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Abstract 

Recent applications of recurrent neural networks (RNN) enable training models that sample the chemical space. In 
this study we train RNN with molecular string representations (SMILES) with a subset of the enumerated database 
GDB‑13 (975 million molecules). We show that a model trained with 1 million structures (0.1% of the database) repro‑
duces 68.9% of the entire database after training, when sampling 2 billion molecules. We also developed a method 
to assess the quality of the training process using negative log‑likelihood plots. Furthermore, we use a mathematical 
model based on the “coupon collector problem” that compares the trained model to an upper bound and thus we are 
able to quantify how much it has learned. We also suggest that this method can be used as a tool to benchmark the 
learning capabilities of any molecular generative model architecture. Additionally, an analysis of the generated chemi‑
cal space was performed, which shows that, mostly due to the syntax of SMILES, complex molecules with many rings 
and heteroatoms are more difficult to sample.
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Introduction
Finding novel molecules with specific properties is one 
of the main problems that drug discovery faces. One of 
the most common approaches to this is to explore chemi-
cal space by enumerating large virtual libraries, hoping to 
find a novel region of space containing useful structures. 
However, the drug-like chemical space is intractably large 
and a rough estimate would be at least  1023 molecules [1]. 
There are two classical approaches to exploring chemi-
cal space. One is to use implicit models, which do not 
store all molecules in a region of the chemical space but 
instead represent molecules indirectly. Techniques such 
as chemical space navigation by mutations [2] or creat-
ing reaction graphs have proven to be successful [3, 4]. 
The other more common way is to use explicit models. 
By searching public databases that contain molecules 
obtained from various sources, e.g. ChEMBL [5], new 

molecules of interest can be discovered. An alterna-
tive approach is the GDB project, a set of databases that 
exhaustively enumerate a part of the chemical space. For 
example, GDB-13 [6] and GDB-17 [7] are large databases 
that hold large amounts of drug-like molecules up to 13 
and 17 heavy atoms (~ 109 and ~ 1011 molecules) respec-
tively. Additionally, GDB-4c [8] is a database that enu-
merates all possible ring systems up to four rings. These 
databases include a wealth of novel structures of poten-
tial interest for drug discovery [9].

In recent years deep learning has been a major addi-
tion in machine learning. Problems that were difficult 
to tackle before are now successfully approached using 
deep learning, such as image classification [10], face 
recognition [11] or playing Go [12]. Recently there has 
been another step forward in the field with deep genera-
tive models, which generate content similar to that upon 
which they have been trained. Deep generative models 
have been successfully applied to music composition 
[13], image generation [14] and language translation [15]. 
These new methods are also being applied to chemi-
cal space exploration in a novel way [16]. When trained 
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with a small subset of molecules, these models gener-
ate molecules similar to the training set. Different types 
of neural networks such as variational auto-encoders 
(VAE) [17], recurrent neural networks (RNNs) [18, 19] 
and generative adversarial networks (GAN) [20] trained 
with string representations (SMILES) [21] from ChEMBL 
have proven to be successful at generating novel chemical 
space.

Despite the results obtained by previous research, the 
question as to how much of the chemical space surround-
ing the molecules in the training set can be generated by 
a RNN trained with SMILES remains unanswered. The 
Fréchet ChemNet distance, [22] which compares a given 
generated chemical library with real molecule data from 
ChEMBL, [5] PubChem, [23] and ZINC [24] was recently 
proposed as a benchmark. However, we think that this 
metric is not able to unequivocally measure the learning 
capabilities of a generative model architecture, as it gives 
information on how likely a generated molecule set is to a 
set of real bioactive molecules.

Here we aim to gain insight on how a RNN explores 
the chemical space and how the SMILES format affect 
it by training RNNs with canonical SMILES sampled 
from the GDB databases. We use GDB-13, because this 
database has denser representation of a reduced chemi-
cal space (drug-like molecules up to 13 heavy atoms) 
and because it has a large yet still manageable size 
(975 million molecules). Figure  1 illustrates the whole 
domain of possible outcomes from a RNN trained with 
SMILES. This domain changes during the training pro-
cess: before training the RNN generates random strings, 
a few of which are going to be valid SMILES. After train-
ing, the generated strings are mostly valid SMILES that, 
to a large extent, belong to GDB-13. By computing how 
much of the whole GDB-13 a model can generate from a 
small subset and which molecules outside of the domain 
of GDB-13 are generated, the learning limitations are 
assessed. To do this, the results obtained from the trained 
model are compared to those from an abstract ideal 
model which generates all GDB-13 molecules with uni-
form distribution. Any model, regardless of its architec-
ture or input format, trained with a subset of GDB-13 
can be compared to this ideal model in the same manner, 
thus creating a new way to benchmark the limitations of 
models prior to using them to explore chemical space.

