N(σ, T, χ) be the number of zeros β + iγ of L(s, χ) with
σ ≤ β ≤ 1 and 0 ≤ |γ| ≤ T , where σ > 0 and T ≥ 2. If 1/2 ≤ σ ≤ 1, then∑

χ

N(σ, T, χ)� (qT )3/2−σ(log T )14,

where the summation runs over all Dirichlet characters χ mod q.

Proof. For a proof see [59, Theorem 12.1].

Proof of Theorem 3.9. Let σ0 := 1/2 + δ and define Ij, j = 1, 2, to be the sets
of those τ ∈ [T + (j − 1)y, 2T − (j − 1)y] for which the rectangles

{z ∈ C : σ0 ≤ <z ≤ 1, |=z − τ | < jy + 3}

are free of zeros of L(z, χ), respectively. Observe that I2 ⊆ I1 and τ + t ∈ I1
for all τ ∈ I2 and s ∈ R(δ, y). Therefore, if we set σ1 := σ0 + 1/ log y and take
sufficiently large T �δ 1, it follows from our assumption on y and Lemma 3.10
that

logL(s+ iτ, χ) =
∑
n≤y

Λ(n)χ(n)

ns+iτ log n
+Oq

(
(log y)2 log t

yδ/2

)
uniformly in s ∈ R(δ, y) and τ ∈ I2. If we set J (T ) = [T, 2T ] \ I2, then it
follows from the definition of I2, our assumption on y and Lemma 3.11 that
m(J (T ))�q T

1−δy(log T )14 for all sufficiently large T �δ 1.

We are now ready to prove the last theorem of this chapter.
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Theorem 3.10. Let d ≥ 2 be an integer and δ ∈ (0, 1/2). Let also χ1, . . . , χJ be
pairwise non-equivalent Dirichlet characters. Then, for almost all a ∈ [1,+∞)
the following holds:

If K ⊆ {s ∈ C : 1/2 + 2δ < σ < 1} is a compact set with connected comple-
ment, z is a positive real number, ξp, p ≤ z, are real numbers, f1, . . . , fJ are
continuous non-vanishing functions on K and analytic in its interior, and ε is a
positive real number, then

lim inf
N→∞

1

N
]

1 ≤ n ≤ N :

max
1≤j≤J

max
s∈K

∣∣L (s+ iand, χj
)
− fj(s)

∣∣ < ε

max
p≤z

∥∥∥∥xn log p

2π
− ξp

∥∥∥∥ < ε

 > 0.

One could argue that what we are actually proving is that, for almost all
a ∈ [1,+∞), the sequence

(
and
)
n∈N is U(L, 1/2 + 2δ)-universal. However, the

latter definition was for sequences which satisfy the conditions of Theorems 3.1,
3.2 or 3.3. In our case we were unable to prove the condition on the discrete
mean-squares for a strip with width that does not depend on the degree of the
polynomial. On the other hand, we can prove the analogous condition for the
logarithms of L(s, χj) and this will allows us to obtain the above universality
theorem.

Proof of Theorem 3.10. By Mergelyan’s theorem, we may assume without loss of
generality that f1, . . . , fJ are polynomials which are non-vanishing in K. There-
fore, we can find a bounded admissable set R satisfying K ⊆ R ⊆ R ⊆ D where
f1, . . . , fJ are non-vanishing. Let

a ∈ L := [1,+∞) \
{

2πq

log r
: (q, r) ∈ N0 × (Q>0 \ {1})

}
.

Then, in view of Corollary A.2 and Theorem A.4 , it follows that the sequence(
and̃

log p

2π

)
p∈M

n ∈ N,

is uniformly distributed mod 1 for any finite set of primes M , where d̃ = d̃(d, δ) ≡
0 (mod d) will be determined later on. Therefore, it follows from Lemma 3.2 that
there exist positive numbers c and v such that

lim inf
N→∞

1

N
]

1≤n≤N :

max
1≤j≤J

max
s∈K

∣∣∣L{p∈P : z<p≤u}

(
s+ iand̃, χj

)
−fj(s)

∣∣∣< ε

max
p≤z

∥∥∥∥and̃ log p

2π
− ξp

∥∥∥∥ < ε

 > c

(3.37)

for every u ≥ v.
Let logL(s, χ1), . . . , logL(s, χJ) be defined as in the beginning of this section

on
⋂J
j=1Hχj . Let also log f1, . . . , log fJ denote the principal branches of the log-

arithms of f1, . . . , fJ on R, respectively. Then the latter relation and continuity
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implies that, if

A (u, ε) :=

n ∈ N :

max
1≤j≤J

max
s∈K

∣∣∣logL{p∈P : p≤u}

(
s+ iand̃, χj

)
− log fj(s)

∣∣∣ < ε

2

max
p≤z

∥∥∥∥and̃ log p

2π
− ξp

∥∥∥∥ < ε


for all sufficiently small ε > 0, then

lim inf
N→∞

] (A (u, ε) ∩ [1, N ])

N
> c (3.38)

for every u ≥ v.
Set y := (log T )4/δ. Then it follows from Theorem 3.9 that, for all sufficiently

large T �δ,R 1, there exists a set J (T ) ⊆ [T, 2T ] with m(J (T ))� T 1−δ/2 such
that

logL(s+ iτ, χj) =
∑
k≤y

Λ(k)χj(k)

ks+iτ log k
+O

(
1

log T

)
for all s ∈ R, τ ∈ [T, 2T ]\J (T ) and j = 1, . . . , J . The implicit constants depend
on q1, . . . , qJ , but we will not mention this dependence from now on.

Let N , n and M be positive integers such that N ≤ n ≤ 2N and d̃ = d̃(d, δ)
be an integer multiple of d such that d̃δ > 4. If we set

E ′(n,M, d, δ) :=

{
a ∈ [1, 2M ] : and̃ ∈

M⋃
k=1

J
(
knd̃
)}

= f−1

(
M⋃
k=1

J
(
knd̃
))

,

where f(x) := xnd̃ is a linear transformation on R, then, for all sufficiently large
integers N �δ,R 1 and any positive integer M , we have

m(E ′(n,M, d, δ))� 1

nd̃

M∑
k=1

(
knd̃
)1−δ/2

�M,δ n
−d̃δ/2.

Therefore, the set

G ′(K,M, d, δ) :=
∞⋃

N=K

2N⋃
k=N

E ′(k,M, d, δ)

has Lebesgue measure

m(G ′(K,M, d, δ))�M K2−d̃δ/2

for all sufficiently large integers K �δ,R 1 and any positive integer M . Now if
we set G ′(K,M) = [1, 2M ] for the remaining of the positive integers K and

F ′(d, δ) := [1,+∞) \

(
∞⋃

M=1

∞⋂
K=1

G ′(K,M, d, δ)

)
,
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then F ′(d, δ) is of full Lebesgue measure. Moreover, if a ∈ F ′(d, δ), then, by
construction, there exists K0 = K0(a, δ,R) > 0 such that

logL
(
s+ iand̃, χj

)
=
∑
k≤y′

Λ(k)χj(k)

ks+iand̃ log k
+O

(
1

logN

)
(3.39)

for any s ∈ R, any integers N ≥ K0 and N ≤ n ≤ 2N and any j = 1, . . . , J ,

where y′ :=
(
d̃ log(aN)

)4/δ
.

We turn to the logarithms of the truncated Euler products L{p∈P:p≤w}(s, χj)
for σ,w > 0 and j = 1, . . . , J . Choosing the single-valued analytic branch of
logL{p∈P:p≤w}(s, χj) on the half-plane σ > 0 such that

lim
σ→+∞

logL{p∈P:p≤w}(s, χ) = 0,

we have

logL{p∈P:p≤w}(s, χj) = −
∑
p≤w

log

(
1− χ(p)

ps

)
=

∞∑
k=1

p|k⇒p≤w

Λ(k)χj(k)

ks log k

for σ,w > 0 and any j = 1, . . . , J . Then, the absolute convergence of the Dirichlet
series on the right-hand side of the latter relation in the half-plane σ > 0 implies
that, for every w > 0, there is Tw > 0 with

logL{p∈P:p≤w}(s, χj) =
∑
k≤y′

p|k⇒p≤w

Λ(k)χj(k)

ks log k
+Oσ0(ε)

for any σ0 ≤ σ ≤ 1 and t ≥ Tw. Hence, using the approximate functional
equation for logL(s, χ) (3.39), we deduce that(

logL− logL{p∈P:p≤w}
) (
s+ iand̃, χj

)
=

∑
k≤y′

p|k⇒p>w

Λ(k)χj(k)

ks+iand̃ log k
+O

(
ε+

1

logN

)

for any s ∈ R, any integers N ≥ K0+Tw and N ≤ n ≤ 2N and any j = 1, . . . , J .
Now we consider discrete moments. Let j ∈ {1, . . . , J} and N ≥ K0 + Tw be

an integer. Then

2N∑
n=N

∣∣∣(logL− logL{p∈P:p≤w}
) (
s+ iand̃, χj

)∣∣∣2 � S ′N +N

(
ε+

1

logN

)2

,

(3.40)

where

S ′N = (N + 1)
∑
k≤y′

p|k⇒p>w

Λ(k)χj(k)

k2σ log k
+

∑
1≤k 6=`≤y′
p|k⇒p>w
p|`⇒p>w

Λ(k)Λ(`)χj(k)χj(`)

(k`)σ log k log `

2N∑
n=N

(
k

`

)and̃

� Nw−4δ +
∑

1≤`<k≤y′

1

(k`)σ

[∣∣∣∣∣
2N∑
n=1

(
k

`

)and̃∣∣∣∣∣+

∣∣∣∣∣
N∑
n=1

(
k

`

)and̃∣∣∣∣∣
]
,

(3.41)
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uniformly in s ∈ R. We bound the latter exponential sums from above by
using the estimates from Subsection 2.2.5. In particular, if we assume without
loss of generality that d̃ ≥ 16, then for h = 1, α = 1, µ = 1/(4d̃), ε = 1/12
and a ∈ Fmo(d̃, 1, 1/(4d̃), 1/12), where Fmo(d, α, µ, ε) ⊆ [0,+∞) is defined as in
Lemma 2.5 and is of full Lebesgue measure, it follows that there exist positive
integers Ma and Ka such that a ≤Ma and∣∣∣∣∣

N∑
n=1

(
k

`

)iand̃∣∣∣∣∣
2

�
⌊
Ma

2π
log k

`

⌋
+ 1

log k
`

N3/2 (3.42)

for every integer N ≥ Ka and any integers 1 ≤ ` < k ≤
(
d̃MaN

d̃
)1/(4d̃)

. Observe

that

y′ =
(
d̃ log(aN)

)4/δ
�δ

(
d̃MaN

d̃
)1/(4d̃)

as N → +∞. Therefore, if we choose an a from the set of full Lebesgue measure
F ′(d, δ) ∩ Fmo(d̃, 1, 1/(4d̃), 1/12), then relations (3.41) and (3.42) yield that

S ′N � Nw−4δ +N3/4
∑

1≤`<k≤y′

1

(k`)σ

⌊
Ma

2π
log k

`

⌋
+ 1

log k
`

�a,δ Nw
−4δ +N3/4

(
d̃ log(aN)

)(2−2σ)4/δ
log
(
d̃ log(aN)

)
,

(3.43)

uniformly in s ∈ R and for all sufficiently large integers N �δ K0 +Ka + Tw.
It follows from relations (3.40) and (3.43) that, if a is an element of the set

of full Lebesgue measure F ′(d, δ) ∩ Fmo(d̃, 1, 1/4d̃, 1/12), then

lim sup
N→∞

1

N + 1

2N∑
n=N

∣∣∣(logL− logL{p∈P:p≤w}
) (
s+ iand̃, χj

)∣∣∣2 �a,δ ε
2, (3.44)

unifromly in s ∈ R and for all sufficiently large w �a,δ ε
−1/(2δ). In view of

Theorem A.16 we have

lim sup
N→∞

1

N

N∑
n=1

(
max
s∈K

∣∣∣(logL− logL{p∈P : p≤w}
) (
s+ iand̃, χj

)∣∣∣)2

�R,K,a,δ ε2

for all sufficiently large w �a,δ ε
−1/(2δ) and any j = 1, . . . , J . Thus, if

B(w, ε) :=

{
n ∈ N : max

1≤j≤J
max
s∈K

∣∣∣(logL− logL{p∈P:p≤w}
) (
s+ iand̃, χj

)∣∣∣ < ε

2

}
for any sufficiently small positive number ε�δ,K,J 1, then

lim inf
N→∞

](B(w, ε) ∩ [1, N ])

N
> 1− ε (3.45)

for all sufficiently large w �a,δ ε
−1/(2δ).
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Assume now that a is an element of the set

L ∩ F ′(d, δ) ∩ Fmo(d̃, 1, 1/(4d̃), 1/12)

which is of full Lebesgue measure. If we set

C (ε) :=

n ∈ N :

max
1≤j≤J

max
s∈K

∣∣∣logL
(
s+ iand̃, χj

)
− log fj(s)

∣∣∣ < ε

max
p≤z

∥∥∥∥xn log p

2π
− ξp

∥∥∥∥ < ε

 ,

then for any sufficiently small positive number ε �δ,K,J c, where c and v are as
in (3.37), and any sufficiently large number w �a,δ ε

−1/(2δ) + v, it follows from
relations (3.38) and (3.45) and an application of the trianlge inequality, that

lim inf
N→∞

](C (ε) ∩ [1, N ])

N
≥ lim inf

N→∞

](A (w, ε) ∩B(w, ε) ∩ [1, N ])

N
> 0.

