
Arús‑Pous et al. J Cheminform (2019) 11:20
https://doi.org/10.1186/s13321‑019‑0341‑z

RESEARCH ARTICLE

Exploring the GDB‑13 chemical space using
deep generative models
Josep Arús‑Pous1,3* , Thomas Blaschke1,4, Silas Ulander2, Jean‑Louis Reymond3, Hongming Chen1
and Ola Engkvist1

Abstract

Recent applications of recurrent neural networks (RNN) enable training models that sample the chemical space. In
this study we train RNN with molecular string representations (SMILES) with a subset of the enumerated database
GDB‑13 (975 million molecules). We show that a model trained with 1 million structures (0.1% of the database) repro‑
duces 68.9% of the entire database after training, when sampling 2 billion molecules. We also developed a method
to assess the quality of the training process using negative log‑likelihood plots. Furthermore, we use a mathematical
model based on the “coupon collector problem” that compares the trained model to an upper bound and thus we are
able to quantify how much it has learned. We also suggest that this method can be used as a tool to benchmark the
learning capabilities of any molecular generative model architecture. Additionally, an analysis of the generated chemi‑
cal space was performed, which shows that, mostly due to the syntax of SMILES, complex molecules with many rings
and heteroatoms are more difficult to sample.

Keywords: Deep learning, Chemical space exploration, Deep generative models, Recurrent neural networks,
Chemical databases

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Finding novel molecules with specific properties is one
of the main problems that drug discovery faces. One of
the most common approaches to this is to explore chemi-
cal space by enumerating large virtual libraries, hoping to
find a novel region of space containing useful structures.
However, the drug-like chemical space is intractably large
and a rough estimate would be at least 1023 molecules [1].
There are two classical approaches to exploring chemi-
cal space. One is to use implicit models, which do not
store all molecules in a region of the chemical space but
instead represent molecules indirectly. Techniques such
as chemical space navigation by mutations [2] or creat-
ing reaction graphs have proven to be successful [3, 4].
The other more common way is to use explicit models.
By searching public databases that contain molecules
obtained from various sources, e.g. ChEMBL [5], new

molecules of interest can be discovered. An alterna-
tive approach is the GDB project, a set of databases that
exhaustively enumerate a part of the chemical space. For
example, GDB-13 [6] and GDB-17 [7] are large databases
that hold large amounts of drug-like molecules up to 13
and 17 heavy atoms (~ 109 and ~ 1011 molecules) respec-
tively. Additionally, GDB-4c [8] is a database that enu-
merates all possible ring systems up to four rings. These
databases include a wealth of novel structures of poten-
tial interest for drug discovery [9].

In recent years deep learning has been a major addi-
tion in machine learning. Problems that were difficult
to tackle before are now successfully approached using
deep learning, such as image classification [10], face
recognition [11] or playing Go [12]. Recently there has
been another step forward in the field with deep genera-
tive models, which generate content similar to that upon
which they have been trained. Deep generative models
have been successfully applied to music composition
[13], image generation [14] and language translation [15].
These new methods are also being applied to chemi-
cal space exploration in a novel way [16]. When trained

Open Access

Journal of Cheminformatics

*Correspondence: josep.arus@dcb.unibe.ch
3 Department of Chemistry and Biochemistry, University of Bern,
Freiestrasse 3, 3012 Bern, Switzerland
Full list of author information is available at the end of the article

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
3
8
4
4
5

|

d
o
w
n
l
o
a
d
e
d
:

2
7
.
1
.
2
0
2
0

http://orcid.org/0000-0002-9860-2944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-019-0341-z&domain=pdf

Page 2 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

with a small subset of molecules, these models gener-
ate molecules similar to the training set. Different types
of neural networks such as variational auto-encoders
(VAE) [17], recurrent neural networks (RNNs) [18, 19]
and generative adversarial networks (GAN) [20] trained
with string representations (SMILES) [21] from ChEMBL
have proven to be successful at generating novel chemical
space.

Despite the results obtained by previous research, the
question as to how much of the chemical space surround-
ing the molecules in the training set can be generated by
a RNN trained with SMILES remains unanswered. The
Fréchet ChemNet distance, [22] which compares a given
generated chemical library with real molecule data from
ChEMBL, [5] PubChem, [23] and ZINC [24] was recently
proposed as a benchmark. However, we think that this
metric is not able to unequivocally measure the learning
capabilities of a generative model architecture, as it gives
information on how likely a generated molecule set is to a
set of real bioactive molecules.

Here we aim to gain insight on how a RNN explores
the chemical space and how the SMILES format affect
it by training RNNs with canonical SMILES sampled
from the GDB databases. We use GDB-13, because this
database has denser representation of a reduced chemi-
cal space (drug-like molecules up to 13 heavy atoms)
and because it has a large yet still manageable size
(975 million molecules). Figure 1 illustrates the whole
domain of possible outcomes from a RNN trained with
SMILES. This domain changes during the training pro-
cess: before training the RNN generates random strings,
a few of which are going to be valid SMILES. After train-
ing, the generated strings are mostly valid SMILES that,
to a large extent, belong to GDB-13. By computing how
much of the whole GDB-13 a model can generate from a
small subset and which molecules outside of the domain
of GDB-13 are generated, the learning limitations are
assessed. To do this, the results obtained from the trained
model are compared to those from an abstract ideal
model which generates all GDB-13 molecules with uni-
form distribution. Any model, regardless of its architec-
ture or input format, trained with a subset of GDB-13
can be compared to this ideal model in the same manner,
thus creating a new way to benchmark the limitations of
models prior to using them to explore chemical space.

Deep learning based molecular generation methods
can be applied either to optimize an already existing
chemical series or to find through scaffold hopping a
completely novel chemical series. While for optimizing
a chemical series, it is only necessary to investigate the
local chemical space around the series, for scaffold hop-
ping it is important to span the whole desirable chemi-
cal space and in addition, not waste time generating

molecules outside the desirable domain. Therefore, the
proposed benchmark will be especially important for
scaffold hopping to ensure that the model explores as
much of the desired chemical space as possible, while
minimizing sampling undesirable compounds.