Deep learning based molecular generation methods 
can be applied either to optimize an already existing 
chemical series or to find through scaffold hopping a 
completely novel chemical series. While for optimizing 
a chemical series, it is only necessary to investigate the 
local chemical space around the series, for scaffold hop-
ping it is important to span the whole desirable chemi-
cal space and in addition, not waste time generating 

molecules outside the desirable domain. Therefore, the 
proposed benchmark will be especially important for 
scaffold hopping to ensure that the model explores as 
much of the desired chemical space as possible, while 
minimizing sampling undesirable compounds.

Methods
Recurrent neural networks
A (feed-forward) neural network [25] (NN) is a machine 
learning architecture that maps a given input to some 
output result. After training with a set of predefined 
input–output examples (called the training set), the sys-
tem modulates the outputs depending on the inputs 
given, having a similar behavior to the training set. The 
internal structure of the system is formed by a series of 
fully interconnected layers (formed by nodes), starting 
with the input layer, the hidden layers and ending with 
the output layer. This topology vaguely resembles a bio-
logical neural network, thus its name.

Recurrent neural networks [25] (RNNs) add additional 
complexity to the feed-forward ones, by converting the 
topology to a directed graph (which can have cycles). 
This allows the network to perform recursion and exhibit 
dynamic temporal behavior. This dynamic behavior cre-
ates persistence in the network, not dissimilar to mem-
ory. Importantly, a difference between RNNs and NNs is 
that, instead of having fixed-length input and output vec-
tors, they can be run sequentially. This allows networks 
to operate on sequences of inputs and thus enables effi-
cient parsing of content of varying length (one-to-many, 
many-to-one or many-to-many inputs-outputs).

GDB-13Training set

Fig. 1 Representation as an Euler diagram of the domain of a RNN 
trained with SMILES strings. The sets are the following, ordered by 
their size: All possible strings generated by an RNN (red), all possible 
valid SMILES (yellow), all possible SMILES of GDB‑13 molecules (light 
blue), all canonical SMILES of GDB‑13 molecules (dark blue) and the 
training set (black). Note that the relative sizes of the different subsets 
do not reflect their true size
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The most common architecture used in RNNs is to 
connect layers with time-dynamic behavior to layers 
that normalize the input and the output to achieve an 
iterative behavior. For each iteration, the model receives 
two inputs: a vector of numbers and also a hidden state 
matrix (which contains information from the previous 
steps) and returns two outputs: an output vector and an 
updated hidden state matrix. For the next iteration the 
output and the hidden state from the previous iteration 
is input. This is repeated until all the input sequences are 
added, or when the end conditions are met (i.e. output-
ting specific data).

Since the development of RNNs [26], the system was 
often unable to learn correctly when many recurrent lay-
ers were connected together or the input sequence was 
too long, due to problems such as vanishing and explod-
ing gradients [27]. These were mitigated by using a very 
specific layer called a long short-term memory [28] 
(LSTM). Further research led to the gated recurrent unit 
[29] (GRU), which has been demonstrated to produce 
similar results at a lower computational cost.

Training a model with SMILES
SMILES were discretized into tokens before input-
ting them to the RNN. Each atom was extracted as a 
token, taking special care with the multi-letter atoms 
“Br” or “Cl”. Moreover, all atoms between brackets, such 
as “[N+]” and “[O−]” were converted into only one 
token. The set with all the possible tokens is called the 
vocabulary.

After gathering the vocabulary, two special symbols 
were added: “^” and “$”, which represent the beginning 
and end of a sequence respectively. SMILES strings were 
then encoded using a series of one-hot vectors, each with 
as many binary positions as tokens in the vocabulary. The 
represented token having a “1” and the rest “0”. All the 
SMILES strings were encoded as a matrix with a “^” and 
“$” token added in the first and last position respectively.

The RNN architecture (Fig. 2) used in this publication 
is similar to previous approaches [18, 19]. First an embed-
ding layer [30] with 256 dimensions converts the discrete 
one-hot-encoded SMILES to a continuous representa-
tion. Then three layers composed of 512 GRU units com-
prise the bulk of the network. Lastly, a fully-connected 
linear layer reshapes the output to the size of the vocabu-
lary and a softmax operation is performed, making the 
values sum up to one so they can be used as a probability 
distribution with the same size as the vocabulary.

For each RNN, two sets were collected beforehand. 
The training set is a 1 million molecule random sample 
of GDB-13 used to train the model. Its size was chosen 
based on what was used in previous research about RNN 
SMILES generative models [18, 19]. The validation set is 

another sample of 100,000 molecules not from the train-
ing set, used to evaluate the performance of the model 
during training.