Now observe that, if

C ′(ε) :=

n ∈ N :

max
1≤j≤J

max
s∈K

∣∣L (s+ iand, χj
)
− fj(s)

∣∣ < ε

max
p≤z

∥∥∥∥xn log p

2π
− ξp

∥∥∥∥ < ε

 ,

then continuity and the assumption d̃ ≡ 0 (mod d) imply that C ′(ε) ⊇ C (ε),
when ε�δ,K,J c is a sufficiently small positive number. This concludes the proof
of the theorem.

Corollary 3.2. Let d ≥ 2 be an integer, α ∈ (0, 1] be rational and δ ∈ (0, 1/2).
Then, for almost all a ∈ [1,+∞) the following holds:

If K ⊆ {s ∈ C : 1/2 + 2δ < σ < 1} is a compact set with connected comple-
ment, f is a continuous function on K and analytic in its interior, and ε is a
positive real number, then

lim inf
N→∞

1

N
]

{
1 ≤ n ≤ N : max

s∈K

∣∣ζ (s+ iand;α
)
− f(s) < ε

∣∣} > 0.

Proof. The proof is almost the same as the one of Theorem 3.3, only this time
we use the previous theorem.
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Chapter 4

Hurwitz Zeta-Functions with
Algebraic Parameter

In this chapter we study the value-distribution of ζ(s;α) inside D, where α is an
algebraic number in the interval (0, 1]. We mainly incorporate ideas of Voronin
and Good, who studied the case of ζ(s) = ζ(s; 1), to obtain a weak but effective
universality result and a strong but ineffective one in vertical strips inside D,
which width depends on the degree of α.

4.1 Effective and Ineffective Results

The question whether ζ(s;α) with an algebraic irrational number α ∈ (0, 1] is
universal or not, remains, up to now, open. The main difficulty occurs from the
fact that the numbers log(n+α), n ∈ N, could be linearly dependent over Q and,
therefore, the machinery used for universality theorems is not applicable. To give
an example, if α = (2

√
2− 1)/2, then logα− 3 log(α + 1) + 2 log(α + 2) = 0.

Nevertheless, the majority of the mathematical community which is interested
in the universality properties of zeta-functions expects that ζ(s;α) with α ∈
AI , where AI will denote the set of algebraic irrational numbers in the unit
interval [0, 1], should also be universal. For instance, Laurinčikas and Steuding
[51] obtained limit theorems for ζ(s;α), α ∈ AI , which unfortunately are not
sufficiently explicit for being used in a hypothetical proof of universality.

Moreover, there is the belief that such a result could follow by the already
established methods for universality theorems and by a classical lemma due to
Cassels [12], who proved that for any α algebraic irrational and every sufficiently
large positive integer N , more than half of the numbers log(n+α), n = 0, . . . , N ,
are linearly independent over Q. Indeed, Mishou [57] used Cassel’s lemma to
prove that for any α ∈ AI , any ε > 0 and any complex number z, there is
s ∈ C with σ > 1 such that |ζ(s;α) − z| < ε. This interesting result can be
regarded as a forunner of a universality theorem. However, it is obtained in the
half-plane σ > 1 where the behaviour of such zeta-functions is, more or less,
well-understood.

Almost all universality theorems that can be found in the literature have cer-
tainly one thing in common: they are ineffective. It is intriguing that, although
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these theorems provide us with sets of positive lower density, which elements
can be used as vertical shifts of the zeta-function in interest to approximate al-
most any function in some suitable vertical strip, no information regarding upper
bounds for the first such shift can be extracted.

The first one who obtained upper bounds for shifts of weak universality was
Good [26], who studied the value-distribution of log ζ(s). Good proved, among
other things, that for any a from a suitable subset of [1, 2] of full Lebesgue
measure, any integer N > 0, any vector of complex numbers a = (a0, . . . , aN),
any σ ∈ (1/2, 1) and any ε > 0, that there exists an effectively computable
positive number n0 = n0(a,N, a, σ, ε) such that the system of inequalities

| (log ζ)(k) (σ + ian)− ak| < ε, k = 0, . . . , N,

has a positive integer solution n ≤ n0. This is a quantitative version of Voronin’s
weak universality theorem [98] stating that, for σ ∈ (1/2, 1] and any integer
N > 0,

{(ζ(σ + in), ζ ′(σ + in), . . . , ζ(N)(σ + in)) : n ∈ N} = CN+1. (4.1)

In 1989, Voronin [100] gave an alternative proof of Good’s aforementioned result.
Our first theorem is an analogue of the preceding statements in the case of

ζ(s;α), α ∈ AI . We postpone the definitions of the set A(Q,M) ⊆ AI and of the
numbers E = E(R,Q, σ) and K = K(Q,M,α) that appear in Theorem 4.1 to
the next section, where we also explain how we came up with them (see (4.29),
(4.5) and (4.30), respectively). We only point out that AI \ A(Q,M) is finite,
for every choice of Q and M . Moreover, all constants appearing in this chapter,
implicit or not, are effectively computable unless stated otherwise.

Theorem 4.1. For every σ ∈ (1/2, 1], N ∈ N, A ∈ (0, 1] and d ≥ 3, there
exist positive numbers c0, c1, c2 which depend on σ and N , c3 = c3(N,A), c4,
c5 = c5(N, d) and ν = ν(d,N), such that the following is true:

Let ε > 0 and a := (a0, . . . , an) ∈ CN+1. Let also

R ≥ c0 ε
4/(1−2σ)

and Q0 ≥ c1R be positive integers satisfying the system of inequalities

c2
(
|ak|+ A−1/2

)
≤ E

(
log
(
Q0

R+1

)
2N logQ0

)N

k!(N − k)! (logQ0)
k , k = 0, . . . , N.

Then, for any Q ≥ c3 (Q0 + 1/ε8), M ≥ c4 exp (2Q2), α ∈ A(Q,M) ∩ [A, 1]
of degree d(α) ≤ d− 1, where

d+
1

2d
≤ 40

267

(
1

3(1− σ)

)1/2

(4.2)

and the left-hand side of the inequality is +∞ for σ = 1, and any

T ≥ c5 max
{(

K exp
(
(M + 2) exp

(
Q2
))) 4d

4(d−d(α))−3 , ε−2ν
}
, (4.3)
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there is τ ∈ [T, 2T ] with∣∣ζ(k) (σ + iτ ;α)− ak
∣∣ < ε, k = 0, . . . , N. (4.4)

Moreover, if MT (α, σ) is the set of those τ ∈ [T, 2T ] for which

∣∣ζ(k) (σ + iτ ;α)− ak
∣∣ < (2

Q2 + 1

Q2 − 1

)1/2

ε, k = 0, . . . , N,

then

lim inf
T→∞

1

T
m (MT (α, σ)) ≥ 1

2
Q−2Q

(
1−Q−2

)
.

Observe that the theorem has meaning only when σ ≥ 1− ξ, where

ξ :=
28 · 52

3 · 192 · 892
≈ 0.000746,

as follows from (4.2) for d = 3.
Previously, we characterized Good’s and Voronin’s results as weak universality

theorems for some reason. It can be easily seen that the universality of ζ(s)
inside D implies relation (4.1) for any positive integer N and any σ ∈ (1/2, 1)
(but not for σ = 1). The steps of the proof are simple and we give them here
briefly. If a = (a0, . . . , aN) is a vector of complex numbers with a0 6= 0 and
σ ∈ (1/2, 1), then we can construct an entire function f which is zero-free and
satisfies f (k)(σ) = ak for all k = 0, . . . , N . We then apply the universality
theorem for ζ(s) to approximate f in a disc D(σ, δ) of fixed and sufficiently small
radius δ > 0 such that D(σ, δ) ⊆ D, we expand ζ(s) in its Taylor series in the
prescribed disc and we use Cauchy’s estimates for the function ζ(s+ iτ)− f(s).

The inverse process does not imply the universality theorem for ζ(s) in its
full power. However, as it was noticed by Garunkštis et al. [21] it yields a weak
form of the original theorem. Following their approach we will also prove a weak
universality theorem for ζ(s;α), α ∈ AI .

Theorem 4.2. Let 1− ξ ≤ σ0 ≤ 1, s0 = σ0 + it0 and f : K → C be continuous
and analytic in the interior of K = {s ∈ C : |s − s0| ≤ r}, where r > 0. Let
also 0 < A < 1 and ε ∈ (0, |f(s0)|). Then, for all but finitely many algebraic
irrationals α in [A, 1] of degree at most d0 − 1, where

d0 +
1

2d0
=

40

267

(
1

3(1− σ0)

)1/2

,

there exist real numbers τ ∈ [T, 2T ] and δ = δ(ε, f, T ) > 0 such that

max
|s−s0|≤δr

|ζ(s+ iτ ;α)− f(s)| < 3ε,

whenever T = T (ε, f, α) satisfies (4.3). The set of the exceptional α can be
described effectively, while the dependence of T on f arises from the first N
Taylor coefficients of f for sufficiently large N .
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While proving Theorem 4.2, we realized that our method can be applied also
in the case of strong universality, that is, without “shrinking” the given compact
set K. However, effectivity is lost with respect to the finitely many exceptions
of α and an upper bound for T .

Theorem 4.3. Let K ⊆ {s ∈ C : 1− ξ ≤ σ0 < σ < 1} be a compact set with
connected complement and f be continuous on K and analytic in its interior.
Let also A ∈ (0, 1] and ε > 0. Then for all but finitely many algebraic irrationals
α in [A, 1] of degree at most d0 − 1, where

d0 +
1

2d0
=

40

267

(
1

3(1− σ0)

)1/2

,

there exist real numbers τ ∈ [T, 2T ] such that

max
s∈K
|ζ(s+ iτ ;α)− f(s)| < 2ε

for every T sufficiently large. Moreover, the set of τ satisfying the latter inequal-
ity, has positive lower density.

The restriction on the strip of universality reminds us of the case of the
Dedekind zeta-function ζK(s), where K is an algebraic number field over Q.
Reich [69], [71] proved that ζK(s) is universal in the strip max {1/2, 1− 1/d},
where d = [K : Q] is the degree of the number field.

4.2 Auxiliary Lemmas

The proofs of the theorems are rather long and technical. Therefore, we try to
present large parts of them in this section as auxiliary lemmas.

We start with a modification of Good’s Lemma 9 in [25] on the effective
approximation of vectors of complex numbers by suitable twisted Dirichlet poly-
nomials. An alternative option would be to follow Voronin’s approach as in [43,
Chapter 8, Section 2, Lemma 1]. Interestingly enough, we could not deduce a
result for σ = 1 by the second way. And since also Good does not include the
case of σ = 1, we shall add it in our proof.

Lemma 4.1. For every σ ∈ (1/2, 1] and N ∈ N, there exist positive numbers
C0, C1 and C2, depending on σ and N , such that the following is true:

Let A ∈ (0, 1], ε > 0 and a = (a0, . . . , aN) ∈ CN+1. Let also

R ≥ C0 ε
4/(1−2σ)

and Q0 ≥ C1R be integers satisfying the system of inequalities

C2

(
|ak|+ A−1/2

)
≤ E(R,Q0, σ)

(
log Q0

R+1

2N logQ0

)N

k!(N − k)! (logQ0)
k ,
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k = 0, . . . , N , where

E(R,Q, σ) :=


R1−σ

23+σ(1− σ)

[(
Q

R + 1

)(1−σ)/(4N3)

− 1

]
, σ 6= 1,

log Q
R+1

25N3
, σ = 1.

(4.5)

Then, for every Q ≥ Q0 and α ∈ [A, 1], there exists θ0 ∈ [0, 1]Q such that∣∣∣∣ ∂k∂sk ζQ (s, θ0, α)

∣∣∣∣
s=σ

− ak
∣∣∣∣ < ε, k = 0, . . . , N.

Proof. Let R = R(ε, σ,N) be a positive integer which will be specified later on.
We consider for every integer Q > R the set of vectors

DRQ := {z = (zR, . . . , zQ−1) : |zn| ≤ 1, n = R, . . . , Q− 1}

and define the functions

(z, α) 7−→ gk(z, α) :=

Q−1∑
n=R

zn
(− log(n+ α))k

(n+ α)σ
, (4.6)

for every (z, α) ∈ DRQ × (0, 1] and k = 0, . . . , N .
First we will determine for a given vector of complex numbers (A0, . . . , AN)

an integer Q such that, for every 0 < α ≤ 1, the system of equalities

gk(z, α) = Ak, k = 0, . . . , N, (4.7)

has a solution zα ∈ DRQ, that is, (A0, . . . , AN) belongs to the set

G := {(g0(z, α), . . . , gN (z, α)) : z ∈ DRQ} .

Observe that G is a closed convex subset of the complex Hilbert space CN+1

endowed with the inner product

〈(x0, . . . , xN), (y0, . . . , yN)〉 :=
N∑
k=0

<(xkyk).

Thus, in view of Theorem A.18 it is sufficient to show that for sufficiently large Q
and for arbitrary 0 < α ≤ 1 and non-zero (`0, . . . , `N) ∈ CN+1, there is z ∈ DRQ
such that

N∑
k=0

`kgk(z, α) =
N∑
k=0

`kAk. (4.8)

One can see that

N∑
k=0

`kgk(DRQ, α) =

{
z : |z| ≤ V :=

Q−1∑
n=R

1

(n+ α)σ

∣∣∣∣∣
N∑
k=0

`k(− log(n+ α))k

∣∣∣∣∣
}
.