Methods
Recurrent neural networks
A (feed-forward) neural network [25] (NN) is a machine
learning architecture that maps a given input to some
output result. After training with a set of predefined
input–output examples (called the training set), the sys-
tem modulates the outputs depending on the inputs
given, having a similar behavior to the training set. The
internal structure of the system is formed by a series of
fully interconnected layers (formed by nodes), starting
with the input layer, the hidden layers and ending with
the output layer. This topology vaguely resembles a bio-
logical neural network, thus its name.

Recurrent neural networks [25] (RNNs) add additional
complexity to the feed-forward ones, by converting the
topology to a directed graph (which can have cycles).
This allows the network to perform recursion and exhibit
dynamic temporal behavior. This dynamic behavior cre-
ates persistence in the network, not dissimilar to mem-
ory. Importantly, a difference between RNNs and NNs is
that, instead of having fixed-length input and output vec-
tors, they can be run sequentially. This allows networks
to operate on sequences of inputs and thus enables effi-
cient parsing of content of varying length (one-to-many,
many-to-one or many-to-many inputs-outputs).

GDB-13Training set

Fig. 1 Representation as an Euler diagram of the domain of a RNN
trained with SMILES strings. The sets are the following, ordered by
their size: All possible strings generated by an RNN (red), all possible
valid SMILES (yellow), all possible SMILES of GDB‑13 molecules (light
blue), all canonical SMILES of GDB‑13 molecules (dark blue) and the
training set (black). Note that the relative sizes of the different subsets
do not reflect their true size

Page 3 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

The most common architecture used in RNNs is to
connect layers with time-dynamic behavior to layers
that normalize the input and the output to achieve an
iterative behavior. For each iteration, the model receives
two inputs: a vector of numbers and also a hidden state
matrix (which contains information from the previous
steps) and returns two outputs: an output vector and an
updated hidden state matrix. For the next iteration the
output and the hidden state from the previous iteration
is input. This is repeated until all the input sequences are
added, or when the end conditions are met (i.e. output-
ting specific data).

Since the development of RNNs [26], the system was
often unable to learn correctly when many recurrent lay-
ers were connected together or the input sequence was
too long, due to problems such as vanishing and explod-
ing gradients [27]. These were mitigated by using a very
specific layer called a long short-term memory [28]
(LSTM). Further research led to the gated recurrent unit
[29] (GRU), which has been demonstrated to produce
similar results at a lower computational cost.

Training a model with SMILES
SMILES were discretized into tokens before input-
ting them to the RNN. Each atom was extracted as a
token, taking special care with the multi-letter atoms
“Br” or “Cl”. Moreover, all atoms between brackets, such
as “[N+]” and “[O−]” were converted into only one
token. The set with all the possible tokens is called the
vocabulary.

After gathering the vocabulary, two special symbols
were added: “^” and “$”, which represent the beginning
and end of a sequence respectively. SMILES strings were
then encoded using a series of one-hot vectors, each with
as many binary positions as tokens in the vocabulary. The
represented token having a “1” and the rest “0”. All the
SMILES strings were encoded as a matrix with a “^” and
“$” token added in the first and last position respectively.

The RNN architecture (Fig. 2) used in this publication
is similar to previous approaches [18, 19]. First an embed-
ding layer [30] with 256 dimensions converts the discrete
one-hot-encoded SMILES to a continuous representa-
tion. Then three layers composed of 512 GRU units com-
prise the bulk of the network. Lastly, a fully-connected
linear layer reshapes the output to the size of the vocabu-
lary and a softmax operation is performed, making the
values sum up to one so they can be used as a probability
distribution with the same size as the vocabulary.

For each RNN, two sets were collected beforehand.
The training set is a 1 million molecule random sample
of GDB-13 used to train the model. Its size was chosen
based on what was used in previous research about RNN
SMILES generative models [18, 19]. The validation set is

another sample of 100,000 molecules not from the train-
ing set, used to evaluate the performance of the model
during training.

The sampling process of the model is illustrated in
Fig. 2. First the “^” token is passed in and the RNN out-
puts a probability distribution for all the possible tokens.
For the next token to be sampled, the RNN requires the
previous token and hidden state (memory) to be inputted
again. The process continues until a “$” symbol is output-
ted. Defining P(Xi = Ti|Xi−1 = Ti−1, . . . ,X1 = T1) as
the probability of sampling token Ti on step Xi after hav-
ing sampled tokens Ti−1 . . .T1 on steps Xi−1 . . .X1 , the
resulting probability on step i is:

As the value would rapidly diminish to 0, due to hard-
ware precision problems, (natural) logarithm sums are
used:

This value is called a negative log-likelihood (NLL) and
it gives a measure on how likely a sequence is to appear
when randomly sampling the model. Its range is [0,+∞)
with higher values corresponding to lower probabilities.

As in previous research [18, 19], backpropagation with
the ADAM optimizer was used to train the RNN. The
goal is to minimize a cost function J (w) for all molecules
in the training set. To achieve that, it calculates from
the last to the first step the average of the J (w) of a set
of sequences (a batch). From this, a gradient is calculated
which can be used to iteratively fit the model to the train-
ing data. Formally, the loss function is the partial NLL up
to position i:

The teacher’s forcing [31] method was used. In this
method the likelihood calculation on step i is calculated
from the previous tokens in the training SMILES and not
from the possibly wrong token of the untrained RNN.
This allows the RNN to learn the information in the
training set faster and more reliably.

The training data was passed to the RNN multiple
times: each iteration, called an epoch, all compounds in
the set were input to the RNN. To enhance the learning
process learning rate (LR) decay was used. This hyperpa-
rameter controls the optimization speed of the learning
process, higher LRs imply faster learning but less refined

P(Xi = Ti, . . . ,X1 = T1) = P(X1 = T1)·

i
∏

k=2

P
(

Xk = Tk |Xk−1 = Tk−1, . . . ,X1 = T1

)

(1)

NLLi = −lnP(Xi = Ti, . . . ,X1 = T1) = −lnP(X1 = T1)

−

i
∑

k=2

lnP
(

Xk = Tk |Xk−1 = Tk−1, . . . ,X1 = T1

)

J (w) = NLLi

Page 4 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

solutions. After some early testing it was observed that a
LR greater than 10−3 and smaller than 10−5 have no effect
on the training whatsoever, so the LR changes from 10−3
to 10−5, being multiplied by a constant every epoch.