The sampling process of the model is illustrated in 
Fig. 2. First the “^” token is passed in and the RNN out-
puts a probability distribution for all the possible tokens. 
For the next token to be sampled, the RNN requires the 
previous token and hidden state (memory) to be inputted 
again. The process continues until a “$” symbol is output-
ted. Defining P(Xi = Ti|Xi−1 = Ti−1, . . . ,X1 = T1) as 
the probability of sampling token Ti on step Xi after hav-
ing sampled tokens Ti−1 . . .T1 on steps Xi−1 . . .X1 , the 
resulting probability on step i is:

As the value would rapidly diminish to 0, due to hard-
ware precision problems, (natural) logarithm sums are 
used:

This value is called a negative log-likelihood (NLL) and 
it gives a measure on how likely a sequence is to appear 
when randomly sampling the model. Its range is [0,+∞) 
with higher values corresponding to lower probabilities.

As in previous research [18, 19], backpropagation with 
the ADAM optimizer was used to train the RNN. The 
goal is to minimize a cost function J (w) for all molecules 
in the training set. To achieve that, it calculates from 
the last to the first step the average of the J (w) of a set 
of sequences (a batch). From this, a gradient is calculated 
which can be used to iteratively fit the model to the train-
ing data. Formally, the loss function is the partial NLL up 
to position i:

The teacher’s forcing [31] method was used. In this 
method the likelihood calculation on step i is calculated 
from the previous tokens in the training SMILES and not 
from the possibly wrong token of the untrained RNN. 
This allows the RNN to learn the information in the 
training set faster and more reliably.

The training data was passed to the RNN multiple 
times: each iteration, called an epoch, all compounds in 
the set were input to the RNN. To enhance the learning 
process learning rate (LR) decay was used. This hyperpa-
rameter controls the optimization speed of the learning 
process, higher LRs imply faster learning but less refined 

P(Xi = Ti, . . . ,X1 = T1) = P(X1 = T1)·

i
∏

k=2

P
(

Xk = Tk |Xk−1 = Tk−1, . . . ,X1 = T1

)

(1)

NLLi = −lnP(Xi = Ti, . . . ,X1 = T1) = −lnP(X1 = T1)

−

i
∑

k=2

lnP
(

Xk = Tk |Xk−1 = Tk−1, . . . ,X1 = T1

)

J (w) = NLLi
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solutions. After some early testing it was observed that a 
LR greater than  10−3 and smaller than  10−5 have no effect 
on the training whatsoever, so the LR changes from  10−3 
to  10−5, being multiplied by a constant every epoch.

Ideal model
In our research, a RNN-based model must learn how 
to generate SMILES and how to create molecules that 
appear in GDB-13. An ideal model is an abstract model 
that samples molecules from GDB-13 and only from 
GDB-13. Formally, the probability of sampling any mol-
ecule in the ideal model follows a uniform probability 
distribution with p = 1

|GDB−13| = 1.02 · 10−9 . Due to 
the probabilistic nature of RNNs, no trained model will 

be able to have the same behavior, thus an ideal model 
serves as an upper bound.

We can calculate the expected number of times GDB-
13 needs to be sampled to obtain 100% of the database. 
This problem is commonly known in mathematics as the 
“coupon collector problem” [32]. It was originally used 
to calculate the number of coupons (or stickers) that are 
needed to be bought to be able to obtain the full collec-
tion, knowing that every time a coupon is bought it is 
sampled with replacement from a distribution containing 
all possible coupons. Formally, for a uniform distribution 
with n > 1 coupons:

(2)E[Tu] = n ·Hn ≈ n(ln (n)+ γ )+
1

2

Fig. 2 Example of a forward pass of nicotine (CN1CCCC1c1cccnc1) on a trained model. The symbol sampled from the probability distribution at the 
step i  (highlighted in black) is input at the step i + 1 . This, with the hidden state  (hi), enables the model to have time‑dynamic behavior. Note that 
sometimes tokens with lower probability are sampled (like in step 1) due to the multinomial sampling of the model. Also note that the probability 
distributions are not from real trained models and that the vocabulary used throughout this publication is much bigger
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where Hn is the n-th harmonic number and γ is the 
Euler–Mascheroni constant. By fitting this to the GDB-
13 we would need to sample on average 20,761,554,747 
SMILES. For non-uniform probability distributions, this 
expected value is a lower bound and it tends to infinity 
for distributions where ∃pk → 0 (Additional file 1: Suppl. 
Material S1). Sampling the GDB-13 20 billion times is a 
computationally expensive task, so we can also obtain 
the expected fraction of a collection with n > 2 coupons 
if k > 1 were sampled from the ideal model (Additional 
file 1: Suppl. Material S2):

In the case of a sample of k = 2 · 109 molecules from 
the ideal model the average fraction of molecules sam-
pled would be 1−

(

1− 1.02 · 10−9
)2·109

= 0.8712 . This 
value is an upper bound (Additional file 1: Suppl. Mate-
rial S3): any model that is either non-uniform or non-
complete will have a smaller fraction of molecules from 
GDB-13. This allows us to measure the completeness and 
uniformness of any generative model architecture trained 
with GDB-13.