(4.9)

69



Indeed, the inclusion of the set on the left-hand side in the set on the right-
hand side is obvious, while if w = |w|e(φ) belongs to the disc described in the
right-hand side of (4.9), we can choose z ∈ DRQ with

zn =
|w|
V

e

(
φ− arg

(
N∑
m=0

`m(− log(n+ α))m

))
such that

N∑
k=0

`kgk(z, α) = w.

Therefore, from (4.8) and (4.9) it is sufficient to show that, for sufficiently large
Q and for arbitrary 0 < α ≤ 1 and non-zero (`0, . . . , `N) ∈ CN+1,

N∑
k=0

|`k||Ak| ≤
Q−1∑
n=R

1

(n+ α)σ

∣∣∣∣∣
N∑
k=0

`k(− log(n+ α))k

∣∣∣∣∣ . (4.10)

Now, consider the polynomial

P (x) :=
N∑
k=0

(−1)k`kx
k, x ∈ R, (4.11)

and the following partition of the interval [log(R + α), logQ]

xk := log(R + α) +
k

N
log

Q

R + α
, k = 0, . . . , N. (4.12)

If we set in addition

Gk(x) :=
N∏
m=0
m 6=k

(x− xm), k = 0, . . . , N,

then it follows that∣∣∣G(j)
k (0)

∣∣∣ ≤ N∑
m1=0
m1 6=k

N∑
m2=0

m2 6=k,m1

. . .

N∑
mj=0

mj 6=k,m1,...,mj−1

∣∣−xmj ∣∣ ≤ N !

(N − j)!
(logQ)N−j (4.13)

and

|Gk(xk)| =
N∏
m=0
m6=k

∣∣∣∣k −mN log
Q

R + α

∣∣∣∣ =

(
1

N
log

Q

R + α

)N
k!(N − k)! (4.14)

for any j, k = 0, . . . , N . In view of Lagrange’s interpolation theorem (see Theo-
rem A.13)

P (x) =
N∑
k=0

P (xk)

Gk(xk)
Gk(x),
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and relations (4.13) and (4.14), we obtain

j!|`j| =
∣∣P (j)(0)

∣∣ =

∣∣∣∣∣
N∑
k=0

P (xk)G
(j)
k (0)

Gk(xk)

∣∣∣∣∣ ≤
N∑
k=0

|P (xk)|N !(logQ)N−j

k!(N − k)!(N − j)!

(
N

log Q
R+α

)N

for j = 0, . . . , N . Therefore,

1

N + 1

(
log Q

R+α

2N logQ

)N N∑
j=0

j!|`j|(N − j)! (logQ)j ≤
N∑
k=0

|P (xk)| . (4.15)

Let yk, k = 1, . . . , N , be such that xk−1 ≤ yk ≤ xk and

|P (yk)| = max
x∈[xk−1,xk]

|P (x)| = max
x∈[−1,1]

∣∣∣∣P (xxk − xk−12
+
xk + xk−1

2

)∣∣∣∣
for k = 1, . . . , N . Markov’s inequality (see Theorem A.14) states that

max
x∈[−1,1]

∣∣∣P̃ ′(x)
∣∣∣ ≤ N2 max

x∈[−1,1]

∣∣∣P̃ (x)
∣∣∣

for any P̃ ∈ C[X] of degree at most N . Thus,

max
x∈[xk−1,xk]

|P ′(x)| = max
x∈[−1,1]

∣∣∣∣P ′(xxk − xk−12
+
xk + xk−1

2

)∣∣∣∣
= max

x∈[−1,1]

2

xk − xk−1

∣∣∣∣ d

dx
P

(
x
xk − xk−1

2
+
xk + xk−1

2

)∣∣∣∣
≤ 2N2

xk − xk−1
max
x∈[−1,1]

∣∣∣∣P (xxk − xk−12
+
xk + xk−1

2

)∣∣∣∣
=

2N2

xk − xk−1
|P (yk)|

(4.16)

for k = 1, . . . , N . If we set now

Ik :=

{
x ∈ [xk−1, xk] : |x− yk| ≤ S :=

log Q
R+α

4N3

}
, k = 1, . . . , N, (4.17)

then relations (4.12), (4.16), (4.17) and the mean-value theorem imply that for
every x ∈ Ik there is a ξx between the points x and yk such that

|P (x)| ≥ |P (yk)| − |P (yk)− P (x)| = |P (yk)| − |P ′(ξx) (yk − x)| ≥ |P (yk)|
2

or

max
x∈[xk−1,xk]

|P (x)| = |P (yk)| ≤ 2 min
x∈[xk−1,xk]k

|P (x)| (4.18)

for k = 1, . . . , N . Since

xk − xk−1 =
log Q

R+α

N
, k = 1, . . . , N,
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at least one of the intervals [yk − S, yk] and [yk, yk + S] is contained in Ik. We
denote those intervals by

Jk := [ck, ck + S], k = 1, . . . , N. (4.19)

Then, it follows from (4.11), (4.12), (4.18) and (4.19) that

Q−1∑
n=R

1

(n+ α)σ

∣∣∣∣∣
N∑
k=0

`k(− log(n+ α))k

∣∣∣∣∣ =

Q−1∑
n=R

|P (log(n+ α))|
(n+ α)σ

≥
N∑
k=1

∑
log(n+α)∈Jk

|P (log(n+ α))|
(n+ α)σ

≥
N∑
k=1

|P (yk)|
2

∑
eck≤n+α≤eck+S

1

(2n)σ
.

(4.20)

Observe that

∑
eck≤n+α≤eck+S

1

nσ
≥


eck(1−σ)

(
eS(1−σ) − 1

)
1− σ

+O (e−ck) , σ < 1,

log
eck+S

eck
+O (e−ck) , σ = 1.

Since ck ≥ logR for k = 1, . . . , N , the definition of S yields that

∑
eck≤n+α≤eck+S

1

nσ
≥


R1−σ

2(1− σ)

[(
Q

R + 1

)(1−σ)/(4N3)

− 1

]
, σ < 1,

log Q
R+1

8N3
, σ = 1,

for sufficienty large R � 1and Q ≥ C1R, where C1 = C1(σ,N). Recall that the
right-hand side part of the latter inequality is equal to 22+σE(R,Q, σ). It follows
now from relations (4.18) and (4.20) that

Q−1∑
n=R

1

(n+ α)σ

∣∣∣∣∣
N∑
k=0

`k(− log(n+ α))k

∣∣∣∣∣ ≥ 2E(R,Q, σ)
N∑
k=1

|P (yk)|

≥ E(R,Q, σ)
N∑
k=0

|P (xk)|.

(4.21)

Thus, in view of relations (4.15) and (4.20), if we choose Q ≥ C1R large enough
so that the system of inequalities

|Ak| ≤ E(R,Q, σ)

(
log Q

R+1

2N logQ

)N

k!(N − k)! (logQ)k , k = 0, . . . , N, (4.22)
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is satisfied, then relation (4.10) holds for arbitrary α ∈ (0, 1] and any non-zero
vector (`0, . . . , `N) ∈ CN+1. Hence, for every α ∈ (0, 1] the system (4.7) has a
solution zα ∈ DRQ as long as Q ≥ C1R satisfies (4.22).

If U �σ,N 1 is large enough so that the functions

x 7−→ (log x)k

xσ
, k = 0, . . . , N, (4.23)

are decreasing in [U,+∞], then for every R > U , α ∈ [A, 1] and k = 0, . . . , N ,
we have that∣∣∣∣∣

R−1∑
n=0

(−1)n(− log(n+ α))k

(n+ α)σ

∣∣∣∣∣ ≤ (− logα)k

α
+

∣∣∣∣∣
U∑
n=1

(−1)n (log(n+ α))k

(n+ α)σ

∣∣∣∣∣
≤ (− logα)k

ασ
+ max

y∈[0,1]

∣∣∣∣∣
U∑
n=1

(−1)n (log(n+ y))k

(n+ y)σ

∣∣∣∣∣
≤ C2A

−1/2,

where C2 = C2(σ,N) ≥ 1. Therefore, if we set

Ak = Ak(α) := ak −
R−1∑
n=0

(−1)n(− log(n+ α))k

(n+ α)σ
, k = 0, . . . , N,

it follows from (4.22) that for every α ∈ [A, 1] the system of equalities (4.7) has
a solution zα ∈ DRQ as long as Q ≥ C1R satisfies the system of inequalities

C2

(
|ak|+ A−1/2

)
≤ E(R,Q, σ)

(
log Q

R+1

2N logQ

)N

k!(N − k)!(logQ)k, k = 0, . . . , N.

Since the right-hand side of these inequalities tends to infinity as Q → ∞, the
system is solvable for all sufficiently large Q.

Let Q0 ≥ C1R be the smallest integer satisfying the aforementioned system,
Q ≥ Q0 and α ∈ [A, 1]. Let also zα := (zn)R≤n≤Q0−1 be an element of DRQ0 such
that

gk(zα, α) = Ak(α), k = 0, . . . , N. (4.24)

From Theorem A.17 we know that there are real numbers θn, n = R, . . . , Q− 1,
such that∣∣∣∣∣∣

∣∣∣∣∣∣
(
Q0−1∑
n=R

zn
(− log(n+ α))k

(n+ α)σ
−

Q−1∑
n=R

(− log(n+ α))k e (θn)

(n+ α)σ

)
0≤k≤N

∣∣∣∣∣∣
∣∣∣∣∣∣
2

CN+1

≤ 4

Q−1∑
n=R

∣∣∣∣∣
∣∣∣∣∣
(

(− log(n+ α))k

(n+ α)σ

)
0≤k≤N

∣∣∣∣∣
∣∣∣∣∣
2

CN+1

≤ 4
N∑
k=0

Q−1∑
n=R

(log(n+ 1))2k

n2σ

�σ,N R1−2σ.

(4.25)
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Let

R�σ,N

(
U +

1

ε

) 4
2σ−1

�σ,N

(
1

ε

) 4
2σ−1

be sufficiently large, with U being the number defined in (4.23), and set θ0 =
(θ0n)0≤n≤Q−1 to be

θ0n :=

{
n/2, 0 ≤ n ≤ R− 1,
θn, R ≤ n ≤ Q− 1.

Then (4.6), (4.24) and (4.25) yield∣∣∣∣ ∂k∂sk ζQ (s, θ0, α)

∣∣∣∣
s=σ

− ak
∣∣∣∣ =

∣∣∣∣∣Ak(α)−
Q−1∑
n=R

(− log(n+ α))k e (θn)

(n+ α)σ

∣∣∣∣∣
<

∣∣∣∣∣gk(zα, α)−
Q0−1∑
n=R

zn
(− log(n+ α))k

(n+ α)σ

∣∣∣∣∣+ ε

= ε

for k = 0, . . . , N .

Lemma 4.2. For every d ≥ 3 and k ∈ N0, there exists a positive number ν =
ν(d, k) such that

ζ(k)(s;α) =

bt1/dc∑
n=0

(− log(n+ α))k

(n+ α)s
+Od,k

(
t−ν
)
, t ≥ t1 > 0,

uniformly in A ((d+ 1/(2d))−1) ≤ σ ≤ 1 and 0 < α ≤ 1, where

A

((
d+

1

2d

)−1)
= 1− θ

(
d+

1

2d

)−2
, (4.26)

θ = 4/(27η2) and η = 4.45.

Proof. Since d ≥ 3, we have from Theorem 2.4 that A(µ) = 1 − θµ2 for any
0 < µ ≤ 1/d. In addition, there exists a positive number ν(d) such that

ζ(s;α) =
∑

0≤n≤t1/d

1

(n+ α)s
+Od

(
t−ν
)
, t ≥ t1 > 1,

uniformly in 0 < α ≤ 1 and

A

(
1

d

)
<

1

2

(
A

((
d+

1

2d

)−1)
+ A

(
1

d

))
≤ σ ≤ 2.

Now the lemma follows by applying Cauchy’s integral formula in the latter ap-
proximate functional equation for ζ(s;α).
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Before proving the next lemma, we need to introduce some notation. The
naive height of a complex polynomial P (X), denoted by H(P ), is the maximum
of the absolute values of its coefficients. If α is an algebraic number, then its
degree and height, which we denote by d(α) and H(α), are defined to be the
degree and the height of its minimal polynomial over Z, respectively.

Let

λ : R→ R+

be an infinitely differentiable function with supp(λ) ⊆ [−1, 1] and
∫ +∞
−∞ λ(x)dx =

1. We also assume that λ is bounded above by 1. If Q ≥ 2 is an integer, we set
δ := Q−2 and define the function

θ 7−→ ΛQ(θ) :=

Q−1∏
n=0

λ

(
θn
δ

)
,

for any θ = (θ0, . . . , θQ−1) ∈ [−1, 1]Q. Then, supp (ΛQ) ⊆ [−1/2, 1/2]Q and we
can extend ΛQ onto all RQ by periodicity with period 1 in each of the variables
θn, n = 0, . . . , Q− 1. The function

θ 7−→ λ

(
θ

δ

)
extended to R by periodicity with period 1, has a Fourier expansion

λ

(
θ

δ

)
:=

+∞∑
n=−∞

cne(nθ),

where

c0 = δ and cn =

1∫
0

λ

(
θ

δ

)
e(−nθ)dθ � 1

n2δ2
, n ∈ Z \ {0}. (4.27)

The last relation follows from integrating twice by parts and the implicit constant
depends only on our choice of λ. Thus, the Fourier expansion of ΛQ is given by

ΛQ(θ) :=
∑
m

dme(〈m, θ〉),

where m = (m0, . . . ,mQ−1) ∈ ZQ and

dm :=

Q−1∏
n=0

cmn .