Ideal model
In our research, a RNN-based model must learn how
to generate SMILES and how to create molecules that
appear in GDB-13. An ideal model is an abstract model
that samples molecules from GDB-13 and only from
GDB-13. Formally, the probability of sampling any mol-
ecule in the ideal model follows a uniform probability
distribution with p = 1

|GDB−13| = 1.02 · 10−9 . Due to
the probabilistic nature of RNNs, no trained model will

be able to have the same behavior, thus an ideal model
serves as an upper bound.

We can calculate the expected number of times GDB-
13 needs to be sampled to obtain 100% of the database.
This problem is commonly known in mathematics as the
“coupon collector problem” [32]. It was originally used
to calculate the number of coupons (or stickers) that are
needed to be bought to be able to obtain the full collec-
tion, knowing that every time a coupon is bought it is
sampled with replacement from a distribution containing
all possible coupons. Formally, for a uniform distribution
with n > 1 coupons:

(2)E[Tu] = n ·Hn ≈ n(ln (n)+ γ)+
1

2

Fig. 2 Example of a forward pass of nicotine (CN1CCCC1c1cccnc1) on a trained model. The symbol sampled from the probability distribution at the
step i (highlighted in black) is input at the step i + 1 . This, with the hidden state (hi), enables the model to have time‑dynamic behavior. Note that
sometimes tokens with lower probability are sampled (like in step 1) due to the multinomial sampling of the model. Also note that the probability
distributions are not from real trained models and that the vocabulary used throughout this publication is much bigger

Page 5 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

where Hn is the n-th harmonic number and γ is the
Euler–Mascheroni constant. By fitting this to the GDB-
13 we would need to sample on average 20,761,554,747
SMILES. For non-uniform probability distributions, this
expected value is a lower bound and it tends to infinity
for distributions where ∃pk → 0 (Additional file 1: Suppl.
Material S1). Sampling the GDB-13 20 billion times is a
computationally expensive task, so we can also obtain
the expected fraction of a collection with n > 2 coupons
if k > 1 were sampled from the ideal model (Additional
file 1: Suppl. Material S2):

In the case of a sample of k = 2 · 109 molecules from
the ideal model the average fraction of molecules sam-
pled would be 1−

(

1− 1.02 · 10−9
)2·109

= 0.8712 . This
value is an upper bound (Additional file 1: Suppl. Mate-
rial S3): any model that is either non-uniform or non-
complete will have a smaller fraction of molecules from
GDB-13. This allows us to measure the completeness and
uniformness of any generative model architecture trained
with GDB-13.

Sampling SMILES from a model
To be able to evaluate how much of GDB-13 can be reli-
ably sampled from a model, it must be sampled at least
20 billion times (Eq. 2). This has an unfeasible compu-
tational cost. For this reason, samples of 2 billion mol-
ecules were performed, which account for approximately
10% of the optimal sample size. After each sample, sev-
eral tests were done: the database was checked for dupli-
cates, for invalid SMILES, for non-canonical SMILES and
was intersected with GDB-13, yielding 2 subsets: IN and
OUT of GDB-13.

PCA plots with MQN
PCA plots were based on the method described pre-
viously in literature [33]. The 42-dimension MQN
fingerprint [34] was calculated with the JChem
Library 18.22.0 from ChemAxon (www.chema xon.
com) for each of the molecules in the dataset. Then,
without any normalization or standardization, a prin-
cipal component analysis (PCA) was performed on
the 42-dimensional resulting dataset. The two first
principal components were selected and normal-
ized to values between 0 and w or h and molecules
were organized in buckets. Each bucket represents
a pixel

(

x, y
)

 in the resulting w × h plot with a black
background. A descriptor was also calculated for all
molecules in each bucket and the average and count
were calculated and normalized to the range [0, 1] . To
color the pixels, the hue-saturation-value (HSV) for-
mat was used with the normalized average descriptor

(3)fraction_uniform = 1− (1− p)k

as hue, a fixed value of 1.0 as the saturation and
value = min

(

0.25, log10(countnorm
)

). With this setup,
the pixels that have low count are gradually merged
with the background and those that have the highest
counts stand out.

Labelling sampled molecules out of GDB‑13
Sampled molecules not included in GDB-13 were
labeled with the topological and chemical filters used
in the enumeration process of GDB-13 that they broke
[6, 35]. The molecules with disallowed topology were
labelled the following way: carbon skeletons from all
the molecules in GDB-13 were calculated and com-
pared to the carbon skeletons for each sampled mol-
ecule, labelling the molecules whose skeleton was not
in GDB-13. All tautomers for all the molecules were
calculated with MolVS [36] 0.1.1. For each molecule,
if one tautomer was part of GDB-13, the molecule
was labelled as a tautomer. Molecules with disallowed
functional groups, heteroatom configurations or bonds
were detected using SMARTS.

Technical details
All the programming, except noted, was done in Python
3.6 using RDKit [37] version 2018.03 as the chemis-
try toolkit and PyTorch [38] 0.4.1 as the deep learning
library. Stochastic gradient descent was used for train-
ing with the ADAM [39] optimizer with parameters
β1 = 0.9,β2 = 0.999, ε = 10−8 and a batch size of 128.

The GDB-13 database was obtained from the gdb.
unibe.ch website and preprocessed with RDKit to obtain
canonicalized SMILES and to filter molecules impos-
sible to read with the toolkit. The final size of the data-
base was 975,820,187 molecules. Data processing and
PCA calculation were done with Apache Spark [40] 2.3.1
and all datasets were stored in Apache Parquet files.
All plots, including the PCA maps, were created with
Matplotlib [41] and Seaborn [42]. The Jensen-Shannon
Divergence was calculated with an in-house script using
SciPy [43]. Table 1 shows the resources and cost of the
different computations described previously, all of which
were performed in CentOS 7.4 with Tesla V-100 (Volta)
graphics cards and CUDA 9.

Table 1 Computational resources and cost associated
with training and sampling the model and annotating a 2B
sample

Operation CPUs RAM GPU Time

Training a model 4 32 GB 1 8 min/epoch

Sampling molecules 4 32 GB 1 33 million/h

Annotating 2B molecules 32 256 GB 0 24 h

http://www.chemaxon.com
http://www.chemaxon.com

Page 6 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

Results and discussion
Using negative log‑likelihood plots to guide the training
process
A model was trained with a set of 1 million compounds
randomly obtained from GDB-13. An initial way to assess
the quality of the sampled molecules from the trained
model is to check the percentage of valid molecules
(Fig. 3c). This metric has often been used to train models
[18, 19], but in the case of the GDB databases it proves
to be insufficient, as it is always over 96.5%. To view the
progress of the training, negative log-likelihoods (NLLs)

of the SMILES in the training, validation and sampled
sets were calculated after training the model each epoch.
These NLLs were plotted together as histograms every 25
epochs (Fig. 3a). Also, the Jensen–Shannon divergence
(JSD) of all pairs of NLL plots was calculated (Fig. 3b).
This measure allows the quantification of the differences
between each pair of distributions.