Sampling SMILES from a model
To be able to evaluate how much of GDB-13 can be reli-
ably sampled from a model, it must be sampled at least 
20 billion times (Eq.  2). This has an unfeasible compu-
tational cost. For this reason, samples of 2 billion mol-
ecules were performed, which account for approximately 
10% of the optimal sample size. After each sample, sev-
eral tests were done: the database was checked for dupli-
cates, for invalid SMILES, for non-canonical SMILES and 
was intersected with GDB-13, yielding 2 subsets: IN and 
OUT of GDB-13.

PCA plots with MQN
PCA plots were based on the method described pre-
viously in literature [33]. The 42-dimension MQN 
fingerprint [34] was calculated with the JChem 
Library 18.22.0 from ChemAxon (www.chema xon.
com) for each of the molecules in the dataset. Then, 
without any normalization or standardization, a prin-
cipal component analysis (PCA) was performed on 
the 42-dimensional resulting dataset. The two first 
principal components were selected and normal-
ized to values between 0 and w or h and molecules 
were organized in buckets. Each bucket represents 
a pixel 

(

x, y
)

 in the resulting w × h plot with a black 
background. A descriptor was also calculated for all 
molecules in each bucket and the average and count 
were calculated and normalized to the range [0, 1] . To 
color the pixels, the hue-saturation-value (HSV) for-
mat was used with the normalized average descriptor 

(3)fraction_uniform = 1− (1− p)k

as hue, a fixed value of 1.0 as the saturation and 
value = min

(

0.25, log10(countnorm
)

). With this setup, 
the pixels that have low count are gradually merged 
with the background and those that have the highest 
counts stand out.

Labelling sampled molecules out of GDB‑13
Sampled molecules not included in GDB-13 were 
labeled with the topological and chemical filters used 
in the enumeration process of GDB-13 that they broke 
[6, 35]. The molecules with disallowed topology were 
labelled the following way: carbon skeletons from all 
the molecules in GDB-13 were calculated and com-
pared to the carbon skeletons for each sampled mol-
ecule, labelling the molecules whose skeleton was not 
in GDB-13. All tautomers for all the molecules were 
calculated with MolVS [36] 0.1.1. For each molecule, 
if one tautomer was part of GDB-13, the molecule 
was labelled as a tautomer. Molecules with disallowed 
functional groups, heteroatom configurations or bonds 
were detected using SMARTS.

Technical details
All the programming, except noted, was done in Python 
3.6 using RDKit [37] version 2018.03 as the chemis-
try toolkit and PyTorch [38] 0.4.1 as the deep learning 
library. Stochastic gradient descent was used for train-
ing with the ADAM [39] optimizer with parameters 
β1 = 0.9,β2 = 0.999, ε = 10−8 and a batch size of 128.

The GDB-13 database was obtained from the gdb.
unibe.ch website and preprocessed with RDKit to obtain 
canonicalized SMILES and to filter molecules impos-
sible to read with the toolkit. The final size of the data-
base was 975,820,187 molecules. Data processing and 
PCA calculation were done with Apache Spark [40] 2.3.1 
and all datasets were stored in Apache Parquet files. 
All plots, including the PCA maps, were created with 
Matplotlib [41] and Seaborn [42]. The Jensen-Shannon 
Divergence was calculated with an in-house script using 
SciPy [43].  Table  1 shows the resources and cost of the 
different computations described previously, all of which 
were performed in CentOS 7.4 with Tesla V-100 (Volta) 
graphics cards and CUDA 9. 

Table 1 Computational resources and  cost associated 
with training and sampling the model and annotating a 2B 
sample

Operation CPUs RAM GPU Time

Training a model 4 32 GB 1 8 min/epoch

Sampling molecules 4 32 GB 1 33 million/h

Annotating 2B molecules 32 256 GB 0 24 h

http://www.chemaxon.com
http://www.chemaxon.com
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Results and discussion
Using negative log‑likelihood plots to guide the training 
process
A model was trained with a set of 1 million compounds 
randomly obtained from GDB-13. An initial way to assess 
the quality of the sampled molecules from the trained 
model is to check the percentage of valid molecules 
(Fig. 3c). This metric has often been used to train models 
[18, 19], but in the case of the GDB databases it proves 
to be insufficient, as it is always over 96.5%. To view the 
progress of the training, negative log-likelihoods (NLLs) 

of the SMILES in the training, validation and sampled 
sets were calculated after training the model each epoch. 
These NLLs were plotted together as histograms every 25 
epochs (Fig.  3a). Also, the Jensen–Shannon divergence 
(JSD) of all pairs of NLL plots was calculated (Fig.  3b). 
This measure allows the quantification of the differences 
between each pair of distributions.