We define for every m ∈ ZQ \ {0} and x ∈ R the polynomials

Q+
m(x) :=

Q−1∏
n=0
mn>0

(n+ x)mn and Q−m(x) :=

Q−1∏
n=0
mn<0

(n+ x)−mn .
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Let M̂ := ZQ ∩ [−M , M ]Q and

P(Q,M) :=
{
Pm = Q+

m −Q−m : m ∈ M̂ \ {0}
}
. (4.28)

Observe that P(Q,M) is a set of non-zero integer polynomials of degree at most
MQ and height bounded by a constant H(Q,M). We also define the set

A(Q,M) = A1 ∪A2, (4.29)

where

A1 := {α ∈ AI : d(α) > MQ+ 1} ,

A2m :=

{
α ∈ AI \A1 : ∀x, y ∈ N ∩

[
0, exp2

(
Q2
)]
,
Q+
m(α)

Q−m(α)
6= x+ α

y + α

}
,

for m ∈ M̂ \ {0}, and

A2 :=
⋂

m∈M̂\{0}

A2m.

Finally, we consider the curve

R× (0, 1] 3 (τ, α) 7−→ γQ(τ, α) :=

(
log (n+ α)

2π
τ

)
0≤n<Q

.

Lemma 4.3. For any k ∈ N0 and d ≥ 3, there exist positive numbers C3 = C3(k),
C4 and C5(d, k), such that the following is true:

Let ε > 0, Q ≥ C3/ε
8, M ≥ C4 exp (2Q2), α ∈ A(Q,M) and d ≥ d(α) + 1.

Then there exists positive number ν = ν(d, k), such that if

T ≥ C5 max
{(

K exp
(
(M + 2) exp

(
Q2
))) 4d

4(d−d(α))−3 , ε−2ν
}
,

where

K = K(Q,M,α) := [H(Q,M) (MQ+ 2)]d(α)−1
[
H(α)(d(α) + 1)1/2

]MQ+1
,

(4.30)

we have ∣∣∣∣∣∣ 1

δQT

2T∫
T

Λ(γQ(τ, α)− θ1)dτ − 1

∣∣∣∣∣∣ < Q−2

and
2T∫
T

ΛQ (γQ(τ, α)− θ1)
∣∣∣∣ζ(k) (σ + iτ ;α)− ∂k

∂sk
ζQ (s+ iτ, 0, α)

∣∣∣∣
s=σ

∣∣∣∣2 dτ

< ε2
2T∫
T

ΛQ (γQ(τ, α)− θ1) dτ

(4.31)

for any θ1 ∈ RQ and A ((d+ 1/(2d))−1) ≤ σ ≤ 1, where A ((d+ 1/(2d))−1) is
defined as in (4.26).
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Proof. First, we will show that∣∣∣∣∣∣ 1

δQT

2T∫
T

ΛQ(γQ(τ, α)− θ1)dτ − 1

∣∣∣∣∣∣ < Q−2

for suitable Q, α, T and any θ1 ∈ RQ. The Fourier expansion of the function

θ 7−→ ΛQ(θ − θ1)

is given by

ΛQ(θ − θ1) :=
∑
m

hme(〈m, θ〉),

where h0 := δQ and hm := dme(〈m,−θ1〉), m ∈ ZQ. For M ∈ N,∣∣∣∣∣∣
∑
m/∈M̂

hme(< m, θ >)

∣∣∣∣∣∣ ≤
∑
m/∈M̂

|hm| ≤ Q

∑
|n|>M

|cn|

( +∞∑
n=−∞

|cn|

)Q−1

. (4.32)

From (4.27) we know that

∑
|n|>M

|cn| �
1

δ2M
and

+∞∑
n=−∞

|cn| ≤
(
A

δ

)2

, (4.33)

where A > 1 is an absolute costant. Therefore, from (4.32) we conclude that

ΛQ(θ − θ1) =
∑
m∈M̂

hme(〈m, θ〉) +O

(
Q

M

(
A

δ

)2Q
)
. (4.34)

Observe that by δ = Q−2 we have

Q

(
A

δ

)2Q

≤ QδQ
(
A

δ

)3Q

≤ δQQ (AQ)6Q � δQ exp
(
Q2
)
.

Hence, relation (4.34) can be written as

ΛQ(θ − θ1) =
∑
m∈M̂

hme(〈m, θ〉) +O

(
δQ exp (Q2)

M

)
. (4.35)

In the sequel we use the notations

`(τ) := ΛQ (γQ(τ, α)− θ1) and ñ := n+ α

in order to avoid extensive expressions. In view of (4.35), we have

2T∫
T

`(τ)dτ =h0T +
∑

m∈M̂\{0}

hm

2T∫
T

e(〈m, γQ(τ, α)〉) +O

(
TδQ exp (Q2)

M

)
,
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or

1

δQT

2T∫
T

`(τ)dτ = 1 +
1

δQT

∑
m∈M̂\{0}

hm

2T∫
T

(
Q+
m(α)

Q−m(α)

)iτ

dτ +O

(
exp (Q2)

M

)
.

(4.36)

It follows from the definition of hm and (4.33) that

∑
m

|hm| ≤
(
A

δ

)2Q

≤ δQ (AQ)6Q � δQ exp
(
Q2
)
. (4.37)

It also follows from (4.28) and (4.29) that if m ∈ M̂ \ {0} and α ∈ A(Q,M),
then Pm(α) = Q+

m(α)−Q−m(α) 6= 0. Thus,

2T∫
T

(
Q+
m(α)

Q−m(α)

)iτ

dτ �

∣∣∣∣∣log
Q+
m(α)

Q−m(α)

∣∣∣∣∣
−1

�
max{Q+

m(α), Q−m(α)}∣∣Q+
m(α)−Q−m(α)

∣∣ . (4.38)

Now Corollary A.3 yields that, for every m ∈ M̂ \ {0} and α ∈ A(Q,M),∣∣Q+
m(α)−Q−m(α)

∣∣ ≥ [H(Q,M) (MQ+ 1)]1−d(α)
[
H(α)(d(α) + 1)1/2

]−MQ
> K−1.

(4.39)

Along with the estimate

max{Q+
m(α), Q−m(α)} �

Q∏
n=1

nM � exp
(
MQ2

)
, (4.40)

we conclude from (4.36)-(4.40) that

1

δQT

2T∫
T

`(τ)dτ − 1� exp (Q2)

M
+

K exp ((M + 1)Q2)

T
.

For Q � 1, M � exp (2Q2), α ∈ A(Q,M) and T � K exp ((M + 2)Q2), with
suitable constants in �, we obtain∣∣∣∣∣∣ 1

δQT

2T∫
T

ΛQ(γQ(τ, α)− θ1)dτ − 1

∣∣∣∣∣∣ < Q−2 (4.41)

We proceed now with the proof of relation (4.31). Let I denote the left-hand
side of (4.31). Let also α ∈ A(Q,M) and d ≥ d(α) + 1. It follows from Lemma
4.2 that there exists positive number ν = ν(d, k), such that

ζ(k)(s;α) =

bt1/dc∑
n=0

(− log(n+ α))k

(n+ α)s
+Od,k

(
t−ν
)
, t ≥ t1 > 0,
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uniformly in A
(
(d+ 1/(2d))−1

)
≤ σ ≤ 1 and 0 < α ≤ 1. By substituting

this approximate functional equation in I for sufficiently large T �d Q, and by
setting p(τ) :=

⌊
τ 1/d

⌋
, it follows that I � I1 + I2, where

I1 =

2T∫
T

`(τ)

∣∣∣∣∣∣
p(τ)∑
n=Q

(− log ñ)k

ñσ+iτ

∣∣∣∣∣∣
2

dτ and I2 =

2T∫
T

`(τ)Od,k

(
τ−ν
)

dτ.

Thus, it suffices to prove the theorem for I1 and I2. We start by estimating I1:

I1 ≤
(
δQ +O

(
δQ exp (Q2)

M

)) 2T∫
T

∣∣∣∣∣∣
p(τ)∑
n=Q

(− log ñ)k

ñσ+iτ

∣∣∣∣∣∣
2

dτ+

+

∣∣∣∣∣∣
∑

m∈M̂\{0}

hm

2T∫
T

e (〈m, γQ(τ, α)〉)

∣∣∣∣∣∣
p(τ)∑
n=Q

(− log ñ)k

ñσ+iτ

∣∣∣∣∣∣
2

dτ

∣∣∣∣∣∣
≤
[
δQ +O

(
δQ exp (Q2)

M

)]
S1 +

∑
m∈M̂\{0}

|hm| |S2m| .

(4.42)

We estimate each of the terms on the right-hand side of (4.42) seperately. By
interchanging integration and summation we obtain

S1 =

p(2T )∑
n=Q

(log ñ)2k

ñ2σ

2T∫
T1

dτ +
∑

Q≤n1 6=n2≤p(2T )

(log ñ1 log ñ2)
k

ñσ1 ñ
σ
2

2T∫
T2

(
ñ2

ñ1

)iτ
dτ,

where T1 = max
{
T, ñd

}
and T2 = max

{
T, ñd1, ñ

d
2

}
. Since α ∈ (0, 1], d ≥ 3 and

σ ≥ A(1/(d+ 1/(2d))) > 3/4, we get

p(2T )∑
n=Q

(log ñ)2k

ñ2σ
�k

∞∑
n=Q

(log n)2k

n3/2
�k Q

−1/2 (logQ)2k �k Q
−1/4 (4.43)

and ∑
Q≤n1 6=n2≤p(2T )

(log ñ1 log ñ2)
k

ñσ1 ñ
σ
2

�k

∑
Q≤n1 6=n2≤p(2T )

(log p(2T ))2k

(ñ1ñ2)
3/4

. (4.44)

Therefore,

S1 �k Q
−1/4T +

∑
Q≤n1 6=n2≤p(2T )

(log p(2T ))2k

(ñ1ñ2)
3/4

∣∣∣∣∣∣
2T∫
T2

(
ñ2

ñ1

)iτ
dτ

∣∣∣∣∣∣
�k Q

−1/4T + (log p(2T ))2k
∑

Q≤n1 6=n2≤p(2T )

1

(ñ1ñ2)
3/4

∣∣∣∣log
ñ2

ñ1

∣∣∣∣−1
�k Q

−1/4T + p(2T )1/2 (log p(2T ))1+2k

�k Q
−1/4T + p(2T )3/4. (4.45)
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For the second sum we have by interchanging integration and summation

S2m =

p(2T )∑
n=Q

(log ñ)2k

ñ2σ

2T∫
T1

(
Q+
m(α)

Q−m(α)

)iτ

dτ +

+
∑

Q≤n1 6=n2≤p(2T )

(log ñ1 log ñ2)
k

ñσ1 ñ
σ
2

2T∫
T2

(
Q+
m(α)ñ2

Q−m(α)ñ1

)iτ

dτ. (4.46)

Here we consider two subcases, depending on whether α ∈ A1 or α ∈ A2. It
follows from the definitions in (4.28) and (4.29) that, if m ∈ M̂ \{0} and α ∈ A1,
then

Q+
m(α)−Q−m(α) 6= 0 and Q+

m(α)ñ2 −Q−m(α)ñ1 6= 0. (4.47)

Thus, applying Corollary A.3, it follows similar as in (4.38)-(4.40) that

2T∫
T1

(
Q+
m(α)

Q−m(α)

)iτ

dτ � K exp
(
MQ2

)
(4.48)

and

2T∫
T1

(
Q+
m(α)ñ2

Q−m(α)ñ1

)iτ

dτ �
max{Q+

m(α)ñ2, Q
−
m(α)ñ1}∣∣Q+

m(α)ñ2 −Q−m(α)ñ1

∣∣ � K p(2T )d(α) exp
(
MQ2

)
.

(4.49)

From relations (4.43), (4.44), (4.46), (4.48) and (4.49) we obtain

S2m �k

(
Q−1/4 + p(2T )1/2+d(α) (log p(2T ))2k

)
K exp

(
MQ2

)
�k

(
Q−1/4 + p(2T )3/4+d(α)

)
K exp

(
MQ2

)
.

(4.50)

If now α ∈ A2, then the second condition of relation (4.47) may not be satisfied.
However, by the construction of the setA2 this can not happen too often. Indeed,
for every m ∈ M̂ \ {0}, the equation

Q+
m(α)

Q−m(α)
=
x+ α

y + α

has at most one solution in the positive integers, (xm, ym) say, with xm 6= ym, as
follows from the irrationality of α. In case such a solution does not exist in the
set (N ∩ [Q,+∞))2, the estimate for S2m is the same as in (4.50). If it exists,
then we have to add in (4.50) the term

(log (xm + α))k (log (ym + α))k

(xm + α)σ (ym + α)σ
T,
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where xm and ym are both greater than Q and at least one of them is greater

than (exp (Q2))
2
. Therefore, for sufficiently large Q�k 1, the additional term is

bounded above by
T

exp (Q2)Q1/2
.