Figure 3 plots are interpreted as follows: after epoch 1,
the sampled set NLL distribution has the lowest average
(higher probability) and the other two sets are extremely
similar and have a higher NLL (lower probability). This

Fig. 3 Metrics used to evaluate the training process. The red line at epoch 70 represents the chosen epoch used in further tests. The negative
log‑likelihood (NLL) is calculated with natural logarithms. a 10 NLL plots of the training, validation and sampled sets every 25 epochs (from 1 to 200)
and the chosen epoch (70). b JSD plot between the three NLL distributions from the previous section for each of the 200 epochs. c Percentage of
valid molecules in each epoch. Notice that the plot already starts at around 96.5%. Mean (d) and variance (e) of the three distributions from section
(a). Note that spikes around epochs 1–20 are statistical fluctuations common in the beginning of the training process of a RNN, when the learning
rate is high

Page 7 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

means that the model is not completely trained, as the
SMILES strings sampled are only a subset of the ones
in the training set. Between epochs 25–50, the distribu-
tions become more similar, and around epochs 50-100
the three plots match as much as possible, as can be seen
both in (a) and in (b). When all the plots are similar it
is equally probable to sample a SMILES from the train-
ing set as it is a SMILES outside it, implying that a higher
percent of the database can be sampled. After this, the
training set NLL distribution becomes more similar to
the sampled set while the validation set has higher NLL.
This indicates that the model is gradually being over
trained, as a molecule from the training set will be sam-
pled from it with a higher probability than a molecule
from the validation set. This trend becomes more pro-
nounced in later epochs.

To further discern whether the model is uniform and
complete, the mean (µ) and especially the variance (σ 2)
of the NLL distributions have been calculated after each
training epoch (Fig. 3c, d). Knowing that the uniform
model NLL plot has σ 2 = 0 and
µ = − ln

(

1
|GDB−13|

)

= 20.7 , the variance and the mean
of the validation set should be as similar to these values
as possible. Both descriptors reach plateaus at around
epochs 60–150 for the mean and 60–90 for the variance.

By comparing all the intervals from the three different
plots, we can obtain a joined interval from around epoch
60 to 90, in which the model will have learned how to
create the biggest and more uniform domain.

Sampling the model and analyzing its domain
To validate the previous method, 2 billion SMILES
strings were sampled every five epochs (totaling 80 bil-
lion). As can be seen in Fig. 4, the total percent of gener-
ated molecules including repeats that are part of GDB-13
always increases, but in Fig. 4 the percent of unique mol-
ecules generated that are in GDB-13 is maximal at epoch
90 (69,2%), but there is a plateau starting around epoch
70 (68.9%) and decreases steadily again after epoch 100
(68.9%). Also, the sampled molecules not included GDB-
13 steadily decrease during the whole training. These
results are very similar to the results obtained from the
analysis of the NLL plots, the mean and the variance plot
in Fig. 3b, d, e. Having a model representing a more uni-
form sampling (epoch 70) conflicts with having a more
focused sampling (epoch 100). Depending on the spe-
cific needs for a given project a different epoch should be
chosen, yet the differences are very small. Epoch 70 was
chosen for future experiments with this model, because a
more uniform model was desired.

For any molecule there are many SMILES that
uniquely represent it. In Fig. 1 the light and dark blue
sets represent the number of possible SMILES for all the
molecules and only one canonical SMILES for each mol-
ecule respectively. In the ideal model, only the canonical
SMILES for each molecule are generated. Figure 4 shows
(pink) that 85.6% of the SMILES in epoch 70 were gen-
erated directly as canonical, implying that the model
can learn the canonical form of most of the generated

Fig. 4 Results from sampling 2 billion SMILES from the 1 M model every five epochs (from 1 to 195). The red line at epoch 70 represents the chosen
epoch for further tests. a Percent of the total sample (2B) that are valid SMILES, canonical SMILES, in GDB‑13 and out of GDB‑13. Solid lines represent
all SMILES sampled, including repeats, whereas dotted lines represent only the unique molecules obtained from the whole count. b Close‑up
percentage of GDB‑13 obtained every five epochs. Notice that the plot starts at around 54% and that the drop around epoch 10 correlates with the
training fluctuations already mentioned in Fig. 3

Page 8 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

SMILES. Notice also that the number of unique canoni-
cal SMILES decreases steadily. This is correlated with
the model not being uniform, and this trend is further
pronounced after epoch 100, as the molecules from the
training set are generated more often.

Understanding the diversity of the generated molecules
25 models with the same parameters as in the previous
section were trained with a different 1 M random sam-
ple obtained from GDB-13. The probability of sampling
each molecule from GDB-13 is averaged and molecules
not generated by any model have a higher chance to be
problematic due to the limitations of the model and not
by chance.

For each model a sampling of 2 billion molecules was
performed in epoch 70 (summing up to 50 billion mol-
ecules), repeated molecules were filtered and the whole
sample was separated between molecules contained and
not contained in GDB-13. Note that the number of mol-
ecules needed to sample from the ideal model to obtain
100% of the database on average is around 21 billion
(Eq. 2), much less than the 50 billion molecules sampled
in this experiment. The frequency for each molecule in
GDB-13 was computed, which is the number of times
from 0 (not sampled in any model) to 25 (sampled in all
models) each molecule was uniquely sampled from each
model. In the ideal model, each sample can be considered
as a Bernoulli trial with p = 0.8712 ((Eq. 3)), so the dis-
tribution of the frequency would follow a binomial distri-
bution with n = 25, k = 2 · 109 and p = 0.8712 . Figure 5a
shows that the two distributions have a different mean

(17.1 and 21.8) and mode (20 and 22) and the distribu-
tion obtained from the RNN models has an extremely
long tail. Moreover, 5,720,928 molecules (0.6%) were
never sampled by any model. Notice also in Fig. 5b that
frequency is heavily correlated with the average negative
log-likelihood for each molecule obtained from every
model.