Figure 3 plots are interpreted as follows: after epoch 1, 
the sampled set NLL distribution has the lowest average 
(higher probability) and the other two sets are extremely 
similar and have a higher NLL (lower probability). This 

Fig. 3 Metrics used to evaluate the training process. The red line at epoch 70 represents the chosen epoch used in further tests. The negative 
log‑likelihood (NLL) is calculated with natural logarithms. a 10 NLL plots of the training, validation and sampled sets every 25 epochs (from 1 to 200) 
and the chosen epoch (70). b JSD plot between the three NLL distributions from the previous section for each of the 200 epochs. c Percentage of 
valid molecules in each epoch. Notice that the plot already starts at around 96.5%. Mean (d) and variance (e) of the three distributions from section 
(a). Note that spikes around epochs 1–20 are statistical fluctuations common in the beginning of the training process of a RNN, when the learning 
rate is high
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means that the model is not completely trained, as the 
SMILES strings sampled are only a subset of the ones 
in the training set. Between epochs 25–50, the distribu-
tions become more similar, and around epochs 50-100 
the three plots match as much as possible, as can be seen 
both in (a) and in (b). When all the plots are similar it 
is equally probable to sample a SMILES from the train-
ing set as it is a SMILES outside it, implying that a higher 
percent of the database can be sampled. After this, the 
training set NLL distribution becomes more similar to 
the sampled set while the validation set has higher NLL. 
This indicates that the model is gradually being over 
trained, as a molecule from the training set will be sam-
pled from it with a higher probability than a molecule 
from the validation set. This trend becomes more pro-
nounced in later epochs.

To further discern whether the model is uniform and 
complete, the mean ( µ ) and especially the variance ( σ 2 ) 
of the NLL distributions have been calculated after each 
training epoch (Fig.  3c, d). Knowing that the uniform 
model NLL plot has σ 2 = 0 and 
µ = − ln

(

1
|GDB−13|

)

= 20.7 , the variance and the mean 
of the validation set should be as similar to these values 
as possible. Both descriptors reach plateaus at around 
epochs 60–150 for the mean and 60–90 for the variance.

By comparing all the intervals from the three different 
plots, we can obtain a joined interval from around epoch 
60 to 90, in which the model will have learned how to 
create the biggest and more uniform domain.

Sampling the model and analyzing its domain
To validate the previous method, 2 billion SMILES 
strings were sampled every five epochs (totaling 80 bil-
lion). As can be seen in Fig. 4, the total percent of gener-
ated molecules including repeats that are part of GDB-13 
always increases, but in Fig. 4 the percent of unique mol-
ecules generated that are in GDB-13 is maximal at epoch 
90 (69,2%), but there is a plateau starting around epoch 
70 (68.9%) and decreases steadily again after epoch 100 
(68.9%). Also, the sampled molecules not included GDB-
13 steadily decrease during the whole training. These 
results are very similar to the results obtained from the 
analysis of the NLL plots, the mean and the variance plot 
in Fig. 3b, d, e. Having a model representing a more uni-
form sampling (epoch 70) conflicts with having a more 
focused sampling (epoch 100). Depending on the spe-
cific needs for a given project a different epoch should be 
chosen, yet the differences are very small. Epoch 70 was 
chosen for future experiments with this model, because a 
more uniform model was desired. 

For any molecule there are many SMILES that 
uniquely represent it. In Fig.  1 the light and dark blue 
sets represent the number of possible SMILES for all the 
molecules and only one canonical SMILES for each mol-
ecule respectively. In the ideal model, only the canonical 
SMILES for each molecule are generated. Figure 4 shows 
(pink) that 85.6% of the SMILES in epoch 70 were gen-
erated directly as canonical, implying that the model 
can learn the canonical form of most of the generated 

Fig. 4 Results from sampling 2 billion SMILES from the 1 M model every five epochs (from 1 to 195). The red line at epoch 70 represents the chosen 
epoch for further tests. a Percent of the total sample (2B) that are valid SMILES, canonical SMILES, in GDB‑13 and out of GDB‑13. Solid lines represent 
all SMILES sampled, including repeats, whereas dotted lines represent only the unique molecules obtained from the whole count. b Close‑up 
percentage of GDB‑13 obtained every five epochs. Notice that the plot starts at around 54% and that the drop around epoch 10 correlates with the 
training fluctuations already mentioned in Fig. 3
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SMILES. Notice also that the number of unique canoni-
cal SMILES decreases steadily. This is correlated with 
the model not being uniform, and this trend is further 
pronounced after epoch 100, as the molecules from the 
training set are generated more often.