In view of the preceding and (4.37), (4.42), (4.45) and (4.50), we conclude that

I1 �k

[
δQ +O

(
δQ exp (Q2)

M

)] (
Q−1/4T + p(2T )3/4

)
+

+ δQ exp
(
Q2
) [(

Q−1/4 + p(2T )3/4+d(α)
)
K exp

(
MQ2

)
+

T

exp (Q2)Q1/2

]
or

I1 �k Q
−1/4

[
2 +

exp (Q2)

M
+

K exp ((M + 1)Q2)

T

]
δQT+

+

[
1 +

exp (Q2)

M
+ K exp

(
(M + 1)Q2

)]
δQp(2T )3/4+d(α).

(4.51)

Observe that

p(2T )3/4+d(α) �d,k T
3+4(d(α)−d)

4d T.

Then, for Q�k 1/ε8, M � exp (2Q2), α ∈ A(Q,M), d ≥ d(α) + 1 and

T �d,k

(
K exp

(
(M + 2)Q2

)) 4d
4(d−d(α))−3 , (4.52)

with suitable constants in �, we deduce from (4.41) and (4.51) that

I1 <
ε2

2

2T∫
T

ΛQ (γQ(τ, α)− θ1) dτ (4.53)

for every A
(
(d+ 1/(2d))−1

)
≤ σ ≤ 1 and θ1 ∈ RQ.

Finally, we estimate I2 by

I2 �d,k T
−ν

2T∫
T

ΛQ (γQ(τ, α)− θ1) dτ. (4.54)

The lemma now follows from (4.52)-(4.54).

If in the latter lemma we take k = 0 and s instead of σ, where s will range
over a rectangle inside the critical strip, then by minor modifications in the above
proof where necessary, we obtain the following

Lemma 4.4. For every H ≥ 0 and d ≥ 3, there exist positive constants C ′3, C ′4
and C ′5 = C ′5(H, d), such that the following is true:
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Let ε > 0, Q ≥ C ′3/ε
8, M ≥ C ′4 exp (2Q2), α ∈ A(Q,M) and d ≥ d(α) + 1.

Then there exists a positive number ν = ν(d), such that, if

T ≥ C ′5 max
{(

K exp
(
(M + 2) exp

(
Q2
))) 4d

4(d−d(α))−3 , ε−2ν
}
,

we have ∣∣∣∣∣∣ 1

δQT

2T∫
T

Λ(γQ(τ, α)− θ1)dτ − 1

∣∣∣∣∣∣ < Q−2

and

2T∫
T

ΛQ (γQ(τ, α)− θ1) |(ζ − ζQ) (s+ iτ ;α)|2 dτ < ε2
2T∫
T

ΛQ (γQ(τ, α)− θ1) dτ

for any θ1 ∈ RQ and s ∈ R, where R is the open rectangle with vertices σ1± iH,
σ2 ± iH and A(1/(d+ 1/(2d))) ≤ σ1 < σ2 ≤ 1.

4.3 Proofs of the Main Results

We are now able to finish the proofs of the theorems from the first section.

Proof of Theorem 4.1. Let σ, N , A, ε, a, R and Q0 be as in Lemma 4.1. Then,
for every Q ≥ Q0 and α ∈ [A, 1], the system of inequalities∣∣∣∣ ∂k∂sk ζQ (s, θ, α)

∣∣∣∣
s=σ

− ak
∣∣∣∣ < ε

4
, k = 0, . . . , N,

has a solution θ0 = θ0(α). If we take δ = Q−2, then the inequality

|θn − θ0n| ≤ δ (4.55)

implies that∣∣∣∣ ∂k∂sk (ζQ (s, θ, α)− ζQ (s, θ0, α))

∣∣∣∣
s=σ

∣∣∣∣ ≤ Q−1∑
n=0

(log(n+ α))k |e(θn)− e(θ0n)|
(n+ α)σ

� 1

ασ
δQ logN Q

� A−1/2Q−1 logN Q

�N,A Q
−1/2

for k = 0, . . . , N . Thus, the system of inequalities∣∣∣∣ ∂k∂sk ζQ (s, θ, α)

∣∣∣∣
s=σ

− ak
∣∣∣∣ < ε

2
<

(
2
Q2 + 1

Q2 − 1

)1/2
ε

2
, k = 0, . . . , N, (4.56)
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is satisfied whenever α ∈ [A, 1], Q �N,A Q0 + 1/ε4 and (4.55) holds. On the
other hand Lemma 4.3 yields, for every Q ≥ C3(N)/ε8, M ≥ C4 exp (2Q2),
α ∈ A(Q,M) ∩ [A, 1] and d ≥ d(α) + 1, the existence of a positive number
ν(d,N) such that, for every

T ≥ C5(d,N) max
{(

K exp
(
(M + 2) exp

(
Q2
))) 4d

4(d−d(α))−3 , ε−2ν
}
,

we have

2T∫
T

ΛQ(γQ(τ, α)− θ0)dτ ≥ δQ
(
1−Q−2

)
T (4.57)

and

N∑
k=0

2T∫
T

ΛQ (γQ(τ, α)− θ0)
∣∣∣∣ζ(k) (σ + iτ ;α)− ∂k

∂sk
ζQ (s+ iτ, 0, α)

∣∣∣∣
s=σ

∣∣∣∣2 dτ

<
N∑
k=0

ε2

4(N + 1)

2T∫
T

ΛQ(γQ(τ, α)− θ0)dτ

=
ε2

4

2T∫
T

ΛQ(γQ(τ, α)− θ0)dτ

<
ε2

4
δQ
(
1 +Q−2

)
T

(4.58)

for A(1/(d+ 1/(2d))) ≤ σ ≤ 1.
Let Q �N,A (Q0 + C3(N)/ε8), A(1/(d + 1/(2d))) ≤ σ ≤ 1 and assume that

there is no solution τ in [T, 2T ] for the system of inequalities (4.4). Then, for
every τ ∈ [T, 2T ], there is a kτ ∈ {0, . . . , N} such that

N∑
k=0

∣∣∣∣ζ(k) (σ + iτ ;α)− ∂k

∂sk
ζQ (s+ iτ, 0, α)

∣∣∣∣
s=σ

∣∣∣∣2
≥
∣∣∣∣ζ(kτ ) (σ + iτ ;α)− ∂kτ

∂skτ
ζQ (s+ iτ, 0, α)

∣∣∣∣
s=σ

∣∣∣∣2
≥ 1

2

∣∣ζ(kτ ) (σ + iτ ;α)− akτ
∣∣2 − ∣∣∣∣akτ − ∂kτ

∂skτ
ζQ (s+ iτ, 0, α)

∣∣∣∣
s=σ

∣∣∣∣2
≥ ε2

2
− ε2

4

=
ε2

4
,

as follows from (4.56). However, this contradicts (4.58).
Now let

UT (α) := {τ ∈ [T, 2T ] : ΛQ(γQ(τ, α)− θ0) 6= 0} . (4.59)
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By definition ΛQ is bounded above by 1. This and (4.57) imply that

m (UT (α)) ≥ δQ
(
1−Q−2

)
T. (4.60)

If MT (α, σ) is the set of those τ ∈ UT (α) for which the system of inequalities

∣∣ζ(k) (σ + iτ ;α)− ak
∣∣ < (2

Q2 + 1

Q2 − 1

)1/2

ε, k = 0, . . . , N,

is satisfied, then relations (4.56)-(4.60) yield that

m (MT (α, σ)) ≥ 1

2
δQ
(
1−Q−2

)
T.

For if that was not true, we would have

N∑
k=0

∣∣∣∣ζ(k) (σ + iτ ;α)− ∂k

∂sk
ζQ (s+ iτ, 0, α)

∣∣∣∣
s=σ

∣∣∣∣2 ≥ ε2

2

Q2 + 1

Q2 − 1

for every τ in the set of positive measure UT (α)\MT (α, σ). It then would follow
from (4.56), (4.57) and (4.60) that

2T∫
T

ΛQ (γQ(τ, α)− θ0)
N∑
k=0

∣∣∣∣ζ(k) (σ + iτ ;α)− ∂k

∂sk
ζQ (s+ iτ, 0, α)

∣∣∣∣
s=σ

∣∣∣∣2 dτ

≥ ε2

2

Q2 + 1

Q2 − 1

∫
UT (α)\MT (α,σ)

ΛQ (γQ(τ, α)− θ0) dτ

≥ ε2

2

Q2 + 1

Q2 − 1

[∫
UT (α)

ΛQ (γQ(τ, α)− θ0) dτ −m (MT (α, σ))

]
>
ε2

4
δQ
(
1 +Q−2

)
T,

which contradicts (4.58).

Proof of Theorem 4.2. Beginning with the Taylor series of f ,

f(s) =
∞∑
k=0

f (k)(s0)

k!
(s− s0)k,

valid for s ∈ K, we observe, by Cauchy’s formula

f (k)(s0) =
k!

2πi

∫
|s−s0|=r

f(s)

(s− s0)k
ds,

that
∣∣f (k)(s0)

∣∣ ≤ k!Mr−k, where M := max|s−s0|=r |f(s). Fixing a number δ0 ∈
(0, 1), we get ∣∣∣∣f (k)(s0)

k!
(s− s0)k

∣∣∣∣ ≤Mδk0
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for |s− s0| ≤ δ0r. If ε ∈ (0, |f(s0)|), we can find N = N(δ0, ε,M) such that

Σ1 :=

∣∣∣∣∣f(s)−
N∑
k=0

f (k)(s0)

k!
(s− s0)k

∣∣∣∣∣ < ε,

for |s− s0| ≤ δ0r.
Now let δ ∈ (0, δ0). Then, of course, the latter inequality holds in particular

for s satisfying |s − s0| ≤ δr. Now we apply Theorem 4.1 with ak = f (k)(s0),
k = 0, . . . , N . Then, for α ∈ A(Q,M) ∩ [A, 1] of degree at most d0 − 1, and T
satisfying relation (4.3), there exists t1 ∈ [T, 2T ] such that

|ζ(k)(σ0 + it1;α)− f (k)(s0)| < ε, k = 0, . . . , N.

Thus,

Σ2 :=

∣∣∣∣∣
N∑
k=0

ζ(k)(σ0 + it1;α)

k!
(s− s0)k −

N∑
k=0

f (k)(s0)

k!
(s− s0)k

∣∣∣∣∣
< ε

N∑
k=0

(δr)k

k!

< ε exp(δr),

for |s− s0| ≤ δ0r. Now write τ = t1 − t0, then 1 + it1 = s0 + iτ .
Next we use the Taylor expansion for ζ(s;α) on the shifted disk K + iτ . For

this purpose we need to exclude the simple pole at s = 1; hence we also request
T > r. Under this assumption we have

ζ(s+ iτ ;α) =
∞∑
k=0

ζ(k)(s0 + iτ ;α)

k!
(s− s0)k

for s ∈ K. Let M(τ) := max|s−s0|=r |ζ(s + iτ ;α)|. Then, again by Cauchy’s
formula, ∣∣∣∣ζ(k)(s0 + iτ ;α)

k!
(s− s0)k

∣∣∣∣ ≤M(τ)δk

for |s− s0| ≤ δ0r. Hence,

Σ3 :=

∣∣∣∣∣ζ(s+ iτ ;α)−
N∑
k=0

ζ(k)(s0 + iτ ;α)

k!
(s− s0)k

∣∣∣∣∣
=

∣∣∣∣∣∑
k>N

ζ(k)(s0 + iτ ;α)

k!
(s− s0)k

∣∣∣∣∣
≤ M(τ)

δN

1− δ
,

for |s− s0| ≤ δ0r. In combination with the above estimates this yields

|ζ(s+ iτ ;α)− f(s)| ≤ Σ1 + Σ2 + Σ3 < ε+ ε exp(δr) +M(τ)
δN

1− δ
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for |s− s0| ≤ δr. Now we choose δ > 0 such that M(τ) δ
N

1−δ = ε(2− exp(δr)); this
choice is possible since the left hand side tends to zero as δ → 0 while the right
hand side tends to ε > 0, resp. the left hand side tends to infinity but the right
hand side remains bounded as δ → 1. This proves the corollary.

Proof of Theorem 4.3. Let R be an open rectangle in the strip

3

4
< 1− ξ ≤ σ0 ≤ σ ≤ 1

with vertices σ1 ± iH, σ2 ± iH, where H �K 1 such that K ⊆ R . Let also Q0

be the ineffective constant given in Lemma 3.4 for

R�
(

4

εA3/4

)2

.

Then, for every Q > Q0 and α ∈ [A, 1], there are real numbers θ0n = θ0n(α) for
which

max
s∈K

∣∣∣∣∣f(s)−
R−1∑
n=0

1

(n+ α)s
−

Q−1∑
n=R

e(θ0n)

(n+ α)s

∣∣∣∣∣� R−1/2 � ε

4
.

If we take θ0n = 0 for all 0 ≤ n ≤ R−1 and δ−1 = Q2 > QR, then the inequality

|θn − θ0n| ≤ δ (4.61)

implies that

max
s∈K
|ζQ (s, θ, α)− ζQ (s, θ0, α)| ≤

Q−1∑
n=0

|e(θn)− e(θ0n)|
(n+ α)σ1

≤ δQ

ασ1
<

1

RA3/4
� ε

4
.