Analysis of the sampled molecules included in GDB‑13
PCA plots of the MQN fingerprint were performed with
a sample of GDB-13 stratified by frequency (Fig. 6). Fig-
ure 6a, shows that there is a difference between the mole-
cules that have lower (top-right) and higher (bottom-left)
frequency. Nevertheless, the density plot (Fig. 6b) shows
that the most densely packed regions are at the center
and occupied by molecules with both a high and a low
frequency. Additional PCA plots were generated with
some key descriptors that help pinpointing the differ-
ent regions of the chemical space. Figure 6c shows that
pixels at the right have mostly cyclic bonds, implying
more rings and fewer sidechains and linkers. This area
is mostly covered by molecules that have low frequency.
Moreover, Fig. 6d shows that pixels at the top have more
heteroatoms. This closely matches the top lighter area in
Fig. 6a, which features molecules with low frequency.

From the previous plots, molecules with many het-
eroatoms or complex topologies have a lower probabil-
ity of being sampled than molecules with less rings and
more carbon atoms. However, Fig. 6b also shows that
most of these structures are in lower density zones of the
database, which implies that are only a small part of the

Fig. 5 a Histograms of the frequency of the RNN models (orange) and the theoretical (binomial) frequency distribution of the ideal model (blue). b
Histograms of the average NLL per molecule (from the 25 models) for molecules with frequency 0, 5, 10, 15, 20 and 25 computed from a sample of
5 million molecules from GDB‑13

Page 9 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

database. In Table 2, 24 fragment-like molecules with fre-
quency 0, 5, 10, 15, 20 and 25 were selected from GDB-
13 and shows that molecules with lower frequency have
a tendency to have a more complex structure, especially
more cyclic bonds, although it is not possible to separate
them clearly.

To further understand how molecules are generated,
the composition of the SMILES was analyzed. As shown
in Fig. 7a (dashed orange line), the 1-g (token) count dis-
tribution is exponential and mostly features C (40%). In
order, less featured tokens are 1, N, =, (,), O and 2. The
rest of the tokens sum up to less than 7% of the total.
SMILES representing simple topologies use mostly the
tokens enumerated before and molecules that have com-
plex shapes tend to have more rings, so they have less
common tokens, such as 3,4, …, 7. The frequency of the

molecules containing each token is also plotted in Fig. 7a,
showing that the frequency correlates with the counts.
Note especially, marked in red in Fig. 7a, the numeric
tokens starting from 4 tend to have a significantly lower
average frequency than the neighboring tokens. This
means that molecules in GDB-13 with four or more
rings are significantly less likely to be sampled than oth-
ers. One explanation is that these tokens only appear in
pairs in valid SMILES, which indicates that learning how
to create a correct molecular SMILES with these tokens
is much more difficult than with other equally frequent
tokens, as both tokens in each pair must be correctly
positioned with respect to each other. Additionally, mol-
ecules in GDB-13 (max. 13 heavy atoms) with more than
three rings have extremely complex topologies. When
performing the same analysis for 2-g same interpretation

Fig. 6 a–f MQN PCA plots (Explained variance: PCA1 = 51.3%, PCA2 = 12, 2%) calculated from a 130 million stratified sample of GDB‑13 with 5
million molecules from each frequency value (0–25) colored by different descriptors. In all plots each pixel represents a group of similar molecules
and its color represents the average value of a given descriptor. The colors rank from minimum to maximum: dark blue, cyan, green, yellow, orange,
red and magenta. Each plot has the numeric range (min–max) between brackets after its title. Plots are colored by: a Number of trained models that
generate each molecule. b Occupancy of every pixel. c Number of cyclic bonds. d Number of carbon atoms

Page 10 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

Table 2 A selection of 24 fragment-like molecules
obtained from GDB-13 with frequency 0, 5, 10, 15,
20 and 25. The molecules are sorted top to bottom
by frequency and left to right by average negative log-

likelihood (NLL) of the 25 models. A random sample
of 10 million molecules annotated with the frequency
and the average NLL is available for download (http://gdb.
unibe .ch/downl oads)

http://gdb.unibe.ch/downloads
http://gdb.unibe.ch/downloads

Page 11 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

applies (Fig. 7b): the count is correlated with the aver-
age frequency and the most frequent 2-g (CC, C1, C(,)
C, C=) match the SMILES of simple molecules and the
less frequent (5o, 3[N+], 7O, 7(, 72) match exclusively
molecules with complex topologies and several rings.
This implies that the n-grams that appear fewer times in
the database, i.e. in the training set, are not learned cor-
rectly and thus have a lower probability of being sampled.
Therefore, molecules that contain an increasing number
of low probability n-grams in their canonical SMILES,
will progressively have a lower probability of being sam-
pled (Eq. 1).

Analysis of the sampled chemical space outside of GDB‑13
All the SMILES outside of GDB-13 generated by the
25 models were joined obtaining a database with
10,084,412,477 molecules. After filtering repeated mol-
ecules, a set with 2,979,671,366 unique molecules was
obtained, from which a sample of 3 million was used for
further research. Each molecule was then labelled with
the constraints used to enumerate GDB-13 [6, 35] that it
breaks (see methods). Figure 8 includes a plot with the
percent of molecules that break each constraint (Fig. 8a)
and another histogram with the number of constraints
broken per molecule (Fig. 8b). The most common broken
constraint, not allowed functional groups (26.2%), is the
most complex one to learn, as any given functional group
can have multiple SMILES strings, depending on where
it is positioned in the molecule, thus making it more dif-
ficult to learn the string patterns to avoid. Also, 19.8% of

the molecules have a graph that was filtered during the
GDB-13 enumeration process, which correlates with the
problems encountered when generating molecules with
complex graph topologies: the model is not able to cor-
rectly learn the underlying graph topologies of the mol-
ecules. Additionally, due to the probabilistic nature of
the model, 17.5% of the molecules generated outside of
GDB-13 have more than 13 heavy atoms. Heteroatom/
Carbon ratios used to create GDB-13 are generally fol-
lowed (10.9%) and there are a similar number (10.1%)
of molecules with disallowed neighboring heteroatom
configurations. These constrains can easily be learnt by
the model, as they have very little topological complex-
ity compared to the previous two. For the same reason,
9.4% of the database are tautomers of molecules exist-
ing in GDB-13 and less than 7% of the molecules have
problems with double or triple bonds. Interestingly, the
miscellaneous category (22.7%) includes all molecules
that are not in GDB-13 and that have broken none of the
previous constraints. This occurs partially due to com-
patibility issues with the chemical library used (GDB-13
was created with JChem from 2008 and this research uses
RDKit from 2018) and because GDB-13 is not completely
exhaustive. The enumerative process used to create GDB-
13 performed several levels of filtering: when a molecule
was filtered out in an intermediate step, the molecules
that would have derived from it were never generated.
Most of these molecules would have probably been fil-
tered if they had been generated, as they are extremely
uncommon. Lastly, Fig. 8b shows that 72% of the