Understanding the diversity of the generated molecules
25 models with the same parameters as in the previous 
section were trained with a different 1  M random sam-
ple obtained from GDB-13. The probability of sampling 
each molecule from GDB-13 is averaged and molecules 
not generated by any model have a higher chance to be 
problematic due to the limitations of the model and not 
by chance.

For each model a sampling of 2 billion molecules was 
performed in epoch 70 (summing up to 50 billion mol-
ecules), repeated molecules were filtered and the whole 
sample was separated between molecules contained and 
not contained in GDB-13. Note that the number of mol-
ecules needed to sample from the ideal model to obtain 
100% of the database on average is around 21 billion 
(Eq. 2), much less than the 50 billion molecules sampled 
in this experiment. The frequency for each molecule in 
GDB-13 was computed, which is the number of times 
from 0 (not sampled in any model) to 25 (sampled in all 
models) each molecule was uniquely sampled from each 
model. In the ideal model, each sample can be considered 
as a Bernoulli trial with p = 0.8712 ((Eq. 3)), so the dis-
tribution of the frequency would follow a binomial distri-
bution with n = 25, k = 2 · 109 and p = 0.8712 . Figure 5a 
shows that the two distributions have a different mean 

(17.1 and 21.8) and mode (20 and 22) and the distribu-
tion obtained from the RNN models has an extremely 
long tail. Moreover, 5,720,928 molecules (0.6%) were 
never sampled by any model. Notice also in Fig. 5b that 
frequency is heavily correlated with the average negative 
log-likelihood for each molecule obtained from every 
model.

Analysis of the sampled molecules included in GDB‑13
PCA plots of the MQN fingerprint were performed with 
a sample of GDB-13 stratified by frequency (Fig. 6). Fig-
ure 6a, shows that there is a difference between the mole-
cules that have lower (top-right) and higher (bottom-left) 
frequency. Nevertheless, the density plot (Fig. 6b) shows 
that the most densely packed regions are at the center 
and occupied by molecules with both a high and a low 
frequency. Additional PCA plots were generated with 
some key descriptors that help pinpointing the differ-
ent regions of the chemical space. Figure  6c shows that 
pixels at the right have mostly cyclic bonds, implying 
more rings and fewer sidechains and linkers. This area 
is mostly covered by molecules that have low frequency. 
Moreover, Fig. 6d shows that pixels at the top have more 
heteroatoms. This closely matches the top lighter area in 
Fig. 6a, which features molecules with low frequency.

From the previous plots, molecules with many het-
eroatoms or complex topologies have a lower probabil-
ity of being sampled than molecules with less rings and 
more carbon atoms. However, Fig.  6b also shows that 
most of these structures are in lower density zones of the 
database, which implies that are only a small part of the 

Fig. 5 a Histograms of the frequency of the RNN models (orange) and the theoretical (binomial) frequency distribution of the ideal model (blue). b 
Histograms of the average NLL per molecule (from the 25 models) for molecules with frequency 0, 5, 10, 15, 20 and 25 computed from a sample of 
5 million molecules from GDB‑13



Page 9 of 14Arús‑Pous et al. J Cheminform           (2019) 11:20 

database. In Table 2, 24 fragment-like molecules with fre-
quency 0, 5, 10, 15, 20 and 25 were selected from GDB-
13 and shows that molecules with lower frequency have 
a tendency to have a more complex structure, especially 
more cyclic bonds, although it is not possible to separate 
them clearly.

To further understand how molecules are generated, 
the composition of the SMILES was analyzed. As shown 
in Fig. 7a (dashed orange line), the 1-g (token) count dis-
tribution is exponential and mostly features C (40%). In 
order, less featured tokens are 1, N, =, (,), O and 2. The 
rest of the tokens sum up to less than 7% of the total. 
SMILES representing simple topologies use mostly the 
tokens enumerated before and molecules that have com-
plex shapes tend to have more rings, so they have less 
common tokens, such as 3,4, …, 7. The frequency of the 

molecules containing each token is also plotted in Fig. 7a, 
showing that the frequency correlates with the counts. 
Note especially, marked in red in Fig.  7a, the numeric 
tokens starting from 4 tend to have a significantly lower 
average frequency than the neighboring tokens. This 
means that molecules in GDB-13 with four or more 
rings are significantly less likely to be sampled than oth-
ers. One explanation is that these tokens only appear in 
pairs in valid SMILES, which indicates that learning how 
to create a correct molecular SMILES with these tokens 
is much more difficult than with other equally frequent 
tokens, as both tokens in each pair must be correctly 
positioned with respect to each other. Additionally, mol-
ecules in GDB-13 (max. 13 heavy atoms) with more than 
three rings have extremely complex topologies. When 
performing the same analysis for 2-g same interpretation 