Thus, by increasing if necessary R with respect to A and ε, we have

max
s∈K
|f(s)− ζQ (s, θ, α)| < ε

2
<

(
2
Q2 + 1

Q2 − 1

)1/2
ε

2
(4.62)

whenever A ≤ α ≤ 1 and (4.61) is satisfied.
On the other hand Lemma 4.4 yields, for every

Q ≥ C ′3ε
8
0 = C ′3

(√
2π(σ2 − σ1)H
d(K, ∂G)ε

)8

,

M ≥ C ′4 exp (2Q2) , α ∈ A(Q,M) ∩ [A, 1] and d ≥ d(α) + 1, the existence of a
positive number ν(d) such that, for every

T ≥ C ′5(H, d) max
{(

K exp
(
(M + 2) exp

(
Q2
))) 4d

4(d−d(α))−3 , ε−2ν0

}
,

we have

2T∫
T

ΛQ(γQ(τ, α)− θ0)dτ ≥ δQ
(
1−Q−2

)
T (4.63)
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and

2T∫
T

ΛQ (γQ(τ, α)− θ0) |(ζ − ζQ) (s+ iτ ;α)|2 dτ <
ε20
4

2T∫
T

ΛQ (γQ(τ, α)− θ0) dτ

for every s ∈ R. Then, Theorem A.16 yields that

2T∫
T

ΛQ (γQ(τ, α)− θ0)
(

max
s∈K
|ζ (s+ iτ ;α)− ζQ (s+ iτ, 0, α)|

)2

dτ

≤ π

d(K, ∂G)2

2T∫
T

ΛQ (γQ(τ, α)− θ0)
∫∫

G

|(ζ − ζQ) (s+ iτ ;α)|2 dσdtdτ

<
ε2

4

2T∫
T

ΛQ (γQ(τ, α)− θ0) dτ

<
ε2

4
δQ
(
1 +Q−2

)
T.

(4.64)

Now the theorem follows by arguing similarly as in the proof of Theorem 4.1.
For the sake of completeness we repeat briefly the proof of the positive lower
density.

Let Q� Q0 + C ′3ε
8
0, M � exp (2Q2) and α ∈ A(Q,M) ∩ [A, 1] be of degree

at most d0− 1. If NT (α) is the set of those τ ∈ UT (α), where UT (α) was defined
in (4.59), such that the inequality

max
s∈K
|ζ(s+ iτ ;α)− f(s)| <

(
2
Q2 + 1

Q2 − 1

)1/2

ε < 2ε

is satisfied, then it follows from (4.62)-(4.64) that

m (NT (α)) ≥ 1

2
δQ
(
1−Q−2

)
T.

The only difference to the proof of Theorem 4.1 is that here the number Q0, and
in consequence the number Q too, is ineffectively computable.
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Chapter 5

Hypertranscendence

We use Ostrowski’s theorem to prove the hypertranscendence of ordinary Dirich-
let series, whose coefficients are given by some arithmetical function with specific
properties. At first we consider arithmetical functions which are almost-periodic
in the sense of Bohr and Besicovitch, while in the second part we study zeta-
functions which arise from Beatty sets.

5.1 A Passage from Arithmetic to Analysis

Let C[X0, . . . , Xn] be the set of all polynomials of n + 1 variables which have
complex coefficients. A holomorphic function is called hypertranscendental if it
does not satisfy a non-trivial algebraic differential equation. More precisely, a
holomorphic function f : U → C defined on a non-empty open set U ⊆ C is
called hypertranscendental, if for any relation

P
(
f(s), f ′(s), . . . , f (n)(s)

)
= 0,

where P ∈ C[X0, . . . , Xn], that holds identically for s ∈ U , we have P ≡ 0.
The study of differential independence for Dirichlet series has a long history.

The first result in the literature is from 1887 and is due to Hölder [35] who proved
that Euler’s Gamma-function Γ is hypertranscendental. In his famous address at
the 1900 International Congress for Mathematicians in Paris, Hilbert [34] stated
that ζ(s) is hypertranscendental and the proof is based on the hypertranscen-
dence of the Gamma-function and the functional equation of ζ(s).

A detailed proof of Hilbert’s statement for the hypertanscendence of ζ(s) was
given by Stadigh (cf. [62]) in his PhD thesis. Later, Ostrowski [62] showed a much
more general theorem. Before stating it, we need to inroduce some notation. In
the sequel we denote by pn the n-th prime and, for any positive integer y, we set

My :=
{
pk11 · · · pkyy : k1, . . . , ky ∈ N0

}
.

If L(s; a) is an ordinary Dirichlet series, that is,

L(s; a) :=
∞∑
n=1

a(n)

ns
,
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where a : N→ C is an arithmetical fucntion, let σ(L) be the abscissa of absolute
convergence of L(s; a), that is,

σ(L) =


lim sup
N→∞

1

logN
log

(
N∑
n=1

|a(n)|
)
, if

∑
n≥1 |a(n)| diverges,

lim sup
N→∞

1

logN
log

( ∑
n≥N
|a(n)|

)
, if

∑
n≥1 |a(n)| converges.

(5.1)

The latter formula can be found in [91, 9.15].
Assume that µ is a non-negative integer, h0 < h1 < · · · < hµ are real numbers

and ν0, ν1, . . . , νµ are non-negative integers with

ν :=

µ∑
j=0

(νj + 1).

Finally, we define D to be the class of all ordinary Dirichlet series L(s; a) satis-
fying the following two conditions:

i. σ(L) <∞;

ii. there exists no positive integer y such that {n ∈ N : a(n) 6= 0} ⊆My.

With the above notation, which will be kept for the rest of the chapter, Ostrowski
proved

Theorem 5.1. Let L(s; a) ∈ D and P ∈ C[X1, . . . , Xν ] be a non-zero polyno-
mial. Then,

P (L(s+ h0; a), L′(s+ h0; a), . . . , L(ν0)(s+ h0; a), L(s+ h1; a),

. . . , L(ν1)(s+ h1; a), . . . , L(s+ hµ; a), . . . , L(νµ)(s+ hµ; a)) = 0

does not hold identically for s ∈ C with σ + h0 > σ(L). In particular, for µ = 0
and h0 = 0, L(s; a) is hypertranscendental.

Reich [72] improved Ostrowski’s theorem, where he substituted the non-zero
polynomial P , with a continuous and locally non-trivial function Φ : Cν → C,
that is, a function such that for every non-empty open set U ⊆ Cν , the restriction
of Φ to U is not identically zero. Recently, Nagoshi [61] proved a generalization
of Reich’s result:

Theorem 5.2. Let L(s; a) ∈ D , N be a non-negative integer and ΦN : Cν → C
be a continuous and locally non-trivial function. When N ≥ 1, let Φ0, . . . ,ΦN−1 :
Cν → C be continuous functions. Then,

N∑
n=0

snΦn(L(s+ h0; a), L′(s+ h0; a), . . . , L(ν0)(s+ h0; a), L(s+ h1; a),

. . . , L(ν1)(s+ h1; a), . . . , L(s+ hµ), . . . , L(νµ)(s+ hµ; a)) = 0

does not hold identically for s ∈ C with σ + h0 > σ(L).
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Corollary 5.1. Assume that L(s; a) ∈ D . Moreover, let N and M be non-
negative integers and Φ0, . . . ,ΦN−1,ΦN : CM+1 → C be defined as in Theorem
5.2. If

N∑
n=0

snΦn(L(s; a), L′(s; a), . . . , L(M)(s; a)) = 0

holds identically for s ∈ C with σ > σ(L), then Φn ≡ 0 for every 0 ≤ n ≤ N .

The latter corollary can be considered as a weak version of the functional
independence described in Chapter 1. In the sequel we identify two classes of
Dirichlet series L(s; a) which are not (yet) proven to have the universality prop-
erty, as subsets of D . Although, this approach does not lead to universality or
even functional independence in the sense of Voronin, the simple property (ii)
that we ask from an arithmetical function a to have, will allow us to prove, using
only elementary methods, that L(s; a) ∈ D and, thus, it satisfies Corollary 5.1.

5.2 Dirichlet Series with Almost Periodic Coef-

ficients

In this section we study ordinary Dirichlet series L(s; a) which arise from almost
periodic arithmetical functions a : N → C. We refer to Section A.5 for an
introduction to the notion of almost periodicity. We present only the necessary
definitions needed to state our results. Let

A := spanC {t 7−→ e(βt) : β ∈ [0, 1)} .

An arithmetical function a is called uniformly almost periodic if, for any ε > 0,
there exists P ∈ A such that ‖a− P‖∞ < ε, where ‖a‖∞ := supn∈N |a(n)|. We
denote the set of all these functions by Au.

Moreover, if q ∈ [1,+∞), then an arithmetical function a is called Bq-almost
periodic if, for any ε > 0, there exists P ∈ A such that ‖a− P‖q < ε, where

‖a‖q :=

(
lim sup
x→∞

1

x

∑
n≤x

|a(n)|q
)1/q

.

We denote the set of all these functions by Aq.

Lemma 5.1. Let Aq
0 := {a ∈ Aq : ||a||q > 0}, q ≥ 1. Then, Au\{0} ⊆

⋂
q≥1A

q
0.

Proof. For a ∈ Au \ {0}, there exists a positive integer n0 such that a(n0) 6= 0,
and a trigonometric polynomial P ∈ A such that

sup
n∈N
|a(n)− P (n)| < ε

3
, (5.2)

where ε is a fixed positive number satisfying ε < |a(n0)|. It follows from Theorem
A.22 that the set E (P, ε/3) ∩ Z, where

E
(
P,
ε

3

)
:=

{
τ ∈ R : sup

x∈R
|P (x+ τ)− P (x)| < ε

3

}
,
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is relatively dense. Thus, there exists ` > 0 such that any interval of the real
line of length ` contains at least one integer from the set E(P, ε/3). Hence, for
any k ∈ N0, there is an integer τk ∈ [n0 + 2k`, n0 + (2k + 1)`] such that

sup
x∈R
|P (x+ τk)− P (x)| < ε

3
. (5.3)

Then, relations (5.2) and (5.3) yield that

sup
n∈N
|a(n+ τk)− a(n)| < ε

and, thus,

|a(n0 + τk)| > |a(n0)| − ε > 0

for every k ∈ N0. Since τk ≤ n0+(2k+1)` and τk+1−τk ≥ 2(k+1)`−(2k+1)` > 0,
it follows that

1

n0 + τk

n0+τk∑
n=1

|a(n)|q ≥ 1

2n0 + (2k + 1)`

k∑
n=0

|a(n0 + τn)|q > (k + 1) (|a(n0)| − ε)q

2n0 + (2k + 1)`

for every k ∈ N0. Therefore,

||a||q ≥

(
lim
k→∞

1

n0 + τk

n0+τk∑
n=1

|a(n)|q
)1/q

=
|a(n0)| − ε

(2`)1/q
> 0

and this completes the proof.

Theorem 5.3. If a ∈ Aq
0 for some q ≥ 1, then L(s; a) ∈ D .

Proof. For a ∈ Aq, there exists a triginometric polynomial R ∈ A, such that

‖a‖q > 0 and ‖a−R‖q < 1.

The first condition implies that the series
∑

n≥1 |an| is divergent, while the second
one, by Minkowski’s inequality (Theorem A.12), that

1

N

N∑
n=1

|a(n)|q � max
x∈R
|R(x)|

for allN ∈ N. In view of the formula (5.1) for the abscissa of absolute convergence
σ(L) and Hölder’s inequality (Theorem A.11), it follows that

σ(L) = lim sup
N→∞

1

logN
log

(
N∑
n=1

|a(n)|

)

≤ lim sup
N→∞

1

logN
log

N1−1/q

(
N∑
n=1

|a(n)|q
)1/q


= 1.
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Now assume that a∗ := {n ∈ N : a(n) 6= 0} ⊆ My for some positive integer
y. The assumption ‖a‖q > 0 implies that a∗ is infinite. Since a ∈ Aq

0, for the
positive number ‖a‖q, there exists a trigonometric polynomial P ∈ A such that(

lim sup
x→∞

1

x

∑
n≤x

|a(n)− P (n)|q
)1/q

= ‖a− P‖q < ‖a‖q. (5.4)

Using Minkowski’s inequality we obtain that(∑
n≤x

|a(n)− P (n)|q
)1/q

≥

(∑
n≤x

1a∗(n)|a(n)− P (n)|q
)1/q

≥

(∑
n≤x

1a∗(n)|a(n)|q
)1/q

−

(∑
n≤x

1a∗(n)|P (n)|q
]1/q

≥

(∑
n≤x

|a(n)|q
)1/q

− L

(∑
n≤x

1My(n)

)1/q

,

where |P (x)| ≤ L for all x ∈ R. Thus,

‖a‖q ≤ ‖a− P‖q + L

(
lim sup
x→∞

1

x

∑
n≤x

1My(n)

)1/q

. (5.5)

Recalling the definition of My, it follows that, for suffciently large x�y 1,

∑
n≤x

1My(n) =
∞∑
k1=0

· · ·
∞∑

ky=0∑y
i=1 ki log pi≤log x

1 ≤

⌊
log x
log p1

⌋∑
k1=0

· · ·

⌊
log x
log py

⌋∑
ky=0

1�y (log x)y
y∏
i=1

1

log pi
.

Therefore,

lim sup
x→∞

1

x

∑
n≤x

1My(n) = 0

and, thus, from (5.5)
‖a‖q ≤ ‖a− P‖q,

which contradicts inequality (5.4). Hence, there is no positive integer y such that
a∗ ⊆My.