Fig. 7 Plots of the frequency (left y axis) and the percent in database (right y axis) of 1 and 2‑g in the canonical smiles of all GDB‑13 molecules. The
plot is sorted by the percentage present in the database. a Plot with the 1‑g (tokens). In blue the mean frequency and in orange the percent of 1‑g
in database. Notice that the numeric tokens have been highlighted in red. b Plot with the 2‑g mean frequency (blue) and percent (dashed orange).
As the number of 2‑g is too large (287), the x axis has been intentionally left blank and the mean frequency has been smoothed by an average
window function size 8

Page 12 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

molecules only break one constraint, hence the chemical
space generated outside of GDB-13 is very similar to the
space represented by GDB-13.

Counteracting the limitations in models using SMILES
The previous two sections show that the SMILES format
adds two substantial biases to the chemical space learned
by our model. Firstly, the model has more difficulties
generating molecules with many rings, especially with
complex ring systems. This limitation stems from the
nature of SMILES: highly cyclic molecules have longer
SMILES sequences than equally-sized acyclic molecules
and the relative positioning of the ring tokens is context-
sensitive. Fortunately, most drug-like molecules (like
those in ChEMBL) tend to have simpler structures than
GDB-13 molecules, making this problem less important
for generative models that target the known drug-like
space. One way that could help overcoming this bias is
to carefully tailor the training set to feature more mol-
ecules that include complex ring systems. This will give
the model more examples of complex molecules from
which to learn, even though it would possibly add other
biases. Also, a theoretical approach that could help was
recently published [44] and alters the SMILES semantics,
making ring tokens behave differently. This approach may
make some ring systems have a less convoluted syntax
but could make the SMILES syntax significantly more

complex for the model to learn. The second bias has to do
with the molecules outside of GDB-13 being incorrectly
generated by the model and is also partially associated
with the SMILES syntax. For instance, there are many
ways of writing SMILES strings that represent most
functional groups and there are many molecules with
extremely different SMILES that share the same underly-
ing graph. These ambiguities make it especially difficult
for the model to learn to correctly filter some molecules
that have not allowed functional groups or graphs. One
way that we think it could partially mitigate these prob-
lems is using a less ambiguous molecular representation
that also separates the graph from its decoration such as
graph generative models [45].

Training models with smaller training sets
Another important question is how using smaller data-
sets (100.000 molecules or less) would impact the chemi-
cal space generated. We performed some preliminary
analysis, and we found that models with smaller training
sets tend to overfit more and faster. Due to the reduced
amount of diversity present in them, the model easily
learns to reproduce the training set. That is why train-
ing models with smaller subsets of the GDB-13 database
could give us information on which are the best archi-
tectures and hyperparameter configurations to minimize

Fig. 8 Distribution of a sample of 3 million molecules obtained from all the outside of GDB‑13 sampled by the RNN model. a Histogram of the
GDB‑13 constraints broken by each molecule. Notice that a molecule can break more than one constraint. b Distribution of the number of GDB‑13
constraints broken by each molecule

Page 13 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

the overfit and optimize the learning capabilities of any
model.

Conclusions
This study shows that a large amount of chemical space
can be sampled with generative models that are trained
only with a very small sample of that chemical space.
Specifically, we generate up to 68.9% of GDB-13 by using
a training set with only 0.1% of the database. The model is
not only capable of learning basic chemistry (e.g. valency,
ring structures) but also to follow complex constraints
applied during the GDB-13 enumeration process, such
as heteroatom ratios and positioning of double and tri-
ple bonds. More difficult constraints, e.g. complex graph
topologies or not allowed functional groups are more
difficult to learn mostly due to the limitations of the
SMILES notation. We developed a computationally effi-
cient method to monitor and assess the quality of the
training process using NLL plots. This method allows to
identify the different stages of the training process and
select a better model. To further understand the NLL plot
analysis, we sampled the model every five epochs and
compared the results with those from the ideal model.
Moreover, this sampling can be used as a benchmark-
ing tool for molecular generative model architectures
as we showed that the ideal model sets an upper limit
(87.12%) to the amount of GDB-13 generated with a 2
billion sample. We encourage researchers to try training
models with different architectures or input formats on
GDB-13, sample them 2 billion times, calculate the cov-
erage and compare the results. This may lead to a better
understanding of the different architectures of molecular
generative models. Finally, we performed an extensive
analysis to find if there is any bias attributable to the
model using the generated chemical space from a joined
sample of 25 models at the same epoch. We obtained
that although most of the problematic molecules have a
tendency of having more cyclic bonds and heteroatoms,
the main difference arises from issues within the SMILES
syntax, especially related to using numeric ring tokens.
We think that all the methods described here will help to
find new generative model architectures that can over-
come some of the limitations of the current ones.

Additional file

Additional file 1. Supplementary material.

Abbreviations
ADAM: adaptive moment estimation; GAN: generative adversarial network;
GDB: generated database; GRU : gated recurrent unit; HSV: hue–saturation–
value; NLL: negative log‑likelihood; LR: learning rate; LSTM: long short‑term
memory; MQN: molecular quantum numbers; NN: neural network; PCA:

principal component analysis; RNN: recurrent neural network; SMARTS: smiles
arbitrary target specification; SMILES: simplified molecular‑input line‑entry
system; VAE: variational auto‑encoder.

Authors’ contributions
JAP designed and performed the research, wrote the software and wrote the
manuscript. TB co‑wrote the software, reviewed and edited the manuscript.
SU performed the mathematical analysis. OE, HC and JLR supervised the
project. All authors read and approved the final manuscript.