Fig. 6 a–f MQN PCA plots (Explained variance: PCA1 = 51.3%, PCA2 = 12, 2% ) calculated from a 130 million stratified sample of GDB‑13 with 5 
million molecules from each frequency value (0–25) colored by different descriptors. In all plots each pixel represents a group of similar molecules 
and its color represents the average value of a given descriptor. The colors rank from minimum to maximum: dark blue, cyan, green, yellow, orange, 
red and magenta. Each plot has the numeric range (min–max) between brackets after its title. Plots are colored by: a Number of trained models that 
generate each molecule. b Occupancy of every pixel. c Number of cyclic bonds. d Number of carbon atoms
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Table 2 A selection of  24 fragment-like molecules 
obtained from  GDB-13 with  frequency 0, 5, 10, 15, 
20 and  25. The molecules are sorted top to  bottom 
by  frequency and  left to  right by  average negative log-

likelihood (NLL) of  the  25 models. A  random sample 
of  10 million molecules annotated with  the  frequency 
and the average NLL is available for download (http://gdb.
unibe .ch/downl oads)

http://gdb.unibe.ch/downloads
http://gdb.unibe.ch/downloads
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applies (Fig.  7b): the count is correlated with the aver-
age frequency and the most frequent 2-g (CC, C1, C(,)
C, C=) match the SMILES of simple molecules and the 
less frequent (5o, 3[N+], 7O, 7(, 72) match exclusively 
molecules with complex topologies and several rings. 
This implies that the n-grams that appear fewer times in 
the database, i.e. in the training set, are not learned cor-
rectly and thus have a lower probability of being sampled. 
Therefore, molecules that contain an increasing number 
of low probability n-grams in their canonical SMILES, 
will progressively have a lower probability of being sam-
pled (Eq. 1).

Analysis of the sampled chemical space outside of GDB‑13
All the SMILES outside of GDB-13 generated by the 
25 models were joined obtaining a database with 
10,084,412,477 molecules. After filtering repeated mol-
ecules, a set with 2,979,671,366 unique molecules was 
obtained, from which a sample of 3 million was used for 
further research. Each molecule was then labelled with 
the constraints used to enumerate GDB-13 [6, 35] that it 
breaks (see methods). Figure  8 includes a plot with the 
percent of molecules that break each constraint (Fig. 8a) 
and another histogram with the number of constraints 
broken per molecule (Fig. 8b). The most common broken 
constraint, not allowed functional groups (26.2%), is the 
most complex one to learn, as any given functional group 
can have multiple SMILES strings, depending on where 
it is positioned in the molecule, thus making it more dif-
ficult to learn the string patterns to avoid. Also, 19.8% of 

the molecules have a graph that was filtered during the 
GDB-13 enumeration process, which correlates with the 
problems encountered when generating molecules with 
complex graph topologies: the model is not able to cor-
rectly learn the underlying graph topologies of the mol-
ecules. Additionally, due to the probabilistic nature of 
the model, 17.5% of the molecules generated outside of 
GDB-13 have more than 13 heavy atoms. Heteroatom/
Carbon ratios used to create GDB-13 are generally fol-
lowed (10.9%) and there are a similar number (10.1%) 
of molecules with disallowed neighboring heteroatom 
configurations. These constrains can easily be learnt by 
the model, as they have very little topological complex-
ity compared to the previous two. For the same reason, 
9.4% of the database are tautomers of molecules exist-
ing in GDB-13 and less than 7% of the molecules have 
problems with double or triple bonds. Interestingly, the 
miscellaneous category (22.7%) includes all molecules 
that are not in GDB-13 and that have broken none of the 
previous constraints. This occurs partially due to com-
patibility issues with the chemical library used (GDB-13 
was created with JChem from 2008 and this research uses 
RDKit from 2018) and because GDB-13 is not completely 
exhaustive. The enumerative process used to create GDB-
13 performed several levels of filtering: when a molecule 
was filtered out in an intermediate step, the molecules 
that would have derived from it were never generated. 
Most of these molecules would have probably been fil-
tered if they had been generated, as they are extremely 
uncommon. Lastly, Fig.  8b shows that 72% of the 

Fig. 7 Plots of the frequency (left y axis) and the percent in database (right y axis) of 1 and 2‑g in the canonical smiles of all GDB‑13 molecules. The 
plot is sorted by the percentage present in the database. a Plot with the 1‑g (tokens). In blue the mean frequency and in orange the percent of 1‑g 
in database. Notice that the numeric tokens have been highlighted in red. b Plot with the 2‑g mean frequency (blue) and percent (dashed orange). 
As the number of 2‑g is too large (287), the x axis has been intentionally left blank and the mean frequency has been smoothed by an average 
window function size 8



Page 12 of 14Arús‑Pous et al. J Cheminform           (2019) 11:20 

molecules only break one constraint, hence the chemical 
space generated outside of GDB-13 is very similar to the 
space represented by GDB-13.