Theorem 5.3 can not be generalized to the whole space Aq. Consider, for
example, the function 1A : N → {0, 1} where A = {2n : n ∈ N}. Then, 1A
belongs to Aq with ‖1A‖q = 0 for any q ≥ 1, since

lim
x→∞

1

x

∑
n≤x

1A(n) = 0.
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Taking the corresponding Dirichlet series

f(s) := L(s;1A) =
∞∑
n=1

1A(n)

ns
=
∞∑
n=0

1

2ns
=

2s

2s − 1
,

one can prove that it satisfies the non-trivial algebraic differential equation

f ′ + log 2(f 2 − f) = 0

and, thus, it is not hypertranscendental.
However, the set {a ∈ Aq : ||a||q = 0} contains also arithmetical functions

with far more interesting properties. In [79] it is proved that for suitable mul-
tiplicative functions a with zero mean-value, the corresponding Dirichlet series
L(s; a) has the universality property, in the sense of Voronin, inside some strip
of the complex plane which depends on a. In the case of a periodic arithmetical
function a, the value-distribution of the corresponding Dirichlet series L(s; a) is
much better understood. We refer to [86] for an exposition of relevant results,
where universality results are obtained as well.

5.3 Beatty Zeta-Functions

For given positive real numbers α, β, the associated Beatty set or Beatty sequence
is defined by

B(α, β) := {bαn+ βc : n ∈ N} ,

where it is understood that the elements of B(α, β) are to be enumerated in
increasing order. Often enough only the case β = 0 is considered and, thus,
sometimes B(α, 0) is called homogeneous. Otherwise, B(α, β) is called inhomo-
geneous Beatty set. We refer to [88] and the references cited there for a survey
on Beatty sets and some generalisations thereof. We will only present a very
special feature of Beatty sets, as well as the prime number theorem analogue for
such sets.

Lemma 5.2. Suppose that α ≥ 1 and β ≥ 0 are real numbers. Then an integer
m is an element of B(α, β) if and only if

m

α
∈
(
β − 1

α
,
β

α

]
mod 1.

Proof. This follows immediately from the definition of B(α, β).

Theorem 5.4. Suppose that α ≥ 1 and β ≥ 0 are real numbers. Then,

lim
x→∞

1

π(x)
]

{
p ≤ x prime :

m

α
∈
(
β − 1

α
,
β

α

]
mod 1

}
=

1

α

The proof of the theorem follows from a classical theorem due to Vinogradov
(see [39, p. 489]:
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Theorem 5.5. Let pn denote the n-th prime and suppose that α > 0 is irrational.
Then the sequence ({pn/α})n∈N is uniformly distributed mod 1.

We consider polynomials P ∈ Z[X] of positive degree satisfying P (N) ⊆ N
and we want to investigate the more sophisticated Dirichlet series, which we also
call Beatty zeta-function,

L(s;P,B(α, β)) :=
∞∑
n=1

1

P (bαn+ βc)s
.

Further we will assume that bα + βc ≥ 1 to have everything well-defined.

Theorem 5.6. Let α, β be positive real numbers with bα+βc ≥ 1 and P ∈ Z[X]
be a non-constant polynomial with P (N) ⊆ N. Then L(s;P,B) ∈ D .

Proof. Since P is a non-constant polynomial, it follows that

P (bαn+ βc)� bαn+ βc � n

as n→∞. Therefore, L(s;P,B(α, β)) is absolutely convergent for σ > 1. This
allows us to rearrange the terms of the latter series in the following manner

L(s;P,B(α, β)) =
∞∑
n=1

a(m)

ms
,

where a(m) = ]{n ∈ N : P (bαn + βc) = m}. Thus, L(s;P,B) is an ordinary
Dirichlet series with σ(L) ≤ 1.

Now assume that a∗ := {n ∈ N : a(n) 6= 0} ⊆My for some positive integer y.
Let P (x) = akx

k+ . . .+a1x+a0 be the given polynomial with integer coefficients
and

τ =


p1
dp2 . . . py + 1, if P (bβc) = 0,

|P (bβc)|p1dp2 . . . py, if P (bβc) 6= 0,

where d ∈ N is sufficiently large so that P (bαnτ + βc) > P (bβc) for all n ∈ N.
Recall that pn denotes the n-th prime. We consider two cases. If α is a positive
rational number, that is, if α = r/q for some positive integers r and q, then we
set n0 = qτ and we observe that

P (bαn0 + βc) = ak(rτ + bβc)k + . . .+ a1(rτ + bβc) + a0 = `rτ + P (bβc),

where ` is a strictly positive integer by our choice of d. But then

P (bαn0 + βc) =

 `r(p1
dp2 . . . py + 1), if P (bβc) = 0,

|P (bβc)|(`rp1dp2 . . . py ± 1), if P (bβc) 6= 0,

which clearly implies that P (bαn0 + βc) /∈ My. Thus, the assumption of the
existence of such y is not true in case α is a positive rational number.
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If α is a positive irrational number, we employ the theory of continued frac-
tions (see [32, Chapter X]). Let [a0, a1, a2 . . . ] be the continued fraction expansion
of α and

rn
qn

:= [a0, a1, . . . , an],

n ∈ N, its n-the convergent. Then

0 < α− r2n
q2n

<
1

q2
2n

≤ 1

2nq2n
(5.6)

for all n ∈ N. Hence, if we take a sufficiently large positive integer n such that

1

2n
<

1− (β − bβc)
τ

, (5.7)

then relations (5.6) and (5.7) yield that

0 < αq2nτ + β − (r2nτ + bβc) < 1

or, equivalently,
bαq2nτ + βc = r2nτ + bβc.

If we set n0 = q2nτ , then

P (bαn0 + βc) = P (r2nτ + bβc) = `r2nτ + P (bβc),

where ` ∈ N, and the proof follows as in the case of α being a positive rational
number.

If P (x) = x, α ≥ 1 and β ≥ 0, we can actually derive more information about
the Beatty zeta-function

L(s; B(α, β)) :=
∞∑
n=1

1

bαn+ βc
=
∞∑
n=1

1B(α,β)(n)

ns
, σ > 1. (5.8)

From Theorem 5.4 it follows that, if pB
n is the n-th prime in B(α, β), then

pB
n ∼ αn log n. (5.9)

This yields an interesting result regarding the measure of hypertranscendence of
L(s; B(α, β)).

As we have aready defined in the beginning of this chapter, a holomorphic
function f : U → C is hypertranscendental if for any relation

P
(
f(s), f ′(s), . . . , f (n)(s)

)
= 0,

where P ∈ C[X0, . . . , Xn], that holds identically for s ∈ U , we have P ≡ 0. The
term “hypertranscendence” is chosen for a good reason. That is because we ask
from a function to have a property that exceeds the one of transcendental real
numbers, like e and π. And as in the case of transcendental numbers, one may
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ask “how far” is f from being algebraic, in the sense of finding lower bounds for
the quantity

inf
s∈U
|P
(
f(s), f ′(s), . . . , f (n)(s)

)
|

if P 6≡ 0 and n ∈ N. Of course we can say, alternatively, that such bounds
measure the hypertranscendence of f .

Such problems were first investigated by Popken [65, 66, 67, 68]. His main
object of research was transcendence of real numbers or arithmetical functions.
However, in those references one can find yet another example of how the prop-
erties of an arithmetical function a affect the value-distribution of the associated
Dirichlet series L(s; a). For a more detailed account on this special connection
that an arithmetical function a share with L(s; a), we refer to [45] and [46]. In
particular, we are going to make use of the following theorem which is proved in
[45, Corollary 3.3]:

Theorem 5.7. Let L(s; a) =
∑

n≥1 a(n)n−s be a Dirichlet series, r be a positive
integer and P ∈ C[X1, . . . , Xr] be a non-zero polynomial of total degree g. If there
is a set of r + 1 primes {p1 < · · · < pr+1} such that a(pi) 6= 0, i = 1, . . . , r + 1,
then ∣∣P (L(·; a), L′(·; a), . . . , L(r)(·; a)

)∣∣ ≥ ( 1

pr+1

)g
,

where the Dirichlet series, their derivatives and operations are considered for-
mally.

The latter theorem, the definition (5.8) and relation (5.9) yield the following
theorem regarding the measure of hypertranscendence of L(s; B(α, β)):

Theorem 5.8. Let α ≥ 1 and β ≥ 0. Then, for any positive integer r and any
non-zero polynomial P ∈ C[X1, . . . , Xr] of total degree g,

∣∣P (L (s; B(α, β)) , L′ (s; B(α, β)) , . . . , L(r) (s; B(α, β))
)∣∣�σ0

(
1

αr log r

)g
,

uniformly in σ ≥ σ0 > 1.
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Appendix A

A.1 Uniformly Distributed Sequences

The material presented here can be found in [48]. We begin with the definition
of a uniformly distributed sequence.

Definition A.1. A sequence of real numbers (xn)n∈N is said to be uniformly
distributed modulo 1 (abbreviated u.d. mod 1) if for every 0 ≤ a < b ≤ 1 the
following relation holds:

lim
N→∞

] {1 ≤ n ≤ N : {xn} ∈ [a, b)}
N

= b− a

Already from the definition, one can prove

Theorem A.1. If the sequence (xn)n∈N is u.d. mod 1, and if (yn)n∈N is a se-
quence with the property limn→∞(xn − yn) = α, a real constant, then (yn)n∈N is
u.d. mod 1.

Proof. For a proof see [48, Chapter 1, Theorem 1.2].

Uniformly distributed sequences have two remarkable properties which are
described in the next two theorems.

Theorem A.2. The sequence of real numbers (xn)n∈N is u.d. mod 1 if for every
real-valued continuous function f defined on [0, 1] the following relation holds:

lim
N→∞

1

N

N∑
n=1

f({xn}) =

1∫
0

f(x)dx.

Proof. For a proof see [48, Chapter 1, Theorem 1.1].

Corollary A.1. The sequence (xn)n∈N is u.d. mod 1 if for every complex-valued
Riemann-integrable function f on R with period 1 the following relation holds:

lim
N→∞

1

N

N∑
n=1

f(xn) =

1∫
0

f(x)dx.

Proof. For a proof see [48, Chapter 1, Corollary 1.2].
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Theorem A.3 (Weyl’s Criterion). The sequence (xn)n∈N is u.d. mod 1 if and
only if

lim
N→∞

1

N

N∑
n=1

e (hxn) = 0,

for all integers h 6= 0.

Proof. For a proof see [48, Chapter 1, Theorem 2.1].

The latter theorem implies for example that the sequence (αn)n∈N is u.d.
mod 1, if α is an irrational number. In fact, the following theorem holds true.

Theorem A.4. Let Pa(x) = a1x + · · · + adx
d be a polynomial of degree d ≥ 1

with real coefficients. If aj is irrational for some j = 1, . . . , d, then the sequence
(Pa(n))n∈N is u.d mod 1. If ad is irrational, but ak/ad is rational for k = 1, . . . , d,
then the sequence (bPa(n)c θ)

n∈N is u.d. mod 1 if and only if 1, ad, θad are linearly
independent over Q. Otherwise, the sequence (bPa(n)c θ)

n∈N is u.d. mod 1 for
every irrational θ.

Proof. For the first part of the lemma see [48, Chapter 1, Theorem 3.2], while
for the second part [11, Theorem 2].

We also give the multidimensional setting of uniformly distributed sequences.

Definition A.2. A sequence of vectors of real numbers xn = (xn1, . . . , xn`),
n ∈ N, is said to be u.d. mod 1 in R` if for every 0 ≤ aj < bj ≤ 1, j = 1, . . . , `,
the following relation holds:

lim
N→∞

1

N
]

{
1 ≤ n ≤ N : {xn} ∈

∏̀
j=1

[aj, bj]

}
=
∏̀
j=1

(bj − aj).

Theorem A.5. The sequence of vectors of real numbers (xn)n∈N is u.d. mod 1
in R` if for every complex-valued Riemann-integrable function f defined on [0, 1]`

the following relation holds:

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫
[0,1]`

f(x)dx.

Proof. For a proof see [48, Chapter 1, Theorem 6.1].

Theorem A.6. The sequence of vectors of real numbers (xn)n∈N is u.d. mod 1
in R` if and only if for every lattice point h ∈ Z`, h 6= 0,

lim
N→∞

1

N

N∑
n=1

e (〈h, xn〉) = 0.

Proof. For a proof see [48, Chapter 1, Theorem 6.2].
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Corollary A.2. The sequence of vectors of real numbers (xn)n∈N is u.d. mod 1
in R` if and only if for every lattice point h ∈ Z`, h 6= 0, the sequence of real
numbers (〈h, xn〉)n∈N is u.d. mod 1 in R.

Proof. For a proof see [48, Chapter 1, Theorem 6.3].

Lastly, we present a discrete analogue of a theorem which can be found in
[43, Appendix, §8, Theorem 3]. The proof is straightforward and so we omit it.

Theorem A.7. Suppose that the sequence (xn)n∈N is u.d. mod 1 in RN . Let
L be a closed and Jordan measurable subset of [0, 1]N and let F be a family of
complex-valued continuous functions defined on L. If F is uniformly bounded
and equicontinuous, then the following relation holds uniformly with respect to
f ∈ F :

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫
L
f(x)dx.