Author details
1 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Goth‑
enburg, Pepparedsleden 1, 43183 Mölndal, Sweden. 2 Medicinal Chemistry,
Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Goth‑
enburg, Pepparedsleden 1, 43183 Mölndal, Sweden. 3 Department of Chemis‑
try and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
4 Department of Life Science Informatics, B‑IT, LIMES Program Unit Chemical
Biology and Medicinal Chemistry, Rheinische Friedrich‑Wilhelms‑Universität,
Endenicher Allee 19C, 53115 Bonn, Germany.

Acknowledgements
The authors would like to acknowledge Esben Bjerrum, Thierry Kogej and
Christian Tyrchan for their scientific insight and Laurianne David, Oliver
Laufkötter, Noé Sturm, Amol Thakkar and Michael Withnall for their help in
reviewing the publication.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
One sample model trained with GDB‑13 and the software used to train and
sample it described in this publication is available through a Github repository
(https ://githu b.com/undea dpixe l/reinv ent‑gdb13). The GDB‑13 database and
a 1 million random sample annotated with frequency and average negative
log‑likelihood is available through the Reymond group website (http://gdb.
unibe .ch/downl oads).

Funding
Josep Arús‑Pous and Thomas Blaschke are supported financially by the
European Union’s Horizon 2020 research and innovation program under the
Marie Skłodowska‑Curie Grant Agreement No. 676434, “Big Data in Chemistry”
(“BIGCHEM,” http://bigch em.eu).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 19 October 2018 Accepted: 26 February 2019

References
 1. Ertl P (2003) Cheminformatics analysis of organic substituents: identifica‑

tion of the most common substituents, calculation of substituent proper‑
ties, and automatic identification of drug‑like bioisosteric groups. J Chem
Inf Comput Sci 43:374–380. https ://doi.org/10.1021/ci025 5782

 2. Van Deursen R, Reymond JL (2007) Chemical space travel. ChemMed‑
Chem 2:636–640. https ://doi.org/10.1002/cmdc.20070 0021

 3. Hartenfeller M, Zettl H, Walter M et al (2012) Dogs: reaction‑driven de
novo design of bioactive compounds. PLoS Comput Biol 8:e1002380.
https ://doi.org/10.1371/journ al.pcbi.10023 80

 4. Andersen JL, Flamm C, Merkle D, Stadler PF (2014) Generic strategies for
chemical space exploration. Int J Comput Biol Drug Des 7:225. https ://
doi.org/10.1504/IJCBD D.2014.06164 9

 5. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large‑scale bioactiv‑
ity database for drug discovery. Nucleic Acids Res 40:1100–1107. https ://
doi.org/10.1093/nar/gkr77 7

https://doi.org/10.1186/s13321-019-0341-z
https://github.com/undeadpixel/reinvent-gdb13
http://gdb.unibe.ch/downloads
http://gdb.unibe.ch/downloads
http://bigchem.eu
https://doi.org/10.1021/ci0255782
https://doi.org/10.1002/cmdc.200700021
https://doi.org/10.1371/journal.pcbi.1002380
https://doi.org/10.1504/IJCBDD.2014.061649
https://doi.org/10.1504/IJCBDD.2014.061649
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1093/nar/gkr777

Page 14 of 14Arús‑Pous et al. J Cheminform (2019) 11:20

 6. Blum LC, Reymond JL (2009) 970 Million druglike small molecules for
virtual screening in the chemical universe database GDB‑13. J Am Chem
Soc 131:8732–8733. https ://doi.org/10.1021/ja902 302h

 7. Ruddigkeit L, Van Deursen R, Blum LC, Reymond JL (2012) Enumeration
of 166 billion organic small molecules in the chemical universe database
GDB‑17. J Chem Inf Model 52:2864–2875. https ://doi.org/10.1021/ci300
415d

 8. Visini R, Arús‑Pous J, Awale M, Reymond JL (2017) Virtual exploration of
the ring systems chemical universe. J Chem Inf Model 57:2707–2718.
https ://doi.org/10.1021/acs.jcim.7b004 57

 9. Reymond JL (2015) The chemical space project. Acc Chem Res 48:722–
730. https ://doi.org/10.1021/ar500 432k

 10. Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. In:
Proceedings of the IEEE computer society conference on computer vision
and pattern recognition 07–12–June, pp 1–9. https ://doi.org/10.1109/
CVPR.2015.72985 94

 11. Taigman Y, Yang M, Ranzato M, Wolf L (2014) DeepFace: closing the gap
to human‑level performance in face verification. In: Proceedings of the
IEEE computer society conference on computer vision and pattern
recognition, pp 1701–1708. https ://doi.org/10.1109/CVPR.2014.220

 12. Silver D, Huang A, Maddison CJ et al (2016) Mastering the game of Go
with deep neural networks and tree search. Nature 529:484–489. https ://
doi.org/10.1038/natur e1696 1

 13. Hadjeres G, Pachet F, Nielsen F (2016) DeepBach: a steerable model for
bach chorales generation. arXiv :1612.01010

 14. Garg S, Rish I, Cecchi G, Lozano A (2017) Neurogenesis‑inspired dictionary
learning: online model adaption in a changing world. IJCAI Int Jt Conf
Artif Intell. https ://doi.org/10.1002/joe.20070

 15. Johnson M, Schuster M, Le QV et al (2016) Google’s multilingual neural
machine translation system: enabling zero‑shot translation. Trans Assoc
Comput Linguist 5:339

 16. Chen H, Engkvist O, Wang Y et al (2018) The rise of deep learning in drug
discovery. Drug Discov Today 23:1241–1250. https ://doi.org/10.1016/j.
drudi s.2018.01.039

 17. Blaschke T, Olivecrona M, Engkvist O et al (2018) Application of genera‑
tive autoencoder in de novo molecular design. Mol Inform 37:1700123.
https ://doi.org/10.1002/minf.20170 0123

 18. Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de‑novo
design through deep reinforcement learning. J Cheminform 9:48. https ://
doi.org/10.1186/s1332 1‑017‑0235‑x

 19. Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS
Cent Sci 4:120–131. https ://doi.org/10.1021/acsce ntsci .7b005 12

 20. Sanchez‑Lengeling B, Outeiral C, Guimaraes GL, Aspuru‑Guzik A (2017)
Optimizing distributions over molecular space. An objective‑reinforced
generative adversarial network for inverse‑design chemistry (ORGANIC).
ChemRxiv. https ://doi.org/10.26434 /chemr xiv.53096 68.v3