Counteracting the limitations in models using SMILES
The previous two sections show that the SMILES format 
adds two substantial biases to the chemical space learned 
by our model. Firstly, the model has more difficulties 
generating molecules with many rings, especially with 
complex ring systems. This limitation stems from the 
nature of SMILES: highly cyclic molecules have longer 
SMILES sequences than equally-sized acyclic molecules 
and the relative positioning of the ring tokens is context-
sensitive. Fortunately, most drug-like molecules (like 
those in ChEMBL) tend to have simpler structures than 
GDB-13 molecules, making this problem less important 
for generative models that target the known drug-like 
space. One way that could help overcoming this bias is 
to carefully tailor the training set to feature more mol-
ecules that include complex ring systems. This will give 
the model more examples of complex molecules from 
which to learn, even though it would possibly add other 
biases. Also, a theoretical approach that could help was 
recently published [44] and alters the SMILES semantics, 
making ring tokens behave differently. This approach may 
make some ring systems have a less convoluted syntax 
but could make the SMILES syntax significantly more 

complex for the model to learn. The second bias has to do 
with the molecules outside of GDB-13 being incorrectly 
generated by the model and is also partially associated 
with the SMILES syntax. For instance, there are many 
ways of writing SMILES strings that represent most 
functional groups and there are many molecules with 
extremely different SMILES that share the same underly-
ing graph. These ambiguities make it especially difficult 
for the model to learn to correctly filter some molecules 
that have not allowed functional groups or graphs. One 
way that we think it could partially mitigate these prob-
lems is using a less ambiguous molecular representation 
that also separates the graph from its decoration such as 
graph generative models [45].

Training models with smaller training sets
Another important question is how using smaller data-
sets (100.000 molecules or less) would impact the chemi-
cal space generated. We performed some preliminary 
analysis, and we found that models with smaller training 
sets tend to overfit more and faster. Due to the reduced 
amount of diversity present in them, the model easily 
learns to reproduce the training set. That is why train-
ing models with smaller subsets of the GDB-13 database 
could give us information on which are the best archi-
tectures and hyperparameter configurations to minimize 

Fig. 8 Distribution of a sample of 3 million molecules obtained from all the outside of GDB‑13 sampled by the RNN model. a Histogram of the 
GDB‑13 constraints broken by each molecule. Notice that a molecule can break more than one constraint. b Distribution of the number of GDB‑13 
constraints broken by each molecule
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the overfit and optimize the learning capabilities of any 
model.

Conclusions
This study shows that a large amount of chemical space 
can be sampled with generative models that are trained 
only with a very small sample of that chemical space. 
Specifically, we generate up to 68.9% of GDB-13 by using 
a training set with only 0.1% of the database. The model is 
not only capable of learning basic chemistry (e.g. valency, 
ring structures) but also to follow complex constraints 
applied during the GDB-13 enumeration process, such 
as heteroatom ratios and positioning of double and tri-
ple bonds. More difficult constraints, e.g. complex graph 
topologies or not allowed functional groups are more 
difficult to learn mostly due to the limitations of the 
SMILES notation. We developed a computationally effi-
cient method to monitor and assess the quality of the 
training process using NLL plots. This method allows to 
identify the different stages of the training process and 
select a better model. To further understand the NLL plot 
analysis, we sampled the model every five epochs and 
compared the results with those from the ideal model. 
Moreover, this sampling can be used as a benchmark-
ing tool for molecular generative model architectures 
as we showed that the ideal model sets an upper limit 
(87.12%) to the amount of GDB-13 generated with a 2 
billion sample. We encourage researchers to try training 
models with different architectures or input formats on 
GDB-13, sample them 2 billion times, calculate the cov-
erage and compare the results. This may lead to a better 
understanding of the different architectures of molecular 
generative models. Finally, we performed an extensive 
analysis to find if there is any bias attributable to the 
model using the generated chemical space from a joined 
sample of 25 models at the same epoch. We obtained 
that although most of the problematic molecules have a 
tendency of having more cyclic bonds and heteroatoms, 
the main difference arises from issues within the SMILES 
syntax, especially related to using numeric ring tokens. 
We think that all the methods described here will help to 
find new generative model architectures that can over-
come some of the limitations of the current ones.
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