A.2 Useful Formulas and Inequalities

Theorem A.8 (Stirling’s Formula). If σ1, σ2 are real numbers with σ1 ≤ σ2,
then

|Γ(s)| = (2π)1/2|t|σ−1/2 exp

(
−π|t|

2

)(
1 +Oσ1,σ2

(
1

|t|

))
, |t| ≥ t0 > 0,

uniformly in σ1 ≤ σ ≤ σ2.

Proof. For a proof see [89, Chapter II, Corollary 0.13].

Theorem A.9 (Perron’s Formula). Let c, y and T be positive real numbers. If
we set

δ(y) :=


0, 0 < y < 1,
1

2
, y = 1,

1, y > 1

and I(y, T ) :=
1

2πi

c+iT∫
c−iT

yz
dz

z
,

then

|I(y, T )− δ(y)| <

 yc min

(
1,

1

T | log y|

)
, y 6= 1,

c

T
, y = 1.

Proof. For a proof see [38, Lemma 12.1].

Theorem A.10 (Abel’s Summation Formula). Let (an)n∈N be a sequence of
complex numbers. If

A(t) :=
∑
n≤t

an, t > 0
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and f ∈ C1([1, x]), then

∑
1≤n≤x

anf(n) = A(x)f(x)−
x∫

1

A(t)f ′(t)dt.

Proof. The proof follows immediately from an application of the formula for
partial integration of Stieltjes-integrals:∑

1≤n≤x

anf(n) =

x∫
1−

f(t)dA(t) =

[
A(t)f(t)

]x
1−
−

x∫
1

A(t)f ′(t)dt.

Theorem A.11 (Hölder’s Inequality). Let X be a measure space with measure
µ and p, q ∈ (1,+∞) be such that 1/p+ 1/q = 1. Then∫

X

|fg|dµ ≤
(∫

X

|f |pdµ
)1/p(∫

X

|g|qdµ
)1/q

(A.1)

for any measurable functions f, g : X → C.

Proof. For a proof see [16, Theorem B.15].

Theorem A.12 (Minkowski’s Inequlaity). Let X be a measure space with mea-
sure µ and p ∈ (1,+∞). Then(∫

X

|f + g|pdµ
)1/p

≤
(∫

X

|f |pdµ
)1/p

+

(∫
X

|g|pdµ
)1/p

(A.2)

for any measurable functions f, g : X → C.

Proof. For a proof see [16, Theorem B.16].

A.3 Polynomials and Polynomial Inequalities

The first two theorems can be found in the homonym book of Borwein and Erdélyi
[8], where they are presented as exercises. Lagrange’s interpolation theorem is
given in [8, Chapter 1, Section 1, E.6], while Markov’s inequality in [8, Chapter
5, Section 2, E.2].

Theorem A.13 (Lagrange’s Interpolation Theorem). Let zi and yi, i = 0, . . . , n,
be arbitrary complex numbers except that the zi must be pairwise distinct. Then
the polynomial

P (z) =
n∑
k=0

yk

n∏
i=0
i 6=k

z − zj
zk − zj

, z ∈ C,

is called the Lagrange interpolation polynomial and it is the unique polynomial
with complex coefficients and of degree at most n such that

P (zi) = yi,

for every i = 0, . . . , n.
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Theorem A.14 (Markov’s Inequality). Suppose that P ∈ C[X] is of degree at
most n and it satisfies ∣∣∣∣P (cos

jπ

n

)∣∣∣∣ ≤ 1,

for every j = 1, . . . , n. Then

max
x∈[−1,1]

∣∣P (m)(x)
∣∣ ≤ n2 (n2 − 1) (n2 − 22) . . .

(
n2 − (m− 1)2

)
(2m− 1)!

for every m = 1, . . . , n.

The next theorem originates from a work of Güting [28].

Theorem A.15. Let P (X) and Q(X) be non-constant integer polynomials of
degree n and m, respectively. Denote by α a zero of Q(X) of order t. If P (α) 6= 0,
then

|P (α)| ≥ (n+ 1)1−m/t(m+ 1)−n/(2t)H(P )1−m/tH(Q)−n/t(max{1, |α|})n

Proof. For a proof see [10, Theorem A.1].

From Theorem A.15 we obtain

Corollary A.3. Let P (X) be a non-zero integer polynomial of degree n and
α ∈ (0, 1] an algebraic number of degree d(α) and height H(α). If P (α) 6= 0,
then

|P (α)| ≥ (n+ 1)1−d(α)(d(α) + 1)−n/2H(P )1−d(α)H(α)−n.

A.4 Facts from Hilbert Space Theory and Func-

tion Theory

Let R ⊆ C be a bounded domain. The Bergman space A2(R) is the set of all
analytic functions f : R → C which are square integrable on G, endowed with
its natural norm

||f ||2A2(R) :=

∫∫
R
|f(σ + it)|2dσdt.

Theorem A.16. Let R be a bounded domain. If f ∈ A2(R) and z ∈ R, then

|f(z)| ≤
√
π

d (z, ∂R)
||f ||A2(R),

where d (z,R) = min{|z − w| : w ∈ ∂R}.

Proof. For a proof see [15, Chapter 1, Theorem 1].
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Theorem A.17. Let x1, . . . , xn be elements of a complex Hilbert space H and
let a1, . . . , an be complex numbers with |aj| ≤ 1 for 1 ≤ j ≤ n. Then there exist
complex numbers b1, . . . , bn with |bj| = 1 for 1 ≤ j ≤ n, satisfying the inequality∣∣∣∣∣

∣∣∣∣∣
n∑
j=1

ajxj −
n∑
j=1

bjxj

∣∣∣∣∣
∣∣∣∣∣
2

H

≤ 4
n∑
j=1

||xj||2H

Proof. For a proof see [86, Lemma 5.2].

Theorem A.18. Let X be a locally convex vector space. Let K ⊆ X be a closed
convex set, and suppose that z ∈ X \K. Then there exists a continuous linear
functional ` ∈ X∗ and a constant c ∈ R such that `(y) ≤ c < `(x) for all y ∈ K.

Proof. For a proof see [16, Theorem 8.73].

Theorem A.19 (Hadamard’s Three-Circles Theorem). Let s0 ∈ C and f be an
analytic function, regular for r1 ≤ |s− s0| ≤ r3. Then for every r1 < r2 < r3

max
|s−s0|=r2

|f(s)| ≤
(

max
|s−s0|=r1

|f(s)|
)a(

max
|s−s0|=r3

|f(s)|
)b
,

where

a =
log(r3/r2)

log(r3/r1)
and b =

log(r2/r1)

log(r3/r1)
.

Proof. For a proof see [91, Section 5.3].

Theorem A.20 (Borel-Carathéodory Inequality). Let s0 ∈ C and f be an ana-
lytic function, regular for |s− s0| ≤ R. Then for every 0 < r < R

max
|s−s0|=r

|f(s)| ≤ 2r

R− r
max
|s−s0|=R

<(f(s)) +
R + r

R− r
|f(s0)|.

Proof. For a proof see [91, Section 5.5].

Theorem A.21 (Mergelyan’s Theorem). Let K ⊆ C be a compact set with
connected complement. Let also f be a continuous function on K and analytic in
its interior. Then for every ε > 0 there exists a polynomial P ∈ C[X] such that

max
z∈K
|f(z)− P (z)| < ε.

Proof. For a proof see [74, Chapter 20].

A.5 Spaces of Almost Periodic Functions

The theory of almost-periodic functions was pioneered by Bohr and developed
by himself, Besicovitch, Bochner, Stepanoff, Weyl and many others. We recom-
mend Besicovitch’s book [4] on a survey to the different kinds of almost periodic
functions. However, since we focus on properties of arithmetical functions, [78]
is also of great importance.
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Definition A.3. A set E ⊆ R is said to be relatively dense if there exists a
number ` > 0 such that any interval of length ` contains at least one number of
the set E .

Definition A.4. A continuous function f : R → C is called uniformly almost-
periodic if, for every ε > 0, the set

E(f, ε) :=

{
τ ∈ R : sup

x∈R
|f(x+ τ)− f(x)| < ε

}
is relatively dense.

Observe that periodic functions belong to this more general class of functions.

Theorem A.22. Let f : R→ C be a uniformly almost periodic function. Then,
for any ε > 0, the set E(f, ε) ∩ Z is relatively dense.

Proof. For a proof see the theorem in [4, Chapter I, §11, 4o].

Let
A := spanC {t 7−→ e(βt) : β ∈ [0, 1)}

denote the set of all trigonometric polynomials with complex coefficients. Bohr
[33] proved the following remarkable theorem:

Theorem A.23. A continuous function f : R→ C is uniformly almost periodic
if and only if there is a sequence of trigonometric polynomials Pn ∈ A, n ∈ N,
such that

lim
n→∞

sup
x∈R
|Pn(x)− f(x)| = 0.

Bohr’s work inspired many mathematicians to study the set A (or subsets of
A) endowed with various norms or semi-norms. We turn our attention to the
uniform norm and the Besicovitch semi-norms. It is straightforward to confirm
the following lemma by using Minkowski’s inequlaity (Theorem A.12).

Lemma A.1. Let q ≥ 1. The functionals

‖ · ‖∞, ‖ · ‖q : A→ R

defined by the formula
‖P‖∞ = sup

n∈N
|P (n)|

and

‖P‖q =

(
lim sup
x→∞

1

x

∑
n≤x

|P (n)|q
)1/q

for any P ∈ A, are semi-norms. Moreover, ‖ · ‖∞ is a norm.

Now we can naturally introduce the concept of almost periodicity in the case
of arihmetical functions f : N→ C:
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Definition A.5. We define

Au = ‖ · ‖∞ − closure of A

to be the space of uniformly almost periodic arithmetical functions and for q ≥ 1,

Aq = ‖ · ‖q − closure of A

to be the space of Bq-almost periodic arithmetical functions.

It can be seen that (Au, ‖ · ‖∞) and (Aq, ‖ · ‖q) are Banach spaces and

A ⊆ Au ⊆ Ar ⊆ Aq ⊆ A1

for any 1 ≤ q ≤ r. The latter follows from the inequality ‖f‖r ≤ ‖f‖q for r ≤ q
and f an arithmetical function. Moreover, if f ∈ A1, then its mean-value

M(f) := lim
x→∞

1

x

∑
n≤x

f(n)

exists. We refer to [78, Chapter VI] for the aforementioned statements. In our
case we will need the following

Theorem A.24. Let f and gk, k ∈ N, be Bq-almost periodic arithmetical func-
tions for some q ≥ 1 such that

lim
k→∞
‖gk − f‖q = 0.

Then
lim
k→∞

M(gk) = M(f).

Proof. We know that M(f) and M(gk), k ∈ N, exist and

|M(gk)−M(f)| = lim
x→∞

1

x

∣∣∣∣∣∑
n≤x

(gk(n)− f(n))

∣∣∣∣∣ ≤ ‖gk − f‖1 ≤ ‖gk − f‖q.
Taking k →∞ the theorem follows.
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bres premiers, I–III, Ann. Soc. Sci. Bruxelles, 20 (1896), 183–256.

[93] I. M. Vinogradov, A new estimate of the function ζ(1+it), Izvestiya Rossi-
iskoi Akademii Nauk. Seriya Matematicheskaya, 22 (1958), 161–164.

[94] H. von Mangoldt, Zu Riemann’s Abhandlung “Ueber die Anzahl der
Primzahlen unter einer gegebenen Grösse”., J. Reine Angew. Math., 114
(1895), 255–305.

[95] , Zur Verteilung der Nullstellen der Riemannschen Funktion ξ(t).,
Math. Ann., 60 (1905), 1–19.

[96] S.M. Voronin, On the functional independence of Dirichlet L-functions,
Acta Arith., 27 (1975), 493–503.

[97] , Analytic properties of Dirichlet generating functions of arithmetic
objects, Mathematical Notes, 24 (1978), 966–969.

[98] S. M. Voronin, On the distribution of nonzero values of the Riemann ζ-
function, Tr. Mat. Inst. Steklov., 128 (1972), 131–150.

[99] , Theorem on the “universality” of the Riemann zeta-function,
Izvestiya: Mathematics, 9 (1975), 443–453.

[100] , On Ω-theorems in the theory of the Riemann zeta-function, Mathe-
matics of the USSR-Izvestiya, 32 (1989), 429–442.

[101] T. D. Wooley, The cubic case of the main conjecture in Vinogradov’s mean
value theorem., Adv. Math., 294 (2016), 532–561.

113


	Acknowledgements
	Abstract
	Zusammenfassung
	Notations
	Introduction
	Preludé
	Generalizations
	Outline of the Thesis

	Discrete Moments with respect to Polynomials
	In the Half-Plane s>1
	Inside the Strip 1/2<s<1
	The Lindelöf Hypothesis

	Discrete Universality Theorems
	Criteria for Discrete Universality
	Sequences leading to Universality
	A Shortcut via Euler Products

	Hurwitz Zeta-Functions with Algebraic Parameter
	Effective and Ineffective Results
	Auxiliary Lemmas
	Proofs of the Main Results

	Hypertranscendence
	A Passage from Arithmetic to Analysis
	Dirichlet Series with Almost Periodic Coefficients
	Beatty Zeta-Functions

	Appendix
	
	Uniformly Distributed Sequences
	Useful Formulas and Inequalities
	Polynomials and Polynomial Inequalities
	Facts from Hilbert Space Theory and Function Theory
	Spaces of Almost Periodic Functions

	Bibliography