 21. Weininger D (1988) SMILES, a chemical language and information system:
1: introduction to methodology and encoding rules. J Chem Inf Comput
Sci 28:31–36. https ://doi.org/10.1021/ci000 57a00 5

 22. Preuer K, Renz P, Unterthiner T et al (2018) Fréchet ChemNet distance: a
metric for generative models for molecules in drug discovery. J Chem Inf
Model 58:1736–1741. https ://doi.org/10.1021/acs.jcim.8b002 34

 23. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and
compound databases. Nucleic Acids Res 44:D1202–D1213. https ://doi.
org/10.1093/nar/gkv95 1

 24. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover
chemistry for biology. J Chem Inf Model 52:1757–1768. https ://doi.
org/10.1021/ci300 1277

 25. Schmidhuber J (2015) Deep learning in neural networks: an overview.
Neural Netw 61:85–117. https ://doi.org/10.1016/j.neune t.2014.09.003

 26. Hopfield JJ (1982) Neural networks and physical systems with emergent
collective computational abilities. Proc Natl Acad Sci 79:2554–2558. https
://doi.org/10.1073/pnas.79.8.2554

 27. Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J (2009) Gradient flow
in recurrent nets: the difficulty of learning longterm dependencies. In:
Kremer SC, Kolen JF (eds) A field guide to dynamical recurrent networks.
IEEE Press, London

 28. Hochreiter S, Schmidhuber J (1997) Long short‑term memory. Neural
Comput 9:1735–1780. https ://doi.org/10.1162/neco.1997.9.8.1735

 29. Cho K, van Merrienboer B, Gulcehre C et al (2014) Learning phrase
representations using RNN encoder–decoder for statistical machine
translation. https ://doi.org/10.3115/v1/D14‑1179

 30. Rahman N, Borah B (2015) A survey on existing extractive techniques for
query‑based text summarization. Int Symp Adv Comput Commun ISACC
2015:98–102. https ://doi.org/10.1109/ISACC .2015.73773 23

 31. Williams RJ, Zipser D (1989) A learning algorithm for continually running
fully recurrent neural networks. Neural Comput 1:270–280. https ://doi.
org/10.1162/neco.1989.1.2.270

 32. Laplace P‑S (1814) Chapitre II: De la probabilité des événements compo‑
sés d’événements simples dont les possibilités respectives sont données
(4). In: Théorie analytique des probabilités, 2nd ed. Mme. Ve. Courcier,
Paris, pp 191–201

 33. Blum LC, Van Deursen R, Reymond JL (2011) Visualisation and subsets of
the chemical universe database GDB‑13 for virtual screening. J Comput
Aided Mol Des 25:637–647. https ://doi.org/10.1007/s1082 2‑011‑9436‑y

 34. Nguyen KT, Blum LC, van Deursen R, Reymond J‑L (2009) Classification
of organic molecules by molecular quantum numbers. ChemMedChem
4:1803–1805. https ://doi.org/10.1002/cmdc.20090 0317

 35. Fink T, Raymond JL (2007) Virtual exploration of the chemical universe
up to 11 atoms of C, N, O, F: Assembly of 26.4 million structures (110.9
million stereoisomers) and analysis for new ring systems, stereochemis‑
try, physicochemical properties, compound classes, and drug discove. J
Chem Inf Model 47:342–353. https ://doi.org/10.1021/ci600 423u

 36. Swain M, JoshuaMeyers (2018) mcs07/MolVS: MolVS v0.1.1. https ://doi.
org/10.5281/zenod o.12171 18

 37. Landrum G, Kelley B, Tosco P, et al. (2018) rdkit/rdkit: 2018_03_4 (Q1 2018)
Release. https ://doi.org/10.5281/zenod o.13451 20

 38. Paszke A, Chanan G, Lin Z et al (2017) Automatic differentiation in
PyTorch. Adv Neural Inf Process Syst 30:1–4

 39. Lee D, Myung K (2017) Read my lips, login to the virtual world. IEEE Int
Conf Consum Electron ICCE 2017:434–435. https ://doi.org/10.1109/
ICCE.2017.78893 86

 40. Zaharia M, Franklin MJ, Ghodsi A et al (2016) Apache spark. Commun
ACM 59:56–65. https ://doi.org/10.1145/29346 64

 41. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng
9:99–104. https ://doi.org/10.1109/MCSE.2007.55

 42. Waskom M, Botvinnik O, O’Kane D et al. (2018) mwaskom/seaborn: v0.9.0
(July 2018). https ://doi.org/10.5281/zenod o.13132 01

 43. Virtanen P, Gommers R, Burovski E et al. (2018) scipy/scipy: SciPy 1.1.0.
https ://doi.org/10.5281/zenod o.12415 01

 44. O’Boyle N, Dalke A et al (2018) DeepSMILES: an adaptation of SMILES for
use in machine‑learning of chemical structures. chemRxiv. https ://doi.
org/10.26434 /chemr xiv.70979 60.v1

 45. Li Y, Vinyals O, Dyer C et al (2018) Learning deep generative models of
graphs. ICLR. https ://doi.org/10.1146/annur ev‑stati stics ‑01081 4‑02012 0

https://doi.org/10.1021/ja902302h
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/acs.jcim.7b00457
https://doi.org/10.1021/ar500432k
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1612.01010
https://doi.org/10.1002/joe.20070
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1002/minf.201700123
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.26434/chemrxiv.5309668.v3
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/acs.jcim.8b00234
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1021/ci3001277
https://doi.org/10.1021/ci3001277
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1109/ISACC.2015.7377323
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1007/s10822-011-9436-y
https://doi.org/10.1002/cmdc.200900317
https://doi.org/10.1021/ci600423u
https://doi.org/10.5281/zenodo.1217118
https://doi.org/10.5281/zenodo.1217118
https://doi.org/10.5281/zenodo.1345120
https://doi.org/10.1109/ICCE.2017.7889386
https://doi.org/10.1109/ICCE.2017.7889386
https://doi.org/10.1145/2934664
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.1313201
https://doi.org/10.5281/zenodo.1241501
https://doi.org/10.26434/chemrxiv.7097960.v1
https://doi.org/10.26434/chemrxiv.7097960.v1
https://doi.org/10.1146/annurev-statistics-010814-020120

